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Abstract. In wind plants, turbines can be yawed into the wind to steer their wakes away from downstream
turbines and achieve an overall increase in plant power. Mathematical optimization is typically used to determine
the best yaw angles at which to operate the turbines in a plant. In this paper, we present a new heuristic to
rapidly determine the yaw angles in a wind plant. In this method, we define the turbine yaw angles as Boolean
– either yawed at a predefined angle or nonyawed – as opposed to the typical methods of defining yaw angles
as continuous or with fine discretizations. We then optimize which turbines should be yawed with an algorithm
that sweeps through the turbines from the most upstream to the most downstream. We demonstrate that our new
Boolean optimization method can find turbine yaw angles that perform well compared to a traditionally used
gradient-based optimizer for which the yaw angles are defined as continuous. There is less than 0.6 % difference
in the optimized power between the two optimization methods for randomly placed turbine layouts and less than
a 0.6 % difference in the optimal annual energy production between the two optimization methods for a real wind
farm. Additionally, we show that our new method is much more computationally efficient than the traditional
method. For plants with nonzero optimal yaw angles, our new method is generally able to solve for the turbine
yaw angles 50–150 times faster, and in some extreme cases up to 500 times faster, than the traditional method.

1 Introduction

Wind energy capacity has grown rapidly in the United States
in recent years (Administration, 2021b, a) and is projected
to continue to grow as technology improves, costs decrease
(Wiser et al., 2021), and public opinion and policy shift to-
ward wind and renewable energy support (Stokes and War-
shaw, 2017). One impactful improvement that has increased
wind plant productivity is the use of active turbine yaw con-
trol for wake steering within a wind plant. When yawed, a
pair of counter-rotating vortices is shed from a wind tur-
bine, causing the downstream wake to deflect (Howland
et al., 2016; Bastankhah and Porté-Agel, 2016). In a wind
plant, where turbines are built close together to take ad-
vantage of high resources and logistical benefits, wake de-
flection can be actively exploited to steer wakes away from
downstream turbines. Although yawed turbines experience
a decrease in power production, many studies have shown
that steering the wake away from other downstream turbines

can result in a net gain for the power plant. This has been
shown with experiments and simulations (Adaramola and
Krogstad, 2011; Park et al., 2013; Gebraad et al., 2016; Lin
and Porté-Agel, 2020) as well as with field tests (Fleming
et al., 2016a, 2017, 2019).

To gain maximum performance from a wind power plant
for a given wind condition, it is necessary to optimize the
yaw angle at which each wind turbine should operate. This
optimization often involves nonintuitive trade-offs because
individual turbine performance is sometimes sacrificed to in-
crease performance of the wind power plant as a whole. In
addition to being nonintuitive, this optimization problem in-
volves complex interactions because slightly adjusting the
yaw angle of a single turbine can have effects that propagate
to the rest of the wind turbines in the plant – in both their
power production and the wakes that they produce. To solve
this optimization problem, the yaw angles of each wind tur-
bine are either defined as continuous between the upper and

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



742 A. P. J. Stanley et al.: Fast yaw optimization for wind plant wake steering using Boolean yaw angles

lower bounds (Gebraad et al., 2014; Fleming et al., 2016b;
Gebraad et al., 2017) or with finely discretized yaw angle
selections (Dar et al., 2016; Dou et al., 2020). The problem
is then solved with a gradient-based (Fleming et al., 2016b;
Gebraad et al., 2017) or gradient-free (Gebraad et al., 2014;
Dar et al., 2016; Dou et al., 2020) optimization algorithm that
determines the best combination of yaw angles in the wind
power plant. While effective and relatively efficient for a one-
off wind power plant analysis, there are some shortcomings
to this approach.

First, these approaches implicitly assume that real wind
turbines are able to precisely achieve any yaw angle de-
sired by the wind plant operator with respect to certain wind
resources. In reality, there are significant uncertainties in-
volved with wind measurements and estimations as well as
with wind turbine yaw angle estimation (Quick et al., 2020).
Thus, solving the wind plant yaw control optimization prob-
lem with continuous or finely discretized yaw angles is un-
realistic because real wind turbine uncertainties do not allow
such precision. This reality partially motivates using coarse
discrete yaw angle possibilities in wind plant yaw optimiza-
tion.

Second, the current approaches to turbine yaw optimiza-
tion are much too computationally expensive for many ap-
plications. One application for computationally efficient yaw
optimization is in performing control co-design of a wind
power plant. The rapid optimization of yaw angles in a wind
plant facilitates coupled wind turbine design, plant layout,
and control optimization. The computational expense re-
quired to solve optimization problems scales poorly with in-
creasing numbers of design variables without special treat-
ment (Zingg et al., 2008; Rios and Sahinidis, 2013; Lyu et al.,
2014; Ning and Petch, 2016; Thomas and Ning, 2018). When
performing control co-design of wind plants, all of the de-
sign variables are coupled, resulting in huge numbers of de-
sign variables that can easily range up to tens of thousands or
more for large wind plants. Problems of this size are infeasi-
ble to solve with most current optimization techniques. How-
ever, with a fast yaw optimization process, the turbine design
and plant layout variables can be decoupled from the yaw
angle optimization. If it is fast enough, the yaw optimization
can be performed within the plant analysis step, dramatically
reducing the number of design variables from tens or hun-
dreds of thousands to fewer than 100.

Another application in which fast yaw optimization is cru-
cial is to perform real-time optimization of yaw angles for
turbines in a wind plant. Currently, it is typical to precompute
a large amount of optimal turbine yaw angles for a variety of
different inflow conditions and use a look-up table to deter-
mine the optimal yaw angles for a given inflow. However, it
is difficult to have optimal yaw angles for all of the possible
combinations of wind direction, wind speed, turbulence, and
other atmospheric conditions. On top of all the inflow possi-
bilities, it is also common in wind plants for one or several
turbines to be down at any given time. This completely alters

the flow field and dramatically increases the number of opti-
mal yaw angles that must be precomputed. Just looking at the
different combinations of wind turbines that could be opera-
tional at a given moment, a wind farm with 50 turbines would
require 1.12× 1015 – over a quadrillion – different possible
optimal turbine yaw angles to be precomputed. To put that in
perspective, 1 quadrillion seconds is over 31 million years.
Thus, to perform wake steering in an operational plant and
consider all possible scenarios of operation, it is necessary to
perform real-time yaw optimization.

In this paper, we present a discrete, Boolean wind power
plant yaw optimization approach. Boolean approaches have
been used in wind plant layout optimization, in which several
potential turbine locations are defined (usually in a grid), and
an optimizer is used to determine at which of these locations
a turbine should be placed (Mosetti et al., 1994; Grady et al.,
2005; Marmidis et al., 2008). Although it has been applied to
wind plant layout optimization, to our knowledge, a Boolean
approach has never been considered to optimize wind turbine
yaw angles. In our new approach, each turbine is defined as
either yawed or not yawed. This new heuristic can quickly
solve for the yaw angles of wind turbines in a power plant,
which could enable the yaw angles and the rest of the de-
sign variables to be decoupled during optimization and could
enable real-time optimization during operational plant yaw
control. Studies have shown that in real-time yaw control in
a plant, the desired yaw angles can be updated every 20 s,
and even as infrequently as every 2 min, and still achieve
good performance benefits from wake steering (Kanev, 2020;
Doekemeijer et al., 2020). Even without dramatically speed-
ing up function calls and parallelization, our new Boolean
yaw optimization method could perform real-time yaw con-
trol optimization for operational wind plants. Our new ap-
proach is presented and discussed in comparison to a typical
continuous yaw optimization solved with a gradient-based
optimizer.

In the following sections, we present the models we used
in the paper as well as the optimization approaches. We
demonstrate the performance of the Boolean problem ap-
proach compared to a typical continuous, gradient-based yaw
optimization and show that there is not a significant sacri-
fice in performance associated with using our new Boolean
method. We demonstrate significant savings in computa-
tional expense. Our Boolean method is around 50–150 times
faster than the continuous optimization, with optimized
power production for a random layout within 0.6 % of the
power from a traditionally used optimization method and an
optimized annual energy production (AEP) within 0.6 % of a
traditional optimization method for a real wind farm layout
and wind resource.
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Figure 1. Parameters of the 15 MW wind turbine used in this study. From left to right, this figure provides the important wind turbine
dimensions, the power coefficient curve, and the thrust coefficient curve.

2 Modeling

In this section, we provide a brief overview of the models we
used to evaluate wind power plant performance as well as the
important wind turbine parameters.

We evaluated the wind plant performance using the open-
source software FLOw Redirection and Induction in Steady
State (FLORIS) (NREL, 2021). FLORIS is wind power plant
modeling software developed to be computationally inexpen-
sive with optimization in mind. FLORIS is a steady-state,
controls-oriented modeling tool that is commonly used in
wind power plant control studies and wind plant layout opti-
mization research (Gebraad et al., 2017; Thomas et al., 2017;
Stanley and Ning, 2019). There are several modeling options
available within the FLORIS framework. For this paper, we
used the Gauss-Curl-Hybrid, or GCH, model (King et al.,
2021). This is a Gaussian, controls-oriented wake model
that captures some of the secondary effects of wake steer-
ing that are not captured by other wake models. In addition
to the wake deficit and wake deflection captured in with the
GCH model, we used the Crespo–Hernandez model to calcu-
late the wake-added turbulence (Crespo et al., 1996) and the
square root of the sum-of-squares method for multiple-wake
combinations (Katic et al., 1986).

In making the important farm-level calculations, FLORIS
requires several wind turbine parameters. Unless otherwise
stated, in this paper we used wind turbine parameters for a
240 m rotor diameter, 15 MW turbine. Figure 1 shows the
wind turbine dimensions that we used, along with the power
and thrust coefficient curves. For the full set of input param-
eters and model settings used in this study, please refer to
the model code input file that can be found within the code
repository provided at the end of this paper.

Also, unless explicitly stated differently, the free-stream
wind speed was set as a uniform inflow of 10 m s−1, which
is below the rated wind speed of the wind turbine we used.
Past research has shown wake steering to be most effective
for lower wind speeds (Simley et al., 2021).

3 Optimization methods

In this section, we present the two optimization methods that
we compare in this paper. We call these methods “continu-
ous”, for the method that is typically used currently in wind
plant yaw optimization, and “Boolean”, for our new method.
For each, we were only interested in testing our simplified
yaw control optimization. The wind turbine locations and
design were fixed. We used only positive yaw angles and
present results for scenarios in which we are interested in
just one wind direction at a time and for the entire wind rose.
The objective of each optimization was to maximize the wind
plant power production for the given wind condition or the
AEP for the year. The design variables were the yaw angle
of each wind turbine in the power plant for each wind condi-
tion being explored; these were bounded between 0 and 30◦.
In this paper we have decided to only consider positive yaw
to avoid the potential of negative yaw angles being worse
from a loads perspective (Kragh and Hansen, 2014; Damiani
et al., 2018; Fleming et al., 2015). High-fidelity simulations
have shown that negative yaw angles with directly aligned
turbines often do not result in an overall power gain (Flem-
ing et al., 2015). Additionally, we have only included positive
yaw angles to reduce the number of possible extreme yaw ad-
justments that turbines may need to make during operation
(0–30◦ as opposed to −30 to 30◦). There are plenty of good
reasons and opportunities to explore negative yaw angles in
wake steering; however, in this paper we have only consid-
ered positive yaw. There were no additional constraints be-
yond those bounding the design variables. The problem can
simply be expressed as

maximize plant power or AEP
w.r.t. γn,d n= 1 . . . nturbs

d = 1 . . . ndirs
subject to 0≤ γ ≤ 30◦,

where γn,d is the yaw angle of wind turbine n for wind re-
source d , nturbs is the number of wind turbines in the plant,
and ndirs is the number of wind speed and wind direction
combinations being considered in the optimization.
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3.1 Continuous

For the continuous optimization method, we defined the yaw
angles as continuous variables, which represents a typical
method to optimize yaw angles in a wind plant. The yaw
angle of each wind turbine in the plant was optimized si-
multaneously with the commercial gradient-based optimizer
SNOPT (Gill et al., 2005) within the pyOptSparse framework
in Python (Wu et al., 2020). In this approach, we normalized
the objective function by the initial plant power with zero
wind turbine yaw. We also scaled the turbine yaw angles
by 0.1, meaning the turbine optimizer saw the design vari-
ables with bounds between 0 and 300. These design variables
were multiplied by 0.1 within the objective function. We also
used finite-difference gradients and started the optimization
with each wind turbine at zero yaw. Each other setting was
used as default. Refer to the optimization run scripts, found
in the code repository linked at the end of this paper, to see
details of this gradient-based optimization approach.

It is important to note that for all of the results in this paper,
we have only used the continuous problem scaling, bounds,
and finite-difference gradients that we have described. We
have not explored the sensitivity of the results to different
implementations of the continuous optimization. It is possi-
ble that the differences in computational time are partially at-
tributed to the parameters we have used while setting up the
optimization and not exclusively to the differences between
the Boolean and continuous approaches.

3.2 Boolean

For the Boolean method, which is new to this paper, we as-
sumed that each wind turbine could only be in one of two
different states – yawed or nonyawed. The angle that should
be used for the yawed wind turbines is explored in the fol-
lowing section, with the only requirement being that it must
be between the upper and lower bounds of 30 and 0◦. To opti-
mize the yaw angles with this method, we used the following
approach.

1. Sort the wind turbines from most upstream to most
downstream.

2. Determine which turbines have downstream wind tur-
bines in their wake.

3. From upstream to downstream, check one by one if
yawing a wind turbine results in an increase in plant
power. Fix wind turbine yaws that result in a power in-
crease. Any wind turbines from Step 2 that do not have
wind turbines in their wake are skipped and remain un-
yawed.

This method is very computationally efficient, requiring at
most one function call per wind turbine in the plant. Step 2
of the optimization method requires checking to determine
whether wind turbines have other downstream turbines in

their wakes. To do this, we assumed the wake spread linearly
behind each wind turbine using the equation of the Jensen
wake model (Jensen, 1983) shown in Eq. (1).

r = αx+ r0 (1)

In this equation, r is the radius of the wake, α is the wake
spread coefficient, x is the distance downstream of the wak-
ing wind turbine, and r0 is the rotor radius of the waking wind
turbine. For this paper, we used a large wake spread coeffi-
cient of 0.2. If any part of any downstream wind turbine was
within this cone behind a wind turbine, the upstream turbine
was designated as “waking” and the optimization algorithm
above was checked to determine if this waking wind turbine
should be yawed. If a wind turbine had no downstream tur-
bines in its wake, the yaw angle was automatically assumed
to be 0, and the algorithm did not check to determine if that
wind turbine should be yawed.

4 Comparison of Boolean and continuous
optimization methods

In this section, we present and discuss the optimization re-
sults of our Boolean optimization method compared with
the traditional continuous optimization. We compare the per-
formance of each optimized wind power plant as well as
the computational expense required for the optimization. We
present four different scenarios: (1) wind turbines in a sin-
gle row in-line with the incoming wind, (2) a regular grid of
wind turbines with wind coming from several different di-
rections, (3) averaged results for wind turbines arranged ran-
domly, and (4) results for a real wind farm with the associated
wind resource.

4.1 Turbines in-line with wind: power maximization

In this section, we present the results for wind plant opti-
mizations for a plant with wind turbines that are in-line with
the oncoming wind. Before comparing the performance of
the different optimization problems, it was necessary to de-
termine the Boolean yaw angle at which the wind turbines
should be set. To determine this, we optimized an individ-
ual row of turbines using the Boolean optimization method
with several different setups. We varied the number of tur-
bines between 10 and 50, with spacings of 3, 5, and 8 ro-
tor diameters between turbines. We repeated each Boolean
optimization with different Boolean yaw angles from 5–30◦

at 5◦ increments. Figure 2 shows the optimized percent im-
provement over the nonyawed baseline case for these differ-
ent Boolean yaw angles. Each panel shows results for the
different wind turbine spacings; within each panel, the dif-
ferent lines represent the percent gain for different numbers
of turbines. Notice the different y axes for each of the panels.

In Fig. 2, we see relatively poor performance at small
Boolean yaw angles. The performance gains from wake

Wind Energ. Sci., 7, 741–757, 2022 https://doi.org/10.5194/wes-7-741-2022



A. P. J. Stanley et al.: Fast yaw optimization for wind plant wake steering using Boolean yaw angles 745

Figure 2. The absolute percent improvement over the nonyawed baseline for the Boolean problem approach and optimization methods as a
function of the Boolean yaw angle. Each panel shows the percent improvement as a function of the number of wind turbines in the power
plant for Boolean yaw angles between 5 and 30◦. Panels (a)–(c) present power plants with different turbine spacings of 3, 5, and 8 rotor
diameters, respectively.

steering increase with increasing yaw angle, reach a maxi-
mum, then begin to decrease again. For Boolean angles that
are too small, the power of the yawed turbine does not de-
crease very much, but the wake does not deflect very much.
At the other extreme, the larger Boolean yaw angles can
achieve a large wake deflection, which minimizes wake inter-
actions but which comes at the cost of greatly decreasing the
power production of the yawed turbine. The crossover point
at which a higher Boolean yaw angle actually starts to be
detrimental in performance depends on the number and spac-
ing of the turbines. Compared to the larger wind turbine spac-
ings, the smaller wind turbine spacings benefit from larger
yaw angles and also achieve a much higher percent improve-
ment over the baseline power when using wake steering. For
the power plant with 3 rotor diameter spacing between wind
turbines, the optimal performance is almost identical for the
yaw angles of 20 and 25◦, with a slight edge going to the 25◦

angle. At the 5 rotor diameter spacing, 20◦ is clearly the best
Boolean yaw angle. For the 8 rotor diameter spacing, the best
performance is similar – between 15 and 20◦ – with a small
edge to 15◦. In each case, a 20◦ Boolean yaw angle is either
the best or very close to the best, which led us to select 20◦

for the remainder of the results in this section.
With 20◦ determined as the Boolean yaw angle, we now

compare the performance of the traditional, continuous op-
timization to our presented Boolean optimization. Figure 3
shows the performance of each optimization method as a
function of the number of wind turbines in the plant. For this
figure, the turbine spacings were held constant at 5 rotor di-
ameters.

Figure 3a and b show the performance of each optimized
plant. Figure 3a shows the absolute percent improvement of
each optimization method over the nonyawed baseline. The
general trend and actual values for both the continuous and
Boolean optimizations are very similar in this panel. The
percent improvement for using yaw-controlled wake steer-

ing increases with more wind turbines but begins to level
out as a larger portion of the power plant operates under
deep-array steady-state conditions. Although the trends are
the same among each optimization method, the continuous
optimization performs slightly better. Figure 3b helps us see
how much better the continuous optimization performs com-
pared with the Boolean optimization. With 10 wind turbines,
the power production from the continuous optimization is
about 3.5 % higher than the Boolean optimization. This dif-
ference then decreases to less than 1.5% with 50 wind tur-
bines. While 1.5 %–3.5 % is certainly a non-negligible im-
provement in the wind plant power production, the similar-
ity in power production obtained using the continuous and
Boolean optimizations is sufficiently close for the purpose
of control co-design. For actual operation, the continuous
optimization can be used to determine the yaw angles for
each turbine to capture the additional percentage points of
improvement.

Figure 3c and d show the difference in computational ex-
pense between the continuous and Boolean optimizations.
Figure 3c shows the absolute time required to run each opti-
mization. For the continuous optimization, the computation
time is seen to increase dramatically with increasing design
variables. As the number of wind turbines increases, the to-
tal number of function calls for optimization and the time for
each function call increase, leading to poor computational
scaling with increasing plant size. The computational ex-
pense for the Boolean optimization also increases with power
plant size, although the scale is much smaller such that the
computation time is minuscule and flat compared to the con-
tinuous computation time. Figure 3d shows the ratio of time
required for the continuous optimization to the Boolean opti-
mization. As seen in the figure, the Boolean optimization was
50–60 times less computationally expensive than the contin-
uous optimization.
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Figure 3. Comparison of a wind plant optimized with a traditional continuous optimization compared to our novel Boolean optimization.
The results in this figure are for a single row of turbines in-line with the incoming wind. For the purposes of this figure, the spacing between
wind turbines was constant at 5 rotor diameters, while each panel shows different metrics as a function of the total number of wind turbines
in the plant. (a) The absolute percent increase in power over the nonyawed baseline for the continuous and Boolean optimizations. (b) The
ratio of the optimized power with the continuous approach to the optimized power with the Boolean approach. (c) The absolute time required
to run each optimization, again for the continuous and Boolean approaches. (d) The ratio of the time required for the continuous optimization
to the time required for the Boolean optimization.

While Fig. 3 shows the comparison of the different opti-
mization methods as a function of the number of wind tur-
bines, Fig. 4 shows the comparison of methods for a constant
50 wind turbines but for varied turbine spacing from 3–8 ro-
tor diameters. The panels in this figure represent the same
information as that shown in Fig. 3, but for varied spacing.

In Fig. 4a, we see that there are decreased gains from wake
steering as the spacing of wind turbines increases. This is
because, as wind turbine spacing increases, the wakes have
more time to recover before reaching the downstream tur-
bines. Thus, wake avoidance through wake steering is not as
beneficial because the wind speed in the wakes is closer to
the free stream. In Fig. 4b, we also see that the difference
in the percent gain from the continuous optimization and the
Boolean optimization is largest for the smaller wind turbine
spacings. This indicates that the continuous optimization is
more beneficial in scenarios of extreme waking, in which
small yaw adjustments can lead to a larger increase in plant
power. In Fig. 4b, the results are similar to those in Fig. 3,
where for 50 turbines the optimal power from the contin-
uous optimization is between 1.4 % and 2.2 % greater than
the Boolean power. In Fig. 4c and d, we see the difference
between the computational expense for the various problem
approaches and see that the Boolean optimization was 40–
130 times faster than the continuous optimization.

Figures 3 and 4 show the comparison of optimized per-
formance and computation time for a line of wind turbines
in-line with the incoming wind. From the scenarios opti-
mized, there are a few key conclusions. First, the optimal
Boolean yaw angle was found to be 20◦, which performed
the best overall for different numbers of wind turbines and
turbine spacings. This Boolean yaw angle appears to be sen-
sitive to the wind turbine spacing and is likely a function of
the wind speed as well. Second, the majority of the increase
in power production from wake steering can be achieved
with a Boolean approach. Third, the continuous optimization
still performs better than the Boolean optimization (between
1.5 % and 3.5 % better), depending on the number of turbines
and the turbine spacing. Fourth, the Boolean optimization is
able to solve the problem much faster than the continuous
optimization – between 40 times and 130 times faster. While
the turbines in-line with the incoming wind provide a great
example case, with the worst-case waking scenario, this case
does not present the entire scenario. In reality, wind turbines
are most often arranged in a grid or more random layout dis-
tributed over the landscape and are not usually directly in-
line with the incoming wind.
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Figure 4. Comparison of a wind plant optimized with a traditional continuous design space compared to our novel Boolean optimization.
The results in this figure are for a single row of turbines in-line with the incoming wind. For the purposes of this figure, the number of wind
turbines was constant at 50, while each panel shows different metrics as a function of the spacing between wind turbines. (a) The absolute
percent increase in power over the nonyawed baseline for the continuous and Boolean optimizations. (b) The ratio of the optimized power
with the continuous approach to the optimized power with the Boolean approach. (c) The absolute time required to run each optimization,
again for the continuous and Boolean approaches. (d) The ratio of the time required to optimize with the continuous approach to the time
required to optimize with the Boolean approach.

4.2 Turbines arranged in a grid: power maximization

In this section, we discuss a more realistic scenario in which
the wind turbines are placed in a regular grid. Similar to the
previous section, grids of wind turbines are simply several
sets of in-line wind turbines. However, the spacing between
wind turbines varies depending on the wind direction. Also,
it is possible to have wake interaction between the rows of
turbines depending on the wind direction. Although grid ar-
rangements perform suboptimally compared with freely op-
timized layouts, grid layouts are easier to design and build,
and there are often restrictions that require a grid layout. Also
in this section, we compare the continuous and Boolean op-
timizations for different grid sizes and for different wind di-
rections in the grid. For this section we assumed a constant
grid spacing of 5 rotor diameters and a Boolean yaw angle of
20◦.

Figure 5 shows the wakes for a nonyawed, 5-by-5 grid
wind power plant for the six wind directions we considered
between 270◦ (due west) and 345◦ in 15◦ increments. As
seen in this figure, some wind directions result in high wake
interactions between wind turbines, such as 270 and 315◦,
while others have minimal wake interactions, such as 300 and
330◦. One can expect high gains from wake steering for the
wind directions with the most waking, although a priori it is
difficult to determine how the continuous and Boolean opti-
mizations will compare.

Figures 6–8 show the results of the grid optimizations for
different numbers of grid rows and for different wind direc-
tions. Figure 6 shows the percent increase in power that wake
steering achieves compared to a nonyawed baseline for each
of the optimization methods. Notice that for wind directions
of 270 and 315◦, the Boolean optimization looks very sim-
ilar to the continuous optimization – almost like the results
for the wind turbines that were in-line with the wind direc-
tion. For these two wind directions, the turbines behave sim-
ilarly to the in-line wind plant. The interaction of the normal
grid and the wind direction means that the power plant is
just made of several rows in-line with the wind placed side
by side. For the wind directions of 285 and 330◦, there is
very little or no performance improvement for either opti-
mization method. For these wind directions, the grid is ori-
ented such that there is very little wake interaction between
wind turbines, and, where there is wake interaction, it is very
far downstream such that the wake has already mostly re-
covered. Finally, for the wind directions of 300 and 345◦,
there is a more significant difference between the percent
improvement achieved with the two different optimization
methods. For these wind directions, the continuous optimiza-
tion is able to realize about twice the percent improvement
as the Boolean optimization when compared to the base-
line nonyawed case. Even though the percent improvement
is small, this behavior is different than the other cases ex-
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Figure 5. The flow field for a 5-by-5 square grid wind plant for different wind directions.

Figure 6. Comparison of the absolute percent increase in power over the nonyawed baseline wind plant optimized with a traditional contin-
uous optimization compared to our novel Boolean optimization. These results are for a grid wind power plant for which, within each panel,
the x axis indicates different numbers of rows in the plant. Each panel shows results for a different wind direction.

plored so far in which the Boolean optimization was able to
provide most of the benefit that the continuous optimization
provided.

Figure 7 shows the ratio of the optimal power achieved
with the continuous optimization to the Boolean optimiza-
tion. For the wind direction of 270◦, the continuous opti-
mization provided yaw angles that performed 2 %–4 % better
than the Boolean optimization, which is slightly higher than

the percentage gain for the in-line wind turbines from the
previous section. This additional benefit of the continuous
optimization appears to be because there are fewer wind tur-
bines in-line for the grid optimization, with only 3–10 rows.
For the wind direction of 315◦, the continuous optimization
only performs up to 2 % better than the Boolean optimiza-
tion. This is additional evidence for what we already saw in
the previous section: when wind turbines are spaced further
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Figure 7. Comparison of the optimal power achieved with wake steering with yaw angles optimized with a traditional continuous approach
compared to our novel Boolean optimization. These results are for a grid wind plant for which, within each panel, the x axis indicates
different numbers of rows in the power plant. Each panel shows results for a different wind direction.

apart, there is less of an advantage to the continuous opti-
mization. The results for wind directions of 285 and 330◦

are trivial – there is no power gain from yaw control with
either optimization method, meaning that the ratio is 1. For
wind directions of 300 and 345◦, the continuous optimiza-
tion method again performs up to 2 % better than the Boolean
optimization. Even though the relative percent gain between
optimization methods was different for these wind directions,
the absolute percent gain was very small.

For the wind directions that we considered for the grid,
notice that several of the wind directions are mirrors of
each other. In Fig. 5, we see that the wind direction pairs
of 285 and 345◦, as well as 300 and 330◦, are reflections
across the main diagonal. In Figs. 6 and 7, we see that even
though they are mirrors of each other, these wind direction
pairs do not perform the same with wake steering through
yaw control. This is because the yaw angles were constrained
between 0 and 30◦, causing wake deflection to only occur
in one direction. With this constraint, wake steering can be
used to improve power production when turbines are par-
tially waked on one side, but not the other. Again, this con-
straint was primarily included to avoid the possibility of be-
ing overly detrimental from a loads perspective.

Figure 8 shows the ratio of time required to optimize each
plant with the two different optimization methods. First, let
us examine the two right columns in this figure. For each of
these optimizations, the difference in computational expense
between the continuous and Boolean methods is small com-
pared to the 50–100 times multiplier we saw for the in-line
power plant results. If we refer back to Fig. 6, we see that the
percent gain from wake steering is nonexistent or very small

for these wind directions. This indicates that the optimized
yaw angles were close to zero throughout the plant and there
was relatively low sensitivity of the plant power to the yaw
angles of wind turbines in the plant. Thus, the continuous op-
timization converged quickly and was not notably superior
to the Boolean optimization. Now, let us examine the left-
hand column, which shows the results for wind directions of
270 and 315◦. For these directions, the wind turbines in the
grid are directly in-line with the incoming wind. For a wind
direction of 270◦, the wind is in-line with the grid rows, and
for 315◦, the wind is in-line with the grid diagonals. As we
saw in previous results, when wind turbines are in-line with
the incoming wind, the Boolean optimization solves much
more quickly than the continuous optimization. For the grid,
this affect appears to be exaggerated because it consists of
several rows of wind turbines in-line with the wind. For these
two wind directions, the Boolean optimization is about 150–
500 times faster than the continuous optimization.

4.3 Turbines arranged randomly

Section 4.1 and 4.2 present and discuss the comparison of
performance for each optimization method for regularly ar-
ranged wind plants in a line and in a grid. In this section, we
explore how the yaw optimization methods perform in plants
with the wind turbines arranged randomly. For Sect. 4.1
and 4.2, we used a Boolean yaw angle of 20◦ for all of the
performance comparison optimizations. While we showed
that this was appropriate for the regularly arranged wind
plants, it is possible that another angle is more appropriate
for a random, irregular layout. Figure 9 shows the results of
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Figure 8. Comparison of the time required to solve the plant yaw angle optimization problem with yaw angles optimized with a traditional
continuous approach compared to our novel Boolean optimization. These results are for a grid wind power plant for which, within each
panel, the x axis indicates different numbers of rows in the plant. Each panel shows results for a different wind direction.

our test of which Boolean yaw angle is optimal. For this fig-
ure, we randomly generated seven wind plant layouts with
the indicated number of wind turbines, with an average spac-
ing of 5 rotor diameters. Seven layouts was the number of full
optimizations that completed in an arbitrary amount of time
we set to run the random yaw optimizations and was deemed
sufficient to demonstrate the performance of our Boolean op-
timization method. We assumed the wind came from due
west for each of the optimizations, and we optimized the
yaw angles in each of the seven layouts using the Boolean
optimization method. The results in the figure show the av-
erage performance of the seven random layouts for each of
the Boolean yaw angles that we tested and for each number
of wind turbines.

Because the layouts for Fig. 9 were randomly generated,
there is little meaning to the trends of performance increase
for the different numbers of wind turbines. However, in this
figure we can see that 20◦ is again the superior Boolean yaw
angle, as we saw for the regular layouts.

Figure 10 compares the optimal performance of the con-
tinuous and Boolean optimization methods. As we did in dis-
cussing previous results, let us first examine Fig. 9a and b,
which compare the performance of the wind plants optimized
with the different methods. As with Fig. 9, these results are
the average of seven randomly generated layouts with an av-
erage spacing of 5 rotor diameters, with different numbers
of wind turbines indicated on the x axes. As was determined
from Fig. 9, the Boolean yaw angle for these optimizations
was 20◦.

Figure 9. The absolute percent improvement over the nonyawed
baseline for the Boolean optimization as a function of the Boolean
yaw angle. The results shown are averaged for seven randomly gen-
erated turbine layouts for the different numbers of turbines indicated
on the x axis. Boolean yaw angles between 5 and 30◦ are shown.

Figure 9a shows the percent improvement achieved from
wake steering compared to the nonyawed baseline. Notice
that for these random layouts, the Boolean optimization per-
forms very well compared to the continuous optimization,
capturing the majority of the power gain from wake steering
with the more simple optimization method. Figure 9b shows
the ratio of the optimized continuous power to the optimized
Boolean power. In this figure, we see that for all numbers
of wind turbines, the Boolean optimization performs within
1 % and, for most of the results, within 0.5 % of the contin-
uous optimization. This is much closer than the comparison
of the two optimization methods for the previous regular lay-
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Figure 10. Comparison of a wind plant optimized with a traditional continuous approach compared to our novel Boolean optimization. The
results in this figure are the averaged results for seven randomly generated wind turbine layouts for plants with different numbers of turbines.
For the purposes of this figure, the average spacing was constant at 5 rotor diameters, while each panel shows different metrics as a function
of the number of wind turbines. (a) The absolute percent increase in power over the nonyawed baseline for the continuous and Boolean
optimizations. (b) The ratio of the optimized power with the continuous approach to the optimized power with the Boolean approach. (c) The
absolute time required to run each optimization, again for the continuous and Boolean optimizations. (d) The ratio of the time required to
optimize with the continuous approach to the time required to optimize with the Boolean approach.

outs in which the difference with the optimized power was
sometimes as high as 4 % in some extreme cases.

The comparison for the computational expense of each
optimization method is shown in Fig. 9c and d. These tim-
ing results are similar to the results from the in-line power
plant results, for which the Boolean optimization is about
50–100 times faster than the continuous optimization, with
one outlier about 150 times faster. In this random yaw opti-
mization, there are always some wind turbines that are sig-
nificantly waking. Because of this, the plant power is sensi-
tive to some nonzero wake angles, which means the continu-
ous optimizations always takes much longer than the simple
Boolean optimizations.

4.4 Princess Amalia Wind Farm

The previous sections present and discuss the performance
of our new Boolean yaw optimization method for artificial
scenarios. These are good to demonstrate the performance of
our method, but they give no indication of how Boolean yaw
optimization would perform in a real plant. In this section, we
present the results of yaw control optimization in the Princess
Amalia Wind Farm, which is a real wind farm in the North
Sea off the coast of the Netherlands.

Figure 11 shows the layout of the Princess Amalia Wind
Farm, the wind direction probabilities of the wind resource,
and the average wind speed by wind direction. Notice that

the turbine layout is an offset grid which has been optimized
to minimize the waking for the dominant wind direction from
the southwest. Notice that the turbine layout is an offset grid
which has been optimized to minimize the waking for the
dominant wind direction from the southwest. For the pur-
poses of this paper, we used the average wind speeds from
each wind direction, shown in Fig. 11c. Unlike the rest of the
optimization cases in this study, the Princess Amalia Wind
Farm is composed of 2 MW turbines, which have a rotor di-
ameter of 80 m and a hub height of 60 m. The wind rose was
binned into 72 5◦ sections. The wind speed for each wind
direction was assumed to be constant, as the average wind
speed from the associated wind direction.

Figure 12 shows the comparison of the power improve-
ments achieved by yaw optimization for the continuous ap-
proach and our new Boolean approach. Figure 12a shows the
power improvement from an unyawed baseline for each wind
direction, and Fig. 12b shows this same percent power im-
provement multiplied by the probability of each wind direc-
tion. Notice that the continuous optimizations regularly per-
formed slightly better than the Boolean optimizations across
all wind directions.

Table 1 shows all of the results from the continuous and
Boolean yaw optimizations of the Princess Amalia Wind
Farm. The ratio of the optimized continuous AEP over the
optimized Boolean AEP (presented as the optimized AEP
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Figure 11. The Princess Amalia Wind Farm definition; shown in (a)–(c) are the wind farm layout, the wind direction probabilities, and the
directionally averaged wind speeds, respectively. The dots representing the turbine locations are to scale with the turbine rotor diameter.

Figure 12. Power improvements achieved by yaw control in the Princess Amalia Wind Farm compared to an unyawed baseline. The different
colored lines represent the results from the continuous optimization and our new Boolean yaw optimization indicated by the legend. (a) The
percent power improvement for each wind direction and (b) the same percent improvements multiplied by the probability of the associated
wind direction.

ratio) is 1.0058, meaning that the continuous optimization
only achieves an AEP 0.58 % better than our Boolean opti-
mization. By looking at Fig. 12, we can tell that the continu-
ous optimization consistently achieves higher power than the
Boolean optimization. However, the wind directions which
achieve high improvement with the continuous approach rel-
ative to the Boolean approach have a low absolute percent
improvement. This is because the wind plant layout is al-
ready optimized taking the wind rose into account. When the
wind direction probabilities are multiplied in as well, the im-
pact of the wind directions for which the continuous opti-
mization significantly outperforms the Boolean optimization
is further reduced. Thus, for the overall AEP, the Boolean op-
timization is able to perform almost as well as the continuous
optimization, even in this gridded layout.

In Table 1 we also see the comparison between the com-
putation time required for the continuous and Boolean op-
timizations. The continuous optimization required almost
19 h, while the Boolean optimization was complete in about
13 min, which is almost 87 times faster than the continuous

Table 1. The results comparing the yaw optimization with the con-
tinuous approach to our Boolean approach. The last two lines show
the optimized AEP ratio and the time ratio, which is the continuous
approach result divided by the Boolean approach result.

Baseline AEP 325.5 GWh

Continuous AEP 336.2 GWh
Continuous improvement 3.27 %
Continuous time 67 599 s (18.8 h)

Boolean AEP 334.2 GWh
Boolean improvement 2.68 %
Boolean time 778 s (13 min)

Optimized AEP ratio 1.0058
Time ratio 86.9
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optimization. The ratio of the required computation scale is
important at any scale, but it becomes more impactful for
larger optimization problems. If we were to scale up the prob-
lem further such that the Boolean optimization were to take
about a day to complete, that would mean the continuous op-
timization would take approximately 3 months with the same
computational scaling applied.

5 General discussion

In this section, we discuss the overarching performance of
our new Boolean optimization method compared to the tra-
ditional continuous optimization method. We will discuss the
optimal Boolean yaw angles that should be used, the perfor-
mance of the optimized wind power plants with each method,
the differences in computation time, and the potential appli-
cations of our Boolean method.

5.1 Optimal Boolean yaw angle

In Sect. 4, we determined that when using our new Boolean
optimization method the best plant performance occurred
with a Boolean yaw angle of 20◦. This was determined by
comparing wind power plants that were optimized with dif-
ferent wind turbine spacings and numbers of wind turbines.
For the cases that we compared, the yaw angle of 20◦ pro-
vided either the best or close to the best plant performance
for both the regular line and grid turbine layouts, as well as
the irregular random turbine layouts. While it is clear from
Fig. 2 that the optimal Boolean yaw angle has some sensitiv-
ity to the turbine spacing in the wind plant, we also expect
that it is sensitive to the wind speed, which we did not test
in this paper. It may be important to tune the Boolean yaw
angle to the exact scenario in which the wind plant will oper-
ated or even more finely adjust the Boolean yaw angle for ad-
ditional gains when operating in the scenarios demonstrated
in this paper. Because of the minimal computational expense
required to run the Boolean optimization, this tuning of the
yaw angle can be quickly achieved with very little effort.

5.2 Performance of optimized plants

In general, we see from Sect. 4 that the Boolean optimization
method is able to achieve most of the gains from wake steer-
ing that the continuous optimization method can achieve. Ad-
ditionally, in general, the optimized power from the Boolean
optimization is very close to that of the continuous optimiza-
tion. The Boolean optimized plants had the best comparison
to the continuous optimized plants for the random turbine
layouts. This indicates that the Boolean optimization method
would perform particularly well for land-based wind power
plants where the layout is not constrained to a regular grid.
For land-based plants, wind turbine placement is often deter-
mined to a large extent by terrain features, land availability,
and spatial constraints from local regulations, resulting in a

more irregular layout wherein the Boolean method could per-
form well.

However, the Boolean optimized plants performed the
worst compared to the continuously optimized plants for the
regular turbine layouts with wind turbines that were directly
in-line with the incoming wind. In these cases, the Boolean
plants were between 1.5 % and 4 % worse than the continu-
ous optimization plants. For the regular grid layouts wherein
the wind direction resulted in turbines that were slightly of-
fline with the wind direction, the Boolean method resulted in
plants that performed about 0.5 %–2 % worse than the con-
tinuous method. At first glance, this seems to indicate that
the Boolean optimization method may not be appropriate for
wind power plants with a regular wind turbine layout, such
as offshore wind plants in the United States where layouts
are restricted to grids. However, even with these results, we
expect the Boolean optimization method to be appropriate.

For the results shown in this paper, we only considered the
power production comparison between the Boolean and con-
tinuous optimization methods. In reality, we care about the
overall energy production of the wind plant, not the instanta-
neous power production. The overall energy production takes
into account all of the directions of incoming wind, as well
as a distribution of wind speeds. Although for some orienta-
tions, the Boolean optimization performed relatively poorly,
for most it compares very well to the more computation-
ally expensive yaw optimization. Overall, we expect that the
cases of poor comparison will be balanced out by the other
wind conditions, and overall the Boolean yaw optimization
will capture most of the gains that are possible from wake
steering.

5.3 Computation time

Except for the cases in which the optimal yaw angle of all the
turbines in the plant was zero or close to zero, the Boolean
optimization was much more computationally efficient than
the classic continuous optimization. In general, the Boolean
optimization was more than 50 times faster than the contin-
uous optimization and, in some cases, up to 500 times faster.
As we mentioned in Sect. 3, we used the same scaling and
convergence criteria for all of the continuous optimization
runs. The computation time for any optimization problem is
sensitive to these parameters. It is not only possible, but al-
most guaranteed, that there is some set of scaling and conver-
gence criteria that would allow a specific optimization to find
a similar solution faster than we achieved with our scaling.
However, finding the best optimizer parameters for a specific
optimization problem is often viewed as more of an art than
a hard science. There are some general rules that provide an
approximation of the appropriate values, but these almost al-
ways require several iterations to find a parameter set that
works well. Accounting for the possible overprediction of
the Boolean method’s computational advantage, it still vastly
outperforms the continuous method. Even with the best scal-
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Figure 13. The aggregate results of optimizations run in this paper.
The y axis shows the AEP ratio, which is the optimal AEP from the
continuous yaw optimization divided by the optimal AEP from our
Boolean optimization. The x axis shows the time ratio, which is the
time to run the continuous optimization divided by the time to run
our Boolean optimization. Each color represents optimizations run
for the different scenarios, as indicated by the legend.

ing, we expect the Boolean method to be more than an order
of magnitude faster than the continuous optimization. In ad-
dition, the Boolean method completely removes the time and
experience required to find the appropriate gradient-based
optimizer settings.

Figure 13 shows results for all of the optimizations run for
this paper. The y axis shows the AEP ratio, which is the op-
timal AEP from the continuous yaw optimization divided by
the optimal AEP from our Boolean optimization. The x axis
shows the time ratio, which is the time to run the continuous
optimization divided by the time to run our Boolean opti-
mization. The different colors represent the different scenar-
ios that we considered in the previous sections. Note that the
in-line, grid, and random results shown in this figure com-
pare single wind directions, while the Amalia optimization
shows an AEP optimization with a full wind rose on which
each wind direction is associated with a different probability
and wind speed.

As discussed previously, in this figure we see that com-
pared to the continuous yaw optimization, the Boolean op-
timization performed very well for the random wind turbine
layouts and for the Amalia optimization, which had a grid
layout that was optimized for the associated wind rose. With
the exception of maybe two cases, the Boolean optimization
performed within 1 % of the continuous optimization and
was able to do so with a 1–2 order of magnitude reduction
in the computational expense. The Boolean optimization did
not achieve as good of a solution for the in-line and grid lay-
outs, but these scenarios with poor performance would be
mostly avoided through layout optimization and would actu-
ally have only a small impact on the final AEP.

6 Conclusion

In this paper, we present a novel optimization method to de-
termine the yaw angles of turbines in a wind plant for op-
timal wake steering. In this method, turbine yaw is defined
as Boolean, and the optimization is performed greedily from
the most upstream wind turbine to the most downstream. At
most, this optimization requires one function call per wind
turbine in the plant. We show that with irregular wind tur-
bine layouts and for the real Princess Amalia Wind Farm,
the Boolean yaw optimization performs within about 0.6 %
of a more traditional, continuous yaw angle definition op-
timized with a gradient-based algorithm. For individual di-
rections in a regular grid of wind turbines or a row of wind
turbines in-line with the incoming wind, the Boolean method
still achieves most of the power gain of the continuous opti-
mization, with optimal power production within 1.5 %–4 %
of the continuous optimization. The larger discrepancies be-
tween the two optimization methods occur in high waking
scenarios that have a low probability of occurrence in plants
where the layout has been optimized.

In addition to demonstrating the similarity in optimal wind
power production achieved by the two different problem ap-
proaches, we also showed that the computational expense re-
quired to solve the Boolean optimization is much less than
that required for the continuous optimization. For any case in
which the optimal yaw angles were nonzero, the Boolean op-
timization was around 50–150 times faster than the continu-
ous optimization, with some extreme cases performing about
500 times faster. In addition to the faster computation, our
presented Boolean optimization method does not require any
scaling of the problem or consideration of the convergence
criteria, which removes a large part of the setup time and ex-
perience required to solve these optimization problems.

This proposed method greatly simplifies the wind power
plant yaw optimization process, achieves plant performance
that compares well to more sophisticated methods, and does
so at a greatly reduced computational expense. The main im-
pacts that we see for this computationally efficient yaw opti-
mization method are for coupled turbine design, plant layout,
yaw control optimization, and real-time yaw optimization of
wind plants for which precomputing all of the possible inflow
conditions is infeasible. We expect this new method to have
wide and immediate impacts in research and in improving
wind plant performance.

7 Future work

While there are a huge number of future studies and applica-
tions that could expand on this work, we identify and discuss
three that we believe could be important.

First, perform further exploration and develop intuition of
the best Boolean yaw angles to use in different wind plants.
This could involve studying the sensitivity of the optimal
Boolean yaw angle to parameters such as average turbine
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spacing, turbine design, and wind speed. It could also involve
a more sophisticated yaw angle selection or optimization in
which the Boolean yaw angle is determined by the relative
spacing, offset between upstream and downstream wind tur-
bines, or the number of downstream wind turbines that are
waked by an upstream turbine. In addition to increasing the
wind plant performance, this could further decrease the com-
putational expense of the optimization.

Second, include uncertainty in evaluation of wind plant
performance. Past studies have shown that when operating
under realistic conditions, in which wind direction and wind
speed have significant uncertainty, yaw control strategies
should be more conservative, and power gains from wake
steering are reduced (Quick et al., 2020; Simley et al., 2020).
We expect that when considering uncertainty, the Boolean
yaw angle would be affected, and the performance of the
plant optimized with the Boolean method would be closer
to the continuous method than it was in this paper, in which
we assumed wind direction and speed were deterministic.

Third, refine the optimization methods by including more
that one yaw angle. This would add to the computational ex-
pense of the algorithm but could improve the wake steering
while still keeping the computational expense relatively low.
Multiple passes through the plant with refined yaw angles
could further improve the performance.

Fourth, perform control co-design of wind power plants,
and compare the performance and required computational
expense of plants that were optimized with a traditional
method, in which all of the design variables are coupled, to
performing our Boolean yaw optimization within a function
evaluation, decoupling the turbine design and plant layout
variables from the yaw control. We expect minimal differ-
ences in optimized performance with significant reductions
in required computational expense.

Fifth, perform a field study with real-time optimization
of yaw angles within a wind plant. This would demonstrate
the power of the Boolean yaw angle optimization method.
We expect that this field demonstration would show that the
performance improvements are similar to using a traditional
look-up table approach and when performing a real-time op-
timization. Additionally, we expect that the real-time opti-
mization would be able to be more flexible and react to many
more possible inflow and operation scenarios.

Code and data availability. The code and opti-
mized data for this specific paper can be found at
https://doi.org/10.5281/zenodo.6395099 (Stanley, 2022). Al-
though any wake model could be used, the FLORIS framework
that we used for the results in this paper can be found at
https://github.com/NREL/floris/releases/tag/v2.4 (National Renew-
able Energy Laboratory, 2022). Although the optimizer we used
in this paper, SNOPT, is commercial, the pyOptSparse framework
is open-source. It has options to use open-source optimizers as
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