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Abstract. Atmospheric turbulence can be characterized by the Reynolds stress tensor, which consists of the
second-order moments of the wind field components. Most of the commercial nacelle lidars cannot estimate all
components of the Reynolds stress tensor due to their limited number of beams; most can estimate the along-
wind velocity variance relatively well. Other components are however also important to understand the behavior
of, e.g., the vertical wind profile and meandering of wakes. The SpinnerLidar, a research lidar with multiple
beams and a very high sampling frequency, was deployed together with two commercial lidars in a forward-
looking mode on the nacelle of a Vestas V52 turbine to scan the inflow. Here, we compare the lidar-derived
turbulence estimates with those from a sonic anemometer using both numerical simulations and measurements
from a nearby mast. We show that from these lidars, the SpinnerLidar is the only one able to retrieve all Reynolds
stress components. For the two- and four-beam lidars, we study different methods to compute the along-wind
velocity variance. By using the SpinnerLidar’s Doppler spectra of the radial velocity, we can partly compensate
for the lidar’s probe volume averaging effect and thus reduce the systematic error of turbulence estimates. We
find that the variances of the radial velocities estimated from the maximum of the Doppler spectrum are less
affected by the lidar probe volume compared to those estimated from the median or the centroid of the Doppler
spectrum.

1 Introduction

Understanding and measuring atmospheric turbulence are
essential for the effective use of wind energy, to assess
wind turbine site conditions, and for the assessment of the
structural integrity of wind turbines. Traditionally, in situ
anemometers installed on meteorological (met) masts are
used to measure turbulence. However, with the increasing
size of modern wind turbines, installing and operating a met
mast that reaches the top of the rotor disk are becoming more
and more expensive and infeasible. Nacelle lidars are com-
pact and portable. They yaw with the wind turbine and scan
over an area comparable to the rotor plane.

The Reynolds stress tensor is one of the most important
turbulence statistics used in the wind energy industry. It con-
sists of the second-order moments (variances and covari-
ances) of the wind field components. One of the Reynolds
stress components, the along-wind velocity variance, is used
in the definition of turbulence intensity (IEC, 2019) and ap-

plied in different aspects of wind energy. Other components
are also essential in wind energy and boundary-layer meteo-
rology. For example, the vertical wind shear is connected to
the friction velocity (Wyngaard, 2010), which can be com-
puted using the momentum fluxes (two covariances); the mo-
mentum fluxes can also be used to crudely estimate the height
of the boundary layer (Stull, 1988). The turbulence kinetic
energy, expressed as half the sum of the three velocity com-
ponents’ variances, is a key parameter for investigating the
turbulence structure in, e.g., wind turbine wakes (Kumer et
al., 2016).

The main objective of this study is to investigate the bene-
fit of using multiple-beam nacelle lidars for measuring inflow
turbulence. Most commercial nacelle lidars are not able to es-
timate all components of the Reynolds stress tensor due to the
limited number of beams and the scanning configuration. The
SpinnerLidar is a research continuous-wave (CW) Doppler
nacelle lidar. It scans at 400 positions at a high sampling fre-
quency, which enables characterizing the inflow in detail. We
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evaluate and compare the turbulence characterization perfor-
mance of a two- and a four-beam commercial lidar, and the
SpinnerLidar through both numerical simulations and mea-
surements inter-comparisons with in situ anemometers. For
the latter, we deployed the three lidars in a forward-looking
mode on the nacelle of a V52 wind turbine. Measurements
from sonic anemometers on a met mast are used as reference
for evaluation of the lidar-derived turbulence characteristics.

Assuming statistical homogeneity, we estimate the
Reynolds stress components by fitting lidar radial velocity
variances from the beams over the scanning pattern using
a least-squares-based method. To determine the six compo-
nents of the Reynolds stress tensor, we require at least six
radial velocity variances measured in different beam orien-
tations in analogy to the method by Eberhard et al. (1989).
Here, we discuss the limitations of using different methods
and assumptions to estimate the along-wind velocity vari-
ance with fewer than six radial velocity variances. We fo-
cus on this variance because it is a key parameter for load
validation (Dimitrov et al., 2019; Conti et al., 2021), power
performance assessment (Wagner et al., 2014, 2015; Borra-
cino et al., 2017) and wind turbine control (Schlipf et al.,
2014, 2020).

Measurements of turbulence by lidars are affected by spa-
tial average filtering effects caused by the lidar probe vol-
ume and cross-contamination effects from combining line-
of-sight velocities at different locations assuming instan-
taneous homogeneity and not only statistical homogeneity
(Sathe and Mann, 2013; Kelberlau and Mann, 2020). Both
effects contribute to the systematic error of turbulence esti-
mation using lidars. As a consequence of the first effect, a li-
dar estimates turbulence essentially through a low-pass filter
and cannot detect high-frequency variations, which yields the
so-called “filtered variances”. Held and Mann (2018) showed
that different methods of deriving the radial velocity from
the lidar Doppler spectrum influence the degree of the tur-
bulence attenuation. We explore the ability of these meth-
ods for turbulence estimation with the SpinnerLidar mea-
surements. We also compensate for the probe volume filter-
ing effect and compute “unfiltered variances” of the radial
velocity using Doppler radial velocity spectra from the Spin-
nerLidar measurements. Peña et al. (2017) used Doppler ra-
dial velocity spectra and showed that the along-wind unfil-
tered variance from a conically scanning lidar agreed well
with the one from a cup anemometer on a met mast. How-
ever, other lidar-derived estimates of velocity-component
variances were largely biased due to the lidar scanning con-
figuration.

This paper is organized as follows. Section 2 describes the
turbulence spectral model, the maximum, median and cen-
troid methods to derive the lidar radial velocities from the
Doppler spectrum, the filtered and the unfiltered radial ve-
locity variances, the least-squares method to compute the
Reynolds stress tensor, and the numerical lidar simulations.
Section 3 provides information on the measurement cam-

paign and the employed nacelle lidars. Section 4 describes
how we filter and post-process the high-frequency lidar ra-
dial velocities and the Doppler radial velocity spectra. Sec-
tion 5 shows the inter-comparison of turbulence characteris-
tics between three nacelle lidars and a mast-mounted sonic
anemometer at turbine hub height. Discussions and conclu-
sions are given in Sects. 6 and 7, respectively.

2 Methodology

2.1 Turbulence spectral model

Assuming Taylor’s frozen turbulence hypothesis (Taylor,
1938), the wind field can be described by a vector field
u(x)= (u,v,w)= (u1,u2,u3), where u is the horizontal
along-wind component, v the horizontal lateral component,
w the vertical component, and x = (x,y,z) the position vec-
tor defined in a right-handed coordinate system. The mean
value of the homogeneous velocity field is 〈u(x)〉 = (U,0,0),
so the coordinate x is in the mean wind direction. The turbu-
lence spectral properties of the three-dimensional homoge-
neous wind field are described by the spectral velocity tensor
8ij (k) (Kristensen et al., 1989):

8ij (k)=
1

(2π )3

∫
Rij (x)exp(−ik · x)dx, (1)

which is the Fourier transform of the covariance tensor
Rij (x)≡ 〈u′i(x)u′j (x+ r)〉, where 〈 〉 denotes ensemble av-
eraging, r is the separation vector, u′i are the fluctuations
around the mean and k = (k1,k2,k3) is the wave vector in
the (x,y,z) directions.

We assume that the spectral velocity tensor 8ij (k) can
be described by the model of Mann (1994) (hereafter the
Mann model), which, besides k, only contains three param-
eters (known as Mann parameters): αε2/3 is a product of the
spectral Kolmogorov constant α and the turbulent energy dis-
sipation rate ε to the two-thirds power, L is a length scale
related to the size of the energy-containing eddies, and 0 is a
parameter describing the anisotropy of the turbulence. From
the spectral tensor, the one-point spectra of velocity fluctua-
tions are calculated by

Fij (k1)=
∫∫

8ij (k)dk2dk3. (2)

The wind velocity components have the three auto-spectra
F11 (= Fu), F22, and F33. The auto-spectra can be evaluated
using Eq. (2). The variances of the velocity components are

σ 2
u,v,w =

∞∫
−∞

Fu,v,w(k1)dk1, (3)
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and these, together with the covariances, are the components
of the Reynolds stress tensor:

R =

 σ 2
u 〈u′v′〉 〈u′w′〉

〈v′u′〉 σ 2
v 〈v′w′〉

〈w′u′〉 〈w′v′〉 σ 2
w

 . (4)

2.2 Nacelle lidar

The unit vector n describing the beam orientation of a nacelle
lidar can be expressed as (Peña et al., 2017)

n(φ,θ )= (−cosφ,cosθ sinφ,sinθ sinφ), (5)

where θ is the angle between the y axis and n projected onto
the y–z plane and φ is the angle between the beam and the
negative x axis (hereafter half-cone opening angle). As with
any other Doppler lidar, nacelle lidars only measure the ra-
dial velocity (also known as the line-of-sight velocity) along
the laser beam. Thus, the radial velocity can be expressed as
(Mann et al., 2010)

vr(φ,θ )=

∞∫
−∞

ϕ(s)n(φ,θ ) ·u[n(φ,θ )(fd + s)]ds, (6)

where ϕ is the lidar weighting function that considers the
probe volume, s is the distance from the focus point along the
beam and fd is the focus distance. This equation assumes that
vr is determined from the Doppler spectrum by the centroid
or center of gravity method. For the case of the investigated
CW lidars, their weighting functions are assumed to be of the
Lorentzian form (Sonnenschein and Horrigan, 1971):

ϕ(s)=
1
π

zR

z2
R+ s

2
, (7)

where zR is the Rayleigh length that can be estimated as

zR =
λf 2

d

πr2
b
, (8)

where λ is the laser wavelength and rb the beam radius at the
output lens.

If we assume that the lidars measure at a point, instead of
over a probe volume, and that u, v and w do not change over
the scanned area, the radial velocity in Eq. (6) can be esti-
mated as the sum of the projection of the three-dimensional
wind components on the beam pointing direction:

vr(φ,θ )=−ucosφ+ v cosθ sinφ+w sinθ sinφ. (9)

The variance of the radial velocity σ 2
vr

can be derived by tak-
ing the variance of Eq. (9) (Eberhard et al., 1989):

σ 2
vr,unf(φ,θ )= σ 2

u cos2φ+ σ 2
v cos2θsin2φ+ σ 2

wsin2θsin2φ

− 2〈u′v′〉cosφ cosθ sinφ
− 2〈u′w′〉cosφ sinθ sinφ

+ 2〈v′w′〉sin2φ cosθ sinθ. (10)

Equation (10) provides accurate velocity-component vari-
ance and covariance estimates if the radial velocity variance
is unfiltered, i.e., if we are able to account for the lidar probe
volume. In practice, if the Doppler radial velocity spectrum
is available, we have means to estimate the unfiltered radial
velocity variance. This will be described in Sect. 2.4.

2.3 Estimation of the radial velocity and the filtered
radial velocity variance

Three methods are used here to determine the dominant fre-
quency from the Doppler radial velocity spectrum to com-
pute the radial velocity. The centroid method computes the
characteristic frequency f in the Doppler radial velocity
spectrum p(f ) as

fcen =

∫
fp(f )df∫
p(f )df

. (11)

The maximum method finds the frequency bin where the
maximum peak in the Doppler spectrum occurs. The median
method treats the Doppler spectrum as a probability distri-
bution and finds the frequency bin that corresponds to the
median value. These frequencies are then converted to radial
velocity estimates according to the sampling frequency of the
digitizer, the length of the fast Fourier transform, and the li-
dar’s laser wavelength. Since none of these methods consid-
ers the whole Doppler radial velocity spectrum, turbulence
statistics computed from these radial velocities are filtered.
Therefore, we use the term-filtered radial velocity variance
σ 2
vr,filt.

2.4 Estimation of the unfiltered radial velocity variance

Here, we use the Doppler radial velocity spectrum to esti-
mate the unfiltered radial velocity variance σ 2

vr,unf of the lidar
beams. Since the investigated nacelle lidars measure at small
opening angles over a relatively homogeneous inflow, the ef-
fect of the radial velocity gradient within the probe volume is
negligible (see Mann et al., 2010, for a detailed discussion).
Therefore, σ 2

vr,unf can be estimated as the second central sta-
tistical moment of the ensemble-average Doppler spectrum
of the radial velocity. The mean radial velocity can be es-
timated from the area-normalized mean Doppler spectrum
p(vr) as

µvr =

∞∫
−∞

vrp(vr)dvr, (12)

https://doi.org/10.5194/wes-7-831-2022 Wind Energ. Sci., 7, 831–848, 2022



834 W. Fu et al.: Turbulence statistics from three different nacelle lidars

and its variance as

σ 2
vr
=

∞∫
−∞

(vr−µvr )
2p(vr)dvr. (13)

Assuming all radial velocity contributions to the Doppler
spectrum are due to turbulence, σ 2

vr
in Eq. (13) provides an

estimate of σ 2
vr,unf. This can be used to extract the velocity

variances using Eq. (10), which gives the components of the
Reynolds stress tensor.

2.5 Estimation of the mean wind velocity

Radial velocity measurements from different beam directions
can be combined to reconstruct the mean wind. In the follow-
ing sections, we show that different approaches are used for
different lidars.

2.5.1 First approach

A least-squares formulation is used to find the mean wind
vector U = (U,V,W ) over all beam positions. Here, we min-
imize the sum of squared differences between the beam-
projected wind and the measured radial velocities:

12
=

∫
(n ·U − vr)2dµ. (14)

The integral
∫

dµ could be an area-weighted average of the
beam measurements. In practice, the integral could simply
be the sum over all pairs of radial velocity vr and the corre-
sponding beam unit vectors n among the scanning area. The
vector U that minimizes the integral must fulfill

∂12

∂Ui
= 0⇒

∫
(n ·U − vr)nidµ= 0, for i = 1,2,3. (15)

Expanding the integral and isolating U we get

Ui = (M−1)ij

∫
vrnidµ, where Mij =

∫
ninjdµ. (16)

This approach assumes wind homogeneity over the scanning
area. To get the three mean wind components, we need at
least three values of vr measured in different orientations.
This approach is used for deriving the mean wind vector from
SpinnerLidar multi-beam measurements.

2.5.2 Second approach

Assuming that the inflow wind is horizontal, i.e., w =
0 ms−1, Eq. (9) can here be reduced to

vr(φ,θ )= ucosφ+ v sinφ cosθ. (17)

To compute the mean wind components, we need at least two
radial velocities measurements and the corresponding beam

positions (φ and θ ) assuming that u and v are identical at
the focus points of a pair of beams. Therefore, a two-beam
nacelle lidar can compute u and v:

u=
vr,left+ vr,right

2cosφ
,

v =
vr,right− vr,left

2sinφ
. (18)

A similar approach can be used for a four-beam nacelle lidar.
The two upper beams and two lower beams are used sep-
arately (Larvol, 2016) to estimate u and v at two different
heights. Here, we average the estimates at the two heights to
represent the mean inflow velocity.

2.5.3 Induction correction

Due to the presence of the wind turbine, the wind slows down
as it approaches the rotor. We perform the correction of the
slowdown in speed (also referred as the induction correction)
to the estimates of lidars and the sonic anemometer using the
method in Simley et al. (2016):

U

U∞
= 1− a

1+
2x
D

(
1+

(
2x
D

)2
)− 1

2
 , (19)

where U∞ is the undisturbed free stream wind speed, x is
the distance between the lidar scanning plane and the rotor,
and a is the axial induction factor. The induction factor a is
determined using the same procedure as the one in Held and
Mann (2019) assuming the effect of the induction is constant
over a 10 min period. A steady-state thrust curve of the V52
turbine and the 10 min mean wind speeds measured by the
cup anemometer at 44 m are used to look up the thrust coef-
ficient Ct. Then, we compute the induction factor using axial
momentum theory, i.e., Ct = 4a(1− a).

2.6 Estimation of the Reynolds stress tensor

We assume that the Reynolds stresses Rij ≡ 〈uiuj 〉 are ho-
mogeneous over the rotor plane irrespective of the mean
wind field. We apply a least-squares fit to the radial veloc-
ity variances and the corresponding beam unit vectors to es-
timate the Reynolds stresses:

12
=

∫ (
n ·Rn− σ 2

vr

)2dµ. (20)

The matrix R that minimizes the integral must fulfill

∂12

∂Rij
= 0⇒

∫ (
n ·Rn− σ 2

vr

)
ninjdµ= 0. (21)

This can be written as

Rkl

∫
nknlninjdµ=

∫
σ 2
vr
ninjdµ. (22)
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The right side of Eq. (22) is written as a vector hav-
ing the length of six using the six combinations of
indices (i,j )= (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) with
n1 =−cosφ, n2 = cosθ sinφ and n3 = sinθ sinφ (as given
in Eq. 5). Similarly, on the left side of Eq. (22), Rkl is rear-
ranged to a length six vector, where

∫
nknlninjdµ is a 6-by-

6 matrix with both (k, l) and (i,j ) going through the same
combinations of indices:



∑
n4

1
∑
n2

1n
2
2

∑
n2

1n
2
3

∑
2n3

1n2
∑

2n3
1n3

∑
2n2

1n2n3
. . .

∑
n4

2 . . . . . . . . . . . .

. . . . . .
∑
n4

3 . . . . . . . . .

. . . . . . . . .
∑

2n2
1n

2
2 . . . . . .

. . . . . . . . . . . .
∑

2n2
1n

2
3 . . .

. . . . . . . . . . . . . . .
∑

2n2
2n

2
3



×



Ruu
Rvv
Rww
Ruv
Ruw
Rvw

=


∑
σ 2
vrn

2
1∑

σ 2
vrn

2
2∑

σ 2
vrn

2
3∑

σ 2
vrn1n2∑
σ 2
vrn1n3∑
σ 2
vrn2n3


.

(23)

To compute the six Reynolds stresses, we need at least six ra-
dial velocity variances from different beam directions to en-
sure that the large matrix in Eq. (23) is not degenerate (i.e., its
determinant is not zero) (Sathe et al., 2015). If fewer than six
variances of the radial velocity are available, we have fewer
knowns than unknowns. If the nacelle lidar beams have only
one opening angle φ, the equations will be linearly depen-
dent, and so the determinant will be zero and Eq. (23) will
have infinite solutions. In those cases, only σ 2

u can be well
determined, and the stresses involving the lateral component
will be more noisy (Peña et al., 2019). In this study, we use
all radial velocity variances from the SpinnerLidar to calcu-
late the six Reynolds stresses.

2.7 Numerical simulations

We generate three-dimensional random turbulence fields us-
ing the Mann model (Mann, 1998) with typical values of
the model parameters: αε2/3

= 0.05 m4/3 s−1, L= 61 m and
0 = 3.2. We furthermore assume Taylor’s frozen turbulence
hypothesis:

u(x,y,z, t = 0)= u(x+Ut,y,z, t), (24)

so the wind field at any given time can be obtained by trans-
lating the wind field at time t = 0. The turbulence boxes are
18 km long in the along-wind and 128 m long in both the
vertical and lateral directions. The number of grid points
in the simulation in the three directions is (Nx,Ny,Nz)=
(8192,64,64). A total of 100 turbulence boxes with the same
Mann parameters but different seeds were generated. For
simulating lidar measurements, we add a mean wind U and a
linear vertical shear dU/dz to the along-wind velocity com-

Figure 1. Example of a Doppler radial velocity spectrum simulated
in a turbulence box, including the radial velocity estimates using the
maximum (max), the median (med) and the centroid (cen) methods.

ponent u in each box:

u= U +
dU
dz

(z− zrotor)+ u′, (25)

where U = 10 ms−1, dU/dz= 0.0288 s−1, zrotor is the tur-
bine hub height in the turbulence box, i.e., the middle grid
point in the z coordinate, and u′ is the fluctuation around the
mean from the turbulence box.

We also account for the lidar probe volume. The lidar
Doppler spectrum S(vr, t) is (Held and Mann, 2018)

S(vr, t)=

M∫
−M

ϕ(s)δ(vr−u(s) ·n)ds, (26)

where δ is the Dirac delta function and M is the distance
along the beam that we use to truncate the integral due to the
finite length of the turbulence boxes. Figure 1 shows an ex-
ample of an instantaneous Doppler radial velocity spectrum
simulated in a turbulence box for one arbitrary beam of the
SpinnerLidar, in which the radial velocity is determined by
the three methods introduced in Sect. 2.3. The velocity bin
resolution is 0.1 ms−1 bin−1 and M = 8zR, which is here-
after always used.

3 Experiment setup

3.1 Measurement campaign

A measurement campaign on a Vestas V52 wind turbine was
conducted at DTU Risø campus in Roskilde, Denmark. Fig-
ure 2 shows a layout of the test site on a digital surface el-
evation model. The terrain is slightly hilly and the surface
is characterized by a mix of cropland, grassland and coast.
A row of wind turbines stands ≈ 200–300 m south-east of
the Roskilde fjord. The V52 wind turbine (marked as a red
circle) is located at the northernmost position. It has a ro-
tor diameter D of 52 m, a hub height of 44 m and a nominal
power of 850 kW. The rotor speed is within the range of 14–
31 rpm with a nominal value of 26 rpm. The cut-in, rated and
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Figure 2. The Risø test site in Roskilde, Denmark, on a digital sur-
face elevation model (UTM32 WGS84). The V52 meteorological
mast is shown in a red square. The wind turbines are shown in cir-
cles (in red the reference V52 wind turbine). The color bar indicates
the height above mean sea level in meters.

cut-out wind speeds are 4, 14 and 25 ms−1, respectively. A
meteorological mast (marked as a red square) was mounted
at 291◦ (from the north) at a distance of 120 m (2.3D) up-
stream from the turbine. The mast is 72 m high and instru-
mented with anemometers at 18, 31, 44, 57 and 70 m above
the ground level (Peña et al., 2019): Metek USA-1 3D sonic
anemometers are on the northern side of the booms and Risø
cup anemometers on the southern side of the booms. In ad-
dition, there is a wind vane at 41 m and Risø absolute tem-
perature sensors at 18 and 70 m. There are also a Thies pre-
cipitation opto-sensor and a Vaisala pressure sensor at 2 m
(DTU Wind Energy, 2014). Three continuous-wave lidars
were mounted on the nacelle of the V52 wind turbine, as
shown in Fig. 3: the SpinnerLidar (on the top), a four-beam
WindVision (in the middle) and a two-beam WindEye (at the
bottom). The vertical displacement between the scan head of
the SpinnerLidar, WindVision, WindEye and the wind tur-
bine rotation axis is 2.47, 2 and 1.64 m, respectively. More
information about the three lidars is given in Sect. 3.2.

3.2 Nacelle lidars

Three forward-looking nacelle lidars are investigated here.
All lidars are based on a CW system and they all were scan-
ning at a single plane (see Fig. 4). The specifications for
three nacelle lidars can be found in Table 1. The Spinner-
Lidar (Peña et al., 2019) scans in a rosette-curve pattern and
generates 400 radial velocities in one full scan. For this mea-
surement campaign, the SpinnerLidar was set up to perform
a full scan every 2 s at a focus distance of 62 m. The sys-
tem also recorded the instantaneous Doppler spectrum of the

Figure 3. Three lidars sitting on the nacelle of the V52 wind turbine
at DTU Risø campus: SpinnerLidar (top), WindVision (middle) and
WindEye (bottom).

radial velocity, which is used here both to derive the radial
velocity using different methods and to estimate the unfil-
tered radial velocity variance. The SpinnerLidar streams out
average Doppler spectra at a rate of 200 Hz. Each Doppler
spectrum is represented in 256 frequency bins with a spec-
tral resolution of 195.3 kHz corresponding to a radial veloc-
ity resolution of 0.1528 ms−1 per bin. In addition, it recorded
the signal strength (here called “power”) of the instantaneous
spectrum. We also use the inclination and the azimuthal po-
sitions from the SpinnerLidar sensors to correct the scanned
locations.

The two-beam WindEye (hereafter W2) and the four-beam
WindVision (hereafter W4) are two commercial lidars from
Windar Photonics A/S (Windar Photonics, 2020). W2 mea-
sured at 37 m and has similar width of the probe volume (in-
dicated by the Rayleigh length) as the SpinnerLidar. Note
that the largest probe volume and the smallest half-cone
opening angle are those of the four-beam system. The az-
imuthal angle in Table 1 refers to the position of the beams
on the scanning cone surface (from the top of the cone). The
two beams from W2 are aligned horizontally, while the four
beams from W4 focuses at each quadrant of the rotor area.
Both systems complete a scan in 1 s.

4 Data analysis

4.1 Data selection and filtering

The measurements were collected between 1 October 2020
and 30 April 2021. We analyze the time series of all data and
their statistics within 10 min periods (in total 30 492 periods
of 10 min). There are three types of measurements: the su-
pervisory control and data acquisition of the wind turbine,
the mast measurements and the measurements from three li-
dars. We concentrate our analysis on the wind sectors, which
are relatively aligned with the mast-turbine direction (291◦)
to exclude the influence of the wakes from the nearby wind
turbines to the greatest extent. We select 10 min periods for
the analysis using the following criteria:
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Figure 4. (a) The scanning trajectory of the nacelle lidars. (b) An upwind view of the theoretical scanning pattern performed by the W2, W4
and the SpinnerLidar.

Table 1. Specifications of the nacelle lidars for the measurement campaign.

SpinnerLidar WindVision (W4) WindEye (W2)

Number of beams [–] 400 4 2
Focus distance fd [m] 62 62 37
Rayleigh length zR [m] 2.44 7.18 2.42
Half-cone opening angle φ [◦] 0–30 18 30
Beam azimuth angle θ [◦] 0–360 45, 135, 225, 315 90, 270
Time for a full scan [s] 2 1 1

– All lidars and the V52 turbine should be concurrently
operating. The turbine status is indicated by the rotor
speed, which should be higher than 14 rpm. This leaves
us 19 190 periods of 10 min.

– The wind direction measured by the wind vane and the
yaw angle of the turbine are both between 261–321◦.
The absolute difference between these two directions is
lower than 5◦. Since the dominant wind direction at this
site is west and south-west, we have 2457 periods of
10 min left after applying this filter.

– The wind speed measured by the cup anemometer at the
turbine hub height is higher than 3 ms−1.

– No precipitation is detected during the 10 min period.

After filtering, the number of the 10 min periods for the anal-
ysis is 2348.

4.2 SpinnerLidar measurements

4.2.1 Data filtering

We process the SpinnerLidar measurements for the selected
2348 periods of 10 min. The SpinnerLidar measurements are

further filtered based on both the system-reported radial ve-
locity, which is the median estimate from the raw Doppler
radial velocity spectrum, and the power of the spectrum. The
following criteria are applied (Fig. 5 shows an example of re-
sults of the SpinnerLidar filtering within an arbitrary 10 min
period):

– We filter out all measurements with system-reported ra-
dial velocity estimates below 3.2 ms−1, which is the ref-
erence minimal detectable radial velocity by the Spin-
nerLidar due to the interference of the turbine blades
(Karen Enevoldsen, personal communication, 2021).

– We simulate the radial velocity of all possible blade re-
turns as (Angelou et al., 2015)

vr = |�SyhSL|, (27)

where� is the 10 min mean rotor speed, Sy is the lateral
component of the unit vector with reference to the Spin-
nerLidar in the y–z plane, and hSL is the vertical dis-
placement between the SpinnerLidar scan head and the
wind turbine rotation axis. Equation (27) does not con-
sider the misalignment between the SpinnerLidar and
the nacelle, which is negligible (below 0.5◦) in the mea-
surement campaign. The simulated blade signals are
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Figure 5. Radial velocity as function of (a) index of the 400 beams
in each full scan, (b) the lateral component of the unit vector Sy and
(c) power for an arbitrary 10 min period. Filtered data are shown
in black and data left after filtering in blue. The red color in the
top panel represents the simulated radial velocity from the possible
blade returns.

marked in red in Fig. 5. We discriminate the wind speed
signal from the blade return signal from Eq. (27) when
the difference between them is above 0.2 ms−1.

– We filter out all measurements exceeding power values
above 100 (Peña et al., 2019) (this signal strength has
arbitrary units). We can see from Fig. 6 that some mea-
surements close to the middle of the pattern are filtered
out with this criterion.

– Finally, we filter out radial velocities exceeding its mean
± 3 times its standard deviation within the 10 min pe-
riod.

Further, there should be at least half of the raw measurements
left for the analysis to consider a 10 min period of SpinnerL-
idar measurements, which leaves us 1605 periods of 10 min
for the later post-processing.

4.2.2 Gridding the scans

We estimate the lidar scan locations using the average az-
imuthal and inclination angles of the SpinnerLidar within
the 10 min period, i.e., the system-reported coordinates are
rotated along the longitudinal and lateral axis of the Spinner-
Lidar scanhead, respectively. Figure 6a shows the scan loca-
tions in blue and the non-rotated locations in orange within
a 10 min period (26 February 2021 at 14:10:00), where the

average inclination angle is 3.15◦ and the average azimuthal
angle is 0.34◦.

Due to the turbine movement and SpinnerLidar slack, we
aggregate the azimuthal- and inclination-corrected scan lo-
cations within a grid of 1 m resolution in the y–z plane, as
shown in Fig. 6b. The coordinates of the grid cells, which
are marked in light grey, are given by the resolution and ex-
tension of the grid. The “gridded” rosette pattern is shown
in black (some are covered by red color as explained later).
All radial velocity spectra for the scans lying within each
grid cell in the given 10 min period are accumulated. We use
only grid cells, where there are more than 30 instantaneous
Doppler radial velocity spectra. In Fig. 6b, we show in red the
grid cells satisfying this criterion. Finally, we only use those
10 min periods in which we have 900 grid cells satisfying the
criterion.

4.2.3 Doppler spectra processing and usage

Figure 7 shows an example of the processing of the Doppler
radial velocity spectra from the accumulated measurements
within a grid cell close to the middle of the scan. The
raw Doppler radial velocity spectra within that grid cell are
shown in Fig. 7a. For this 10 min period (26 February 2021 at
14:10:00), the vane measures a wind direction of 291.6◦ and
the yaw angle is 291.0◦. The lidar unit vector pointing onto
this grid cell is almost parallel to the terrain (φ is around
1.4◦), thus close to the main wind direction. As shown in
Fig. 7a, high spectral values “contaminate” the spectra in the
first few velocity bins due to, e.g., optical reflections from
the bore point (i.e., the beam hitting the telescope lens per-
pendicularly) or few left blade signals. To ease the spectra
processing, we define a threshold for each individual spec-
trum, which defines the limit above which a Doppler spec-
trum is considered to be caused by the wind. The calcula-
tion of the threshold is based on the mean value (µ) plus a
number of standard deviations (σ ) within a frequency range
where no radial velocity signals are anticipated. Angelou et
al. (2012) showed that a systematic selection of the thresh-
old level should take into account the shape of the Doppler
spectrum relative to the variation of the spectrum noise level.
The number of standard deviations is thus different for the
case of a wide Doppler velocity spectrum (high turbulence
level) and a narrow one (low turbulence level). An overes-
timation of the threshold removes low-intensity fluctuations
and, subsequently, biases the estimation of the radial veloc-
ity and reduces its variance. Here, we select a threshold of
µ+3σ of the spectral values in the last 50 frequency bins. Af-
ter thresholding, we remove the spectral values up to the bin
corresponding to 2.3 ms−1, which filters out the high spectral
peaks in unrealistic low-velocity bins (Fig. 7b).

Each “cleaned” spectrum is then area-normalized. Fig-
ure 7c shows the ensemble-average Doppler radial velocity
spectrum from all normalized, thresholded and cleaned spec-
tra. We also show the normalized distribution of sonic mea-
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Figure 6. (a) Scan locations (before and after rotation) in an arbitrary 10 min period. (b) Gridding of the scans within the same 10 min
period. Grid cells with more than 30 radial velocity spectra are marked in red. Other details are given in the text.

Figure 7. An example of Doppler radial velocity spectra analysis
within a 10 min period (26 February 2021 at 14:10:00). The location
of the grid cell y = 0 m, z= 48 m is shown in the scanning pattern
in Fig. 6b. (a) Raw and scaled Doppler radial velocity spectra. (b)
Cleaned and normalized Doppler spectra. (c) The average Doppler
spectrum (black), the distribution of the sonic measurements at hub
height (orange) and the three radial velocity estimates, which can
be clearly seen in the inset (d).

surements at hub height within the same 10 min period pro-
jected to the direction of the grid cell unit vector, which as
illustrated are in good agreement with the ensemble-average
Doppler radial velocity spectrum. We use the ensemble-
averaged Doppler radial velocity spectrum to derive both the
unfiltered radial velocity variance and the radial velocity esti-
mates (maximum, centroid and median), which are later used
for the reconstruction of the mean wind.

All grid cells with at least 900 Doppler radial velocity
spectra within each 10 min period are considered for the re-

construction of the mean wind and the Reynolds stresses. The
three-dimensional mean wind vector is computed from the
median-, maximum- and centroid-radial velocities, using the
approach in Sect. 2.5.1. Figure 8a shows a contour map of the
median-derived radial velocity for an arbitrary 10 min period
of SpinnerLidar measurements. As expected, the highest ra-
dial velocities are found in the middle-top part of the scan.
This radial velocity contour map shows a similar pattern as
that from the average of SpinnerLidar simulations using 30
turbulence boxes (Fig. 8b).

4.3 Windar measurements

4.3.1 Data filtering

The measurements for the W2 and W4 nacelle lidars are pro-
cessed at 2 and 4 Hz, respectively. Therefore, within a 10 min
period, the optimal amount of radial velocities per beam for
W2 is 1200 and for W4 is 2400. We remove outliers of ra-
dial velocities and apply the same blade filtering using the
method described in Sect. 4.2. We set a criterion that there
should be at least 90 % of the optimal amount of data left af-
ter the filtering for a 10 min period. We do not account for
the radial velocities of a full scan when data from any beam
are missing. This leaves us 1499 periods of 10 min for the
intercomparison.

4.3.2 Methods to compute the along-wind velocity
variance

The along-wind and lateral velocities are reconstructed for
each scan (i.e., for every 1 s) using the approach described
in Sect. 2.5.2, and we compute 10 min statistics from these
velocities. Due to the limited number of beams and the un-
availability of Doppler radial velocity spectra, we only com-
pute the filtered along-wind variance using two methods.
We can compute the wind speed variance directly from the
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Figure 8. (a) Contour map of the median-derived radial velocity from the ensemble-average Doppler spectra in a 10 min period. Black dots
indicate the location of the grid cells with more than 30 Doppler spectra. (b) Contour map of the average median-derived radial velocity from
SpinnerLidar simulations using 30 turbulence boxes.

time series of reconstructed along-wind velocity U within
the 10 min periods (hereafter denoted as the “U -variance”
method). We can also compute σ 2

u using Eq. (23) with some
assumptions and three are investigated here. The first is to
assume that all Reynolds stress components apart from σ 2

u

are zero (hereafter denoted as the “LSP-σ 2
u ” method). This

basically means that Eq. (23) becomes

σ 2
u =

σ 2
vr

cos2φ
. (28)

Since the half-cone opening angle of nacelle lidars is usu-
ally small, this method tends to overestimate σ 2

u . The sec-
ond is to assume turbulence isotropy; i.e., the auto-variance
of the three velocity components is the same and they are un-
correlated (hereafter denoted as the “LSP-isotropy” method).
From Eq. (23), this means that σ 2

u is then the average of the
radial velocity variances of the lidar beams. The third option
is to assume that σv = 0.7σu and σw = 0.5σu, as suggested
in IEC (2019) (hereafter denoted as the “LSP-IEC” method).

4.4 Sonic measurements

We use the 20 Hz raw sonic measurements at hub height
(44 m) to calculate the mean horizontal wind speed and its
variance for all selected 10 min periods. Figure 9a shows
that the horizontal speed measured by the cup and the sonic
anemometer is nearly the same. When looking at the com-
puted variance in Fig. 9b, a bias of 3.4 % is found. We rotate
the sonic-measured 3-D wind components, which are defined
in the main wind coordinate system, to the coordinate sys-
tem fixed with the wind turbine so that the sonic u velocity is
aligned with the rotation axis of the turbine. We use the ve-
locity and the variance of the rotated sonic-measured mean

wind components as the reference for the comparison with
the estimates from the nacelle lidars.

5 Results

5.1 Mean wind speed

We perform comparisons of the 1499 10 min mean along-
wind velocity component reconstructed from the lidar mea-
surements with that from sonic measurements at 44 m (see
Fig. 10). The estimates from lidars and the sonic anemome-
ter are corrected for the induction using the method in
Sect. 2.5.3. The lidar-derived estimate is a rotor-effective
mean velocity since measurements at all scanning positions
are considered. As illustrated, there is a high correlation for
all nacelle lidars, as expected. The W2 and the SpinnerL-
idar estimates are slightly higher than that from the sonic
anemometer while the estimate of W4 is 2.6 % lower. From
the numerical simulation with 30 turbulence boxes, we found
that all nacelle lidars are able to estimate the along-wind ve-
locity well (not shown here); the uncertainties in the mean
wind obtained from lidar are as large as those from the sonic
anemometer.

5.2 Radial velocity variance

Figure 11a shows the simulated ratio of the unfiltered ra-
dial velocity variance to the u-velocity variance of the sonic
anemometer among the scanning area. As the simulated wind
field is based on the Mann model, the major source of cross-
contamination on the radial velocity comes from the spectral
tensor components involving w. As seen from the plot, the
ratio is higher than one above the center and lower than one
beneath it, which is due to the positive and negative contribu-
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Figure 9. Comparison of the 10 min mean horizontal (a) wind speed and (b) variance between the sonic and the cup anemometers at 44 m.
Each 10 min is shown in blue markers, a 1 : 1 relation is shown in the red dashed line, and a linear regression fit to origin in the black dashed
line (results of the regression are given on the top of the plot, where R2 is the coefficient of determination).

Figure 10. Comparison between the reconstructed along-wind mean velocity from the sonic anemometer at 44 m and (a) W2, (b) W4 and
(c) SpinnerLidar. All estimates are corrected for the induction. Features regarding the red and black dashed lines as in Fig. 9.

tion of 〈u′w′〉, respectively, to the beam radial variance. Fig-
ure 11b shows the result from the measurement campaign as
a scatter plot between the unfiltered radial velocity variance
of the central grid cell (y = 0 m, z= 48 m) from the Spin-
nerLidar to the u variance of the sonic anemometer measure-
ments at 44 m. From the measurements, the unfiltered radial
velocity variance of the central beam reaches 91.5 % of the
sonic variance, whereas the simulations show a zero bias for
that central beam. We attribute this difference to our rather
conservative method to clean Doppler radial velocity spec-
tra, which attempts to eliminate any possible noise. However,
this might lead to reduction of true turbulence contained in
the Doppler radial velocity spectrum.

In Fig. 12a, we show the probe volume filtering effect
on the scanning pattern by plotting the ratio of the filtered
to the unfiltered radial velocity variance from the simula-
tions. Here, the filtered radial velocity variance is computed
from the centroid-derived radial velocity, because the cen-

troid method experiences the most turbulence attenuation
caused by the probe volume (Held and Mann, 2018). The fil-
tering effect due to probe volume is very similar throughout
the pattern. The highest ratios are found around the center of
the pattern, where the beam aligns with the along-wind ve-
locity component. As the beam moves from the center, the
ratio decreases because the beam’s opening angle increases
and the cross-contamination from other velocity components
increases. The amount of the cross-contamination depends
highly on the anisotropy of turbulence 0. Our simulation
was conducted with a set of typical Mann parameters (see
Sect. 2.7), so the degree of simulated filtering can be dif-
ferent from that of measurements. Figure 12b shows the
comparison between the filtered and unfiltered radial veloc-
ity variance at the grid cell (y = 0 m, z= 48 m) from the
measurement campaign. The correlation is very high, as ex-
pected, and the unfiltered radial velocity variance is around
9 % higher than the centroid-derived filtered one.
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Figure 11. (a) Ratio of the unfiltered radial velocity variance to the u-velocity variance of the sonic anemometer from the simulations (30
turbulence boxes are used). (b) Comparison between the unfiltered radial velocity variance at the central grid cell (y = 0 m, z= 48 m) and
the u variance of the sonic anemometer at 44 m from the measurements. Features regarding the red and black dashed lines as in Fig. 9.

Figure 12. (a) Ratio of the filtered to the unfiltered radial velocity variance from simulations (30 turbulence boxes are used). (b) Comparison
between the SpinnerLidar filtered and unfiltered radial velocity variance at the central grid cell (y = 0 m, z= 48 m) from the measurements.
Features regarding the red and black dashed lines as in Fig. 9.

5.3 Turbulence estimates

Using the methodology described in Sect. 2.6, we estimate
the six components of the Reynolds stress tensor from the
SpinnerLidar unfiltered radial velocity variances and com-
pare them against the computed components from the sonic
anemometer measurements at 44 m for the 1499 periods of
10 min. Figure 13 shows the inter-comparison for σ 2

u . From
the simulation with 30 turbulence boxes, we get a nearly per-
fect correlation and a bias of 1.4 %, whereas from the mea-
surements the bias is 8.9 %. The bias is higher in the mea-
surements mainly because we cannot guarantee that some
variance of the radial velocity is lost when processing the
Doppler radial velocity spectra.

We perform the comparison of all Reynolds stresses com-
puted from the SpinnerLidar scans with those from the
sonic anemometer at 44 m in Fig. 14. The Reynolds stresses
from the measurement campaign are normalized by U2 with
which they are roughly proportional. The unfiltered vari-
ances from simulations were derived by the same method
(see Sect. 2.4) as for the measurements. The numerical simu-
lations show that we can accurately estimate all components
of the Reynolds stress tensor using the SpinnerLidar com-
pared to the sonic anemometer. The SpinnerLidar uncertain-
ties of 〈u′u′〉 are not very different from those of the sonic
anemometer, while the uncertainties of other components are
larger. This is mainly because all other components where
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Figure 13. Comparison of the unfiltered variance of the along-wind velocity component between the SpinnerLidar and the sonic anemometer
at 44 m from (a) numerical simulation using 30 turbulence boxes and (b) measurement campaign.

u fluctuations are not included are driven by fluctuations
of components largely misaligned with the beams. Results
from the measurements show that all Reynolds stress com-
ponents estimated from SpinnerLidar are close to those from
the sonic anemometer but biased. We even observe negative
values for 〈v′v′〉 and 〈w′w′〉. This is discussed in Sect. 6.2.

Figure 15 shows the comparison of the SpinnerLidar esti-
mations of the maximum-, median- and centroid-derived fil-
tered variances of the along-wind velocity component with
those from the 44 m sonic measurements. Results from both
the simulations using 30 turbulence boxes and the measure-
ments indicate that turbulence attenuation is most severe
using the centroid method from the Doppler radial veloc-
ity spectrum, while the maximum method gives the closest
value, as expected (Held and Mann, 2018).

Figure 16 shows the comparison of the Windar lidar recon-
structed filtered σ 2

u using different methods against σ 2
u values

from the 44 m sonic anemometer. As illustrated, about 37 %
of the variance is filtered out for both W4 and W2, when
the variance is computed by taking the statistics of the re-
constructed U time series. This is still the common prac-
tice in the wind energy community. The degree of filtering
is similar for both lidars although W4 has a larger probe
volume. From Eq. (28), we note that by using the “LSP-
σ 2
u ” method, we can overestimate the along-wind variance

when all beams are scanning horizontally (or close to). Es-
timates using the “LSP-isotropy” method take the average
of all beam variances. When the scanning geometry is sym-
metrical in the two-dimensional y–z plane (like in the W4
case), the contributions from 〈u′w′〉 might (nearly) cancel
out. The method “LSP-IEC” is perhaps a fairer procedure
when compared to the other methods, as it assumes rela-
tions between velocity components’ variances that are close
to those we can observe within the atmospheric surface layer.
Estimates from the “LSP-IEC” and “LSP-isotropy” methods

can be computed by scaling those from method “LSP-σ 2
u ”;

that explains the same correlations in Fig. 16a–c and e–g. All
inter-comparison results of the estimated along-wind compo-
nents are summarized in Table 2.

6 Discussion

6.1 Influence of spectra processing on the unfiltered
variances

The way we process the Doppler radial velocity spectra in-
fluences the unfiltered variance estimates. Therefore, we in-
vestigate the sensitivity of using a more rigorous method to
further alleviate the contamination of the Doppler spectra
from, e.g., noise. This method first determines the peak of the
Doppler signal and then moves forwards and backwards in
the vicinity of the peak velocity bin to find the two locations
(velocity bins) where the Doppler signal reaches zero. Only
Doppler signals between these two velocity bins are used
to compute the variance. The unfiltered along-wind veloc-
ity variance estimated from the SpinnerLidar measurements
shows a bias reduction of ≈ 3.0 % using the more rigorous
spectra-processing when compared to the relatively “moder-
ate” method, which is used in Sect. 4.2.3. The coefficient of
the determination reduces from 97 % to 96.6 %.

6.2 Negative SpinnerLidar-derived variances

Negative variances might result when using SpinnerLidar
measurements to estimate the Reynolds stress tensor. We find
randomly occurring negative values of σ 2

v in 7 % and of σ 2
w

in 15 % of the 10 min periods that are used for the inter-
comparison. We investigate the conditions in which this oc-
curs by simulating measurements of a nacelle lidar with 30
beams such that they cover the extent of rotor at hub height
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Figure 14. Reynolds stresses derived from the SpinnerLidar and sonic anemometer, (a) numerical simulations using 100 turbulence boxes
and (b) measurements. The markers are the means and the error bars are ± 1 standard deviation.

Figure 15. Comparison of the filtered variance of the along-wind velocity component between the SpinnerLidar and the sonic anemometer
at 44 m. (a–c) Numerical simulations using 30 turbulence boxes. (d–f) Measurement campaign.
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Figure 16. Comparison of the filtered variance of the along-wind velocity component between the Windar lidars and the sonic anemometer
at 44 m. (a–d) W4. (e–h) W2.

Table 2. Bias and coefficient of determination between the lidar-derived along-wind velocity variance using different lidars and methods and
that from the sonic anemometer at 44 m.

Lidars Methods Bias [%] Coefficient of the determination [%]

SpinnerLidar

unfiltered −8.9 97.0
filtered (max) −13.3 96.8
filtered (med) −17.1 96.6
filtered (cen) −18.6 96.5

W4
filtered (LSP-σ 2

u ) −11.4 97.3
filtered (LSP-IEC) −14.8 97.3
filtered (LSP-isotropy) −19.9 97.3
filtered (U -variance) −37.1 94.5

W2
filtered (LSP-σ 2

u ) +2.4 97.2
filtered (LSP-IEC) −12.0 97.2
filtered (LSP-isotropy) −22.6 97.2
filtered (U -variance) −36.4 95.4

(see Fig. 17a). Figure 17b shows the simulated radial veloc-
ity variances (marked in blue) of the beams across the rotor.
Each point corresponds to the average radial velocity vari-
ance from five turbulence fields. With increasing opening an-
gle, the simulated radial velocity variance decreases. By us-
ing the method in Sect. 2.6 to derive the velocity variances,
we obtain positive values of all velocity components and
σ 2
u � σ 2

v , as expected. We obtain negative σ 2
v values when

the radial velocity variances highly decrease with increasing

opening angle (high decrease marked in green in Fig. 17b). In
this case, the turbulence homogeneity assumption is not sat-
isfied. Further, we find σ 2

u ≈ σ
2
v when σ 2

vr
slowly decreases

with increasing opening angle (low decrease). Figure 18a
shows the pattern of unfiltered radial velocity variances in
one of the 10 min periods where we estimate negative σ 2

v and
σ 2
w variances. As illustrated, the pattern shows a strong de-

crease of σ 2
vr

particularly around the right side of the scans.
Figure 18b corresponds to another 10 min period where σ 2

u ≈
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Figure 17. (a) Scanning pattern of a nacelle lidar with beams across the rotor. (b) The radial velocity variances of the beams across the rotor
from simulations using five turbulence boxes.

Figure 18. Contour plots of the radial velocity variance over the SpinnerLidar scanning pattern during two 10 min periods, (a) a case with
negative σ 2

v and σ 2
w values, (b) a case with σ 2

u ≈ σ
2
v > σ

2
w .

σ 2
v > σ

2
w. The occurrence of the negative variances is less fre-

quent in our measurements when we perform the turbulence
estimation every 30 min, as expected.

7 Conclusions

In this study, we analyzed measurements of three forward-
looking nacelle lidars with different scanning configurations
to investigate the benefit of multi-beam nacelle lidars for
turbulence characterization. For the first time, the Spinner-
Lidar measurements were compared with those of commer-
cial nacelle lidars. We focused our analysis on wind sectors,
in which the inflow is relatively homogeneous. The inflow
characteristics estimated by three lidars were compared with
those from a nearby sonic anemometer at hub height.

Our results from the analysis of numerical simulations and
measurements showed that all lidars were able to estimate the
mean wind velocity well compared to the sonic anemome-

ter. We also found that the SpinnerLidar was the only one
out of the three nacelle lidars that is able to measure the six
Reynolds stress components accurately. This is due to both
its multi-beam capability and its ability to measure unfiltered
radial velocity variances.

By using the information from the Doppler radial velocity
spectrum, one can partly compensate for the probe volume
averaging effect and reduce the error of turbulence estima-
tion. We showed that using maximum-derived radial veloc-
ities to compute the along-wind velocity variance mitigates
best the turbulence attenuation caused by the lidar probe vol-
ume.

For the commercial lidars, one can estimate the along-
wind velocity variance using three different methods: scaling
the radial velocity variance with a factor of cos2φ, assum-
ing σv = 0.7σu and σw = 0.5σu, or assuming isotropic turbu-
lence. We found the smallest bias in the estimates using the
first method when compared to the sonic anemometer values.
However, the first method can overestimate the along-wind

Wind Energ. Sci., 7, 831–848, 2022 https://doi.org/10.5194/wes-7-831-2022



W. Fu et al.: Turbulence statistics from three different nacelle lidars 847

variance when all beams are scanning horizontally. The sec-
ond method is the fairest procedure among the three methods.
All methods showed smaller bias when compared to comput-
ing the variance from the reconstructed along-wind velocity
values in the time series.
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