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Abstract. Individual pitch control (IPC) is a well-known approach to reduce blade loads on wind turbines.
Although very effective, IPC usually requires high levels of actuator activities, which significantly increases the
pitch actuator duty cycle (ADC). This will subsequently result in an increase of the wear on the bearings of
the blades and a decrease of the wind turbine reliability. An alternative approach to this issue is to reduce the
actuator activities by incorporating the output constraints in IPC. In this paper, a fully data-driven IPC approach,
which is called constrained subspace predictive repetitive control (cSPRC), is introduced. The output constraints
can be explicitly considered in the control problem formulation via a model predictive control (MPC) approach.
The cSPRC approach will actively produce the IPC action for the necessary load reduction when the blade
loads violate the output constraints. In this way, actuator activities can be significantly reduced. Two kinds of
scenarios are simulated to illustrate the unique applications of the proposed method: wake–rotor overlap and
turbulent sheared wind conditions. Simulation results show that the developed cSPRC is able to account for the
output constraints into the control problem formulation. Since the IPC action from cSPRC is only triggered to
prevent violating the output constraints, the actuator activities are significantly reduced. This will help to reduce
the pitch ADC, thus leading to an economical viable load control strategy. In addition, this approach allows the
wind farm operator to design conservative bounds to guarantee the safety of the wind turbine control system.

1 Introduction

Over the past decades, wind energy has expanded by leaps
and bounds in the international energy mix (van Kuik et al.,
2016). In total, 90 GW of new wind energy capacity was in-
stalled in 2020, which shows a rapid growth of 53 % com-
pared to 2019 (Global Wind Energy Council, 2021).

However, one of the main challenges in the development
of wind farms is the high operation and maintenance (O & M)
cost (Willis et al., 2018). This is usually related to the de-
sign of the wind turbine which is subjected to severe dy-
namic loading. In particular, in a wind farm downstream tur-
bines will be affected by the wake flow of the neighboring
upstream turbines. The interaction between wake and tur-
bines will lead to increased blade loads and loss of power
(Frederik et al., 2020b). Also novel wake mixing strategies
such as the HELIX can impose additional periodic struc-

tural loading (Frederik et al., 2020a). In addition, atmo-
spheric turbulence will have a negative impact on the wind
turbine performance (Barthelmie et al., 2007). Since wind
turbines tend to have larger rotor diameters and a more slen-
der tower than land-based counterpart, the effects of these
dynamic loading would be more significant. Therefore, load
mitigation concerning the wind turbines erected in a wind
farm becomes of vital importance to guarantee the reliability
of the turbine system and to reduce the O&M costs (Njiri
and Söffker, 2016). In general, the majority of the loads
on wind turbine rotors show a periodic nature (Liu et al.,
2022a, 2021d, 2022b). Individual pitch control (IPC) has
demonstrated its effectiveness in reduction of these periodic
loads (Bossanyi, 2003). In IPC, the pitch angle of each blade
is regulated independently with the aid of individual pitch
actuators and measurements of the bending moments. By su-
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perimposing the periodic pitch angles to each blade on top of
the collective pitch, the blade loads can be alleviated.

Bossanyi (2003) initially demonstrated the possibility of
reducing the blade loads occurring at an angular frequency
of once per (1P) rotation, by using an IPC based on a linear
quadratic Gaussian (LQG) approach. However, the 1P loads
are symmetric and thus are not the dominant loads on the
non-rotating components of the wind turbine. These compo-
nents suffer from the largest loads at the blade passing fre-
quency NP (e.g., 3P for a three-bladed wind turbine). There-
fore, the Coleman transformation (Bir, 2008), which con-
verts the loads from the rotating frame of reference into the
static frame, was suggested. This makes it possible to use
simple linear single-input and single-output (SISO) control
approaches for IPC, such as proportional–integral (PI) con-
trollers (Bossanyi, 2005; van Solingen et al., 2014). More
recently, other advanced IPC approaches, such as fixed-
structure H∞ feedback–feedforward IPC (Ungurán et al.,
2019) and multivariable robust IPC (Yuan et al., 2020), were
developed to mitigate the blade loads on the wind turbine. On
the other hand, the application of IPC to wake load control in
a wind farm is receiving increasing attention (Knudsen et al.,
2015). However, the wind farm wake shows a more chal-
lenging characteristic, namely the wake meandering (Larsen
et al., 2008), which was not considered in the developed ap-
proach. In order to address the challenge of such a complex
wake meandering phenomenon, a new IPC, which is based
on a multiple model predictive control (MPC) approach, was
proposed by Yang et al. (2015).

The drawback of these approaches is that the pitch actu-
ator duty cycle (ADC) is dramatically increased due to the
cyclic fatigue loads on the pitch actuators. Such an effect is
worsened when these approaches attempt to control the non-
deterministic wind loads at high wind turbulence intensities
and the dynamic loading caused by the wake. This will result
in an increase of the wear on the bearings of the blades and
eventually a shortening of the lifespan of the pitch control
system. Moreover, the pitch control system is usually sub-
jected to various constraints due to the physical restrictions
of the pitch actuator, safety limitations, environmental regu-
lations and wind farm manufacturer specifications (Vali et al.,
2016). Exceeding these constraints may result in damage to
the pitch control system and ultimately in the failure of the
entire wind turbine.

In order to address this challenge, a constrained IPC was
recently developed by Petrović et al. (2021). In their work,
the input constraints of the pitch actuators are explicitly taken
into account by using an MPC framework, which makes it
possible to reduce the actuator activities. However, output
constraints, to the best of authors’ knowledge, have not been
investigated yet for the case of IPC. As a control system with
output constraints is capable of limiting the loads within cer-
tain safety bounds, it would be an ideal way to reduce the
actuator activities. The widely used PI-based IPC augmented
with some deadbands might be able to take into account the

output constraints, while the tuning procedure of the parame-
ters is rather cumbersome. Moreover, the multi-blade coordi-
nate (MBC)-based IPC could be also potentially extended to
limit ADC by manipulating the input signals of inverse Cole-
man transformation through suitable wind-up filters. Unfor-
tunately, there are a limited number of publications investi-
gating such output-constrained control strategies. Compared
to the widely used input constraints, the inclusion of output
constraints is more challenging. It may lead to an unstable,
closed-loop system even though the corresponding uncon-
strained algorithm is stable (Wang, 2009).

In order to approach the goal of introducing output con-
straints in wind turbine control, a novel IPC approach is pre-
sented in this paper. It is based on a constrained subspace
predictive repetitive control (cSPRC). The basic concept of
SPRC was initially proposed by van Wingerden et al. (2011).
It is essentially a fully data-driven approach comprised of
subspace identification and repetitive control. The subspace
identification step, based on an online solution, is used to
recursively derive a linear approximation of the wind turbine
dynamics (van der Veen et al., 2013). Based on it, a predictive
repetitive control law is then formulated to reduce only spe-
cific deterministic loads, such as 1P loads, under varying op-
erating conditions. The SPRC approach has shown promising
results in numerical simulations (Navalkar et al., 2014; Liu
et al., 2020a, b, 2021b, a) and in wind tunnel experiments
(Navalkar et al., 2015; Frederik et al., 2018).

The main contributions of this paper lie in the following
two aspects. The first contribution is the data-driven frame-
work. For the first time, the constraints of the control prob-
lem, especially the output constraints of the blade loads, are
explicitly considered in the repetitive control formulation.
This is achieved by integrating an MPC approach (Qin and
Badgwell, 2003) into SPRC, so that the repetitive control law
subjected to specified output constraints can be formulated.
Since the accuracy of the control output prediction is affected
by the model uncertainty of the identified model, the output
constraints may cause instability of the closed-loop system
and severe deterioration of the control performance (Wang,
2009). Therefore, the output constraints are implemented as
soft constraints by introducing so-called slack variables in
the control problem formulation. The output constraints will
be relaxed if the slack variables become large enough. In case
there are no constraint violations, only the widely used base-
line pitch controller is active to maintain basic wind turbine
performance. Once the blade loads induced by the wind tur-
bulence and wind farm wake increase and violate the out-
put constraints, cSPRC will actively produce the IPC ac-
tion for the necessary load mitigation. This is achieved by
penalizing the control inputs only in the control objectives,
which ensures that the controller will be inactive if the blade
loads are lower than the safety bounds. Moreover, the safety
bounds, corresponding to the values of the output constraints
in cSPRC, can be designed according to the design regula-
tions of wind farms, such as IEC 61400-1 (IEC, 2005). Since
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cSPRC is only enabled for necessary load reduction, the pitch
activities would be significantly reduced while the safety of
the wind turbine can be still guaranteed.

The second contribution is the unique application of the
cSPRC approach to two independent scenarios: one where
the wind turbine is impinged and overlapped by the wake
shed from the upstream turbine and one where the turbulent
sheared wind condition is present, respectively. In particular,
in the wind farm wake scenario the wind turbine will experi-
ence partial and full wake overlap due to the wind direction
change and the yaw misalignment of the upstream turbine
(Fleming et al., 2015). The partial wake overlap, together
with the velocity deficit within the wake, will induce asym-
metric loading of the rotor plane of the wind turbine. This
will vividly illustrate the capability of dealing with output
constraints in the cSPRC approach.

The effectiveness of the cSPRC approach under these two
typical scenarios will be demonstrated through high-fidelity
simulations. For this, the FLOw Redirection and Induction in
Steady-state (FLORIS) model (Gebraad et al., 2016), which
is a parametric model for predicting a steady-state wake in
a wind farm, is utilized to simulate the wind farm wake.
It actually provides the wind speed input for the wind tur-
bine simulations. Then, the wind turbine simulations are ex-
ecuted using the US National Renewable Energy Labora-
tory (NREL)’s Fatigue, Aerodynamics, Structures, and Tur-
bulence (FAST) tool (Jonkman and Buhl, 2005). In this re-
spect, a 10 MW wind turbine model is used, which is devel-
oped by the Technical University of Denmark (DTU) (Bak
et al., 2013) and the Stuttgart Wind Energy (SWE) institute
(Lemmer et al., 2016). A thorough comparison against base-
line and conventional IPC approaches is made to evaluate the
performance of the proposed cSPRC.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the wind turbine model and the simulation
environment. In Sect. 3, the methodology of the cSPRC with
the inclusion of output constraints is elaborated. Then, the
potential of cSPRC for load mitigation in wake–rotor overlap
and turbulent sheared wind scenarios is illustrated through
high-fidelity simulations in Sect. 4. Conclusions are drawn
and future work is discussed in Sect. 5.

2 Wind turbine model and simulation environment

In this section, the wind turbine model and its simulation en-
vironment are introduced. The wind turbine model is based
on the DTU 10 MW three-bladed variable speed reference
wind turbine. Its specifications are presented in Table 1. More
details can be found in the reports (Bak et al., 2013; Lemmer
et al., 2016).

Based on the wind turbine model, the implementation of
the case study is illustrated in Fig. 1. The aero-structural
dynamic part of the wind turbine is simulated in the FAST
model (Jonkman and Buhl, 2005), while the turbine control

Table 1. Specification of the DTU 10 MW reference wind turbine
model.

Parameter Information

Rating 10 MW
Rotor orientation, configuration Upwind, 3 blades
Pitch control Variable speed, baseline and IPC
Drivetrain Medium speed, multiple stage gearbox
Rotor, hub diameter 178.3, 5.6 m
Hub height 119 m
Cut-in, rated, cut-out wind speed 4, 11.4, 25 m s−1

Cut-in, rated rotor speed 6, 9.6 rpm
Rated tip speed 90 m s−1

part is implemented in Simulink (Mulders et al., 2019). The
developed cSPRC approach, which is encompassed by a light
grey block, will be described in Sect. 3. Two other pitch con-
trol strategies are implemented for comparison:

1. Baseline control is based on the collective pitch con-
trol (CPC) approach (Jonkman and Buhl, 2005). In
CPC, the classical gain-scheduled PI control (Boukhez-
zar et al., 2007) is utilized to regulate the pitch angles of
all blades synchronously. It is denoted by a white block
in Fig. 1.

2. Conventional IPC is based on the MBC-based IPC.
In MBC-based IPC, the pitch angle of each blade is
regulated independently with the aid of the so-called
Coleman transformation (Bir, 2008). Note that the con-
straints are usually not considered in such an MBC-
based IPC approach (Selvam et al., 2009). MBC-based
IPC is indicated by a dark grey block in Fig. 1.

The baseline control is based on a linear time-
invariant (LTI) dynamical system (Bak et al., 2013). The
MBC-based IPC is implemented following the work of Mul-
ders et al. (2019). On the other hand, the proposed cSPRC
approach will be introduced in Sect. 3 to show the capability
of output constraints and its application to the load control of
wake overlapping and turbulent sheared wind flow scenarios.

3 Output-constrained, subspace predictive
repetitive control

This section outlines the theoretical framework of the cSPRC
approach for wind turbine load control. First of all, a discrete-
time LTI system along with an output predictor is estab-
lished to approximate the wind turbine dynamics. All the pa-
rameters of the linear representation are then identified via
an online recursive subspace identification. Based on this,
the predictive repetitive control law subjected to the differ-
ent kinds of constraints is then synthesized by solving an
MPC optimal problem in receding horizon. Especially, the
output constraints of the controller, because of the presence
of uncertainty in the identified model, are implemented as
soft constraints by introducing slack variables in the MPC.
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Figure 1. Block diagram of the wind turbine model and of the control loop. The aero-hydro-structural dynamic part is simulated in the FAST
model, while the turbine control part, including a baseline CPC (Jonkman and Buhl, 2005), an MBC-IPC (Mulders et al., 2019) and the
proposed cSPRC, is implemented in Simulink. These two IPC controllers can be selectively enabled in order to compare their performances
against each other and against the baseline controller alone. The baseline PI pitch controller and generator torque controller are always
activated to guarantee the basic performance of the wind power generation.

Furthermore, only the control inputs in the MPC are penal-
ized, which ensures that the controller will be only activated
for load mitigation when the blade loads violate the output
constraints. The overall structure of the cSPRC approach has
been illustrated in Fig. 2.

3.1 Online recursive subspace identification

In the cSPRC framework, the wind turbine dynamics are rep-
resented by a LTI system affected by unknown periodic dis-
turbances (Houtzager et al., 2013) as{
xk+1 = Axk +Buk +Edk +Lek
yk = Cxk +Fdk + ek

, (1)

where xk ∈ Rn, uk ∈ Rr and yk ∈ Rl denote the state, con-
trol input and output vectors. In the wind turbine model,
r = l = 3. uk and yk represent the blades pitch angles and the
blade loads, i.e., out-of-plane bending moment (MOoP), re-
spectively, at discrete time index k. Moreover, dk ∈ Rm is the
periodic disturbance component of the loads at the blade root,
while ek ∈ Rl is the zero-mean white innovation process or
the aperiodic component of the blade loads. Other matrices

A ∈ Rn×n, B ∈ Rn×r , C ∈ Rl×n, L ∈ Rn×l , E ∈ Rn×m and
F ∈ Rl×m denote the state transition, input, output, observer,
periodic noise input and periodic noise direct feed-through
matrices, respectively.

The following equations can be derived by rewriting
Eq. (1) in predictor form:{
xk+1 = Ãxk +Buk + Ẽdk +Lyk
yk = Cxk +Fdk + ek

, (2)

in which Ã,A−LC and Ẽ,E−LF . Let us define a periodic
difference operator δxk,xk−xk−P , where P is the period of
the disturbance, equalling to the blade rotation period. Then
the effect of the periodic blade loads dk on the input–output
system can be eliminated as the following equation holds

δdk = dk − dk−P = 0.

Similarly, δu, δx and δe can be defined as well. Applying
the δ notation to Eq. (2), this equation can be rewritten as
follows, where the periodic blade load term disappears.{
δxk+1 = Ãδxk +Bδuk +Lδyk
δyk = Cδxk + δek

. (3)
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Figure 2. Implementation of cSPRC, which includes online system identification and repetitive control. MPC optimization is used to incor-
porate the output constraints in repetitive control formulation. Uf represents the basis function, while the symbol U+

f
denotes the Moore–

Penrose pseudo-inverse of the basis function. In addition, uk , yk are the input and output vectors at discrete time index k. θj , Ỹj , and
Y j denote the transformed control input, the transformed control output and the output constraints at rotation j . P and ϕ correspond to the
period of the disturbance and rotor azimuth.

Then, a stacked vector δU (p)
k for a past time window with the

length of p is given by

δU
(p)
k =


uk − uk−P
uk+1− uk−P+1
...

uk+p−1− uk+p−P−1

 . (4)

Similarly, the vector δY (p)
k is defined. Next, the future state

vector δxk+p is introduced based on δU (p)
k and δY (p)

k as

δxk+p = Ã
pδxk +

[
K

(p)
u K

(p)
y

][
δU

(p)
k

δY
(p)
k

]
, (5)

in which K (p)
u and K (p)

y are

K
(p)
u =

[
Ãp−1B Ãp−2B · · · B

]
K

(p)
y =

[
Ãp−1L Ãp−2L · · · L

]
.

It is worth noting that p needs to be selected large enough,
in order to guarantee Ãj ≈ 0∀j ≥ p (Chiuso, 2007). With
this in mind, δxk+p can be simplified as

δxk+p ≈
[
K

(p)
u K

(p)
y

][
δU

(p)
k

δY
(p)
k

]
. (6)

By substituting this equation into Eq. (3), the approximation
of δyk+p is derived as

δyk+p ≈
[
CK

(p)
u CK

(p)
y

]
︸ ︷︷ ︸

4

[
δU

(p)
k

δY
(p)
k

]
+ δek+p. (7)

From Eq. (7), it can be seen that the matrix of coefficients[
CK

(p)
u CK

(p)
y

]
, which is the so-called Markov ma-

trix 4, includes all the necessary information on the wind
turbine dynamics. It is determined by the input vector u(r)

and output vector y(l). In essence, the subspace identifica-
tion aims to find an online solution of the following recur-
sive least-squares (RLS) optimization problem (van der Veen
et al., 2013):

4̂k = argmin
4̂k

k∑
i=−∞

∥∥∥∥∥δyi − λ4̂k
[
δU

(p)
i−p

δY
(p)
i−p

]∥∥∥∥∥
2

2

. (8)

In Eq. (8), λ is a forgetting factor (0� λ≤ 1) to alleviate the
effect of past data and adapt to the updated system dynamics
online. In this paper, a value close to 1, i.e., λ= 0.9999, is
chosen to guarantee the robustness of the optimization pro-
cess. According to the definition of 4 in Eq. (7), 4̂k at time
index k includes estimates of the following matrices:
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4̂k =

[
̂

CÃp−1B
̂

CÃp−2B · · · ĈB
̂

CÃp−1K

̂
CÃp−2K · · · ĈK

]
. (9)

To obtain a unique solution to this RLS optimization prob-
lem, persistently exciting signals are superimposed on top
of the control input. Subsequently, this RLS optimization
(Eq. 8) is implemented with a QR algorithm (Sayed and
Kailath, 1998) in an online recursive manner to obtain 4̂k .
Thanks to the online recursive system identification, 4̂k will
be adapted to different operating conditions by learning the
wind turbine dynamics online. Then it is used in an MPC
framework to formulate a repetitive control law subjected to
the output constraints. The implementation of the repetitive
control problem formulation in MPC, namely the receding
horizon repetitive control, will be elaborated in the next sub-
section.

3.2 Output-constrained repetitive control

Based on the LTI system obtained in subspace identifica-
tion step, the constrained repetitive control law is formulated
over P . Considering that P ≥ p and usually P is much larger
than p, the output equation can be lifted over P as

δY
(P )
k+p = 0̃

(P )δxk+p +
[
H̃ (P ) G̃(P )

][ δU
(P )
k+p

δY
(P )
k+p

]
. (10)

H̃ (P ) is the Toeplitz matrix, which is defined as

H̃ (P )
=



0 0 0 · · ·

CB 0 0 · · ·

CÃB CB 0 · · ·

...
...

. . .
...

CÃp−1B CÃp−2B CÃp−3B · · ·

0 CÃp−1B CÃp−2B · · ·

0 0 CÃp−1B · · ·

...
...

. . .
. . .


. (11)

By replacing B with L, G̃(P ) can be derived as well. In addi-
tion, the extended observability matrix 0̃(P ) is given by

0̃(P )
=



C

CÃ

CÃ2

...

CÃp

0
...

0


. (12)

Substituting Eq. (10) with Eq. (6), it yields

δY
(P )
k+P = 0̃

(P )
[
K

(P )
u K

(P )
y

][
δU

(P )
k

δY
(P )
k

]

+
[
H̃ (P ) G̃(P )

][ δU
(P )
k+P

δY
(P )
k+P

]
. (13)

In Eq. (13), it is worth noting that the first (P−p)·r columns
of K (P )

u and K (P )
y are 0. Moreover, the future output δY (P )

k+P

is actually predicted by previous δY (P )
k and δU (P )

k and future
input δU (P )

k+P . It can be rewritten as

δY
(P )
k+P =

[
0(P )K̂

(P )
u 0(P )K̂

(P )
y

][
δU

(P )
k

δY
(P )
k

]
+ Ĥ (P )δU

(P )
k+P , (14)

with the definitions of 0(P ) and Ĥ (P ) as follows:(
I − G̃(P )

)−1
0̃(P )
= 0(P )(

I − G̃(P )
)−1

H̃ (P )
= Ĥ (P ).

In order to take into account output Y (P )
k in the optimization

problem, Eq. (14) is then expanded as

Y
(P )
k+P =

[
Il·P 0(P )K̂

(P )
u 0(P )K̂

(P )
y

] Y
(P )
k

δU
(P )
k

δY
(P )
k


+ Ĥ (P )δU

(P )
k+P . (15)

An MPC optimization is subsequently implemented to syn-
thesize the repetitive control law, where the output con-
straints are incorporated into the control problem formula-
tion. With this in mind, Eq. (15) is reformulated into a state
space representation where the synthesized final input can be
penalized as well, which is

Y
(P )
k+P

δU
(P )
k+P

δY
(P )
k+P

U
(P )
k+P


︸ ︷︷ ︸

K̂k+P

=


Il·P 0(P )K̂

(P )
u 0(P )K̂

(P )
y −Ĥ

(P )
k

0(r·P )×(l·P ) 0r·P 0(r·P )×(l·P ) −Ir·P

0l·P 0(P )K̂
(P )
u 0(P )K̂

(P )
y −Ĥ

(P )
k

0(r·P )×(l·P ) 0r·P 0(r·P )×(l·P ) 0r·P


︸ ︷︷ ︸

Âk
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
Y

(P )
k

δU
(P )
k

δY
(P )
k

U
(P )
k


︸ ︷︷ ︸

K̂k

+


Ĥ (P )

Ir·P

Ĥ (P )

Ir·P


︸ ︷︷ ︸

B̂k

U
(P )
k+P . (16)

The state transition and input matrices are updated at each
discrete time instance k. Next, a basis function projection
(van Wingerden et al., 2011) is employed to limit the spec-
tral content of the pitch control input within the frequency
range of interest. More importantly, it will reduce the dimen-
sion of Eq. (16) that must be solved in the MPC framework,
thus leading to a reduced computational cost. In this paper,
the 1P frequency load on the rotor blades, which is mainly
induced by the wind shear, wind turbulence, changes in the
inflow wind speed and tower shadow, is taken into account.
The transformation matrix of the basis function projection
can thus be defined as

φ =


sin(2π/P ) cos(2π/P )
sin(4π/P ) cos(4π/P )
...

...

sin(2π ) cos(2π )


︸ ︷︷ ︸

Uf

⊗ Ir , (17)

where Uf ∈ RP ·b is the so-called basis function. The mathe-
matical symbol ⊗ represents the Kronecker product.
Remark 1. Tne issue need to be addressed in the cSPRC
algorithm is the potential variation of the rotor speed due to
the varying inflow wind speed. This will result in a phase shift
between control input and output.

To solve this problem, the rotor azimuth ψ , equal to
2πk/P at time instant k, is utilized to reformulate Uf to
take into account the rotor speed variations. In this context,
Eq. (17) can be rewritten into the following form:

φ =
[

sin(ψ) cos(ψ)
]︸ ︷︷ ︸

Uf

⊗ Ir . (18)

Based on the basis function, the control inputs at specific fre-
quencies are synthesized by taking a linear combination of
the sinusoids of the transformation matrix as

U
(P )
k = φ · θj , (19)

where j = 0, 1, 2, · · · represents the rotation count. θ ∈ Rb·r ,
which determines the amplitudes and phase of the sinusoids,
is computed based on Eq. (16) at each P . To excite the wind
turbine system dynamics, the persistently exciting signals are
superimposed on top of the transformed control input θj . The
control inputs now are given by

U
(P )
k = φ ·

(
θj + ηj

)
, (20)

where the vector ηj ∈ Rb·r is the filtered pseudo-random bi-
nary noise. Thanks to the transformation matrix φ, the en-
ergy of the persistently exciting control input U (P )

k can be
restricted on the specified 1P frequency as well. This will
alleviate the negative effects of the excitation on the nomi-
nal wind turbine dynamics. Furthermore, η is generated in an
uncorrelated way with different random seeds for each com-
ponent of the vector θ to guarantee the successful excitation.
On the other hand, the output can be transformed onto the
subspace that defined by the basis function, as

Ỹj = φ
+Y

(P )
k , (21)

in which the symbol + denotes the Moore–Penrose pseudo-
inverse. Based on the basis function projection, Eq. (16) is
reduced into a lower-dimensional form: Ỹj+1

δθj+1
δY j+1
θj+1


︸ ︷︷ ︸

Kj+1

=


Il·b φ+0(P )K̂

(P )
u φ φ+0(P )K̂

(P )
y φ −φ+Ĥ (P )φ

0r·b×l·b 0r·b 0r·b×l·b −Ir·b

0l·b φ+0(P )K̂
(P )
u φ φ+0(P )K̂

(P )
y φ −φ+Ĥ (P )φ

0r·b×l·b 0r·b 0r·b×l·b 0r·b


︸ ︷︷ ︸

Aj Ỹj
δθj
δYj
θj


︸ ︷︷ ︸

Kj

+

 φ+Ĥ (P )φ
Ir·b

φ+Ĥ (P )φ
Ir·b


︸ ︷︷ ︸

B̂j

θj+1. (22)

Compared to Eq. (16), the dimension of the projected ma-
trix, i.e., A ∈ R2(lb+rb)×4rb, is much lower than the original
matrix Â ∈ R2(lP+rP )×4rP . Considering P � b, the order of
the state-space representation as well as the following MPC
optimization problem can be substantially reduced. On the
other hand, such a basis function transformation guarantees
that the input U (P )

k is a smooth signal at the specific frequen-
cies. Then the following output constraints, considering the
transformation in Eq. (21), are imposed on Eq. (22) for all
j ≥ 0 as

Y
(P )
k+P ≤ Y , (23)

where Y are the constraints of the future output Y (P )
k+P , cor-

responding to the designed safety bounds of the blade loads.
If the blade loads do not exceed the desired bounds, then the
safety of the rotor is guaranteed. The value of the bounds can
be determined by the wind farm operator or according to the
safety factors of the loads in the design regulation such as
IEC 61400-1 (IEC, 2005), or other safety limitations and en-
vironmental conditions. For instance, the safety bounds for
the blade loads can be define by

Y = ξ ·Yc, (24)
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where ξ is the safety factor and Yc denotes the characteristic
value for the loads, e.g., standard deviation of the loads. For
the normal operating condition of the wind turbine, ξ can be
selected as 1.35 (IEC, 2005). Y is usually dependent on the
safety loads of the wind turbine; thus such constraints vary
for different operating conditions. Furthermore, cSPRC aims
at the reduction of MOoP variation; the steady-state values of
MOoP are not taken into account in such an IPC approach.
Since the future output Ỹj+i|j corresponds to the first ele-
ment in Eq. (22), such output constraints can be converted
into input constraints. Substituting Eq. (22) into Eq. (23), the
output constraints are reformulated as(
φ ·C ·Bj

)
· θj+1 ≤ Y −φ ·C ·AjKj , (25)

in which C is a diagonal matrix in the following form:

C =


Il·P

0r·P
0l·P

0r·P

 . (26)

Following the philosophy of the MPC algorithm, the con-
trol objectives are introduced in the following cost function
as

J
(
K,U

)
=

Np∑
i=0

(
Kj+i|j

)T
QKj+i|j

+

Nu∑
i=1

(
θj+i|j

)T
Rθj+i|j , (27)

with the MPC optimization problem as

V
(
Kj
)
=minUJ

(
Kj ,U

)
, (28)

subjected to(
φ ·C ·Bj+i−1

)
·θj+i ≤ Y −φ ·C ·Aj+i−1Kj+i−1,

i = 1, · · ·, Nu, (29)

where Q and R denote the positive-definite weighting ma-
trices, while Np and Nu are the prediction and control hori-
zons, respectively. Since the cSPRC framework is designed
to be only active when the blade loads violate the output con-
straints, Q is set to an all-zeros weighting matrix. This will
make θj+i|j the only penalization term in the cost function.
To guarantee a quick response to the output violations and
also perform a good trade-off between the control stability
and the convergence rate, a value close to 1 is selected for
each element of R. U,[θTj+1, · · ·, θ

T
j+Nu
] ∈ R4r·Nu is a se-

quence of a series of future control actions. They are com-
puted by the MPC optimization over the prediction horizon
at each rotation count j . This will optimize the future behav-
ior of the wind turbine while respecting the output constraints
in Eq. (23).

As usual in MPC implementations, only the first element
θTj+1 in the vector of the optimal input sequence U is used
while the remaining elements are discarded. The entire opti-
mization procedure is repeated at the end of each rotation of
the rotor. At the next rotation period j + 1, the updated state
Kj+1 is used as an initial condition, while the cost function
time limits in Eq. (27) roll ahead one step according to the
receding horizon principle (Qin and Badgwell, 2003).

Equation (28) can be solved as a standard quadratic pro-
gramming (QP) problem. With the all-zeros weighting ma-
trix Q in mind, the control objectives in Eq. (27) can be con-
verted to the following form:

J
(
Kj ,U

)
= UTRU, (30)

where X = [Kj , Kj+1, · · ·, Kj+Np ]T corresponds to the
vector of state predictions. R is the weight matrix, which is

R=

R .. .

R

 . (31)

By introducing the following prediction matrices,

A=



I

Aj
.
.
.

A
Nu
j

.

.

.

A
Np
j


, B =



0 · · · 0
B̂j · · · 0
.
.
.

. . .
.
.
.

A
Nu−1
j B̂j · · · B̂j

.

.

.
.
.
.

.

.

.

A
Np−1
j B̂j · · ·

Np−Nu∑
i=0

A
i

j B̂j


. (32)

Equation (22) is rewritten as

X =AKj +BU. (33)

Combining Eq. (33) with Eq. (30), the MPC optimization
can be solved in a simplified QP problem with only penaliza-
tion of the control input,

V
(
Kj
)
=minU(1/2) ·UTHU, (34)

subjected to

G ·U≤W, (35)

where H = 2R. In addition, G and W are defined according
to Eq. (29), in a similar manner as in Bemporad et al. (2002).
Remark 2. The output constraints should be introduced in
the control system cautiously as it could cause instability of
the predictive control system due to the non-linearity appear-
ing in the control law and the model–plant mismatch (Wang,
2009). To avoid this issue, we will introduce an output con-
straints relaxation, such that it allows the output constraints
to be violated, but incurring a heavy penalty cost. This is
achieved by introducing the so-called slack variables ρ.
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As a result, the output constraints will be relaxed once the
slack variables tend to large values during the control prob-
lem formulation. The implementation of the slack variables
in the objective function is

V
(
Kj
)
=minU(1/2) ·UTHU+ ρT Fρ, (36)

subjected to

G ·U− ρ ≤W, (37)

where F is the weighting matrix for the slack variables. With
the penalization of the slack variables, the output constraints
are softened to increase the control stability.

The implementation of the constrained repetitive control
is schematically presented in Fig. 2. As the Markov ma-
trix 4̂k is derived from the online recursive subspace iden-
tification Eq. (8), the MPC optimization is implemented in
Eqs. (36)–(37). When the blade loads of the wind turbine vio-
late the output constraints, this cSPRC algorithm will formu-
late the repetitive control law for load mitigation, as shown
in Eq. (19). Otherwise, only the baseline controller is active
to maintain the basic control performance, thus leading to the
reduced actuator activities.

4 Case study

In this section, the effectiveness of cSPRC in dealing with the
output constraints is demonstrated on the wind turbine model
via a series of case studies. For the sake of comparison, the
load reduction and the pitch ADC of the proposed cSPRC
approach, baseline CPC and MBC-based IPC are computed
for investigation.

4.1 Model configuration

The wind turbine model, which has been introduced in
Sect. 2, is simulated by the FAST v8.16 simulation pack-
age (Jonkman and Buhl, 2005). It is coupled with Simulink,
where the wind turbine torque and pitch control systems are
implemented. Two typical scenarios are considered in this
paper:

1. wake–rotor overlap condition, in which the wind turbine
is impinged by a steady-state wind farm wake shed from
an upstream turbine, which shows partial and full wake–
rotor overlap;

2. turbulent sheared wind condition, in which the wind tur-
bine is subjected to turbulent sheared wind flows.

The steady-state wind farm wake is simulated by the
widely used FLORIS model (Gebraad et al., 2016). In the
parameterization of the FLORIS wake model, the turbulence
intensity (TI) of 6.0 % is utilized to define the wake recovery,
while the center-to-center distance between the wake center
and the downstream turbine rotor center – 5 diameters (5 D)

of the rotor – is specified, which implies that the simulated
wind turbine in the FAST tool is situated 5 D behind the up-
stream turbine. Other effects such as wake meandering and
turbulence logarithmic wind profile are not included in this
scenario. For the turbulent sheared wind condition, a series of
turbulent varying wind fields are simulated via the TurbSim
model1, where the TI is set to be 3.75 %. The inflow wind
speeds are specified as 12, 16 and 20 m s−1. The wind pro-
file is based on the IEC power-law model (IEC, 2009). These
two scenarios result in a total of six load cases (LCs) in the
case study. All of them are summarized in Table 2.

Then, the time series of the wind fields, which are based
on the simulation results of the FLORIS and TurbSim, are
fed into the FAST/Simulink model as the input of the wind
turbine simulation. In all the LCs, the simulation lasts 1000 s
at a fixed discrete time step of 0.01 s. For comparison, three
different control strategies, i.e., baseline CPC, MBC-based
IPC and cSPRC, are simulated respectively in each LC. This
finally leads to a total of 6× 3= 18 simulation runs.

4.2 Results and discussions

4.2.1 Scenario I: wake–rotor overlap

First of all, the wake–rotor interaction is presented in Fig. 3.
The wind farm wake shed from the upstream turbine propa-
gates from left to right sectors of the rotor, thus leading to the
wake–rotor overlap on the downstream turbine. As visible,
the wind farm wake generated by the FLORIS model shows
an in-wake velocity deficit, which is indicated by the blue re-
gions in Fig. 3. It will cause significant asymmetric loading
on the rotor blades when the downstream turbine experiences
the partial wake overlap (such as in 300–500 and 700–800 s).
The load control for such partial overlap-induced asymmetric
loads is demonstrated through a series of comparison studies.
Figure 4 shows the time series of MOoP and corresponding
pitch angles on one blade. As IPC strategies only aim at the
reduction of MOoP variations, the steady values of MOoP
are removed by a high-pass filter.

It can be seen that MOoP is significantly increased when
the wake impinges on the left sector of the rotor at around
350 s, leading to the partial wake–rotor overlap. Due to the
increase of MOoP, the proposed cSPRC actively generates
the IPC action to reduce the asymmetric blade loads into
the safety bounds and avoid violating the output constraints.
Thus, significant load reduction can be observed for 350–
550 s. As time goes by, the rotor is fully overlapped with the
wake, which results in the reduced MOoP. Since the blade
loads do not violate the output constraints at 600 s, only the
baseline CPC is active to maintain the basic wind turbine per-
formance, which leads to reduced actuator activities. Again,
the wake impinged the right sector of the rotor at around

1TurbSim: a stochastic inflow turbulence tool to simulate realis-
tic turbulent wind fields (https://www.nrel.gov/wind/nwtc/turbsim.
html, last access: 3 March 2022).
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Table 2. Model configuration and environmental conditions in FAST–Simulink simulations for all LCs.

LC1–LC3: wake overlapping case LC4–LC6: turbulent
sheared wind case

Turbine DTU 10 MW DTU 10 MW
Inflow wind speed 12, 16, 20 m s−1 12, 16, 20 m s−1

Wind farm wake FLORIS wake model (Gebraad et al., 2016) –
Turbulence intensity – 3.75 %
Simulation time 1000 s 1000 s
Time step 0.01 s 0.01 s

Figure 3. Vertical slice of the wind field at the downstream turbine in LC2 (16 m s−1 wind speed), where the rotor is impinged and overlapped
by a wake. Red regions imply high wind velocity, which is undisturbed by the upstream turbine, while the blue regions reveal a velocity deficit
due to the upstream turbine.

640 s. The increased blade loads enables cSPRC to provide
the IPC action for load mitigation. In comparison, MBC-
based IPC, which is a conventional IPC approach, actually
shows maximum potential of load reduction. However, sig-
nificant actuator activities are demanded by MPC-based IPC.
For example, the corresponding pitch rates are presented in
Fig. 6. MBC-based IPC shows highest pitch rates, which lead
to large cyclic fatigue loads on the actuators. The developed
cSPRC, however, is only active in load mitigation when the
blade loads violate the output constraints, thus significantly
reducing the actuator activities.

The cost function of the MPC optimization in cSPRC is
illustrated in Fig. 5. It essentially implies the desired actua-
tor activities for load mitigation in cSPRC. The value of the
cost function increases when the wind turbine experiences
the partial wake overlap. In the case where the blade loads
satisfy the output constraints, the value of the cost function is
reduced to zero. Note that as the slack variables are included
in cSPRC, the output constraints are not always respected.
Some violations can be still observed in 300–400 s in Fig. 4.
This will avoid the instability of the closed-loop control sys-

tem due to the non-linearity occurring in the control law and
the model–plant mismatch.

4.2.2 Scenario II: turbulent sheared wind condition

Another scenario considered in the case study is the turbulent
sheared wind condition. Figures 7 and 8 show the time series
of MOoP, corresponding pitch angles and pitch rate in LC5.
Similarly, the cSPRC formulates the IPC action for load re-
duction when the turbulence-induced loads violate the output
constraints. By using a tight safety bound of 500 Kn m1, we
can see that significant load reduction is achieved by cSPRC
while the output constraints are generally respected. Since
the slack variables are used to relax the output constraints,
some constraints violations are observed from Fig. 7. On the
other hand, MBC-based IPC shows maximum load reduc-
tion in the turbulent sheared wind case; however, it will in-
duce more actuator activities, as indicated by the pitch rate in
Fig. 8. This approach, considering the blade loads are min-
imized into the safety bounds, is an effective way to reduce
the actuator activities and deal with the output constraints.
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Figure 4. MOoP on the blade root in LC2 (16 m s−1 wind speed) and its corresponding pitch angles, where the output constraints in the
developed cSPRC are enabled at 200 s. The steady-state values of MOoP have been removed. The designed safety bounds corresponding to
the output constraints are 1200 kN m1.

Figure 5. Cost function of the control objective in the developed cSPRC approach in LC2 (16 m s−1 wind speed). The calculation of the cost
function corresponds to Eq. (27) in Sect. 3.

Figure 6. Pitch rate of the blade in LC2 (16 m s−1 wind speed), where the output constraints in the developed cSPRC are enabled at 200 s.
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Figure 7. MOoP on the blade root and its corresponding pitch angles in LC4 (12 m s−1 wind speed, TI 3.75 % case), where the output
constraints in the developed cSPRC are enabled at 200 s. The steady-state values of MOoP have been removed. The designed bound corre-
sponding to the output constraints is 500 kN m1.

Figure 8. Pitch rate of the blade in LC4 (12 m s−1 wind speed, TI 3.75 % case), where the output constraints in the developed cSPRC are
enabled at 200 s.

Other LCs show similar patterns and hence are omitted for
brevity. Based on these comparisons, it can be concluded that
the developed cSPRC approach shows good performance in
handling the output constraints in both wake overlap and tur-
bulent sheared wind scenarios. By designing safety bounds,
it allows the wind farm operator to mitigate the loads into the
safety bounds while reducing the actuator activities. How-
ever, the conventional approach, such as MBC-based IPC,
usually mitigates the blade loads as much as possible. As a
consequence, more actuator activities are demanded by the
controller, which may lead to the reduced reliability of the
control system due to the higher cyclic fatigue loads on the
pitch actuators.

In order to quantify the load reduction and pitch activities
of these control strategies, two indicators, namely the reduc-
tion of MOoP relative to baseline controller and the pitch

ADC, are calculated for comparison. The latter one can be
calculated according to the pitch rate (Bottasso et al., 2013),
which is defined as

ADC=
1
T

T∫
0

β̇(t)
βmax

dt, (38)

where β̇ denotes the pitch rate, while βmax is its maximum
allowable value which is determined according to the spec-
ification of the wind turbine. t is the time. For the 10 MW
wind turbine model, the value of βmax is

βmax =

{
+8 ◦ s−1, β̇(t)≥ 0
−8 ◦ s−1, β̇(t)< 0

. (39)

The pitch ADC, which actually implies the cyclic fatigue
loads on the pitch actuators, is a widely used criterion to
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Table 3. Comparison of the indicators (reduction of MOoP, pitch
ADC and ratio R) in cSPRC and MBC-based IPC∗.

LC1 LC2 LC3 LC4 LC5 LC6

Reduction of MOoP

cSPRC [%] 21.6 23.9 28.4 21.6 28.6 26.5
MBC-IPC [%] 66.4 71.7 81.2 48.8 57.2 61.8

Pitch ADC

cSPRC [%] 6.2 1.7 1.5 4.3 5.8 6.5
MBC-IPC [%] 18.8 5.5 4.7 11.3 11.5 13.0

Ratio R

cSPRC [–] 3.5 13.9 19.5 5.0 5.0 4.1
MBC-IPC [–] 3.5 13.1 17.4 4.3 5.0 4.8

∗ The results are calculated based on the data from 300–1000 s in wake overlap
scenarios (LC1–LC3) and 750–1000 s in turbulent sheared wind
conditions (LC4–LC6). The reduction of MOoP represents the percentage of
changes with respect to the baseline CPC case.

estimate the lifespan of pitch actuators. In addition, the ra-
tio R between the reduction of MOoP and the pitch ADC is
computed to comprehensively evaluate the control strategy.
If R is larger, the control strategy is more effective in load
reduction with the same amount of the pitch ADC and vice
versa. All these results are summarized in Table 3. In general,
the proposed cSPRC shows similar or higher values of R
compared to MBC-based IPC, while its pitch ADC is sig-
nificantly reduced in considered cases. For instance, cSPRC
shows ∼ 1.7 % of the pitch ADC in LC2, whereas MBC-
based IPC shows ∼ 5.5 % of the pitch ADC in this case.
Averaging over all the cases, the proposed control strategy
shows the pitch ADC of ∼ 4 %, thus leading to a higher R
of 8.5 %. Considering the significant reduction of the pitch
ADC and higher R, it indicates that cSPRC is effective at
reducing the actuator activities and maintains the same level
of load mitigation. By incorporating the output constraints,
this approach is able to minimize the loads into the designed
safety bounds with low actuator activities.

In comparison, MBC-based IPC aims at attaining the max-
imum load reduction. However, it causes excessive pitch
ADC and thus leads to a lowerR. Since the output constraints
are taken into account in cSPRC, the proposed framework is
able to only mitigate the blade loads violating the designed
safety bounds. In this way, the pitch ADC is significantly al-
leviated. Therefore, cSPRC might be a promising alternative
to MBC-based IPC to perform a trade-off between the load
reduction and the pitch ADC in all considered cases.

5 Conclusions

In this paper, a fully data-driven individual pitch con-
trol (IPC) approach, which is called constrained subspace
predictive repetitive control (cSPRC), is developed to explic-

itly consider the output constraints in the control problem
formulation. This approach involves using online recursive
subspace identification and model predictive control (MPC)
to formulate the repetitive control law subjected to the output
constraints. The cSPRC approach aims to produce the IPC
action for load mitigation when the blade loads violate the
output constraints while the baseline pitch controller is al-
ways active to maintain the basic wind turbine performance.

The effectiveness of the developed cSPRC in dealing with
the output constraints is illustrated on a DTU 10 MW ref-
erence wind turbine model, where the wake–rotor overlap
and turbulent sheared wind conditions are considered respec-
tively. It proves that the cSPRC approach is effective at limit-
ing the blade loads into the designed safety bounds, showing
effective load mitigation with low pitch activities: the blade
loads are reduced by ∼ 25 %, while pitch actuator duty cy-
cle (ADC) is only ∼ 4 %, thus leading to a ratio R of ∼ 9 %.
Moreover, it is interesting to note that cSPRC only produces
the IPC action for load mitigation when the blade loads vi-
olate the output constraints. This, to some extent, reduces
the actuator activities. Furthermore, cSPRC can be readily
extended to the multifrequency IPC by expanding the basis
function.

In this paper, the cSPRC approach is compared to MBC-
based IPC. The case study shows that MBC-based IPC at-
tains maximum load reduction, however at the expense of
increased pitch ADC. In comparison, the proposed cSPRC
framework, by dealing with the output constraints, is capa-
ble of achieving more economical load reduction and shows
much lower pitch ADC. More importantly, this approach en-
ables the wind farm operator to design conservative bounds
for the load control. Since cSPRC only formulates the IPC
actions to prevent violating constraints, it will significantly
alleviate the pitch ADC and extend the lifespan of the pitch
control system. Based on the comparison study, it is worth
noting that both cSPRC- and MBC-based IPC show similar
but substantially different scopes. MBC-based IPC targets a
maximum load reduction at the expense of high-pitch ADC.
cSPRC might be a complementary alternative to MBC-based
IPC to achieve a trade-off between the load reduction and the
pitch ADC. Future work will include, but are not limited to,
considering other wake effects such as wake meandering and
dynamic propagation of the wake, executing scaled wind tun-
nel experiments, and full-scale tests on a real wind turbine or
wind farm.

Data availability. The data analyzed in this paper are confidential
and cannot be shared publicly.

Video supplement. This video https://doi.org/10.5446/50771
(Liu, 2020) demonstrates a case study where the wind turbine is
impinged and overlapped by the wake shed from the upstream
turbine. Three control strategies, i.e., baseline collective pitch
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control, Coleman transformation based individual pitch control,
output-constrained subspace predictive repetitive control, are used
for comparison.
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