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Abstract. Wind plant layout optimization is a difficult, complex problem with a large number of variables and
many local minima. Layout optimization only becomes more difficult with the addition of solar generation. In
this paper, we propose a parameterized approach to wind and solar hybrid power plant layout optimization that
greatly reduces problem dimensionality while guaranteeing that the generated layouts have a desirable regular
structure. Thus far, hybrid power plant optimization research has focused on system sizing. We go beyond sizing
and present a practical approach to optimizing the physical layout of a wind–solar hybrid power plant. We argue
that the evolution strategy class of derivative-free optimization methods is well-suited to the parameterized hybrid
layout problem, and we demonstrate how hard layout constraints (e.g., placement restrictions) can be transformed
into soft constraints that are amenable to optimization using evolution strategies. Next, we present experimental
results on four test sites, demonstrating the viability, reliability, and effectiveness of the parameterized evolution
strategy approach for generating optimized hybrid plant layouts. Completing the tool kit for parameterized layout
generation, we include a brief tutorial describing how the parameterized evolutionary approach can be inspected,
understood, and debugged when applied to hybrid plant layouts.

1 Introduction

Hybrid power plants (HPPs) utilize multiple electrical gen-
eration methods to take advantage of each method’s bene-
fits while mitigating drawbacks of each individual method.
Deployment of integrated hybrid renewable energy sys-
tems (HRESs) is expected to increase because of their poten-
tial to improve flexibility, resilience, and economics. The di-
versity of generation resource, the potential for complemen-
tary overbuild, and the importance of forecasting and con-
trol of HPP may provide value stacking and risk mitigation
for the plant owner, as well as increased dispatch efficiency
for the bulk grid. While solar photovoltaic (PV) with bat-
tery storage is the most common type of HPP, an increasingly
prevalent hybrid combination is the combination of wind and
solar. Wind–solar hybrid plants benefit from resource com-
plementarity as well as shared permitting, siting, equipment,
interconnection, transmission, and transaction costs. How-
ever, it can be difficult to optimally site wind–solar plants due

to their higher combined complexity (Gorman et al., 2020).
The design considerations of the stand-alone wind and solar
plant apply to the hybrid plant in addition to those imposed
by their colocation, such as sizing and the effect of wind
turbine shading on solar energy performance. The turbines’
layout, wind conditions, and operations are key to the wind
plant’s annual energy production (AEP). Losses due to wake
effects are a major factor, with Clifton et al. (2016) show-
ing it to be the loss factor with the highest maximum value
and highest variation. Photovoltaic array design and effective
irradiance are important site considerations for solar plants.
Irradiance reduction can be estimated by on-site surveys or
3D models and minimized by reducing the ground cover-
age ratio (GCR), using tracking, and by reducing internal and
external shading. Mismatch losses due to different electrical
properties in shaded and unshaded portions can be estimated
with module current–voltage models and minimized by mod-
ule design and power electronics (MacAlpine et al., 2013;
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Bendib et al., 2015; Hanson et al., 2014). Matching compo-
nents and balance-of-plant equipment with expected opera-
tional conditions, such as aging and resource availability, is
an important step in HRES design that is not undertaken by
this work but for which the approach and tools provided here
could be adapted.

Optimizing a single technology alone is a challenging task.
In particular, wind plant layout optimization has been ad-
dressed in recent literature to maximize the power output,
minimize levelized cost of energy, or maximize expected
profit (Herbert-Acero et al., 2014; Chen and MacDonald,
2014; Padrón et al., 2019; Nagpal et al., 2021; Croonen-
broeck and Hennecke, 2021). The wind plant layout problem
is difficult to solve due to the high-dimensional nature of the
problem and the abundance of local minima. International
Energy Agency Wind Task 37 has developed reference wind
plants to be able to compare wind plant layouts across liter-
ature. One study developed a method to reduce the number
of design variables to increase the computational efficiency
of the wind plant layout optimization problem (Stanley and
Ning, 2019) using a boundary grid method. Other layout op-
timizations have focused on gradient-based optimization al-
gorithms using analytical gradients and approximations to
the model to avoid local minima (Thomas and Ning, 2018;
Stanley et al., 2019). This task becomes even more challeng-
ing when addressing multiple technologies at a single site.

Previous work has pointed to the difficulties associated
with HPP optimization and sizing and has identified several
research opportunities in this area (Dykes et al., 2019). Ex-
isting literature focuses on challenges with the system objec-
tives, decision variables, and constraints associated with the
system (Upadhyay and Sharma, 2014; Haghi et al., 2017).
These studies on HRES optimization have covered tradi-
tional optimization methods encompassing dynamic pro-
gramming, mixed integer linear programming, artificial in-
telligence methods, hybrid methods, and specifically devel-
oped software tools (Musselman et al., 2019; Fischetti and
Pisinger, 2018; Gebraad et al., 2017; Ning et al., 2019; Cutler
et al., 2017). HPP optimization efforts have predominantly
focused on technology sizing or objectives such as reliability,
resilience, or downtime optimization, making most problems
amenable to mixed integer linear programming. In this paper,
we go beyond sizing and present an approach to optimize the
physical layout of a wind–solar HPP.

Additionally, many systems studied in the existing litera-
ture are independent HRESs rather than grid-connected sys-
tems. In these independent systems, such as microgrids, en-
ergy production profile, resilience, and downtime preven-
tion are indeed more important than the raw cost of energy
production. At the commercial and utility scale, however,
projects are extremely cost-sensitive, and developers will
seek small optimizations (on the order of 1 %–3 %) that pro-
vide an increase in plant profitability. This paper focuses on
utility-scale wind and solar hybrid plants. Specifically, this
work focuses on a simplified layout optimization method for

hybrid wind–solar plants, optimizing hybrid plant layouts for
AEP. The goal of this work is to create a well-performing so-
lution in a computationally efficient manner without requir-
ing model gradients.

This paper is divided into three subsequent sections and
one Appendix. Section 2 describes the HPP model used,
which considers flicker and shading losses caused by tur-
bines shading solar panels in addition to single-source plant
modeling factors such as turbine wake losses. Section 3 de-
scribes the layout optimization methodology and includes
two distinct contributions. First, in Sect. 3.1 we propose pa-
rameterization as an effective tool to reduce the complexity
and dimensionality of the hybrid layout optimization prob-
lem. Second, in Sect. 3.3 we argue that the evolution strat-
egy (ES) class of derivative-free optimization methods are
well-suited to the parameterized hybrid layout problem, and
we demonstrate how hard layout constraints can be trans-
formed through parameterization, projection, and finesse into
soft constraints amenable to optimization with ES. Next, in
Sect. 4 we contribute experimental results on four test sites,
functioning as a proof of concept that our parameterized ES
approach is a viable and reliable method for generating op-
timized layouts with materially increased AEPs and reduce
wake, flicker, and GCR losses over baseline layouts. Next,
Sect. 4.1 through 4.3 interpret the results of our optimization
and suggest general design principles for wind–solar HPPs
under various conditions. In Appendix A we provide an ap-
proach to inspect, interpret, and debug derivative-free opti-
mization approaches in the context of the layout optimization
problem. And finally, we have made the source code imple-
mentation used to generate the optimized layouts presented
here freely available, https://github.com/NREL/HOPP (last
access: 20 March 2022).

The proposed approach shows a viable path for hy-
brid plant developers to generate spatially efficient, high-
performing, and maintainable hybrid plant layouts while us-
ing modest computational resources. In this work, we pro-
vide a proof of concept that stochastic optimization of low-
dimensional parameterized layouts is an effective method for
producing efficient hybrid plant layouts. By interpreting op-
timized layouts under various scenarios, we reveal possible
general principles for wind–solar layout optimization.

2 Hybrid plant model

A component-based modeling approach was used to allow
for system design with increased fidelity and flexibility than
would be employed for typical planning, policy, or sizing
optimization. Analysis of such a model’s design trade-offs
often use advanced optimization algorithms due to search
spaces that might be nonconvex or ill-behaved, for which
the derivatives might be difficult to derive or cumbersome
to evaluate. The derivative-free approach is well-suited for
such problems but requires fast objective functions because
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these approaches typically require the evaluation of many
candidate solutions. The hybrid plant model developed in this
work extends the wind and solar models of the System Ad-
visor Model (SAM), a techno-economic tool that combines
renewable energy technologies with financial models (Blair
et al., 2018). SAM estimates AEP for a given system con-
figuration using reduced-order models, databases of compo-
nent performance, and loss factors at multiple points along
the simulation. The PV models in SAM use solar resource
data containing irradiance and meteorological time series to
estimate the energy production based on the type of PV mod-
ules, how many of and in what configuration these modules
are electrically connected into strings, the type of PV invert-
ers, and the geometric layout of the rows or trackers used for
adjusting the angle of the panels to follow the sun, among
other factors. The wind model in SAM estimates the energy
production of a plant by simulating a single turbine based on
its power curve, computing wake effects due to the turbine
layout, and applying various losses. The financial models can
be coupled to the performance models for a variety of owner-
ship structures and markets, allowing financial metrics such
as net present value (NPV) to be used as objectives over the
energy-based objective in this paper. The separate wind and
solar models are discussed in the following sections.

The shadow flicker model includes the shading interaction
between the wind turbines and solar panels using a geomet-
ric representation of the turbines to generate time series of
shaded portions of the site. At that time step, the shaded
areas of the PV module experience some loss of plane-of-
array (POA) irradiance, which quantifies the solar power per
square meter on the surface of the array and depends on the
sun position, the array orientation, ground surface reflectiv-
ity, and shading. The effect of shading on the solar panels
also includes mismatch effects, which are caused by solar
cells and modules experiencing different conditions result-
ing in negative impacts to the output of the entire PV module
and string of modules, including power dissipation and heat-
ing. The shading-adjusted POA values are used in PVMis-
match’s two-diode equivalent-circuit model, which repre-
sents the current–voltage characteristic of a PV cell under
variations in temperature and irradiance, to estimate PV per-
formance and losses relative to unshaded strings (Mikofski
et al., 2018; Chaudhari et al., 2018). This shadow flicker
model is simulated for a full year and, to enable fast lookup
during the objective evaluation of hybrid AEP, flattened into
a table of annual loss factors by location relative to the tur-
bine. Figure 1 illustrates an example layout of a simulated
wind–solar hybrid plant.

2.1 Wind plant model

SAM’s wind plant model (Freeman et al., 2014) simulates
the performance of a wind plant from the wind resource, tur-
bine specifications, and plant layout. The wind resource data,
taken from the Wind Integration National Dataset (WIND)

Figure 1. An example layout of a wind–solar hybrid power plant
inside a circular site boundary.

Toolkit (Draxl et al., 2015), are hourly temperature, pressure,
wind speed, and wind direction at 80 m. The turbine used
here was SAM’s default selection from the turbine library
and is 1.5 MW, 77 m in diameter, with max power output at
14 m s−1, and it is modeled at a hub height of 80 m. SAM’s
reduced-order wake model options include a simple model
(deficit factor-based), the park model (WAsP), and the eddy
viscosity wake model. The Eddy Viscosity model was se-
lected for its relative robustness and accuracy, and the default
turbulence coefficient of 0.1 was used. For each evaluation of
the objective function, the wind plant layout is recalculated
for simulating the wake losses and wind AEP.

2.2 Solar plant model

SAM’s simple PV plant model, PVWatts®, simulates solar
generation using solar resource and high-level system de-
sign inputs, such as size, module type, array type, tilt, az-
imuth, GCR, and DC-to-AC ratio (Dobos, 2014). The solar
resource, taken from the National Solar Radiation DataBase
(NSRDB), is hourly global horizontal irradiance, diffuse hor-
izontal irradiance, direct normal irradiance, wind speed, and
temperature (Sengupta et al., 2018). PVWatts makes simpli-
fying assumptions about the system and array design rather
than modeling specific components. For the layout prob-
lem here, this is appropriate because the detailed system,
array and electrical parameters available in SAM’s detailed
PV model would not affect the placement of the solar ar-
ray within the site, whereas effects due to tracking modes
and GCR can still be estimated with the faster simulations
of PVWatts. For this hybrid layout optimization, we used a
single-axis tracking system, as is found for most utility-scale
systems, and fixed all parameters besides GCR and system
size.

2.3 Shadow flicker model

The shadow flicker model uses the turbine dimensions, the
site’s latitude and longitude, and a PV module model to cre-
ate a lookup table, or map, of annual loss multipliers by loca-
tion relative to the turbine. The shadow of the turbine falling
on the xy plane for every time step is calculated from the
tower height and width; the turbine’s blade length, width,
and angle; and the sun elevation and azimuth. To calculate
the shape of the shadow on the ground from a wind tur-
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bine with a given radius, we assume a tower height of 2.5R,
tower width ofR; and blade width ofR/16, following Mamia
and Appelbaum (2016). Geometrically, the blade angle is
φ ◦ from the z axis, and the turbine yaw angle is θ ◦ from
north, increasing in the clockwise direction. The three blade
shadows are calculated from their positions along the para-
metric equation of a general ellipse, which represents the
shadow of the swept area deformed by the yaw and the sun
position. The number of blade angles to run per time step
is an input to the model and is not calculated from wind
speed. The position of the output shadow polygon on the
ground is relative to the turbine located at (0, 0). The code for
these calculations are found in the shadow_flicker.py source
file in the HOPP repository, https://github.com/NREL/
HOPP/blob/master/hybrid/layout/shadow_flicker.py (last ac-
cess: 20 March 2022). The plane-of-array (POA) irradiance
is assumed to be reduced by 0.9 uniformly within the tur-
bine’s shadow. To calculate the impact of the reduced irra-
diance on the PV power output, the model places the tur-
bine among a grid of 10-module PV strings aligned verti-
cally, where the module is the default PVMismatch config-
uration of 96-cell, three-string modules with a bypass diode
per string. For each step, the power output of each PV string
is calculated using the full POA for unshaded modules and
the reduced POA for shaded modules. We did not model tem-
perature effects, such as heat transfer with ambient or resis-
tive heating, due to the partial shading. Further, the PV array
could experience shading from multiple turbines, and how
these shadows overlay across a single string might result in
power loss that has a nonlinear relationship with the number
of shaded modules; however, the simulation time due to ad-
ditional turbines and an expanded grid of PV strings would
be far too long to use within an optimization loop.

Therefore, we investigated ways to reduce the complexity
of the model while preserving the required PV power loss
information by exploiting the periodicity inherent to each
cell of the inner turbine grid and comparing a map gener-
ated from a full simulation with all nearby turbines and one
generated by superimposing the losses from a single turbine.
Due to the regularity of the inner turbine grid, the shadow
cast upon a cell internal enough to the grid is representative
of other internal cells, so rather than simulating the shadows
from all the turbines, we used a grid of 4× 4 turbines to ex-
amine the central grid cell. The output of the shadow model
is a 2D map of POA loss due to turbine shadow. The output
of the PV power loss model is a map of PV power output
loss on a 10-module string basis due to the reduced effective
irradiance and module mismatch.

Figure 2 shows the results of piecing together from that
central grid cell the image of the 4× 4 turbine grid shadows,
on a small demonstration case of only a few days and a few
blade angles per hour. In particular, Fig. 2a shows clearly
how long shadows were cut off due to the 4× 4 limitation.
As the resolution increases, as shown in Fig. 2b and c, the
effect is less noticeable because the relative weight of the

long shadows decreases; similarly, as the simulation length
increases, the relative POA loss at sunrise and sunset hours
decreases.

The central grid cell’s shadows are not representative of
cells that are near the edge of the inner grid. To further gener-
alize the shadow flicker model, we compared the similarity of
shadow and PV power loss maps created by the central grid
cell and by adding a single turbine’s shadow and PV power
loss map for each turbine. Figure 3 shows the shadow and
PV power loss maps for an area around a turbine at (0, 0)
that is 8 turbine diameters to the north, west, and east and
4 turbine diameters to the south at the latitude 33.209◦, lon-
gitude −108.283◦. Weighted throughout the entire year by
POA loss and PV power output loss, respectively, the shadow
losses range from the greatest shadow reduction of 40.6 % to
no shadow reduction (100 %) far from the turbine, with an
average reduction of 99.95 %, whereas the PV power losses
range from a reduction of 90.5 % to 100 %, with an average
of 99.97 %. Above the POA loss, the additional mismatch
losses were found to be minimal. PV power loss at each
point is a little less than shadow loss due to averaging across
the 10 modules. This result reflects the simple PV module
assumptions we made and could change given additional
details, such as flicker’s effect on temperature and power
electronics. Comparison of the central grid cell’s shadow
and PV power losses to those generated by composing the
losses from a single turbine showed good agreement, with
an average normalized difference of 0.176 % for shadow and
0.466 % for PV power. For a given candidate’s PV array di-
mensions and location, the aggregate flicker loss is the sum
of losses from each turbine and is multiplied to the PV power
output.

3 Optimization methodology

3.1 Parameterizing hybrid plant layouts

Allowing every dimension of a hybrid plant layout to be
optimized as a free variable makes for an extremely high-
dimensional optimization problem. The position and type of
each turbine and solar module must be chosen along with
the configuration of the solar module strings. Additionally,
layouts generated in this way likely have irregular designs,
which can be undesirable for construction, maintenance, ca-
bling, and other purposes. Here, we propose a parameteriza-
tion that draws inspiration from recent work done to simplify
the layout optimization of wind plants (Stanley and Ning,
2019). We propose a parameterization of hybrid plant layouts
that significantly reduces problem dimensionality and con-
strains the solution space to practical, regular layouts. While
projecting the design space into a low-dimensional repre-
sentation necessarily eliminates many potential layouts, we
find that many excellent solutions can be readily discovered
within the parameterized search space.
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Figure 2. Heat maps (b–d) are of POA loss for a 4× 4 turbine grid (a) generated by repeating the central grid cell with different simulation
resolutions; (b) and (c) both run three time steps per hour, with one or three blade angles per time step. The simulation length for each was a
few days.

Figure 3. Heat maps of POA loss (a) and PV power loss (b) for a year at (33.209◦, −108.283◦), simulated at 15 min intervals with 12 blade
angles per step for a 77 m diameter turbine at (0, 0).

Our parameterization, summarized in Table 1, com-
prises of 11 dimensions: five turbine placement parameters
and six solar placement parameters. The exact imple-
mentation mapping parameter values to turbine and
solar locations, including placement constraint han-
dling can be found beginning on line 176 of the hy-
brid_parameterization.py source file in the HOPP repository,
https://github.com/NREL/HOPP/blob/master/examples/
optimization/layout_opt/hybrid_parametrization.py#L176
(last access: 20 March 2022). Where reasonable, we chose
parameters with (0, 1) or similar bounds and relatively
smooth, uniform impacts on site layout. Boundary spacing
and boundary offset determine the placement of turbines
along the site boundary. Boundary spacing determines the
distance between turbines placed along the site boundary
relative to the minimum turbine spacing, 200 m in our ex-

periments. Boundary offset determines the rotational phase
offset along the boundary when placing boundary turbines.
Grid angle, grid aspect power, and row phase offset control
the angle, aspect ratio (the ratio of intra-row to inter-row
spacing), and placement offset between rows. Perturbing the
raw aspect ratio causes relatively small changes to the layout
for values larger than 1, moderate changes for values near 1,
and large changes for values near 0. Therefore, we optimize
over the logarithm of the grid aspect ratio, which yields a
more linear response. These turbine placement parameters
are analogous to those in Stanley and Ning (2019), and
we direct the reader there for further description of and
justification for these parameters.

For solar placement, we consider layouts with a single
contiguous solar region that is rectangular in shape except
when placed against a site boundary. The center point of the
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Table 1. Optimization variables used in our problem formulation.

Bounds Prior

Parameter Definition Min Max µ σ

Boundary spacing Relative spacing of turbines along boundary 0 100 5 5
(minimum turbine spacing)(1+ boundary spacing)= spacing

Boundary offset Boundary turbine placement offset as ratio of boundary spacing 0 1 0.5 2

Grid angle Interior turbine grid rotation 0 5 5/2 5

Grid aspect power Logarithm of the interior turbine grid aspect ratio −4 4 0 3
egrid aspect power

=
column spacing

row spacing = grid aspect ratio

Row phase offset Interior grid turbine row starting offset as a multiple of intra-row spacing 0 1 0.2 0.5

Solar x position Relative east–west position of the solar region within the site 0 1 0.5 0.5

Solar y position Relative north–south position of the solar region within the site 0 1 0.5 0.5
Solar aspect power Logarithm of the solar region’s aspect ratio −4 4 0 3

esolar aspect power
=

east–west size
north–south size = solar aspect ratio

Solar GCR Ground coverage ratio of the solar region 0.2 0.9 0.5 0.5

Solar southern buffer Southern solar buffer zone relative to minimum turbine spacing 1 10 4 4
southern buffer length= (solar southern buffer)(1+minimum turbine spacing)

Solar x buffer Eastern and western solar buffer zone relative to minimum turbine spacing 1 10 4 4
Southern buffer length= (solar southern buffer)(1+minimum turbine spacing)

solar region is specified by the solar x-position and solar y-
position variables, which range from 0 (along the western
and southern bounds of the site, respectively) to 1 (along the
eastern and northern bounds). The aspect ratio of the solar re-
gion is determined by the solar aspect power variable, which
is equal to the logarithm of the aspect ratio of the east–west
and north–south lengths of the solar region. To allow the op-
timizer to minimize shading and flicker losses, we define two
buffer zones around the solar region from which turbines are
excluded. The solar southern buffer and solar x buffer spec-
ify the size of the southern and east–west buffers beyond the
minimum setback, 200 m in our case, as a multiple of the
minimum setback. Finally, the GCR of the arrays within the
solar region is included as a design variable. Allowing flex-
ible solar placement beyond the southern boundary of a site
(where no shading or flicker losses would be incurred) en-
ables the generation of layouts with interior or solar regions,
which may also have little or no shading or flicker losses,
but which allow for greater turbine separation and therefore
lower wake losses. In fact, many of the optimized layouts
discussed in Sect. 4.1 make this trade-off.

This parameterization does not specify the size of the so-
lar region or the spacing of turbines within the inner grid.
These two variables are instead determined by performing
binary searches to find the least dense layouts that accom-
modate all nonboundary turbines and all solar modules up
to the specified wind and solar capacity constraints. Using
a binary search to walk along the constraint boundary in-
creases the layout search efficiency by generating candidate
layouts that accommodate the maximum allowed solar and
wind capacities given their parameterization. Due to the pos-
sible nonconvexity of the site boundary, turbine spacing and

solar region size are not generally guaranteed to have mono-
tonic responses to the number of turbines or solar modules,
potentially causing a binary search to return suboptimal val-
ues; however, we did not encounter any issues in using this
approach. Convoluted nonconvex site boundaries might need
to be simplified for this approach to work, or a binary search
could be replaced with a more robust technique that could
reliably handle such conditions.

3.2 Objective design

In this proof of concept, we choose to simply maximize
estimated AEP, subject to separate wind and solar name-
plate capacity constraints of 75 and 50 MW, respectively.
As confirmed in Table 4, these capacity constraints were
chosen to yield similar solar and wind AEPs of approxi-
mately 110 GWh at the high-correlation location. We use up
to 50 1.5 MW turbines with a minimum spacing of 200 m
between turbines and between turbines and solar modules.
Other objectives are possible, including capacity factor, net
present value, payback time, or carbon payback time. One
objective of particular interest for hybrid plants is maximiz-
ing utilization of a limited grid interconnect, which can be
similarly optimized with this approach in Sect. 4.3.

3.2.1 Soft constraints

Derivative-free optimization methods generate candidates
from generative distributions that can be difficult to adapt
to hard constraints, so instead we use two forms of soft
constraints to guide candidate generation to feasible layouts.
We penalize only infeasible solutions, leaving the AEP
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objective fully intact within the feasible region. When
evaluating infeasible solutions, we project them onto the
nearest feasible solution by clamping parameter values to
their bounds. Our first penalty is a simple quadratic penalty
for parameter values outside their constraint boundaries. A
quadratic penalty allows the optimizer to stray somewhat
beyond the boundary, but due to the quadratic nature of the
penalty, the optimizer is neatly repelled from highly infea-
sible solutions. The second penalty penalizes layouts for
which many parameterizations exist due to interference of
the site boundary with the solar region’s layout. We penalize
layouts with excessive solar buffers that extend beyond the
site boundary when a smaller solar buffer would result in
the same layout. And we penalize layouts with solar aspect
ratios that differ from the actual solar region’s aspect ratio or
that specify a center of the solar region that does not match
the actual center of the solar region (as computed from its
axis-aligned rectangular bounds). In these cases, we simply
add quadratic penalties for these deviations from the ideal
parameterization of a given layout, and we did not find it nec-
essary to carefully tune the relative weights of each penalty
to get good performance and generate reasonable candidates.
The exact implementation details can be found beginning
on line 337 of the hybrid_parameterization.py source file
in our repository, https://github.com/NREL/HOPP/blob/
7ffb8c58d164ea32f2e0267dbe1869ac6fac9201/examples/
optimization/layout_opt/hybrid_parametrization.py#L337
(last access: 20 March 2022).

3.2.2 Objective function

Combining the AEP estimate with the soft constraint penal-
ties results in Eq. (1), the objective function used in our ex-
periments

maximize
x

f (x)= Pwind(x)+Psolar(x)

− η0|max(0,x− xmax) |
− η0|max(0,xmin− x) |

− η1
∑
s∈S

|Ss(x)|, (1)

where x is a column vector comprising of the scalar values
from Table 1; Pwind(x) yields the AEP of the wind plant in
the layout described by x; Psolar(x) yields the AEP of the
solar array in the layout described by x; η0 and η1 are soft
constraint nuisance parameters, set to η0 = 0.1 and η1 = 1.0
in our experiments; xmax and xmin are column vectors com-
prising of the minimum and maximum values from Table 1;
S is the set of layout-based soft constraint penalty functions
as described in Sect. 3.2.1; and Ss(x) returns the amount by
which soft constraint s is violated by x.

3.3 Optimization methods

Algorithm 1 lists an outline of the evolution strategy (ES)
approach to stochastic optimization. Evolution strategies are
a good fit for the hybrid plant layout optimization problem
due to the highly nonconvex objective function, the diffi-
culty in obtaining derivatives, their potentially noninforma-
tive nature, and the ability to generate multiple good layouts
for consideration. Some evolution strategy implementations
simply return the mean or other measures of G. We chose
to instead return the best solution found, c∗, which experi-
mentally improved performance over returning the mean in
every comparison we tested. We evaluated three ES-based
approaches for optimizing hybrid plant layouts.

3.3.1 Random search

Random search (RS) is a straightforward evolution strategy
where G is fixed and never updated. RS simply generates can-
didate layouts from a stationary distribution, keeping track of
the best-performing layout found so far; thus, RS provides a
simple interpretable baseline. When the search is terminated,
the best layout is returned. In our experiments with RS, we
chose G ∼N (µ,diag(σ )). Due to its static nature, RS’s ef-
ficiency depends on the performance of candidate solutions
drawn from G. Unfortunately, this is a difficult task because
good prior distributions are those that have a high probabil-
ity of generating good layouts, but if we knew what param-
eter values would yield good layouts, we would not need to
search for them.

3.3.2 Cross-entropy method

The cross-entropy method (CEM) is an evolution strategy
that originates from rare event simulation that has been
adapted to both discrete and continuous variable optimiza-
tion problems (Rubinstein, 1997; de Boer et al., 2005). We
used the common multivariate Gaussian form of CEM opti-
mization, outlined in Algorithm 3.3 of de Boer et al. (2005),
with G0 ∼N (µ,diag(σ )), a population size of λ= 200, and
a selection proportion of γ = 1

3 . These choices mean that
200 candidates were generated on each iteration of Algo-
rithm 1, and G was set to the maximum likelihood multi-
variate Gaussian fit of the best-performing (highest valued)
67 of those candidate layouts. CEM is an effective strategy
that does a good job of efficiently finding high-performing
layouts, but it can be prone to getting stuck in local maxima.

3.3.3 Covariance matrix adaptation evolution strategy

Covariance matrix adaptation evolution strategy (CMA-ES)
(Hansen and Ostermeier, 1996, 1997) is a sophisticated evo-
lution strategy that augments CEM’s approach with sev-
eral techniques to better avoid local minima and to up-
date the covariance matrix of G in a way that is analo-
gous to the approximation of the inverse Hessian matrix as
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Figure 4. Wind roses and boundaries for the two locations and two boundaries used in our experiments.

in quasi-Newton methods, such as the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm (Fletcher, 2000), the
limited memory BFGS algorithm (BFGS-L) (Malouf, 2002;
Andrew and Gao, 2007), and the earlier Broyden method
(Broyden, 1965). CMA-ES has been extended and enhanced
over the years to increase the algorithm’s recombination ef-
ficiency (Hansen and Ostermeier, 2001), improve the time
complexity of the update step (Hansen et al., 2003), in-
crease robustness in the face of multimodal objective func-
tions (Hansen and Kern, 2004), and more. We applied the
modern implementation of CMA-ES as described in Ap-
pendix C of “A Tutorial on the Cross-Entropy Method”
(Hansen, 2016). As with CEM, we use a prior distribution
of G0 ∼N (µ,diag(σ )), a population size of λ= 200, and a
selection proportion of 1

3 .

4 Experimental results

As a proof of concept, we present experimental results gener-
ated by applying the proposed hybrid layout optimization ap-
proach to the four distinct combinations of two site locations
and two site boundaries. We choose two distinct locations
outlined in Table 2 in the continental United States having
the highest and lowest Pearson correlation coefficient (Pear-
son and Henrici, 1896) between wind and solar resource, us-
ing the resource databases mentioned above. We chose to use

the Pearson correlation coefficient because it is the most pop-
ular criteria for analyzing the relationship between wind and
solar resource (Jurasz et al., 2020; Iwanowski, 2018; Zhang
et al., 2013), and unlike Spearman’s rank correlation coeffi-
cient (Spearman, 1904), it is well-suited to the continuous-
valued time-series data used to compare locations. The high-
correlation location, in which wind and solar resources tend
to be present together with a correlation coefficient of 0.28,
is located in California’s Central Valley, directly south of
Fresno and north of the city of Lemoore, at latitude 36.334◦,
longitude −119.769◦ and an elevation of 70 m. Given this
moderate positive correlation coefficient, wind and solar re-
sources in even the highest correlation location in the conti-
nental United States complement each other somewhat and
are therefore likely to yield increased grid resilience and sta-
bility through increased consistency in energy production.
The high-correlation location has a predominant wind direc-
tion, as shown in Fig. 4. The low-correlation location is lo-
cated in southwest New Mexico, with a latitude of 33.209◦,
longitude of −108.283◦ and an elevation of 2000 m, and
it has a resource correlation coefficient of −0.30. This lo-
cation presents wind and solar resources that are typically
complementary and therefore present an excellent opportu-
nity for hybrid power generation. As shown in Fig. 4b, the
low-correlation location’s wind direction distribution is more
dispersed, with lower typical wind speeds than found at the
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Table 2. Comparison of the two test locations.

Site Region Latitude Longitude Elevation Pearson
correlation
coefficient

High correlation Central Valley of California 36.334◦ −119.769◦ 70 m 0.28
Low correlation Southwest New Mexico 33.209◦ −108.283◦ 2000 m −0.30

Figure 5. Optimization progress curves for each of the three evolution strategy optimization algorithms on each combination of the two
site locations and the two site boundaries over the course of 10 optimization runs. Dark lines indicate median values as observed over
10 optimization runs. The dark fill around the median spans the 25th–75th percentile range, and the lighter fill spans the minimum-to-
maximum range.

high-correlation location. In this section, we analyze exper-
imental runs of our layout optimization approach as applied
to each of the four combinations of these two locations and
each of the two site boundaries: a simple circular boundary
with a 3 km radius, as shown in Fig. 4c, and a nonconvex
wedge-shaped irregular boundary, as shown in Fig. 4d.

Table 3 summarizes the results of running each of the three
evolution strategy optimization algorithms on each combina-
tion of the two site locations and two site boundaries. In all
cases, CMA-ES achieved a higher mean performance than
either CEM or RS, whereas CEM took second place or tied
with RS on each site. Taking a closer look, the optimiza-
tion progress curves shown in Fig. 5 indicate that CMA-

ES typically achieves good performance with less variabil-
ity than the other two methods, but CEM sometimes takes an
early lead over CMA-ES, which CMA-ES overcomes only
after 20 000–25 000 candidates have been evaluated. Ran-
dom search has poor performance overall and tends to have
a higher inter-run variability in the performance of its lay-
outs; however, in the high-correlation location with the cir-
cular boundary, we see that CEM rapidly becomes stuck in
a local maximum, and RS can eventually outperform CEM
in this case. In fact, we see that CEM rapidly finds a local
maximum in all four cases, and this is likely why CMA-
ES, which is more robust to local maxima, is able to even-
tually beat CEM in these tasks. Interestingly, we find that
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Figure 6. CMA-ES solutions for the high-correlation location and circular boundary. Turbine locations are marked in purple, the solar region
is drawn with an orange solid line, and the surrounding solar buffer zone is marked with a dashed orange line.

Table 3. Mean performance gains over the baseline site for 10 runs
of each optimization algorithm.

High-correlation location Low-correlation location

Algorithm Circular Irregular Circular Irregular
boundary boundary boundary boundary

CMA-ES 3.97 % 4.30 % 4.49 % 3.88 %
CEM 3.45 % 4.08 % 4.48 % 3.86 %
RS 3.45 % 3.89 % 4.37 % 3.80 %

on every test site, most gains are achieved by the first or
second iteration of each of the three algorithms. Among the
200 randomly generated initial candidates, there was always
a site that increased the objective value by 2.8 % to 4.0 %.
That is to say that simply drawing one random generation
of candidates from the prior distribution and choosing the
best-performing layout from that set yielded the most gains
to be had when optimizing layouts using this parameteriza-
tion. It is possible that, in a more general sense, many lay-
outs could be improved significantly by simply generating
a few hundred random perturbations of the layout parame-
ters and choosing the best candidate found; however, in ev-
ery case, all three optimization algorithms were also able to
squeeze out additional performance beyond this initial im-
provement, with CMA-ES yielding the best overall results.
We also see that CMA-ES and RS continue to eke out ad-
ditional gains between 40 000 and 50 000 evaluated candi-
dates, suggesting that longer runs would likely yield addi-
tional gains. These results are not meant to be a definitive
examination of which approach is best for the hybrid layout
problem, but they are instead meant to show that there are vi-
able evolution-strategy-based approaches to solving the hy-
brid layout problem. It is possible that with careful tuning, for
example, adjusting CEM’s convergence parameters, these re-
sults would change somewhat; however, we found that CMA-
ES was significantly easier to work with and easier to get
running than other techniques, and therefore we examine it
in more detail later.

4.1 A closer look at the generated layouts

Figures 6–9 show a sampling of solution layouts generated
by CMA-ES using our hybrid layout parameterization. Each
layout’s performance statistics are listed in Table 4. In Fig. 6,
the high-correlation location and circular boundary generates
a diversity of high-performing layouts. All these layouts pack
all or all but one turbine into two inner grid rows, typically
aligning turbine rows to an angle at a few degrees offset from
the prevailing wind direction. This arrangement minimizes
mean wake losses in our eddy-viscosity-based wake loss sim-
ulation, causing wakes to fall just to the side of downstream
turbines under most wind conditions. We also see some solu-
tions, such as the layout shown in Fig. 6c, that align the grid
closer to perpendicular to the prevailing wind direction. This
configuration is also competitive, but the closer spacing be-
tween rows in the wind direction results in the southerly tur-
bines incurring a bit more wake losses. Similarly, the solver
finds a variety of good solar placements, many of which
are nonintuitive, including placements such as those shown
in Figs. 6c and e, which place the solar region along the
northern boundary of the site. Despite this northerly place-
ment, the optimizer identified turbine placements that elimi-
nate flicker losses.

Figure 7 shows solutions for the irregular boundary on the
same high-correlation location. Unsurprisingly, these solu-
tions share design characteristics with those using a circular
boundary, but results differ in a few ways. The “taller” north–
south aspect of the irregular boundary causes the optimizer
to find solutions that align two and occasionally three rows
of turbines with the longer chords of the boundary, again
offsetting turbine rows a bit from the prevailing wind di-
rection. Unlike with the circular boundary, some solutions
place a smattering of turbines along the site boundary, taking
advantage of the additional breathing room afforded by this
boundary. In most cases, the solar is packed into the southern
tip of the site, eliminating flicker losses entirely; however, a
few competitive layouts were found that place the solar re-
gion deep in the site’s interior, an interesting trade-off that
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Figure 7. CMA-ES solutions for the high-correlation location and irregular boundary.

Figure 8. CMA-ES solutions for the low-correlation location and circular boundary.

increases turbine spacing at the cost of some flicker and shad-
ing losses.

The solutions shown in Fig. 8 are generated layouts for the
low-correlation location and circular boundary. Here, we see
that the more uniform and lower speed wind distribution re-
sults in very different solutions than at the high-correlation
location. In response to a less concentrated wind direction
distribution, the solver proposes layouts that space turbines
evenly and place the solar region near the site center, giv-
ing turbines some additional separation. Similar results are
shown in Fig. 9 using the irregular boundary, which primar-
ily differ, in an increased utilization of boundary turbines,
and placement of the solar region into the northeastern corner
of the site. These solutions are likely found because placing
the solar in this corner actually causes boundary turbines to
avoid the corner and therefore achieve increased spacing. A
further-refined parameterization might specially handle bor-
der turbine placement in sharp boundary peninsulas such as
this one.

Table 4 reveals that solutions to the high-correlation sce-
narios have approximately an order of magnitude greater
spread in AEP than the low-correlation solutions, and this
difference stems almost entirely from differences in wind-
generated production. Curiously, the high-correlation sites
produce only approximately twice as much wind energy as
the low-correlation sites, not nearly enough to explain the

much larger difference in AEP. It is possible that higher re-
source correlation presents a more challenging optimization
objective, partly due to the greater impact of flicker losses on
solar AEP. It is more important to avoid panel flicker when
solar generation is high, and under high-correlation condi-
tions solar generation is high when wind generation is also
high, causing shading turbines to inflict greater flicker losses
on solar AEP. This proposition is supported somewhat by the
overall greater flicker losses seen in high-correlation solu-
tions, but more investigation is needed to fully understand
the cause of the variability.

The ability to generate multiple competitive alternative
layouts is a distinct advantage of evolution strategies and
other stochastic optimization approaches. Here, we see the
creative power of these solution methods in finding a large
diversity of viable candidate layouts, all of which yield high
objective function scores. In choosing to lay out a hybrid site,
one might use these methods to generate a number of good
candidate sites and then choose among them based on other
important factors that are difficult to encode in such an objec-
tive function, such as ease of access, maintenance or cabling
concerns, aesthetics, and more.
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Figure 9. CMA-ES solutions for the low-correlation location and irregular boundary.

Table 4. CMA-ES layout performance statistics for each solution in Figs. 6–9.

AEP (GWh) Losses

Location Site Solution Total Solar Wind Wake GCR Flicker

High correlation Circular Baseline 214.29 101.36 112.93 4.15 % 6.55 % 0.09 %
High correlation Circular 5c 223.06 107.46 115.60 1.89 % 1.02 % 0.00 %
High correlation Circular 5d 222.08 107.46 114.62 2.72 % 1.02 % 0.01 %
High correlation Circular 5e 222.73 107.46 115.26 2.18 % 1.02 % 0.00 %
High correlation Circular 5f 222.76 107.46 115.30 2.15 % 1.02 % 0.00 %

High correlation Irregular Baseline 211.78 101.36 110.43 6.28 % 6.55 % 0.10 %
High correlation Irregular 6b 220.94 107.45 113.48 3.69 % 1.02 % 0.01 %
High correlation Irregular 6c 220.98 107.46 113.52 3.66 % 1.02 % 0.00 %
High correlation Irregular 6d 221.04 107.46 113.58 3.61 % 1.02 % 0.00 %
High correlation Irregular 6e 220.65 107.36 113.29 3.85 % 1.02 % 0.10 %
High correlation Irregular 6f 220.36 107.46 112.90 4.18 % 1.02 % 0.00 %

Low correlation Circular Baseline 159.02 103.57 55.45 5.38 % 6.47 % 0.08 %
Low correlation Circular 7c 165.21 109.09 56.12 4.24 % 1.57 % 0.00 %
Low correlation Circular 7d 165.16 109.09 56.07 4.32 % 1.57 % 0.00 %
Low correlation Circular 7e 165.22 109.09 56.13 4.22 % 1.57 % 0.00 %
Low correlation Circular 7f 165.20 109.09 56.10 4.26 % 1.57 % 0.00 %

Low correlation Irregular Baseline 157.36 103.58 53.79 8.21 % 6.47 % 0.08 %
Low correlation Irregular 8b 164.40 109.07 55.34 5.57 % 1.57 % 0.02 %
Low correlation Irregular 8c 164.43 109.06 55.37 5.50 % 1.57 % 0.03 %
Low correlation Irregular 8d 164.43 109.06 55.37 5.50 % 1.57 % 0.03 %
Low correlation Irregular 8e 164.44 109.06 55.38 5.50 % 1.57 % 0.03 %
Low correlation Irregular 8f 164.44 109.06 55.38 5.50 % 1.57 % 0.03 %

4.2 Layouts for varying capacity mixes

Figure 10 shows solutions for various solar to wind gen-
eration capacity proportions while holding total capacity
equal to 125 MW. For solar-heavy specifications, turbines are
placed where they will never shade the solar region and are
also spread out to minimize GCR losses, with reducing wake
losses being only a secondary concern. Figure 10b is a sur-
prising layout which uses the solar region to position the tur-
bines along two rows in a way which also yields low 2.27 %
wake losses for this location. As solar capacity is decreased
and wind capacity is increased, the solar region naturally

shrinks and is gradually placed to allow for reduced wake
losses, with solar losses taking a back seat. Figure 10f shows
a primarily wind-based layout with solar stuffed in-between
two turbine rows almost as an afterthought. However, even
in this case flicker losses are only 0.1 %, and the panels
are rarely shaded. These solutions suggest that solar-focused
HPPs such as Fig. 10a and b can maintain high solar pro-
duction by placing panels near the southern boundary of the
site, or in a location away from turbine shading, while leav-
ing ample space for low wake loss turbine placement. Sites
with balanced production, such as in Fig. 10b–d, are likely
well-served by placing solar production along one of the site
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Figure 10. Solutions generated for the high-correlation location and irregular boundary for a range of solar and wind capacity mixes, holding
total nameplate capacity at 125 MW.

Figure 11. Solutions generated for the high-correlation location and irregular boundary for a range of interconnect capacities, maximizing
mean interconnect utilization instead of AEP.

boundaries, particularly the southern boundary, leaving pan-
els largely unshaded while still providing large contiguous
spaces for turbine placement. Furthermore, Fig. 10e and f
suggest that sites using principally wind generation can often
find sufficient space between turbine rows to place modest
solar generation zones without incurring significant shading
or flicker losses and without moving turbines from their ideal
placement. Future work could utilize this layout optimization
strategy to, considering the physical layout, identify the mix
of solar and wind generation that optimizes figures of inter-
est such as levelized cost of energy or net present value for a
particular site.

4.3 Optimizing alternate objectives: interconnect
utilization

To evaluate the flexibility of the parameterized layout op-
timization approach, we generated the layouts shown in
Fig. 11, maximizing interconnect utilization instead of AEP
for a range of interconnect capacities for high-correlation lo-
cation and irregular boundary. Because low interconnect ca-
pacities do not realize the benefit of peak energy production,
the effect of losses during peak production times is unimpor-
tant. Therefore, as the interconnect capacity increases, tur-
bines are shifted from the boundary to the interior grid, re-

flecting the increased importance of minimizing wake losses
when energy production is high. As the interconnect capac-
ity rises above peak production levels, the optimized layouts
for 60 and 65 MW become similar to those found by max-
imizing AEP in Fig. 7. These results suggest that in highly
interconnect-constrained scenarios, such as Fig. 11a, hybrid
sites may be best served by placing all turbines along the
boundary and solar in a central, unshaded location. This lay-
out type is conducive to maintaining some level of energy
production, even in atypical conditions, including rare wind
speeds or directions that would cause pathological loss cases
under layouts optimized for common conditions. While wake
losses will typically be greater under average conditions than
with denser rows of turbines, boundary placement, at least
with the irregular site, is more robust to atypical conditions.
For sites with few straight-line boundaries, such as a rectan-
gular site, it is likely that setting some turbines back from
the boundary by varying amounts would produce similar
levels of robustness. For sites with moderate interconnect
constraints, such as in Fig. 11c and d, interior solar place-
ment is still a successful strategy as long as turbines are ex-
cluded from shading positions, and a moderate portion of tur-
bines are placed in interior rows. Such layouts maintain rea-
sonable robustness to atypical conditions while taking some
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advantage of common conditions. Future directions include
further incorporation of interconnect design parameters into
more complex objective functions that would strengthen and
deepen these design guidelines.

5 Conclusions

HPP optimization research has focused on system sizing. In
this work, we deepen HPP optimization by presenting a prac-
tical approach to optimizing not just component sizes but
also the physical layout of a wind–solar HPP. Furthermore,
this framework can be refined and extended to optimize ad-
ditional design parameters and achieve more detailed objec-
tives as desired.

The proposed HPP layout optimization approach consists
of four distinct contributions. First, we presented a model for
estimating shading and flicker losses incurred due to turbine
shading of solar panels, a critical piece for enabling wind–
solar layout optimization. Second, we proposed utilizing a
parametric approach to layout optimization for HPPs in or-
der to reduce the dimensionality of the layout problem and
to make it more amenable to non-convex optimization tech-
niques. Third, using a specific parameterization for wind–
solar layout optimization, we demonstrated the viability of
this approach by using ES-based optimizers to generate high-
performance layouts. Finally, we analyzed the optimized lay-
outs under a number of scenarios to propose potential general
layout guidelines for wind–solar layout optimization.

Future work includes expanding the parameterization to
include additional design parameters such as wind and solar
capacity mix, turbine type, and site size and shape; adding
more detailed objective functions such as NPV and internal
rate of return; and accounting for land use restrictions and
costs. Additionally, one could formulate more efficient and
capable optimization algorithms, including non-evolutionary
approaches. The objective function could be improved to ac-
count for factors such as cabling, interconnect, maintenance
costs, land use restrictions, and budgets. Other improvements
are also possible, including eliminating capacity constraints
and allowing the algorithm to trade between wind turbines
and solar modules. Similarly, the objective could be modi-
fied to generate layouts that improve existing sites by deter-
mining the best locations for additional turbines and solar
modules. The specific parameterization presented serves as a
starting point that can be extended and adapted to meet the
needs of different decision makers, site types, and objectives.
This approach opens a viable path for hybrid plant developers
to easily generate efficient, maintainable, and aesthetically
pleasing layouts using modest computational resources.

Appendix A: Peering into the black box: interpreting
and debugging derivative-free approaches

In this appendix, we make a case study of the application
of CMA-ES to the high-correlation location and irregular
boundary layout problem. We show how examining variable
trajectories over the optimization run can give insight into
the operation of the optimizer and can help users understand
and debug its performance. Graphing solution losses over an
optimization run shown in Fig. A1b indicates that the RS of
the first iteration immediately finds a configuration that min-
imizes GCR losses; this corresponds to the GCR trajectory
shown in Fig. A2, where a low GCR is immediately found to
minimize GCR losses. Over the next 200 to 800 evaluations,
the optimizer concentrates on finding configurations that re-
duce or eliminate flicker losses. In most cases, the optimizer
found solutions that completely eliminated flicker losses. Fi-
nally, the optimizer gradually whittles away wake losses. No
configuration here can eliminate wake losses, but the opti-
mizer adjusts the turbine grid position, angle, and aspect ra-
tio, significantly reducing wake losses. During this time, we
observed a small amount of variability in flicker losses as the
optimizer found that it might be able to trade a bit of flicker
loss to reduce wake losses, and we see that a handful of so-
lution layouts, such as Fig. 7e, make this trade-off.

Analyzing the optimization variables of CMA-ES’s solu-
tion trajectories shown in Fig. A2 indicates that most solu-
tions use a small boundary offset, moderate boundary spac-
ing, a northeasterly turbine grid angle, and tightly packed tur-
bine rows. Solution solar configurations generally had mod-
erate (near-square) aspects, although some such as the lay-
out shown in Fig. 7e are wide along the east–west (x) axis
and narrow along the north–south (y) axis. Given ample
space to place the solar capacity, low GCRs were universally
preferred by CMA-ES, minimizing internal shading (GCR)
losses. Similarly, the optimizer universally finds that large
east and west buffer regions around the solar are not required
to reduce flicker. From the x (east–west) and y (north–south)
solar position trajectories, we see that many solutions sensi-
bly pack the solar region into the southeast corner of the site.
Placing the solar at the southern end of the site eliminates
turbine shading and flicker on the solar, but it can also pack
turbines closer together into the northern portion of the site;
however, other good placements are found by the optimizer,
including as shown in Fig. 7e, which places the solar closer
to the middle of the site and uses a southern buffer to re-
duce shading and flicker losses. This alternative arrangement
is competitive because it allows the turbines to be spaced
farther apart, helping to reduce wake losses. This trade-off
would be more salient when using larger solar generation
capacities and/or smaller wind capacities, causing the solar
region to consume more space relative to wind turbines.
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Figure A1. Optimization progress curves on the high-correlation site with an irregular boundary over 10 optimization runs. Dark lines
indicate median values as observed over 10 optimization runs. The dark fill around the median spans the 25th–75th percentile range, and the
lighter fill spans the minimum to maximum range.

Figure A2. Solution trajectories using CMA-ES on the high-correlation site and irregular boundary. Dark lines indicate median values. The
dark fill around the median spans the 25th–75th percentile range, and the lighter fill spans the minimum to maximum range observed over
10 optimization runs.
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