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Abstract. Lidar-assisted control (LAC) of wind turbines is a control concept that takes advantage of a nacelle-
mounted lidar (a remote sensing device) to measure upstream wind speeds of a turbine to allow a preview of the
incoming turbulence. Because the turbine will not be exposed to the identical turbulence as that measured by the
lidar in advance, the simulation of a LAC system will be more realistic if wind evolution can be modeled in the
wind field generation. Since the commonly used 3D stochastic wind field generation method does not include
wind evolution, the main goal of this research is to extend the 3D method to 4D to enable the modeling of wind
evolution along the wind direction. The most novel part of this research is that we propose a two-step Cholesky
decomposition approach for the factorization of the coherence matrices in the wind field generation. With this
approach, 4D wind fields can be generated by combining multiple statistically independent 3D wind fields. To
enable better integration of the 4D method into the common workflow of wind turbine simulations, we implement
the 4D method as the open-access tool evoTurb in combination with TurbSim and Mann turbulence generator.
Moreover, since 4D wind field generation is supposed to be coupled with lidar simulations, and considering the
range weighting effect of lidars and eventually multiple range gates, a 4D wind field will contain many more
simulation points than a 3D one. To avoid excessive computational effort, we further investigate the impacts
of the spatial discretization in 4D wind fields on lidar simulations to provide some insights to optimize the
application of 4D wind field generation.

1 Introduction

Wind turbines are highly dynamic systems operating in tur-
bulent wind fields in the atmospheric boundary layer, with in-
teracting effects of aerodynamics, structural dynamics, con-
trol systems, soil dynamics, and hydrodynamics (only for
offshore locations) (Moriarty and Butterfield, 2009). Simula-
tion of wind turbine systems requires algorithms to properly
generate inflow turbulence. Although computational fluid dy-
namics (CFD) such as direct numerical simulations or large
eddy simulations (LESs), which solve the Navier–Stokes
equations numerically, produce more realistic turbulence in
the physical sense, these algorithms are computationally too

expensive for engineering design. Therefore, in the wind en-
ergy industry, stochastic wind field simulations are mainly
applied. There are two commonly used tools for that: Turb-
Sim, provided by the National Renewable Energy Labora-
tory, and the Mann turbulence generator, made available by
DTU Wind Energy, Technical University of Denmark.

TurbSim was initially developed on the basis of the 3D
wind field simulation method proposed by Veers (1988),
known as the Veers method (Jonkman, 2009). This simulates
stationary multidimensional random processes with specified
cross-spectrum densities to generate turbulent wind veloci-
ties. Several spectral models of turbulence are available in
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TurbSim, of which the most commonly used model is the
Kaimal spectral and exponential coherence model (Kaimal
et al., 1972) (hereinafter referred to as the Kaimal model) –
one of the two turbulence models provided in IEC 61400-
1:2019.

The Mann turbulence generator (MTG) is based on the
Mann uniform (Mann, 1994) shear model (hereinafter re-
ferred to as the Mann model), which is another turbulence
model given in IEC 61400-1:2019. In contrast to the Kaimal
model which is formulated based on Kolmogorov’s (Kol-
mogorov, 1941) −5/3 law, the Mann model combines the
spectral tensor with the rapid distortion theory, which im-
plies a linearization of the Navier–Stokes equation, and the
modeling of the eddy lifetimes to include more physical con-
siderations in the stochastic modeling of turbulent proper-
ties. Moreover, the computational method included in MTG
is demonstrated in Mann (1998), which uses 3D inverse fast
Fourier transformation (3D IFFT) (Heideman et al., 1985) to
improve the computational efficiency.

It is worth mentioning that both tools create a 3D wind
field: TurbSim creates time series of wind vectors at points
in a 2D vertical rectangular grid fixed in space, namely
V(t,y,z) (Jonkman, 2009); MTG creates a 3D wind field in
space, namely V(x,y,z), and applies Taylor’s (Taylor, 1938)
frozen hypothesis to convert the x axis (aligned to the mean
wind direction) to time axis by assuming that the turbulent
wind field remains unchanged and propagates with the mean
wind speed. Having such 3D wind fields is sufficient for the
aeroelastic simulation of wind turbines with a feedback con-
trol system, and the application of Taylor’s hypothesis is also
justified because, in principle, only turbulence acting on the
turbine needs to be considered in this case. However, that
is not sufficient for modeling a lidar-assisted control (LAC)
system, which takes advantage of a nacelle-mounted lidar,
i.e., a remote sensing device that can measure wind speeds
in front of the wind turbine using Doppler effect (Weitkamp,
2005), to allow the wind turbine to proactively adjust to the
incoming turbulence (see, e.g., Bossanyi et al., 2014; Schlipf,
2015; Simley, 2015; Simley et al., 2018). The reason for that
is that the LAC system uses turbulence signals taken at some
distance upwind as input, but the turbulence will evolve be-
fore it reaches the turbine – this physical phenomenon is
called wind evolution (Chen et al., 2021). Thus, the turbine
will not be exposed to exactly the same disturbances as that
measured by the lidar (Guo and Schlipf, 2021). To make it
possible to simulate this effect in stochastic wind field sim-
ulations and to assess the benefits of LAC more reasonably,
Taylor’s hypothesis should no longer be applied, and wind
evolution must be taken into account.

Wind evolution refers to time-dependent variation of tur-
bulence structures (eddies). In practice, wind evolution is
usually quantified with the longitudinal coherence between
the wind speeds measured at different locations in the mean
wind direction (see, e.g., Pielke and Panofsky, 1970; Kris-
tensen, 1979; Simley and Pao, 2015; Schlipf et al., 2015;

Chen et al., 2021). As reviewed in Chen et al. (2021), two
types of wind evolution models have been proposed in previ-
ous research. On the one hand, an empirical model which is
a simple exponential function with a single decay parameter
was initially suggested by Pielke and Panofsky (1970), fol-
lowing the study of Davenport (1961). Subsequently, Panof-
sky and Mizuno (1975) studied the correlations between the
decay parameter and other wind-field-related parameters and
suggested the first parameterization model for the exponen-
tial wind evolution model. On the other hand, Kristensen
(1979) believed that the longitudinal coherence should have
different properties than the lateral and vertical coherence
and deduced another model form based on modeling the
probability of eddy decay and eddy transversal diffusion. In
recent years, Simley and Pao (2015) modified the exponen-
tial wind evolution model by including a second parameter to
adjust the coherence at very low frequency, taking a similar
model form as the coherence model for transverse and verti-
cal separations proposed by Thresher et al. (1981), and sug-
gested a model to determine both model parameters based on
LESs. On the basis of Simley and Pao’s model (Simley and
Pao, 2015), Chen et al. (2021) suggested a concept to build
parameterization models using supervised machine learning
(ML) algorithms and presented the results of Gaussian pro-
cess regression models. In a following work, the performance
of different ML algorithms was compared considering their
computational efficiencies (Chen and Cheng, 2020).

Some attempts have been made to simulate the effect of
wind evolution or integrate wind evolution models into 3D
simulations. For example, Laks et al. (2013) proposed an ap-
proach to extend the Veers method (Veers, 1988) from the
original wind field simulated on the rotor plane to an ad-
ditional vertical plane in the inflow direction for generat-
ing preview measurements of lidars. Bossanyi (2013) sug-
gested a method to simulate an evolving turbulent wind field
with two random realizations of wind fields, which is im-
plemented in Bladed – a simulation tool for wind turbine
performance and load calculations (DNV-GL, 2016). How-
ever, both methods are intended to generate unfrozen turbu-
lence on two different vertical planes, which are not directly
applicable to the current commercial lidars that are able to
measure at multiple upstream distances. de Maré and Mann
(2016) extended the 3D Mann spectral tensor (Mann, 1994)
to a 4D (space–time) turbulence model by introducing the
Kristensen model (Kristensen, 1979), but the corresponding
4D wind field simulation tool has not been developed.

In this work, we aim to extend the Veers method of 3D
stochastic wind field generation to 4D in a general form so
that the simulation of multi-distance lidar measurements can
be better integrated into the current framework of the aeroe-
lastic simulation of wind turbines. We first derive the math-
ematical expression of how to combine the longitudinal co-
herence into a conventional 3D wind field simulation. Based
on this, a two-step Cholesky decomposition approach is pro-
posed to factorize the matrices of the lateral–vertical coher-
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Figure 1. (a) A frozen turbulent wind field generated with the Mann
turbulence generator. (b) An unfrozen turbulent wind field gener-
ated with the open-access tool evoTurb by combining multiple wind
fields from the Mann turbulence generator. The turbulence prop-
erties are as follows: mean wind speed= 16 ms−1, turbulence in-
tensity= 0.16, and shear exponent= 0.2. Only the U component is
shown.

ence and the longitudinal coherence, respectively, to make
the 4D wind field generation more feasible in practice.

The two-step Cholesky decomposition approach also
makes it possible to generate a 4D wind field by combining
multiple statistically independent 3D wind fields. To facili-
tate practical application of our 4D method, we implement
it as an open-access tool evoTurb (evolving turbulence) pub-
lished on GitHub (coded in MATLAB and Python). This tool
takes 3D wind fields generated using standard wind field sim-
ulation tools – TurbSim or MTG, so that the longitudinal co-
herence can be introduced in synthetic wind fields without
changing any other turbulence properties. Figure 1 shows a
4D wind field generated with evoTurb by combining wind
fields from MTG as an example. Based on this tool, we sug-
gest a concept for integrating 4D wind field simulations into
the workflow of the aeroelastic simulation of wind turbines
as illustrated in Fig. 2. Besides independent 3D wind fields,
evoTurb takes wind evolution model parameters (which can
be obtained from parameterization models) as input to pro-
duce proper longitudinal coherence and takes lidar configu-
rations as input to determine the simulation grid. The out-
put of evoTurb is a 4D wind field, which can be fed into the
aeroelastic simulation of wind turbines with a built-in lidar
simulator.

Since the 4D wind field simulation is supposed to be ap-
plied in combination with lidar simulations, it is expected
to generate wind speed time series for a 3D grid, and thus
the computational effort is much larger than that of the 3D
method. Therefore, we further look into the possibility to
reduce the size of the simulation grid. For LAC, the auto-
spectrum of line-of-sight (LOS) measurements is an impor-
tant indicator since it is related to its variance in the time do-
main, which can be further used to estimate turbulence inten-
sity (Peña et al., 2017; Schlipf et al., 2020). In addition, the
coherence between the lidar-estimated u component in the
upstream wind by a nacelle-mounted lidar and the u com-
ponent on the rotor plane can be used to derive the usable
frequency components of lidar signals for the feed-forward
control (Schlipf, 2015). Hence, we focus on the impact of
spatial discretization in lidar simulations on these two quan-
tities. In this work, we analyze the discretization of a lidar
range weighting function, different interpolation methods of
wind speeds, and different simulation grids to provide some
insights to optimize the simulation configurations.

This paper is organized as follows: Sect. 2 explains the
methodology of the 4D wind field simulation, Sect. 3 dis-
cusses lidar simulations based on 4D wind fields, and Sect. 4
gives a summary and an outlook of this research.

2 Four-dimensional wind field generation

This section focuses on the methodology and implementa-
tion of the 4D wind field generation method proposed in this
research. Section 2.1 introduces the basic approach of the
Veers method for the 3D wind field generation. Section 2.2
explains how the Veers method can be extended to 4D. Sec-
tion 2.3 proposes a two-step Cholesky decomposition ap-
proach to make the 4D wind field generation more feasible
in practice. Section 2.4 shows the implementation of the 4D
wind field generation coupling with TurbSim and MTG. Sec-
tion 2.5 gives the validation of the proposed 4D wind field
generation method.

2.1 The Veers method for 3D wind field generation

The Veers method (Veers, 1988) is based on the generation of
random processes, which generates 3D turbulent wind fields
by the complex Fourier coefficients (CFCs) in the frequency
domain. To maintain required coherence among the turbu-
lence, for each frequency component, a coherence matrix
that contains the magnitude coherence between any two wind
speed fluctuations at this frequency is factorized using the
Cholesky decomposition (Press et al., 2007) and multiplied
by uniformly distributed random phases to form a transfor-
mation matrix. This matrix is then scaled by a factor pro-
portional to the square root of the auto-spectrum at this fre-
quency to obtain the CFCs for this frequency component.
This procedure is conducted for the whole frequency range to
acquire the CFCs for all frequency components, and the time
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Figure 2. Concept for integrating the 4D wind field simulator evoTurb into the aeroelastic simulation of wind turbines.

series of wind speed fluctuations are generated by applying
inverse fast Fourier transform (IFFT) (Heideman et al., 1985)
to the CFCs.

As explained above, the key to the Veers method is to com-
pute the CFCs for each frequency component. Here, we take
the example of generating time series of the u component to
explain the key formula in detail. The reason for taking the
u component as an example is that currently only the lon-
gitudinal coherence of the u component is considered to be
introduced in wind field generation.

Consider n non-overlapping spatial points on the yz plane,
which can be arbitrarily distributed. For a specific frequency
component (the frequency is omitted in the following formu-
las for brevity), the CFC vector of the u component for 3D
wind fields is computed by (Veers, 1988)

Uyz = [ûyz,1 ûyz,2 · · · ûyz,n]> = AuHu,yzXn. (1)

This formula consists of three parts.

1. Au is the two-sided Fourier coefficient obtained from
the auto-spectrum of the u component Su at this fre-
quency,

Au =
√
1f · Su, (2)

with1f the frequency step in Hz. A factor of 1/2 needs
to be multiplied in the square root if Su is a one-sided
power spectral density. For a specific frequency compo-
nent, Au is a constant.

2. Hu,yz is the Cholesky factor obtained by factorizing the
lateral–vertical coherence matrix Cu,yz at this frequency
using Cholesky decomposition. Cu,yz is a n-by-nmatrix
with entries γu,yz,i,j the magnitude coherence of the u
component between any two spatially separated points

indexed with i and j on the yz plane:

Cu,yz =

γu,yz,1,1 . . . γu,yz,1,n
...

. . .
...

γu,yz,n,1 . . . γu,yz,n,n

 . (3)

For the general definition of the spatial coherence,
please refer to Appendix A. Because under the same
wind field conditions, γu,yz,i,j only depends on the spa-
tial separation between the two points (see Eq. A3),
Cu,yz is a symmetric matrix. The Cholesky decomposi-
tion can decompose a real, symmetric, positive-definite
matrix into the product of a lower triangular matrix, i.e.,
the Cholesky factor, and its transpose. For brevity, the
operation to obtain the Cholesky factor is denoted by
“chol( )”. In this case,

Hu,yz = chol(Cu,yz), (4)

with

Hu,yz =

hu,yz,1,1 0
...

. . .

hu,yz,n,1 · · · hu,yz,n,n

 , (5)

which satisfies

Cu,yz =Hu,yzH>u,yz. (6)

(3) Xn is a n-by-1 vector of random phases which are uni-
formly distributed between 0 and 2π ,

Xn = [eiθ1 eiθ2 · · · eiθn ]>, (7)

with i the imaginary unit. For convenience, the size of
the vector is indicated by the subscript.
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2.2 Extending the Veers method for 4D wind generation

In principle, Eq. (1) can be used to generate random pro-
cesses with specific correlation according to the given coher-
ence matrix, which is not limited by dimensions. Therefore,
we can extend Eq. (1), which is originally for spatial points
on a vertical plane corresponding to 3D wind fields V(t,y,z),
to spatial points in 3D space corresponding to 4D wind fields
V(t,x,y,z).

To explain this idea, we continue with the example of the u
component. Consider p non-overlapping spatial points in 3D
space, which can also be arbitrarily distributed as in the 3D
case. For a specific frequency component, the CFC vector of
the u component for 4D wind fields can be formulated in a
similar way to Eq. (1)

Uxyz = AuHu,xyzXp, (8)

with

Hu,xyz = chol(Cu,xyz). (9)

In Eq. (8), Au is the same as that in Eq. (1). Xp is still a
vector of random phases but with a size of p-by-1 accord-
ing to the grid size. The main difference lies in the Cholesky
factor for 4D wind fields Hu,xyz (p-by-p) or, more precisely,
the 3D coherence matrix Cu,xyz (p-by-p), which is supposed
to contain the magnitude coherence of the u component be-
tween any two spatial points in 3D space γu,xyz,i,j .

Currently, there is no simple model for the 3D coherence
available. Therefore, a general approach to create the 3D co-
herence is combining the lateral–vertical coherence and the
longitudinal coherence (see, e.g., Schlipf et al., 2013; Laks
et al., 2013; Bossanyi et al., 2014; Simley, 2015). Simley
(2015) investigated two different methods for combining the
lateral–vertical and the longitudinal coherence, i.e., the prod-
uct method, taking the product of both, and the root-of-sum-
of-squares (RSS) method, taking the RSS of both. According
to the comparison based on LESs, the RSS method is more
accurate, while the product method slightly underestimates
the 3D coherence (Simley, 2015). However, we choose the
product method in this study because it allows us to come
up with a two-step Cholesky decomposition approach which
makes the 4D wind field generation more feasible in practice.
This will be introduced in Sect. 2.3.

In fact, Eq. (8) is exactly the general formula of the CFCs
in the 4D wind field generation. After acquiring the CFCs,
the subsequent steps are the same as in the 3D case. Finally,
the generated wind speeds should be time-shifted according
to the mean wind speed and the corresponding longitudinal
positions. It is worth mentioning that compared to the meth-
ods proposed by Laks et al. (2013) or Bossanyi (2013), which
only extend the Veers method from the wind field at the rotor
position to an additional vertical plane, the method proposed
here is a more general extension of the Veers method and
thus more widely applicable.

2.3 Two-step Cholesky decomposition approach

A problem may occur when directly applying Eq. (8). The
size of the 3D coherence matrix could be much larger than
the size of the lateral–vertical coherence matrix (i.e., p�
n) because the former considers one more spatial dimension
than the latter. This will lead to a much higher computational
cost of the Cholesky decomposition, which is theoretically
proportional to the cube of the matrix size, denoted as O(p3)
(Higham, 2008). To tackle this issue, we propose a two-step
Cholesky decomposition approach by taking the following
two assumptions.

1. As mentioned above, the 3D coherence γu,xyz,i,j is as-
sumed to be the product of the lateral–vertical coher-
ence γu,yz,i,j and the longitudinal coherence γu,x,i,j :

γu,xyz,i,j = γu,yz,i,jγu,x,i,j . (10)

2. Considering that regular grids are more commonly used
in practice, we define a 3D grid with m identical, non-
overlapping planes perpendicular to the x axis with n
points (i.e., p =mn) instead of an arbitrary grid.

Similar to the lateral–vertical coherence, the longitudinal
coherence only depends on the spatial separation between the
two points on the x axis under the same wind field conditions.
Therefore, for these m planes, a longitudinal coherence ma-
trix Cu,x can be formed by the magnitude coherence of the u
component between any two planes:

Cu,x =

γu,x,1,1 . . . γu,x,1,m
...

. . .
...

γu,x,m,1 . . . γu,x,m,m

 . (11)

With the two assumptions, the 3D coherence matrix Cu,xyz
(mn-by-mn) can be computed by the Kronecker product “⊗”
(Henderson et al., 1983) of the longitudinal coherence ma-
trix Cu,x (m-by-m) and the lateral–vertical coherence matrix
Cu,yz (n-by-n):

Cu,xyz = Cu,x ⊗Cu,yz

=

γu,x,1,1Cu,yz . . . γu,x,1,mCu,yz
...

. . .
...

γu,x,m,1Cu,yz . . . γu,x,m,mCu,yz

 . (12)

With the help of the Kronecker product, we derived a very
useful property for the Cholesky decomposition:

chol(A⊗B)= chol(A)⊗ chol(B), (13)

with A and B matrices of arbitrary size. The mathematical
proof is given in Appendix C. Applying Eq. (13), Eq. (9)
becomes

Hu,xyz = chol(Cu,xyz)
= chol(Cu,x ⊗Cu,yz)
= chol(Cu,x)⊗ chol(Cu,yz)
=Hu,x ⊗Hu,yz, (14)
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which means instead of applying the Cholesky decomposi-
tion to a large matrix, we can now break it down into two
Cholesky decomposition for two small matrices. We call
this two-step Cholesky decomposition. This approach can
reduce the computational time of Cholesky decomposition
from O((mn)3) to O(m3)+O(n3).

With the two-step Cholesky decomposition, Eq. (8) is
rewritten as

Uxyz = Au(Hu,x ⊗Hu,yz)Xmn. (15)

Compared to Eq. (1), only the Cholesky factor of the longi-
tudinal coherence matrix Hu,x is a new term, and the other
terms can be obtained from 3D wind fields. This leads to the
idea to generate a 4D wind field by combining multiple sta-
tistically independent 3D wind fields.

2.4 Four-dimensional wind field generator: evoTurb

Following the idea mentioned above, Eq. (15) can be rear-
ranged as

Uxyz = (Hu,x ⊗AuHu,yz)

Xn,1
...

Xn,m

 . (16)

It can be observed that the term AuHu,yzXn,i is exactly the
CFC vector of the u component for a 3D wind field (see
Eq. (1). Instead of directly calculating Uyz,i , it can be ob-
tained by applying fast Fourier transformation (FFT; denoted
by F{ }) to a time series of the u component uyz,i(t,y,z)
generated with a 3D wind field generator

AuHu,yzXn,i = Uyz,i = F{uyz,i(t,y,z)}. (17)

Based on this, the CFCs of the u component for a 4D wind
field withm vertical planes can be calculated by constraining
m statistically independent 3D wind fields with the longitu-
dinal coherence matrix,U>xyz,1

...

U>xyz,m

=Hu,x

U>yz,1
...

U>yz,m

 , (18)

with Uxyz,i the CFC vector (n-by-1) of the u component of
the ith yz plane in the 4D wind field and Uyz,i the CFC vec-
tor (n-by-1) of the u component of the ith 3D wind field.
And thus the CFC matrix of the 4D wind field (left-hand
side) and the CFC matrix of the 3D wind fields (second term
of the right-hand side) are m-by-n matrices. It is essential
to ensure that all the random phases within the CFC matrix
of the 3D wind fields follow a uniform distribution. This is
why it is emphasized that the input 3D wind fields must be
“statistically independent”; i.e., they must be generated with
different random seeds.

In comparison to the direct generation of 4D wind fields,
the advantage of this concept is that it can introduce the lon-
gitudinal coherence into the stochastic wind field generation
without changing any other wind field properties generated
by these standard tools. This is conducive to the integration
of the 4D wind field generation with the current framework
of the aeroelastic simulation of wind turbines. Moreover,
this concept makes it possible to use pre-generated 3D wind
fields (with different random seeds) for the generation of 4D
wind fields. The input 3D wind fields should be randomly se-
lected and non-repetitive. Different combinations of the same
3D wind fields, i.e., assigning the 3D wind fields to the ver-
tical planes in a 4D wind field differently, can form different
4D wind fields, and thus a 3D wind field can be used multiple
times. This can significantly reduce the computational effort
required to generate 4D wind fields, considering that in the
aeroelastic simulations of wind turbines, a design load case
requires several simulations using wind fields generated with
different random seeds (DNV, 2016).

Based on this concept, we developed an open-access
4D wind field generator – evoTurb (GitHub: https://github.
com/SWE-UniStuttgart/evoTurb, last access: 2 March 2022).
As illustrated in Fig. 2, evoTurb is coupled with TurbSim
(specifically for the Kaimal model Kaimal et al., 1972) and
MTG, but the implementation of both is slightly different.
For more details regarding the turbulence models, please re-
fer to Appendix A.

For the Kaimal model in TurbSim, we just need to apply
Eq. (18) to the u component because the Kaimal model only
considers the spatial coherence of the u component. The v
and w components of the 4D wind field can be directly taken
from the corresponding 3D wind fields. However, in reality,
the atmospheric air flow is assumed incompressible for nor-
mal wind turbine applications. This implies that either the v
or w component is spatially correlated due to the continuity
of the incompressible fluid as discussed by Mann (1994).

The Mann model (Mann, 1994) additionally contains the
coherence between the u and w components. If we only ap-
ply Eq. (18) to the u component, the coherence between the
u and w components will be decorrelated except for the first
vertical plane. To maintain the coherence between the u and
w components defined by the Mann model, we assume that
the w component also follows the same longitudinal coher-
ence as that of the u component

Hw,x =Hu,x . (19)

Similar to Eq. (18), the CFC matrix of the w component is
calculated withW>xyz,1

...

W>xyz,m

=Hw,x

W>yz,1
...

W>yz,m

 , (20)

with

Wyz,i = F{wi(t,y,z)}. (21)
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The functionality of evoTurb (referred to the main script
of the codes) is briefly introduced as follows.

1. TurbConfig. Import the configuration file.

2. Execute3DSim. Call TurbSim or MTG to generatem 3D
wind fields with different random seeds and save these
wind fields for later use. If the same wind fields already
exist, this step will be skipped.

3. Import3DTurb. Import the generated 3D wind fields.

4. Generate4DTurb. Compute the CFCs of the 3D wind
fields. Compute the longitudinal coherence matrices
using a wind evolution model and the corresponding
Cholesky factors. Compute the CFCs of the 4D wind
field. Apply IFFT to the CFCs of the 4D wind field.

5. Export4DTurb. Export the 4D wind field as binary files.

The wind evolution models supported by evoTurb are briefly
introduced in Appendix B.

In fact, the Mann model additionally contains the spatial
coherence of v at different locations, the spatial coherence of
w components at different locations, and the coherence be-
tween the u and w components at the same position, which
theoretically should also be considered in the 4D wind field
simulation. de Maré and Mann (2016) and Bos (2017) have
proposed methods to extend the Mann model to the spatial–
temporal tensor, from which the longitudinal coherence of
all velocity components can be derived. However, the model
proposed by de Maré and Mann (2016) has not yet been val-
idated with measurements. And Bos’s approach (Bos, 2017)
requires a formula of the wavenumber-dependent eddy life-
times, which still need to be investigated with experiments or
high-fidelity CFD simulations. Because the longitudinal co-
herence of the v and w component is less important for LAC
compared to that of the u component (Schlipf et al., 2013;
Held and Mann, 2019), we put our emphasis only on the u
component in this study. The effects of neglecting the longi-
tudinal coherence of the v component and the rationality of
assuming the identical longitudinal coherence for the u and
w components remain to be investigated.

2.5 Validation of evoTurb

The validation of evoTurb mainly focuses on two aspects:
whether the longitudinal coherence is correctly simulated
and whether other wind field properties generated by Turb-
Sim and MTG are not affected by evoTurb.

The validation is done by two examples coupling with
TurbSim and MTG, respectively. The relevant parameters
of the 4D wind field generation are summarized in Table 1.
The Mann model parameters are defined according to Mann
(1994). For simplicity, the wind evolution model of Simley
and Pao (2015) (see Table B1) is applied with user-defined

Table 1. The wind field parameters for the validation. αε2/3, l, and
0 are the Mann model parameters. Iref and Lu are parameters of
the IEC Kaimal model (turbulence class A). And the rest are the
common parameters of both models. The hub height is considered
90 m.

Parameters Values Notations

αε2/3 [m4/3 s−2] 0.11 A measure of the energy dissipation
l [m] 61 Length scale related to eddy size
0 [–] 3.2 Anisotropy due to shear
Iref [–] 0.16 Reference turbulence intensity
Lu [m] 340.2 Integral length scale of the u component
Vhub [ms−1] 16 Mean wind speed at hub height
a [–] 2 Wind evolution decay parameter
b [–] 0 Wind evolution offset parameter

parameters instead of its parameterization model, and the pa-
rameters are chosen based on Chen et al. (2021). For the val-
idation of coherence and spectra, we consider the spectrum
calculated from one realization (one simulated time series)
as one sample and compute the ensemble average of 16 sam-
ples generated with different random seeds. It is worth men-
tioning that the averaged coherence is calculated by dividing
the averaged cross-spectrum by the averaged auto-spectra.
The auto-spectra and cross-spectra are estimated using the
Bartlett’s averaged periodogram method (Bartlett, 1948) with
rectangular windows (size of 1024 data points).

To validate the coherence, Fig. 3 compares the theoret-
ical and simulated coherence between different horizontal
separations in the two 4D wind fields. The good agreement
between the theoretical and simulated longitudinal coher-
ence of 1x = 50 m and 1x = 100 m, respectively, proves
that evoTurb can correctly model the user-defined longitu-
dinal coherence in 4D wind fields. The fact that the lateral–
vertical coherence of 1y = 20 m is consistent with its theo-
retical curve confirms that the original turbulence character-
istics of both tools are not changed by evoTurb. The good
match between the theoretical and simulated 3D coherence
of 1x = 50 m and 1y = 20 m validates that the longitudi-
nal coherence and the lateral–vertical coherence are correctly
combined in evoTurb.

As presented in Sect. 2.4, evoTurb generates a 4D wind
field by constraining independent 3D wind fields with the
user-defined longitudinal coherence. This process is visual-
ized in Fig. 4 by the example of MTG. Figure 4a–c show
three independent 3D wind fields generated with MTG. Ob-
viously, there is no coherence between them. These three
wind fields are fed in evoTurb, specifically as the vertical
planes at x = 0 m, x = 50 m, and x = 100 m, respectively, in
this example. It can be observed in Fig. 4d–f that after apply-
ing the longitudinal coherence, the three wind fields become
coherent, especially the large eddy structures that correspond
to the low-frequency components. More specifically, Fig. 4a
and d are identical since the wind field at x = 0 m is inher-
ently regarded as the reference wind field in the constraining
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Figure 3. Comparison of the theoretical and simulated coherence between different horizontal separations in 4D wind fields. The simulated
coherence is calculated by dividing the averaged cross-spectra by the auto-spectra of 16 samples. Sim.: simulated. Theo.: theoretical.

process; the wind fields in Fig. 4e and f are generated by con-
straining the wind fields in Fig. 4b and c to Fig. 4a with the
coherence at 1x = 50 m and 1x = 100 m at the same time.
Because the smaller the longitudinal separation, the higher
the coherence, Fig. 4e is more similar to Fig. 4a compared to
Fig. 4f, whereas Fig. 4f retains more eddy structures of the
original wind field in Fig. 4c, e.g., the strong eddies at z of
100 to 150 m in the first 10 s. Please note that the temporal
shifts due to the longitudinal separations are not shown in
Fig. 4d–f in order to make it easier to observe the difference
caused only by wind evolution.

Regarding the special issue related to the Mann model
raised in Sect. 2.4, Fig. 5 specifically illustrates the auto-
spectra of u, v, and w components and the uw cross-
spectrum at x = 100 m of the example of MTG. The good
agreement between the simulated spectra and the theoretical
ones derived from the Mann (1994) spectral tensor proves
that with the assumption made in Sect. 2.4, the auto-spectra
and the uw cross-spectra are maintained in the constraining
process. In addition, it can be observed in Fig. 4 that the
anisotropy turbulence due to the shear distortion considered
in the Mann model also remains unaffected.

3 Lidar simulation with integration of 4D wind fields

As mentioned in the introduction, 4D wind field generation
is supposed to be applied to the simulation of lidar-assisted
control systems, and thus this section intends to study its inte-
gration with lidar simulations. Section 3.1 briefly introduces
the basics of lidar simulations. Section 3.2 derives the theo-
retical formulas of the auto-spectrum of LOS measurements
and the coherence between the rotor effective wind speed
(REWS) and the lidar-estimated REWS to serve as a theoret-
ical basis. Section 3.3 investigates the effect of the discretiza-
tion of a lidar range weighting function on the simulated
auto-spectrum of LOS measurements. Section 3.4 discusses
the impact of interpolation methods on the auto-spectrum of
the u component in lidar simulations. Section 3.5 discusses

impact of discrete simulations on lidar spectral properties
and proposes a sparse grid for lidar simulations to reduce the
computational effort of 4D wind field generation.

3.1 Lidar simulation

Lidars in this article refer specifically to coherent Doppler
wind lidars whose measuring principle is based on the opti-
cal Doppler effect. Such lidar systems measure wind speed
by transmitting narrow bandwidth laser signals into the at-
mosphere and detecting the Doppler shift in the backscat-
tered signals from aerosol particles in the atmosphere using
coherent detection (Fujii and Fukuchi, 2005). The Doppler
shift is caused by the motion of the aerosol particles en-
trained with the wind and thus can be used to estimate the
line-of-sight wind speed (i.e., the projection of wind veloci-
ties onto the laser beam direction) in the probe volumes of li-
dars. To extract the Doppler shift, the collected backscattered
signals are converted into digital signals and split into blocks,
on which FFT is performed to calculate their power spectra.
These spectra are averaged to reduce background noises so
that the frequency of the peak can be estimated.

Two types of wind lidars are commonly available for the
wind energy applications: continuous-wave lidars and pulsed
lidars. In this research, we take the example of a pulsed lidar.
As its name implies, a pulsed lidar emits regularly spaced
short laser pulses. In the data processing of pulsed lidars, the
return signals of each pulse are first divided into range gates,
and the averaging of power spectra is done for the same range
gate from different pulses (Peña et al., 2013).

Due to the measuring principle of lidars, two effects
should be considered in lidar simulations in general: the vol-
ume averaging effect and the time averaging effect (Schlipf,
2015). As mentioned above, this section aims to study the im-
pact of spatial discretization in lidar simulations. Therefore,
the focus of our discussion here is on the volume averaging
effect rather than the time averaging effect, and thus the sim-
ulation of the time averaging effect is omitted by generating
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Figure 4. Illustration of the U component in a 4D wind field. Panels (a)–(c) are three independent realizations of 3D turbulent wind fields
generated with the Mann turbulence generator, which are fed into evoTurb. Panels (d)–(f) are the corresponding vertical planes at x = 0 m,
x = 50 m, and x = 100 m in the 4D wind field. The temporal shifts due to the longitudinal separations are not shown.

Figure 5. Comparison of the simulated and theoretical spectra of
the Mann model at x = 100 m in a 4D wind field. The simulated
spectra are averaged with 16 samples.

the 4D wind fields with the same sampling rate as the lidar
simulation (fs = 4 Hz).

The volume averaging effect can be simulated by applying
a range weighting function ϕ(s) to the ideal point measure-
ments of the LOS wind speeds vlosP(r, t) at the measuring
distance r within the probe volume (see, e.g., Peña et al.,

2013; Peña et al., 2017):

vlos(r0, t)=

∞∫
−∞

ϕ(s)vlosP(r, t)ds with s = r − r0, (22)

where vlos(r0, t) is the LOS wind speed of the probe volume
focusing at the distance r0, s is the spatial distance to the
focus point along the laser beam, and t is time. vlosP(r, t) is
calculated by projecting the vector of the wind speed at r
onto the laser beam direction:

vlosP(r, t)= [u(r, t) v(r, t) w(r, t)] · [xn yn zn]
>, (23)

with [xn yn zn] the normal vector of the beam direction (PO

in Fig. 6). The normal vector can be simply calculated after
knowing the azimuth angle φ and elevation angle β of the
lidar beam. Figure 6 shows a typical coordinate system used
for simulating an upstream-looking nacelle lidar.

For pulsed lidars, the range weighting function can be an-
alytically computed as the convolution between the pulse
power profile and the range gate profile (Banakh and Sma-
likho, 1994), which is approximately constant for different
range gates (Cariou, 2013). For simplicity, the range weight-
ing function is modeled by a Gaussian-shape function (see,
e.g., Schlipf, 2015):

ϕ(s)=
1

σL
√

2π
exp

(
−
s2

2σ 2
L

)
with σL =

WL

2
√

2ln2
, (24)

where the full width at half maximum WL is set to 30 m fol-
lowing Cariou (2013).
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Figure 6. The typical coordinate system for simulating an
upstream-looking nacelle lidar. P denotes an arbitrary point along
the lidar beam direction.

In lidar simulations, Eq. (22) requires a discrete approxi-
mation in practice:

vlos(r0, t)=
Nrw∑
k=1

Frw,k · vlosP,k(rk, t), (25)

with the number of discrete pointsNrw and the discrete range
weighting coefficient Frw,k for the spatial point indexed with
k defined as

Frw,k =
ϕ(sk)∑Nrw
k=1ϕ(sk)

. (26)

The discrete range weighting coefficients are normalized to
ensure that their sum equals one. In general, equidistant dis-
crete points are selected.

3.2 Derivation of auto-spectrum and coherence of lidar
measurements

In this section, we derive the analytical expressions of the
auto-spectrum of LOS measurements and the coherence be-
tween the REWS and the lidar-estimated REWS to serve as
a theoretical basis for the analysis of the impact of spatial
discretization in lidar simulations in Sect. 3.3–3.5.

We formulate the mathematical derivation according to
the Kaimal model and perform the derivation mainly based
on the linearity of 1D Fourier transform because this proce-
dure is easier to understand. As for the Mann model, Mann
et al. (2008) and Held and Mann (2019) give neat deriva-
tions for the auto-spectrum of LOS measurements and the
cross-spectrum of the lidar-estimated and the actual rotor ef-
fective wind speeds based on the Mann spectral tensor based
on the multiple integral and the multidimensional Fourier
transform. Following similar approaches, the lidar spectral
properties derived below can also be conducted for the Mann
model.

Inspired by Schlipf (2015), the theoretical auto-spectrum
of LOS measurements is calculated by

Slos = F{vlos}F∗{vlos}, (27)

where F∗{ } denotes the conjugate of Fourier transform. Tak-
ing the discrete approximation for the LOS measurements

with Nrw points (see Eq. 25), Eq. (27) becomes

Slos = F{
Nrw∑
i=1

Frw,i · vlosP,i}F∗{
Nrw∑
j=1

Frw,j · vlosP,j }

=

Nrw∑
i=1

Nrw∑
j=1

Frw,iFrw,jF{vlosP,i}F∗{vlosP,j }

=

Nrw∑
i=1

Nrw∑
j=1

Frw,iFrw,jSlosP,i,j . (28)

In Eq. (28), SlosP,i,j denotes the cross-spectrum of two LOS
wind speeds at the points i and j , which can be explicitly
expanded by substituting Eq. (23) as follows (Schlipf, 2015):

SlosP,i,j =F{xnui + ynvi + znwi}F∗{xnuj + ynvj + znwj }

= x2
nSu,i,j + xnynSuv,i,j + xnznSuw,i,j

+ xnynSvu,i,j + y
2
nSv,i,j + ynznSvw,i,j

+ xnznSwu,i,j + ynznSwv,i,j + z
2
nSw,i,j , (29)

with the product of the Fourier transform and its conjugate
constituting the cross-spectrum. Therefore, we can compute
Slos by combining Eqs. (28) and (29) and substituting the
cross-spectra according to a turbulence model.

In the Kaimal model, besides the auto-spectra of u, v, and
w components denoted by Su, Sv , and Sw, respectively, only
the cross-spectrum between the u components at two points
spatially separated on the yz plane is modeled, while other
cross-spectra are assumed zero. Thus, Eq. (29) can be sim-
plified as

SlosP,i,j =

{
x2

nSu+ y
2
nSv + z

2
nSw if i = j,

x2
nSu,i,j if i 6= j.

(30)

As discussed in Sect. 2.4, it is unrealistic to ignore the spatial
correlations of v orw components at different locations from
the physical point of view. The volume averaging of LOS
wind speeds contributed by the uncorrelated v or w compo-
nents could be unrealistically low because they are averaged
out. In the case that the laser beam is misaligned from the
longitudinal direction significantly, further study is necessary
to quantify the errors caused by neglecting the spatial coher-
ence of v or w components.

It is worth emphasizing that in 4D wind fields, Su,i,j
denotes the cross-spectrum between two u components at
two points spatially separated in a 3D space when i 6= j . If
these two points have a longitudinal separation, a temporal
shift corresponding to this spatial separation must be taken
into account, because in practice, the simulated wind speeds
should be time-shifted according to their locations in the lon-
gitudinal direction. If the temporal shift between these two
points is assumed 1t , according to the time-shifting prop-
erty of the Fourier transform, the cross-spectrum of these two
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points is

Su,i,j = F{ui(t −1t)}F∗{uj (t)}

= e−j2πf1tF{ui(t)}F∗{uj (t)}. (31)

This temporal shift introduces an additional sinusoidal-shape
“coherence” into the cross-spectrum. For convenience, we
define it as

γs = e
−j2πf1t . (32)

γs should be distinguished from the longitudinal coherence
γu,x caused by wind evolution, which is contained in the term
F{ui(t)}F∗{uj (t)}. In fact, γs has a certain influence on the
simulated auto-spectrum of LOS measurements when a dis-
crete approximation of the lidar range weighting function is
applied, which will be discussed in Sect. 3.3. Consider a 3D
coherence γxyz,i,j for ui and uj . Eq. (31) becomes

Su,i,j = γs,i,jγxyz,i,jSu, (33)

because, by definition, the 3D coherence

γxyz,i,j =

√
|F{ui(t)}F∗{uj (t)}|2

F{ui(t)}F∗{ui(t)}F{uj (t)}F∗{uj (t)}

=
|F{ui(t)}F∗{uj (t)}|

Su
≈

F{ui(t)}F∗{uj (t)}
Su

. (34)

Here the absolute operator is removed by assuming the imag-
inary part in F{ui(t)}F∗{uj (t)} is negligible.

The REWS is often assumed to be the averaged u com-
ponent over the rotor swept area (Schlipf, 2015; Held and
Mann, 2019)

uR =
1
NR

NR∑
i=1

ui, (35)

with ui the ith u component and NR the total number of u
components in the rotor swept area. If perfect turbine align-
ment is assumed, the lidar-estimated REWS uL can be esti-
mated from vlos using the normal vector of the laser beam,

uL =
1
xn,j

1
NP

NP∑
j=1

vlos,j , (36)

with xn,j the first element of the normal vector of the j th
measurement position, vlos,j the j th lidar LOS measurement,
and NP the number of measurement positions. Following
Schlipf (2015), the theoretical coherence between the uR and
uL can be calculated from their cross-spectrum SRL and their
respective auto-spectra SRR and SLL:

γ 2
RL =

|SRL|
2

SRRSLL
. (37)

For brevity, SRL, SRR, and SLL are not explicitly derived here
because the approach is similar to Eq. (28), and their detailed
derivations can be found in Schlipf (2015).

3.3 Impact of discrete lidar range weighting functions

As introduced in Sect. 3.1, a discrete approximation of a lidar
range weighting function is necessary for lidar simulations.
In this section, we investigate the effect of the spacing of
the discrete range weighting function on the simulated auto-
spectrum of lidar measurements.

As indicated in Eq. (31), the time shift of the wind speed
due to the longitudinal separation additionally introduces a
sinusoidal-shape coherence γs (defined in Eq. 32) into the
cross-spectrum of lidar measurements. When the travel time
of the turbulence box is approximated with 1t =1x/U ,
Eq. (32) can be converted to wavenumber domain so that the
influence of the mean wind speed U can be eliminated:

γs(k)= e−j2πk1x with k = f/U. (38)

Please note that the unit of wavenumber k is m−1.
For simplicity, the simulated laser beam is assumed

aligned to the wind direction. In this case, Eq. (38) directly
reveals the relationship between the critical wavenumber of
the additional coherence γs, denoted as kc (indicating the
peak of γs), and the spacing 1sk:

kc = 1/1sk. (39)

To visualize this issue, we take the following three-point
(3pt), five-point (5pt), and seven-point (7pt) cases as exam-
ples:

3pt sk,3pt =−15m, 0m, 15m; 1sk,3pt = 15m,

5pt sk,5pt =−30m, −15m, . . ., 30m; 1sk,5pt = 15m,

7pt sk,7pt =−30m, −20m, . . ., 30m; 1sk,7pt = 10m.

The theoretical lidar range weighting function (WL = 30m)
and the normalized discrete approximations of these three
cases are shown in Fig. 7a–d. Figure 7e and f illustrate the
magnitude of the FFTs of the range weighting functions
and the corresponding theoretical auto-spectra of the LOS
measurements for the respective cases. It can be clearly ob-
served that γs introduces a small amount of noise into the
high-frequency range of the LOS auto-spectra. The criti-
cal wavenumbers and their high resonances highlighted in
Fig. 7e and f are calculated according to Eq. (39) as follows:

k1 = 1/1sk,3pt = 1/1sk,5pt = 1/15m−1,

k2 = 1/1sk,7pt = 1/10m−1,

k3 = 2k1 = 2/15m−1,

k4 = 3k1 = 2k2 = 1/5m−1. (40)

It is worth noting that the comparison of the three-point case
and the five-point case proves that kc is only dependent on
1sk but independent of the number of discrete points. The
slight discrepancy between both curves of the magnitude of
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the FFTs (see Fig. 7e) should result from the different value
range of the discrete points.

Based on the above analysis, we suggest to consider spac-
ing rather than the number of discrete points when applying
a discrete range weighting function in lidar simulations. The
spacing could be chosen according to the maximum relevant
wavenumber kmax in a specific application to prevent noise
caused by the discretization from appearing in the relevant
wavenumber range:

1sk < 1/kmax. (41)

3.4 Impact of interpolation methods

In practice, the lidar simulation points are not necessarily
located on the grid points of the simulated wind fields. To
tackle this issue, one may consider using interpolation to ap-
proximate the values of the desired points for lidar simula-
tions. In this section, we discuss the impact of interpolation
on the auto-spectrum of the u component with two examples:
nearest-neighbor interpolation and linear interpolation.

For simplicity, we consider a 2-by-2 square grid on the
yz plane with a width of 5 m as shown in Fig. 8. The four
vertices are defined as p1(y1,z1), p2(y1,z2), p3(y2,z1), and
p4(y2,z2), for which the u components ui (i = 1 . . . 4) are
simulated. The point to be interpolated is the center point of
the square grid p0(y0,z0).

Nearest-neighbor interpolation takes the value of the near-
est point. In this example, u0,nearest is approximated by u1,
and thus

Su0,nearest = Su. (42)

Apparently, using nearest-neighbor interpolation will not
change the auto-spectrum.

Two-dimensional linear interpolation calculates u0 by the
weighted mean of the values neighboring grid points (Press
et al., 2007):

u0,linear =

4∑
i=1

riui . (43)

The weighting factor ri is calculated according to the propor-
tion of the partial area diagonally opposite the point pi to the
whole area as illustrated in Fig. 8 with corresponding colors
(Press et al., 2007):

r1 =
(y2− y0)(z2− z0)
(y2− y1)(z2− z1)

, r2 =
(y0− y1)(z2− z0)
(y2− y1)(z2− z1)

,

r3 =
(y2− y0)(z0− z1)
(y2− y1)(z2− z1)

, r4 =
(y0− y1)(z0− z1)
(y2− y1)(z2− z1)

. (44)

Figure 7. (a) Theoretical Gaussian-shape range weighting func-
tion with a full width at half maximum of 30 m for a pulsed li-
dar. (b–d) Three-point, five-point, and seven-point normalized dis-
crete approximations of the range weighting function, with steps
1sk of 15, 15, and 10 m, respectively. (e) Magnitudes of the
FFTs of the different discretizations of the range weighting func-
tion. Critical wavenumbers: k1 = 1/15m−1, k2 = 1/10m−1, k3 =
2/15m−1, and k4 = 1/5m−1. (f) Theoretical auto-spectra of the u
component and the LOS measurements of the different discretiza-
tions of the range weighting function. The LOS measurements are
assumed aligned to the wind direction.

The sum of the weighting factors equals one. Similar to
Eq. (28), the auto-spectrum is computed by

Su0,linear = F
{

4∑
i=1

riui

}
F∗
{

4∑
j=1

rjuj

}

=

4∑
i=1

4∑
j=1

γu,yz,i,j rirjSu, (45)
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Figure 8. Visualization of 2D linear interpolation. The interpolated
value at p0 is calculated by the weighted mean of the values at
neighboring grid points. The weighting factor ri for the value at
the point pi is calculated according to the proportion of the partial
area diagonally opposite the point pi to the whole area, which is
shown with corresponding colors.

with γu,yz,i,j the coherence of the u component between the
points i and j in the grid. Knowing the fact that

γu,yz,i,j < 1 and ri < 1,

Su0,linear < Su, (46)

when the point to be interpolated does not overlap any exist-
ing grid points. Equation (45) means that using linear inter-
polation will decrease the auto-spectrum.

Figure 9 confirms that nearest-neighbor interpolation does
not alter the auto-spectrum, while linear interpolation filters
out the auto-spectrum especially in the high-frequency range
because the coherence decays more for high frequencies. In
fact, according to Eqs. (45) and (46), all interpolation meth-
ods based on weighted averaging of the values at neighbor-
ing grid points will reduce the auto-spectrum because the
weighting factors must be multiplied with the coherence be-
tween the interpolated point and the corresponding neigh-
boring points, which is always less than one. Consequently,
we believe that nearest-neighbor interpolation is preferable
in terms of maintaining the auto-spectrum.

3.5 Discussion about simulation grids

As discussed in Sect. 3.3, lidar simulations require a suffi-
ciently dense grid of wind fields to avoid the effect of spatial
discretization on the simulated auto-spectrum of LOS mea-
surements. However, a dense grid makes 4D wind field gen-
eration computationally intensive according to its principle
presented in Sect. 2. Given this situation, we attempt to pro-
pose an approximate method with a sparse grid – the “semi-
frozen grid” – and compare it with two typical grids – the “di-
rect grid” and the “full grid”. The definitions of these three
types of simulation grids are introduced below.

If the position and the measuring trajectory of the lidar to
be simulated are fixed, we can directly generate wind speeds
at all the points required for lidar simulations, including the
discrete points for modeling the volume averaging effect of

Figure 9. Comparison of the impact of nearest-neighbor interpola-
tion and linear interpolation on the auto-spectrum of the u compo-
nent. A 2-by-2 square grid on the yz plane with a width of 5 m is
considered, and the point to be interpolated is the center point of the
square grid. The auto-spectra are averaged with 16 samples.

lidars. We define this type of grid as the direct grid (see
Fig. 10a). It is worth noting that because the direct grid is ir-
regular, the method presented in Sect. 2.2 (see Eq. (8) should
be applied to generate 4D wind fields. However, the direct
grid is not applicable to simulations of a nacelle-mounted li-
dar because its position moves with the nacelle of a wind
turbine in aeroelastic simulations. In this section, the direct
grid actually serves as a reference for comparison because it
does not require interpolation of wind speeds.

To simulate a nacelle-mounted lidar, the grid of wind fields
must cover all the range gates of the lidar and the space
in their vicinity so that LOS measurements can be properly
modeled when the required points constantly change due to
the nacelle motion. For this purpose, we define the grid con-
sisting of the vertical planes (perpendicular to x axis) with
regular grid points at the x positions of the focus points and
the discrete volumes of all range gates as the full grid (see
Fig. 10b).

With the full grid method, the overall effects of both dis-
crete ranging weighting functions (taking three-point and
five-point cases as an example) and interpolation methods
(linear or nearest) are illustrated in Fig. 11. The wind field is
generated using the Kaimal model with the parameters listed
in Table 1. The grid width on the y and z axes for the full
grid is 5m. A four-beam pulsed lidar with parameters listed
in Table 2 is considered for the lidar simulations. The mo-
tion of lidar position is not taken into account in this com-
parison, and thus the lidar is assumed fixed at the coordinate
system origin. Figure 11a shows that the auto-spectrum in
high-frequency range of the three-point case slightly exceeds
the theoretical curve when compared to the five-point case
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Figure 10. Illustration of three types of grids for lidar simulations. (a) Direct grid. (b) Full grid. (c) Semi-frozen grid.

Table 2. Parameters of the simulated pulsed lidar system.

Parameters Values Units

Number of beams 4 [–]
Beam azimuth angles 15.0, 15.0, −15.0, −15.0 [◦]
Beam elevation angles 12.5, −12.5, −12.5, 12.5 [◦]
Range gate 87 [m]
Sampling frequency 1.0 [Hz]
Full width at half maximum 30 [m]

shown in Fig. 11b. Moreover, in both Fig. 11a and b, using
linear interpolation slightly reduces the auto-spectrum in the
range after the peak. As observed in Fig. 11c, both discrete
ranging weighting functions and interpolation methods seem
to have no influence on the coherence between the REWS
and the lidar-estimated REWS.

However, using full grid for lidar simulations requires rel-
atively high computational effort for the 4D wind field gen-
eration because it needs to generate the same number of 3D
wind fields as the unique x positions required to simulate all
discrete points of measurement gates. To reduce the com-
putational effort of full grid, we propose an approximate
method that combines 4D wind field generation and Tay-
lor’s (1938) frozen hypothesis: a sparse grid which only con-
tains the vertical planes with regular grid points at the x posi-
tions of the focus points of the lidar range gates is defined in
the 4D wind field generation, and Taylor’s (1938) hypothesis
is applied to the lidar probe volumes (which can be regarded
as mini wind fields) to model the volume averaging effect.
We define this method as the semi-frozen grid (see Fig. 10c).
More specifically, Eq. (33) can be rewritten as

Su,i,j = γs,i,jγx,i,jγyz,i,jSu (47)

following our previous assumptions in Sect. 2.3. The semi-
frozen grid assumes frozen turbulence between i and j , i.e.,
the longitudinal coherence γx,i,j = 1 for any frequency.

To evaluate if the semi-frozen grid is a proper approxima-
tion, we compare these three grids by considering the auto-
spectra of LOS measurements and the coherence between
the REWS and the lidar-estimated REWS. Four-dimensional
wind fields are generated in each of these three grids with the
Kaimal model (for parameters, see Table 1). The grid width
on the y and z axes for both the full grid and the semi-frozen
grid is 5m. For the lidar configuration, see Table 2. The mo-
tion of lidar position is not considered in this comparison.
For simplicity, LOS measurements are simulated with three
discrete points in the probe volumes. As shown in Fig. 12, the
simulated auto-spectra and coherence in the three grids have
no obvious difference, and they all match their theoretical
curves given by the formulas derived in Sect. 3.2. Based on
these results, we consider the semi-frozen grid to be a good
compromise between the accuracy of lidar simulations and
computational efforts of 4D wind field generation. However,
because the simulation results depend on the properties of
wind evolution and the lidar range weighting effect, the ap-
plicability of the semi-frozen grid to aeroelastic simulations
of wind turbines should be verified according to specific con-
ditions.

4 Conclusions

Lidar-assisted control (LAC) of wind turbines is a control
concept which takes advantage of a nacelle-mounted lidar
(a remote sensing device) to measure upstream wind of a
turbine to enable the turbine to preact to the incoming tur-
bulence (see, e.g., Schlipf, 2015; Simley, 2015). The recent
commercial certification of LAC has drawn more attention to
this technology (Schlipf et al., 2018). Because LAC is a pre-
view control strategy based on the upstream turbulence, an
appropriate modeling of wind evolution is essential to evalu-
ate the benefits of LAC for wind turbines in aeroelastic sim-
ulations. Therefore, the commonly used stochastic 3D wind
field simulation methods (Veers, 1988; Mann, 1994), which
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Figure 11. Comparison of the simulated lidar spectral properties with different discrete weighting functions and interpolation methods. (a,
b) Auto-spectra of LOS measurements. (c) Coherence between rotor effective wind speed (REWS) and lidar-estimated REWS. The discrete
weighting functions: three-point and five-point cases in accordance with Fig. 7. The interpolation methods: linear and nearest. The simulated
auto-spectra are averaged with 16 samples.

Figure 12. Comparison of the simulated lidar spectral properties with different grids. (a) Auto-spectra of LOS measurements. (b) Coherence
between rotor effective wind speed (REWS) and lidar-estimated REWS. Direct grid: all the points required for lidar simulations are directly
defined in the 4D wind field generation. Full grid: the vertical planes with regular grid points at the x positions of the focus points and the
discrete volumes of the lidar range gates. Semi-frozen: the vertical planes with regular grid points at the x positions of the focus points of the
lidar range gates. Beam azimuth angle: 15.0◦. Beam elevation angle: 12.5◦. Range gate: 87 m. The simulated auto-spectra are averaged with
16 samples.

do not consider wind evolution, are no longer sufficient for
this propose.

Out of the need for a wind field generator capable of
simulating wind evolution, in the first part of this paper,
we present a general method for 4D (space–time) stochas-
tic wind field generation based on the extension of the Veers
method (Veers, 1988), which enables 4D wind field gener-
ation for arbitrary grids. To increase the applicability of the
4D method, we further propose a two-step Cholesky decom-
position approach on the basis of the general method, which
is applied to 4D wind field generation for regular grids under
specific assumptions. The two-step Cholesky decomposition
approach leads to the idea to generate a 4D wind field by
combining multiple statistically independent 3D wind fields.

Based on this concept, we have developed an open-access
4D wind field generator – evoTurb, which is coupled with
TurbSim (specifically for the Kaimal model Kaimal et al.,
1972) and Mann turbulence generator (MTG). This tool has
two main advantages. (1) The modeling of wind evolution is
introduced into the stochastic wind field generation without
changing any other wind field properties generated by Turb-
Sim or MTG, which is beneficial to integrating the 4D wind
field generation with the current framework of the aeroelastic
simulation of wind turbines. (2) Pre-generated 3D wind fields
can be used to generate 4D wind fields, which significantly
increases the computational efficiency of 4D wind field gen-
eration.
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Because 4D wind field generation is supposed to be ap-
plied to simulations of LAC systems, in the second part
of this paper, we study lidar simulations in 4D wind fields
with respect to the following three aspects and provide cor-
responding suggestions.

1. Discrete lidar range weighting function. Because li-
dar simulations require a discrete lidar range weighting
function, we analyze the impact of different spacing of
the discrete range weighting function. It is found that the
discretization will introduce an additional sinusoidal-
shape coherence at the wavenumber of the reciprocal of
the spacing into the auto-spectrum of the simulated lidar
measurements but seems to have no influence on the co-
herence between the rotor effective wind speed (REWS)
and the lidar-estimated REWS. Therefore, we suggest to
choose the spacing of a discrete range weighting func-
tion according to the maximum relevant wavenumber
in a specific application to prevent noise being intro-
duced into the auto-spectrum in the relevant wavenum-
ber range.

2. Interpolation methods. In practice, when the lidar sim-
ulation points are not exactly located on the grid points
of the simulated wind fields, interpolation is used to ap-
proximate the values of the desired points for lidar sim-
ulations. Our analysis shows that nearest-neighbor in-
terpolation does not affect the auto-spectrum, while in-
terpolation methods based on weighted averaging of the
values at neighboring grid points will filter out the auto-
spectrum of the u component especially in the high-
frequency range. The reason for the latter is that the
weighting factors must be multiplied with the coherence
between the neighboring points, which is always less
than one. No obvious impact on the coherence between
the REWS and the lidar-estimated REWS is observed
for both interpolation methods. Consequently, we con-
sider nearest-neighbor interpolation to be preferable in
terms of maintaining the auto-spectrum.

3. Simulation grids. A sufficiently dense grid of wind
fields is necessary for lidar simulations to avoid the neg-
ative effects of spatial discretization, but such a dense
grid makes 4D wind field generation computationally
expensive. This dilemma motivates us to propose an ap-
proximate method with a sparse grid – the semi-frozen
grid. This method uses a sparse grid which only con-
tains the vertical planes with regular grid points at the
x positions of the focus points of the lidar range gates
to generate 4D wind fields and applies Taylor’s (1938)
hypothesis to the lidar probe volumes to model the vol-
ume averaging effect. It is confirmed that lidar simula-
tions with the semi-frozen grid perform as well as the
direct grid (the points required for lidar simulations are
directly defined in the 4D wind field generation) and
the full grid (the vertical planes with regular grid points

at the x positions of the focus points and the discrete
volumes of the lidar range gates). As a result, we be-
lieve that the semi-frozen grid is applicable to aeroelas-
tic simulations of wind turbines under some conditions.

There is still space to improve evoTurb. For example, the
impact of assuming the identical longitudinal coherence for
the u and w components for the Mann model (Mann, 1994)
should be examined. Moreover, the longitudinal coherence of
the v component can be added to evoTurb if it is relevant for
other applications. Regarding simulations of LAC systems, it
is necessary to interface evoTurb with aeroelastic simulation
environments of wind turbines, e.g., OpenFAST. In addition,
it is well worthwhile to investigate the probability of differ-
ent degrees of wind evolution occurring in nature to provide
a better reference for defining the simulation requirements.
Last but not least, long-term field testing is desired for the
validation of LAC simulations with different wind evolution
conditions in the future.

Appendix A: Turbulence models

In the stochastic wind field generation, the wind velocity
fluctuations are assumed to be statistically stationary Gaus-
sian processes or Gaussian fields, which can be completely
characterized by their mean, variance, auto-spectrum, and
cross-spectra between any two spatial points (Pope, 2000).
As evoTurb is made compatible with the TurbSim and
Mann turbulence generator (MTG), the turbulence models
deployed in both tools are briefly introduced in this section.
For more details, please refer to IEC 61400-1:2019.

Before giving the formulas of both turbulence models, a
general definition of the spatial coherence between the wind
components i and j (i,j = u,v,w) at two spatially separated
locations k and l is given as follows:

γij,k,l(f )=
|Sij,k,l(f )|√
Si,k(f )Sj,l(f )

, (A1)

with f the frequency in hertz (Hz), Si,k(f ) and Sj,l(f ) the
respective auto-spectra, and Sij,k,l(f ) the cross-spectrum.

The Kaimal spectral and exponential coherence model
(Kaimal et al., 1972) is the most commonly used turbulence
model in TurbSim. The non-dimensional auto-spectrum for
the wind component i (i = u,v,w) is a function of the inte-
gral scale parameter Li and wind speed at hub height Vhub:

f Si(f )
σ 2
i

=
4 · fLi

Vhub(
1+ 6 · fLi

Vhub

)5/3 , (A2)

with Si the one-sided auto-spectrum and σi the standard de-
viation of the corresponding wind speed component.

In this model, only the spatial coherence for the u compo-
nent on the same yz plane (indicated with the subscript “yz”)
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is considered using an exponential coherence model:

γu,yz(dyz,f )= exp

−12

√(
f dyz

Vhub

)2

+

(
0.12 ·

dyz

Lu

)2
 , (A3)

where dyz is an entry of a matrix containing separations be-
tween any pair of points on the yz plane.

The Mann uniform (Mann, 1994) shear turbulence model
is the model deployed in the MTG. The two-sided 1D (the x
direction) spectra of Mann model can be computed with

Fij (k1)=

∞∫
−∞

∞∫
−∞

8ij (k1,k2,k3)dk2dk3, (A4)

where 8ij is the spectral tensor defining the ensemble mean
of the Fourier coefficient of the wind components (i,j = 1,2,
or 3 stands for u,v,w) (see, e.g., Peña et al., 2017; Held and
Mann, 2019). k1, k2, and k3 are the spatial wavenumbers for
the three wind component directions. For brevity, the spec-
tral tensor 8ij (k1,k2,k3) is not explicitly given in this paper.
Please refer to Mann (1994) or IEC 61400-1:2019 for more
details.

The magnitude coherence (no square) for spatial separa-
tions perpendicular to the longitudinal direction can be ob-
tained by

γij,yz(k1,1y,1z)

=

∣∣∫∞
−∞

∫
∞

−∞
8ij (k1,k2,k3)e−ik21ye−ik31zdk2dk3

∣∣√
Fii(k1)Fjj (k1)

, (A5)

where 1y and 1z are spatial separations for lateral and ver-
tical directions, and i is the imaginary unit. The frequency
spectra or coherence of the Mann model can be obtained us-
ing the conversion k1 = 2πf/Vhub with the help of Taylor’s
frozen hypothesis (Mann, 1998).

Appendix B: Wind evolution models

Table B1. Summary of the wind evolution models supported in evoTurb. dx is the spatial separation on the wind direction. U is the mean

wind speed. σ is related to the total turbulent kinetic energy and can be calculated through
√
σ 2
u + σ

2
v + σ

2
w . Lu is the integral length scale

of the u component. GPR(·) denotes a Gaussian process regression model. For brevity, the predictors (i.e., input variables) are not explicitly
listed in the table. For more details, please refer to the open-access tool evoTurb.

Reference Model Parameterization

Simley and Pao (2015) γ 2
u,x (dx ,f )= exp

(
−a ·

√(
f dx
U

)2
+ (bdx )2

)
a = 8.4 σ

U
+ 0.05 b = 0.25L−1.24

u

Chen et al. (2021) γ 2
u,x (fdless)= exp

(
−

√
a2f 2

dless+ b
2
)
, fdless = f1t a = GPR(·) b = GPR(·)

Kristensen (1979) γ 2
u,x (ξ )= exp[−2αG(ξ )] ·

[
1− exp

(
−

1
αmξ2

)]2
, ξ =

fLu
U

α = σ

U

dx
Lu

m=

{
1, if α ≥ 1

2, if α < 1

G(ξ )= 334/3ξ2
·

(33ξ+3/11)1/2

(33ξ+1)11/6

Wind evolution refers to the decorrelation of turbulence
structures (eddies) dependent on evolution time. Following
previous research (see, e.g., Pielke and Panofsky, 1970; Kris-
tensen, 1979; Simley and Pao, 2015; Schlipf et al., 2015;
Chen et al., 2021), wind evolution is measured by the longi-
tudinal coherence between velocity fluctuations at different
locations in the longitudinal direction. Its definition is analo-
gous to the lateral–vertical coherence, but it corresponds to a
lagged correlation, which means when calculating the longi-
tudinal coherence, one of the wind speeds should be shifted
by the corresponding time lag between both wind speeds.

Currently, only the longitudinal coherence of the u com-
ponent γu,x is considered. To model γu,x , evoTurb supports
different wind evolution models proposed in some previous
studies (see Table B1). It is worth mentioning that these
models are provided in the form of the magnitude-squared
coherence γ 2

u,x in the literature, and thus the square root
needs to be taken when applied to the 4D wind field genera-
tion. The models can be categorized as empirical and phys-
ical. The first two models are empirical models following a
similar simple exponential form. They are all based on the
same assumption that turbulent eddies decay exponentially
but consider different model parameters (Simley and Pao,
2015; Chen et al., 2021). The last model is a physical de-
duced model which assumes that the coherence can be mod-
eled with the square of the probability that an eddy observed
at the first location can also be observed at the second lo-
cation. This considers two probabilities: the probability that
the eddy does not decay during its travel, which is also mod-
eled with the exponential expression, and the probability that
the eddy is carried towards the second location, which is
modeled with the transversal diffusion of eddies (Kristensen,
1979). For more details regarding these wind evolution mod-
els, please refer to the corresponding references.
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Appendix C: Mathematical proof for the Cholesky
decomposition of the Kronecker product

The Kronecker product (Henderson et al., 1983) is a special
multiplication operation on two matrices of arbitrary size,
which gives a block matrix as a result. For an m-by-n ma-
trix P and a p-by-q matrix Q, the Kronecker product P⊗Q
is a pm-by-qn block matrix defined as

P⊗Q=

p1,1Q . . . p1,nQ
...

. . .
...

pm,1Q . . . pm,nQ

 . (C1)

According to Schacke (2004), the Kronecker product has the
following properties for the real matrices P, Q, M, and N:

(P⊗Q)> = P>⊗Q>; (C2)
(P⊗Q)(M⊗N)= (PM)⊗ (QN). (C3)

The Cholesky decomposition (Press et al., 2007) can de-
compose a real, symmetric, positive-definite matrix A into
the product of a lower triangular matrix LA, i.e., the Cholesky
factor, and its transpose:

A= LAL>A . (C4)

The operation to obtain the Cholesky factor is defined as

LA = chol(A). (C5)

With the above-mentioned properties, we can extend the
Kronecker product of two real, symmetric, positive-definite
matrices A and B as

A⊗B= (LAL>A)⊗ (LBL>B )

= (LA⊗LB)(L>A ⊗L>B )

= (LA⊗LB)(LA⊗LB)>, (C6)

with LA and LB the Cholesky factors of A and B, respec-
tively. By applying the Cholesky decomposition to Eq. (C6),
we can prove that

chol(A⊗B)= chol((LA⊗LB)(LA⊗LB)>)

= LA⊗LB

= chol(A)⊗ chol(B). (C7)
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