
Wind Energ. Sci., 7, 849–873, 2022
https://doi.org/10.5194/wes-7-849-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development of an automatic thresholding method
for wake meandering studies and its application

to the data set from scanning wind lidar

Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Geophysical institute and Bergen Offshore Wind Centre,
University of Bergen, Allégaten 70, 5007 Bergen, Norway

Correspondence: Maria Krutova (maria.krutova@uib.no) and
Mostafa Bakhoday-Paskyabi (mostafa.bakhoday-paskyabi@uib.no)

Received: 13 August 2021 – Discussion started: 6 September 2021
Revised: 21 January 2022 – Accepted: 3 March 2022 – Published: 8 April 2022

Abstract. Wake meandering studies require knowledge of the instantaneous wake evolution. Scanning lidar data
are used to identify the wind flow behind offshore wind turbines but do not immediately reveal the wake edges
and centerline. The precise wake identification helps to build models predicting wake behavior. The conventional
Gaussian fit methods are reliable in the near-wake area but lose precision with distance from the rotor and require
good data resolution for an accurate fit. The thresholding methods, i.e., selection of a threshold that splits the
data into background flow and wake, usually imply a fixed value or manual estimation, which hinders the wake
identification on a large data set. We propose an automatic thresholding method for the wake shape and centerline
detection, which is less dependent on the data resolution and quality and can also be applied to the image data.

We show that the method performs reasonably well on large-eddy simulation data and apply it to the data set
containing lidar measurements of the two wakes. Along with the wake identification, we use image processing
statistics, such as entropy analysis, to filter and classify lidar scans.

The automatic thresholding method and the subsequent centerline search algorithm are developed to reduce
dependency on the supplementary data such as free-flow wind speed and direction. We focus on the technical
aspect of the method and show that the wake shape and centerline found from the thresholded data are in a good
agreement with the manually detected centerline and the Gaussian fit method. We also briefly discuss a potential
application of the method to separate the near and far wakes and to estimate the wake direction.

1 Introduction

A wake is a complex dynamic structure forming behind a
wind turbine due to the kinetic energy extraction from the
incoming wind flow. The wake region is characterized by de-
creased wind speed and increased turbulence intensity. The
relative velocity deficit, or wake deficit, is strongest right af-
ter the wind turbine. Strongly affected by wind turbine rotor,
the region extends up to 4–5 rotor diameters depending on
the terrain characteristics and stability conditions (Stevens
and Meneveau, 2017; Porté-Agel et al., 2020). The wake
transitions to the far wake, where the recovery to the free
flow is considerably slowed down; at the same time, the wake

width increases up to 3 rotor diameters according to observa-
tions (Aitken et al., 2014). The turbine spacing in operational
wind farms usually reaches 7–10D (e.g., London Array), al-
though the optimal spacing is estimated to be even higher
in order to reduce the wake effect on downstream turbines
(Meyers and Meneveau, 2012; Stevens, 2016). Since the gen-
erated wind power is proportional to the cube of the wind
speed U3, the power production gradually decreases if the
incoming wind speed drops below the rated wind speed. The
increased turbulence intensity negatively affects the turbine
fatigue loads (Lee et al., 2012). Studying the wake behavior
is hence crucial to estimating both the actual power produc-
tion and the overall lifetime of a wind farm.
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Not only does the wake expand, but it is also subjected to
wake meandering – oscillations along the rotor axis caused
by the movement of large eddies (Larsen et al., 2007, 2008).
While the near wake remains primarily stable and follows the
wind direction, the far wake oscillates randomly in the hor-
izontal plane with an amplitude exceeding 0.5D (Howard
et al., 2015; Foti et al., 2016). The far wake also oscillates
in the vertical plane, although the velocity fluctuations there
are weaker (España et al., 2011). As a result, a downstream
turbine is exposed to intermittent flow and, consequently, un-
equal fatigue loads (Muller et al., 2015; Moens et al., 2019).
Additionally, the wake in the Northern Hemisphere slightly
turns clockwise due to the Coriolis effect (Abkar and Porté-
Agel, 2016; van der Laan and Sørensen, 2017), adding more
complexity to the wake evolution over time. Knowing only
the velocity deficit at a certain downstream distance is in-
sufficient, since the wake meandering strength is character-
ized by the standard deviation of the wake center. Therefore,
the wake meandering analysis requires the knowledge of the
wake centerline to quantify the instantaneous wake effect on
the downwind structures. An appropriate detection method
should be able to perform wake identification by separating
the wake from the free flow and wake characterization by es-
timating the wake centerline and its statistical characteristics
(Quon et al., 2020). Method application and capabilities are
highly dependent on the input data available.

Measurement campaigns that use scanning lidars provide
the most relevant data on the wind flow in a particular wind
farm (Bingöl et al., 2010; Trujillo et al., 2011; Herges et al.,
2017). Due to the technical restrictions and cost of lidar in-
stallation, it is complicated to obtain a three-dimensional
scan of the flow around the whole wind farm, although the
flow can be reconstructed for a single turbine (Beck and
Kühn, 2019). Still, the measurement campaigns span sev-
eral months and require data preprocessing to sort out invalid
measurements. A controlled experiment can be performed on
a wind tunnel for model validation or reproduction of spe-
cific flow conditions (Snel et al., 2007; Chamorro and Porté-
Agel, 2010). The particle image velocimetry (PIV) provides
good spatial and temporal resolution of the measured wind
field but deals with the scaled models and has to account for
their limitations. A different approach is running a large-eddy
simulation (LES) of a wind turbine or a wind farm. While
LES provides a wide range of possibilities to simulate at-
mospheric conditions and wind farm configuration, its rep-
resentation of a wake strongly depends on the implemented
turbulence closure (Moriarty et al., 2014; Mehta et al., 2014;
Martínez-Tossas et al., 2018) and wind turbine model (Porté-
Agel et al., 2011; Martínez-Tossas et al., 2015). A relatively
new development is quantitative study of wind farm wakes
from satellite data (Ahsbahs et al., 2020). The satellites gen-
erally have a lower spatial resolution than scanning lidars
and measure wind speed on the horizontal near-surface plane
but still provide general information on the flow around wind
farms.

Several wake identification methods exist, varying in com-
plexity and input data requirements (Quon et al., 2020).
Among the variety of methods, we focus on thresholding
and Gaussian fitting because they are applicable to a 2D li-
dar scan in a horizontal or inclined plane. The most common
wake identification method is to fit a one- or two-dimensional
Gaussian distribution to the velocity deficit across the wake
at various downstream positions and get estimations of the
wake center and width from the fitted function (Fleming
et al., 2014; Vollmer et al., 2016; Krishnamurthy et al., 2017).
This method can be applied to both the averaged and instan-
taneous wake, although the irregular wake shape of the lat-
ter complicates the detection. For better accuracy, the fitting
requires wind speed data in a fine spatial resolution. A suf-
ficient spatial resolution is achieved by large-eddy simula-
tion or particle image velocimetry. The Gaussian fit method
can also be applied to the scanning wind lidar data, provided
the wake region is resolved well enough. Overall, the fitting
method efficiency depends on the data quality and spatial res-
olution. The method also requires the free-flow wind speed
to calculate the wake deficit.

Alternatively, a threshold value can be defined. In the sim-
plest case, the threshold splits the range of available values
into two: all values below the threshold fall into one group,
while the remaining values form the second group. When ap-
plied to the wind field for the wake identification, the thresh-
old would split the data into the wake and free-flow points.
Thresholding methods depend less on the data resolution and
mainly rely on the wind speed values. The simplest thresh-
olding method sets a threshold based on the wind speed ratio
in the wake and the free flow. As shown by España et al.
(2011), the method is effective for a regular flows, e.g., in
a wind turbine: a threshold of 95 % of the free-flow wind
speed identified the continuous part of the wake up to the
downstream distance of 6–8D. The resulting shape required
smoothing and filtering to reduce the noise. Bastine et al.
(2015) used a stricter threshold of 40 % of the maximum
wake deficit on the LES data to extract the wake core and
perform proper orthogonal decomposition on the processed
wind field.

The thresholding method is not widely used due to its re-
striction: it applies an empirical coefficient that does not ac-
count for the data quality and wind speed fluctuations in the
flow field, which may be a common issue for a lidar scan.
We propose an automated threshold estimation, previously
developed for whitecap detection – the adaptive threshold-
ing segmentation (ATS) method (Bakhoday-Paskyabi et al.,
2016). We adapt the method for wake identification and de-
velop new routines to estimate the wake centerline without a
priori knowledge of the wind direction.

This study focuses on the technical aspect of the ATS
method and discusses its advantages and limitations. The
method is applied to a scanning lidar data set containing
wakes from two wind turbines and various wake–wake in-
teractions. The measurements and LES setup are described
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Figure 1. A schematic shows the (a) location of FINO1 platform,
map made with Natural Earth; (b) wind farms and platforms near
FINO1, status in 2015–2016; and (c) alpha ventus wind farm layout,
with maximum lidar scan area and scanning height at the position
of each wind turbine.

in Sect. 2. Lidar data required additional preprocessing, de-
scribed in Sect. 3. In the same section, we preview diagnos-
tic techniques by using image entropy to evaluate and clas-
sify the data. The application of the image processing method
to the wake identification and characterization is detailed in
Sect. 4. We demonstrate our algorithm on the idealized LES
data as a proof of concept in Sect. 5. We then apply the
same algorithm to the lidar data and compare the result with
the manual wake detection, deficit-based thresholding, and
Gaussian fit method in Sect. 6. The findings are summarized
in Sect. 7. In the Appendix, we briefly discuss the differences
between wake identification from the lidar scan data and the
respective grayscale image.

2 Data description

2.1 Lidar and reference data

We use measurements of wind speed and wind direction
recorded during the Offshore Boundary-Layer Experiment at
FINO1 (OBLEX-F1) campaign. The FINO1 platform is lo-
cated in the North Sea at 54◦00′53.5′′ N, 6◦35′15.5′′ E, 45 km
to the north of the German island of Borkum. The alpha ven-
tus wind farm is located in the vicinity of FINO1 and con-
sists of 12 wind turbines arranged in a rectangular pattern
(Fig. 1). The wind turbines AV1–AV6 are of the type Re-
power 5M with a hub height of 92 m and a rotor diameter
of 126 m; AV7–AV12 are of the type AREVA M5000 with a
hub height of 91.5 m and a rotor diameter D of 116 m. The
row and column distances between the turbines vary within
800–850 m, approximately 7 rotor diameters, 7D. The dis-
tance between FINO1 and the closest wind turbine, AV4, is
405 m.

The FINO1 meteorological mast has a cup anemometer
installed at 90 m above sea level and a vane installed at
100 m a.s.l. (above sea level). The wind speed and direction
measured with those instruments are used to characterize the
free flow. We will further refer to them as the reference wind
speed and direction, respectively.

The scanning Doppler wind lidar Leosphere Wind-
Cube 100S installed at FINO1 is oriented towards the alpha
ventus wind farm. The closest scanned wind turbine, AV7, is
located at 919 m or 7.92D from FINO1 (Fig. 1c). The lidar
is installed at 23.5 m above sea level and operates in a plan
position indicator (PPI) scanning mode. In this mode, the az-
imuth of the lidar beam changes between 131.5 and 179.5◦ at
an elevation angle of 4.62◦. The lidar scans the southwestern
sector of the alpha ventus wind farm and captures wake pat-
terns from two wind turbines, AV7 and AV10. The third wind
turbine, AV11, stays outside of the lidar range in most scans,
but a part of its wake is visible for the specific wind direc-
tions. The wind turbine AV7 is scanned near the hub height
at approximately 97 m. The farther wind turbines AV10 and
AV11 are scanned above the top of the blade tip at 158 and
188 m, respectively.

The lidar measurements partially cover 24 Septem-
ber 2016 and capture a variety of wake–wake interactions.
The consecutive lidar scans are separated by approximately
45 s – the time required for the lidar to finish one scan. The
data set contains 600 lidar scans, which are split into 24 sub-
sets of 25 scans. Each subset contains the first 20–22 min of
each hour. For simplicity of presentation and reference, we
number the lidar scans from 1 to 600.

The ATS algorithm accepts the input data as a grayscale
image. The wind speed data of each lidar scan are normal-
ized by scaling to the range of [0, 1] to imitate the grayscale
intensity as

I =
Umax−U

Umax−Umin
, (1)

where U is the wind speed measured at a point, and Umin and
Umax are minimum and maximum wind speeds registered in
a particular lidar scan. For the lowest wind speed U = Umin
(potential wake points), I = 1 denotes the points with the
highest intensity. Similarly, for the highest wind speed U =
Umax (free-flow points), I = 0 indicates the points with the
lowest intensity.

The wake identification is performed on the data stored in
a polar coordinate matrix (Fig. 2a). For a better presentation,
the resulting data are plotted in the Cartesian coordinates as
a scanned sector (Fig. 2b).

2.2 Large-eddy simulation

We also perform a large-eddy simulation to demonstrate and
verify the performance of the ATS method and compare it
against the Gaussian wake identification and characteriza-
tion method described further in Sect. 4.3. We use the PALM

https://doi.org/10.5194/wes-7-849-2022 Wind Energ. Sci., 7, 849–873, 2022



852 M. Krutova et al.: Automatic thresholding method for the wake identification and characterization

Figure 2. An example lidar scan 497 taken on 24 September 2016
19:18:20 UTC+0 at reference wind speed 7.4 m s−1 and reference
wind direction 151.14◦. The original data are presented in (a) the
polar coordinates R, ϕ as stored in the matrix and (b) the Cartesian
coordinates X, Y .

LES code with a built-in actuator disc with rotation (ADR)
wind turbine model (Maronga et al., 2020). The results pro-
duced with the model were shown to capture the reduction
of the wake deficit with the downstream distance at the rate
similar to the accounted for wind turbines (Vollmer et al.,
2015, 2017; Doubrawa et al., 2020). The wake recovery as-
pect is particularly important to test the ATS method perfor-
mance in the far wake. The currently used polynomial kernel
also allows us to fit the Gaussian function to compare it with
the ATS method.

The domain contains 2304×576×192 points and has hori-
zontal grid spacing of 4 m. The vertical spacing below 600 m
is also 4 m. Above 600 m, the vertical spacing is stretched
with a factor of 1.08, capped at maximum 8 m grid cell
height. The roughness length of z0 = 0.0005 m corresponds
to the calm sea surface. The Coriolis forcing is enabled for
the latitude of 54◦, and the wind speed components are set to
u= 10.5 m s−1 and v =−2.6 m−1 so that the flow rotation is
compensated for, and the flow is aligned with the x axis, re-
sulting in horizontal speed of 10 m s−1 at the hub height. The
surface temperature is 277 K and increases by 1 K per 100 m.
Neither heat flux nor surface heating are activated. During
the simulation the turbulence intensity reaches 6.6 %.

The reference NREL 5 MW wind turbine has a hub height
of 102 m and a diameter of Dr = 126 m and is placed in the
center of the domain so that the wake length can reach up to
20Dr.

The LES is used solely to generate idealized wake data.
No direct comparison to the lidar data is performed.

Figure 3. Comparison of the mean radial wind speed and the refer-
ence wind direction in the data set.

3 Lidar data pre-processing and classification

3.1 Data quality

Working with the current data set, we encountered two types
of noise affecting the quality of the wake identification
through thresholding: small wind speed fluctuations not di-
rectly caused by the wake and high wind speed values ap-
pearing due to a measurement error.

The measurement errors are primarily caused by the differ-
ence between wind direction and lidar orientation. The lidar
measures radial velocity, which can be represented through
three directional wind speed components u, v, and w, and
the information on the line of sight of the lidar beam, given
by the azimuth φ and elevation angle θ :

U = usinφ cosθ + v cosφ cosθ +w sinθ. (2)

When the wind blows along the lidar’s line of sight, the
measured radial velocity is essentially the horizontal wind
speed. If the wind direction differs from the line of sight, the
radial velocity deviates from the actual wind speed magni-
tude. In the case of crosswind – the wind direction is close to
perpendicular to the line of sight – the radial velocity tends to
zero and does not represent the actual wind speed. The mea-
surements taken during the crosswind event are more prone
to errors compared to other wind directions.

When plotted against the reference wind direction, the ref-
erence wind speed and mean radial wind speed of a lidar
scan show strong discrepancy for a range of wind direc-
tions (Fig. 3). With the lidar scanning in the range of 131.5–
179.5◦, the crosswind effects can be expected for the wind di-
rections of 221.5–269.5◦. As shown in Fig. 3, the crosswind
effects already appear for the wind direction above 210◦. The
scans taken near the crosswind direction show a large number
of non-physical wind speed values reaching 100–1000 m s−1.
We further refer to these scans as “corrupted”.

Occasionally, we also observe weaker spikes in the radial
wind speed, most of which are localized at the position of a
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Figure 4. Consecutive lidar scans from the bimodal subset. No out-
liers are present in scans 442 (a) and 444 (c), while scan 443 (b)
has wind speed spikes near the wind turbine position and in the far
range; panel (d) shows the intensity distribution for the same scans.

wind turbine AV10, implying a measurement error due to the
lidar beam reflection from rotating blades. The reference and
mean radial wind speeds remain in good agreement for the
wind directions below 210◦ despite containing spikes in the
wind speed data. Nevertheless, the outliers cause an intensity
skew when the wind speed data are normalized to the range
of [0, 1] (Fig. 4). The intensity distribution peak moves to
the right, with the left side containing occasional low bumps
caused by the spikes (Fig. 4d).

In the example, the middle scan (Fig. 4b) has a wind speed
spike of 15 m s−1, while the reference wind speed reaches
5.8 m s−1. The radial wind speed magnitude measured in the
spike region stays below 7 m s−1. The lidar scan after nor-
malization shows less contrast compared to the adjacent lidar
scans.

To preserve the uniformity between consequent lidar scans
of the same subset, we perform despiking – detection and re-
moval of the spikes. The spikes are detected based on the
wind speed value and the difference with the adjacent points.
We delete all values higher than 30 m s−1 and check the re-
maining data for the local maximums. An empirically chosen
wind speed difference of 7 m s−1 proved to be enough to des-
ignate a local maximum as a spike. When a spike consists of
a single or double point, the values there are deleted, and the

resulting gap is filled by interpolation to retain the continu-
ous wind field. Three or more adjacent points designated as
spike are considered a noise cluster; in such cases, gap filling
after removal is not performed.

Since the lidar is oriented towards the closest wind tur-
bine, a string of missing values – a wind turbine “shadow”
– is always present in the lidar scans regardless of the wind
direction. The shadow rarely crosses wind turbine wakes and
does not noticeably affect the performance of the wake de-
tection methods. Hence we do not perform a gap filling to
remove the shadow in addition to the despiking.

3.2 Information entropy and data classification

We introduce entropy criteria as an alternative to using ref-
erence wind speed and direction for quality control. The en-
tropy application ranges from finding a threshold (Pun, 1981)
to object classification in an image (e.g., satellite map seg-
mentation by Long and Singh, 2013). Here, we calculate it
primarily for diagnostic purposes and data classification into
subsets.

The information entropy is a measure of noise in the data.
It can be calculated for the whole data set as well as across the
rows or columns of a rectangular matrix containing 2D data.
We apply Shannon entropy S (Shannon, 1948) as follows:

S =−

n∑
i=1

P (xi) log2P (xi) , (3)

where P (xi) is the probability density function (PDF) of the
variable xi (here intensity) to occur in the data. If the entropy
tends to zero, it indicates uniform data. A high entropy value
implies disturbances in the lidar scan due to wakes or noise.

To analyze lidar scan features, we calculate entropy for
the partial data instead of the whole scan. We select wind
speed values in either the radial or azimuthal direction and
calculate a PDF of this sample to pass it to the entropy func-
tion. An example is presented in Fig. 5. The top and the left
parts of the example scan in polar coordinates do not con-
tain wakes; hence the entropy calculated for the respective
rows and columns is lower than for the wake regions. The en-
tropy calculated in the radial direction (Fig. 5a) is higher for
columns crossing both wakes instead of one due to a higher
disturbance rate. An additional entropy increase near the az-
imuth of 130–140◦ can be explained by high noise at the lidar
scan border. The entropy calculated in the azimuthal direc-
tion (Fig. 5c) shows a peak for the AV7 wake. The AV10
far wake produces a less prominent peak, indicating a wake
spread along a longer distance and not aligned with the az-
imuthal direction.

We calculate the entropy in radial and azimuthal direc-
tions for all lidar scans before preprocessing. Combined into
two plots, the entropies present an overview of the data set
(Fig. 6). The respective wind turbine positions are marked on
the right axis. The lower color bar limit is adjusted for better
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Figure 5. The entropy calculated in the (a) radial and (c) az-
imuthal directions of (b) the lidar scan 61. Reference wind speed
is 7.19 m s−1 and reference wind direction is 203.68◦.

presentation of the features contained in non-corrupted scans.
For the scans with low noise, the entropy values fall into the
range of 4–5 in both the azimuthal and radial directions. The
entropy calculated in the azimuthal direction highlights sev-
eral lidar scans with a substantial entropy decrease (Fig. 6a)
– the value drops below 2 and tends to zero. The same scans
are also characterized by the measurements corrupted due to
the crosswind effect. The spiked data in non-corrupted scans
lead to a local entropy decrease, seen as occasional blue dots
mostly at the location of AV10. Series of such points can be
seen for scans 176–200 and 401–410.

Non-corrupted subsets show similar entropy distribution
in the azimuthal direction (Fig. 6a). A wake from the wind
turbine AV7 can be seen as an increase in entropy near the
turbine’s location. A weaker increase in entropy can also be
seen for AV10, for example, in scans 51–175.

The entropy calculated in the radial direction is distributed
uniformly for the corrupted subsets (Fig. 6b) but otherwise
does not have as strong of a difference to non-corrupted data
as the entropy in the azimuthal direction (Fig. 6a). Some
non-corrupted scans (51–300 and 376–425) show a gradient-
like pattern caused by the absence of wakes in the 170–
180◦ sector (low entropy) and wakes and border noise in the
130–140◦ sector (high entropy). The pattern is weaker for
scans 176–250, where the border noise is absent and wakes

are aligned along the line connecting wind turbines, thus dis-
turbing a smaller area of a lidar scan. The scans 426–600
combined demonstrate a horizontal stripe pattern, caused by
the wind blowing towards the lidar. Wakes forming across the
scanned azimuths cause the entropy increase in the radial di-
rection matching the positions of AV7 and AV10, as marked
on the graphs.

The low entropy criterion agrees well with the crosswind
criterion on which scans are likely to contain a high amount
of corrupted data. In general, the scans with a high corrup-
tion rate can be identified based on the percentage of the data
points exceeding a specific wind speed limit. Since the refer-
ence wind speed does not exceed 10 m s−1, we consider the
wind speeds above 30 m s−1 to be a likely measurement error.
The corrupted scans consistently have at least 1 % of points
exceeding this limit. The percentage drops to 0 %–0.05 % for
the rest scans and corresponds to the occasional spikes.

The number of corrupted scans is 125, i.e., about one-
fifth of the total number of scans. Classification of the re-
maining valid scans requires either a priori knowledge of the
reference wind direction (which may be unavailable if we
work with image data) or visual evaluation of the wake fea-
tures (which may be complicated for a large data set). En-
tropy criteria can simplify the classification by presenting a
condensed overview of the data set. Using the entropy and in-
tensity histograms, we classify the subsets into the following
groups.

1. Parallel-wake subset, Fig. 8a. The wakes do not inter-
act with each other. Some noise may occur at the li-
dar scan’s border due to the wind direction approaching
the value where the crosswind effects start. Since the
wakes propagate towards this border and add to the dis-
turbance, the entropy calculated in the radial direction
shows a consistent increase near the azimuth of 131◦.
The entropy calculated in the azimuthal direction shows
a strong increase near the location of AV7 due to the
wake and a weaker disturbance caused by AV10. The
intensity histogram of an averaged subset tends to be
more symmetrical than in other subsets and has a peak
close to the intensity of 0.5. The intensity histogram of
a single scan has a peak deviating from the center de-
pending on the amount of noise. Parallel wakes are the
most common case for this data set.

2. Aligned-wake subset, Fig. 8b. The wind blows along the
line connecting wind turbines AV7 and AV10 so that the
former is subjected to a wake. The entropy patterns are
generally similar to the parallel-wake subset, except that
a footprint of the AV10 wake is no longer visible for the
entropy calculated in the azimuthal direction. The wind
direction is closer to the scanned azimuth range, and
measurements have less noise compared to the paral-
lel subset. Hence the scans show slightly lower entropy.
Compared to the parallel-wake subset, the histogram
peak is shifted to the left. The histogram peak may split
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Figure 6. Entropy of the raw lidar data with all 600 lidar scans combined: (a) azimuthal entropy and (b) radial entropy.

Figure 7. Classification of the subsets and overview of the refer-
ence wind direction (a) and wind speed (b).

into two small peaks located close to each other when
the wakes are not perfectly aligned.

3. Transitional subset. The wind direction changes, so
both parallel and aligned wakes can be observed in
the subset. This behavior is observed for a single sub-
set containing scans 401–425. The transition to slightly
lower entropy can be seen for the entropy calculated in
the radial direction at azimuths 130–150◦ (Fig. 6b).

4. Bimodal subset, Fig. 8c. The wind blows along the li-
dar beam. Two long wakes are formed behind the wind
turbines and merge in the lidar near range. Since the
near range is scanned at a high resolution (Fig. 2), the
far wake is represented by a larger percentage of points
compared to the other subsets. Consequently, the inten-

sity histogram approaches a bimodal distribution, which
is especially prominent for the averaged subset. The
larger peak represents the free flow, while the smaller
peak corresponds to the far wakes of AV7 and AV10.
The two peaks may merge resulting in one flat peak.
The scans have little noise; the increase in entropy, es-
pecially in the radial direction, highlights the presence
of the wakes.

5. Corrupted subset, Fig. 8d. The lidar scan is charac-
terized by the number of non-physical measurements
(wind speed higher than 30 m s−1) exceeding 1 % of
the lidar scan points. While the valid measurements still
take the largest share of a single scan, they are now con-
sidered “low” wind speeds in a comparison to the max-
imum value. Due to the normalization (Eq. 1) that con-
verts low values into light pixels, the histogram tends to
the far right side, forming a sharp peak in intensity val-
ues between 0.9 and 1.0. The entropy in the azimuthal
direction is lower than in other subsets and approaches
zero, while the entropy in the radial direction tends to
be more uniform than in non-corrupted scans and does
not react to the presence of a wake.

The overview of the subsets and reference values is pre-
sented in Fig. 7 and Table 1, containing wind speed, wind
direction, and entropy averaged over each subset. A sample
histogram averaged for a typical subset from each group is
shown in Fig. 8 together with a single-scan histogram from
the same subset.
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Figure 8. Sample averaged subsets and intensity histograms corresponding to the averaged subset and a single scan within the subset. The
wind speed data are normalized to imitate the grayscale intensity. Despiking and removal of non-physical wind speeds are not performed to
preserve the characteristics before preprocessing.

Table 1. Overview of the lidar data subsets.

Data type Subset Scans WSPD, WDIR, Entropy % of
m s−1 ◦ data

Parallel wakes 3 51–75 6.99 205.3 5.11

33.3

4 76–100 7.71 202.7 5.29
5 101–125 7.48 196.0 5.38
6 126–150 6.05 191.4 5.35
7 151–175 6.58 184.0 5.01

11 251–275 7.10 187.8 5.12
12 276–300 7.41 200.2 5.37
16 376–400 5.45 200.9 5.02

Transitional 17 401–425 4.38 184.5 4.76 4.2

Aligned wakes 8 176–200 6.32 176.2 4.69
12.59 201–225 8.30 172.2 5.28

10 226–250 9.19 171.3 5.30

Bimodal 17 426–450 4.11 151.5 5.44

29.2

18 451–475 5.71 147.3 5.31
19 476–500 7.22 150.9 5.72
20 501–525 7.83 154.2 5.67
21 526–550 7.52 159.4 5.64
22 551–575 8.46 160.1 5.72
23 576–600 8.16 157.7 5.70

Corrupted 1 1–25 5.80 243.3 1.54

20.8
2 26–50 6.85 212.1 2.31

13 301–325 7.27 213.4 1.53
14 326–350 7.06 222.2 2.64
15 351–375 6.41 222.0 2.52
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Figure 9. Sample LES wake and threshold detection. (a) Original instantaneous flow, (b) same flow normalized to the range of [0, 1], (c) the
intensity histogram of the normalized data, (d) CDF of the normalized data and CDF plot curvature, and (e) first and second derivatives of
the CDF and the estimated thresholds.

4 Methodology

Wake detection includes two stages (Quon et al., 2020): wake
identification (a separation of the wake from the free flow)
and wake characterization (further analysis of the identified
wake). We focus on the wake identification methods, partic-
ularly an identification method using thresholding, and also
provide an algorithm for the wake characterization through
centerline detection from the thresholded data.

4.1 Wake identification using automatic threshold
detection

The thresholding methods split an image into background (in
our case – free flow) and foreground (wake). Despite lidar
data having a considerable number of disturbances in the free
flow, the wind speed distribution in a lidar scan tends to have
one peak, either sharp or flattened (Fig. 8). The wake points
take a small share of the lidar scan stored in polar coordinate
matrix, while the remaining points belong to the free flow
– i.e., the most prominent peak contains free-flow points.
The exception is the bimodal subset, where the far wakes are
characterized by high number of points (Fig. 2). As a result,
the histogram of a scan from the bimodal subset may have
two peaks depending on the intensity of the far wakes. To
make our wake identification method universal, we build it
upon threshold detection from a single histogram peak. The
specifics of the wake identification in the bimodal case are
further described in Sect. 6.4 and in the Appendix.

A single peak limits the applicability of the common
thresholding methods that search for the local minimum of
a bimodal histogram (Otsu, 1979). The lidar scan structure
has similarities with ocean surface images: a background
with small disturbances and bright whitecaps. Bakhoday-

Paskyabi et al. (2016) described three methods of an auto-
mated threshold detection for the whitecaps. We choose an
adaptive thresholding segmentation (ATS) method identified
to be fast and reliable by the original study. The basic princi-
ples of the ATS method are introduced here on a test example
of an instantaneous LES wake.

Figure 9a and b show the wind speed field of an instanta-
neous LES wake and the same data normalized to the range
of [0, 1]. A threshold T is an intensity value in the range [0, 1]
that separates free flow and wake points. After the threshold
is applied to the normalized wind field, a binary matrix WP is
constructed from the grayscale intensity matrix I as follows:

WP(i,j )=
{

0 : I(i,j )≤ T – free-flow point,
1 : I(i,j )> T – wake point. (4)

The intensity threshold can be converted back to the radial
velocity threshold Uth by reverting the normalization expres-
sion Eq. (1) as

Uth = Umax(1− T )+UminT . (5)

The normalized wind speed data are represented as an in-
tensity histogram (Fig. 9c). Let H (x) for k ∈ [0,1] be the
cumulative distribution function (CDF) of the intensity data.
Then H ′(k) and H ′′(k) are its first and second derivatives,
respectively. With respect to the definition of intensity I

in Eq. (1), the wake points are located in the histogram’s
tail, while the free-flow points form a peak on the left side.
The transition region where the peak tends to the tail is a
good choice to search for a suitable threshold. We detect the
threshold at the point where the CDF slope is close to con-
stant; i.e., the curvature C(k) approaches zero.

C(k)=H ′′(k)
[
1+H ′(k)2

]−3/2
(6)
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The curvature graph tail (Fig. 9d) may fluctuate and com-
plicate the detection of the zero curvature. Instead, we look at
the first and second derivatives H ′(k) and H ′′(k) separately.
The threshold value T2 is selected as an inflection point at the
right side of the second derivative graph (Fig. 9e). A similar
point in the first derivative graph T1 is used as a control value.
We select the threshold as an average value between first and
second derivative inflection points to smooth the threshold
detection outcome. If the points initially lay close to each
other, the averaged threshold T = (T1+T2)/2 would not de-
viate too far from T2. If the difference between T1 and T2
is high, the smoothing prevents the threshold from being too
strict and leaving weak wakes undetected.

In the case of the lidar data, the derivative plots have strong
oscillations. Therefore, we fit a polynomial function on the
range between intensity Ik , corresponding to the most promi-
nent local extremum and maximum intensity Imax = 1. We
fit a function F (k)= a1+ a2/k

5, since the corresponding fit
returned low root-mean-square error (RMSE) while not al-
tering the inflection point location significantly.

After the threshold is found, we apply it to the data as de-
scribed in Eq. (4) and obtain a binary matrix WP that repre-
sents thresholded data. Each matrix point corresponds to an
image pixel. Because of the wake irregularity, especially in
the lidar scan, the method usually detects several clusters of
high-intensity points. Any cluster may be a part of a wake
as well as falsely detected noise. We do not yet distinguish
between wake and noise and refer to all detected clusters as
“wake shapes”. Due to the code implementation, the detected
points belong to the same shape as long as the constituting
points are adjacent in the matrix WP. The shapes touching
only by the corners are considered to be separate shapes.

4.2 Wake characterization from the data thresholded by
the ATS method

For the wake characterization, we detect the centerline of a
wake shape. The centerline search method starts with extract-
ing a contour of a wake shape; the further algorithm is based
upon the geometrical properties. It should be noted that the
centerline search algorithm does not strictly depend on the
ATS method and can be used as a stand-alone algorithm that
requires thresholded data as an input.

To start the centerline search method, we require a proce-
dure to determine which shapes were correctly identified as a
wake. The ATS method searches for the high-intensity points
corresponding to the highest wake deficit. Containing the
highest wind speed decrease, the near-wake region perfectly
satisfies this condition. Therefore, it can be expected that the
near wake will be one of the largest continuous shapes among
those detected and will contain a wind turbine within or near
it. The borderline contour of such a shape is extracted for fur-
ther analysis. The wake centerline is then defined as a center-
line of the extracted contour.

Assuming the outline of the shape as wake boundaries, we
estimate the wake centerline using the following algorithm.

1. The algorithm starts by drawing a circle of radius 1D
around the wind turbine and marks points where the cir-
cle crosses the borders of the wake shape. If the circle
appears to lie within the wake shape completely, the ini-
tial radius is increased until intersections are found.

2. The midpoint of the arc inside the wake contour indi-
cates the wake direction and is stored as the centerline
midpoint.

3. The circle diameter is increased by a pre-defined step,
e.g., 0.1D, and the steps 1–2 are repeated until the end
of the wake shape is reached.

This short algorithm works as it is for an ideal case of a
smooth wake contour and known wind direction matching
the wake direction. However, the circular lines may cross the
irregular wake contour several times. Considering the near
wake to be wide and continuous, we expect the centerline
point to lie within the wake shape. We also assume that the
wake does not turn gradually further downstream. Therefore,
the segment between the last known and unknown midpoint
should turn by a relatively small angle compared to the pre-
vious segment. The wind or wake direction is advantageous
to distinguish wake shapes from noise, as it allows us to nar-
row the search by disregarding shapes detected in the upwind
direction as false detection.
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Figure 10. An example wake centerline detection in an ambiguous
case.

Figure 11. The relation between radial wind speed U , actual wind
speed U ′, azimuth angle φ, and meteorological and mathematical
wind directions 2MET and 2MATH.

The currently used centerline search algorithm 2 provided
further includes these and several other rules for selection of
a wake point when an ambiguity is present. Figure 10 shows
an example of resolved ambiguity based on the wind direc-
tion. If the wind direction was not available, an estimated
wake direction could be used instead with the same outcome.

Generally, this centerline search method does not require
a priori knowledge of the wind direction. However, it may be
difficult to resolve the ambiguity on the first step, if the wind
direction is unknown. For example, the aligned-wake sub-
set (Fig. 8b) and, to a certain extent, also the bimodal subset
(Fig. 8c) introduce ambiguity in the wake direction for the
downstream wind turbine AV7. A circle drawn around AV7
may cross the detected wake in at least four points. The algo-
rithm will in turn identify downstream and upstream points
as potential centerline points. To continue the search, the al-
gorithm has to select only one direction. In the absence of
the reference wind direction, the ambiguity can be resolved
by approximating the wake direction first.

The procedure to approximate the wake direction runs
similarly to the centerline search, with a few alterations.
First, the step is increased, but the algorithm is run for a
shorter length until 4D downstream, so only the most well-
resolved part is processed. All midpoints laying inside the
wake contour are accepted, since there is no way to make a
distinction between them as of yet. A linear function y(x)=
ax is then fit to the identified midpoints. If the coefficient of
determination is negative (R2 < 0), the fit is too inaccurate,
and the procedure is repeated for another wind turbine.

The intercept value a of the best fit is the arctangent of
the mathematical wind direction (Fig. 11). The approximated
meteorological wind direction is then

8MET =
3
2
π −8MATH =

3
2
π − arctana. (7)

The approximated wake direction may strongly deviate
from the actual wake direction, so it is only used to resolve
ambiguity. The actual wind direction is estimated from the
full centerline. We convert the coordinates of the centerline
points for the AV7 and AV10 wakes to the Cartesian system
and subtract the respective wind turbine positions to get a set
of the relative centerline coordinates. We assume a centered
data set and add a point (0, 0) corresponding to the relative
wind turbine position. The wake from the wind turbine AV11
is prominent only for the bimodal subset and is too short and
easily confused with the noise in the other subsets. We do
not consider this wake in our analysis due to the little infor-
mation it can provide compared to the other two wakes. The
composed data set is fitted with the linear regression, and the
fitted line indicates the estimated wake direction.

4.3 Wake identification and characterization using the
Gaussian method

The wake deficit distribution is similar to the Gaussian dis-
tribution in the far wake (Ainslie, 1988) and often shows a
double Gaussian peak in the near wake (Magnusson, 1999).
The similarity to the Gaussian distribution makes a base for
a widely used method to detect wake boundaries and cen-
terline (Vollmer et al., 2016; Krishnamurthy et al., 2017).
The method requires the data in a two-dimensional horizon-
tal plane, which makes it versatile and practical to use for
wake identification and characterization.

Due to the lidar elevation angle, AV10 is scanned near the
top tip and does not show a double wake. The scan resolution
near AV7 is not always sufficient to resolve a pronounced
double wake. Therefore, we fit the wake deficit distribution
with a single Gaussian function:

F (y)= Aexp
(
−

(y−µ)2

2σ 2

)
, (8)

where the amplitude A, mean value µ, and standard devia-
tion σ are the parameters to fit; the variable y is a coordi-
nate on a line perpendicular to the wind direction. The fitting
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starts from 1D to avoid uncertainties caused by a weak dou-
ble wake observed for AV7. We attempt fitting for the wake
deficit profiles up to 15D downstream distance, covering the
length of most wakes in the lidar data set.

For a wake deficit distribution, the fitted Gaussian func-
tion F (y) reaches its maximum at y = µ; i.e., the estimated
mean µ gives the wake center position. The wake boundaries
are defined through the mean value µ and the standard devi-
ation σ as µ± 2ln2σ so that the velocity deficit at the wake
boundaries is 5 % of the velocity deficit at the wake center
(Aitken et al., 2014).

The Gaussian function is fitted to the wake deficit of
1U (y)= 1−U/U0; thus knowledge of the free-flow wind
speedU0 is also required. Since the background flow is rather
non-uniform in the lidar scans, we probe the velocity at each
cross section at 1.6D from the rotor axis (Krishnamurthy
et al., 2017). The LES data use the wind speed at the hub
height as the free-flow wind speed.

We run the Gaussian method in an automatic mode. The
method should be applied to the data extracted along the
straight line perpendicular to a pre-defined search direction.
The algorithm thus requires knowledge of the wind direction

before the fitting. The algorithm is also dependent on the ac-
curacy of the wind direction measurements and the similar-
ity between reference wind and actual wake direction. Dur-
ing our analysis, we observed an offset of about 5◦ between
the directions, which caused fitting errors for otherwise clear
wake. To reduce the influence of a possible discrepancy be-
tween wind and wake direction, we recalculate the search
direction every five points by fitting the linear function to the
previously found center points.

The wake deficit profiles extracted for fitting have a width
of 2.5D, except for the bimodal subset. There, the profile
width is decreased to 1.75D after reaching the downstream
distance of 6D. The correction is active only for the scans
after 500 where the AV10 far wake and the AV7 wake come
close enough but do not yet merge completely and allow sep-
aration. If the Gaussian function is fit to a wider profile there,
the fitting would mistake higher deficit in the AV7 near wake
for the center of the AV10 wake. Reducing the extracted
wake profile width improves the centerline detection in the
AV10 far wake and delays the first occurrence of this error,
although it does not always prevent it.
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4.4 Deficit-based wake identification

In addition to the Gaussian fit, we apply a threshold based on
the wake deficit criterion. The method assumes that a point
belongs to the wake if the wind speed there is less than or
equal to 95 % of the free-flow wind speed (España et al.,
2011), here the reference wind speed.

The lidar measures radial velocity U (Eq. 2). If the wind
direction differs from the scanned azimuths, the reference
wind speed measured by a cup anemometer noticeably de-
viates from the free-flow radial velocity. Normally, a lidar
retrieval procedure should be performed to reconstruct the
actual wind field. Since we are only interested in the wind
speed values, but not the local flow direction, we apply a
simple expression to re-project the radial velocity and take
the magnitude of the calculated wind speed.

U ′r,φ =
Ur,φ

cosα
, (9)

where Ur,φ is the measured radial velocity at the beam
range r and azimuth φ, U ′r,φ is the estimated magnitude of
the real velocity, and α is the angle between the radial and
actual wind speed vectors (Fig. 11). Equation (9) assumes
that the flow moves in the reference wind direction at each
scanned point regardless of the wake influence and other flow
disturbances.

The angle α is calculated as the difference between ref-
erence wind direction 2MET, given according to the meteo-
rological convention, and the azimuth φ (Fig. 11). That is,
Eq. (9) changes to

U ′r,φ =
Ur,φ

cosα
=

Ur,φ

cos(2MET−φ)
. (10)

Since the normalization (Eq. 1) is not performed, the
deficit-based method does not necessarily require despiking
– all high-value outliers would be assigned to the background
flow by the threshold condition. However, the method re-
quires additional information on the free flow, such as the
wind speed and direction, to perform the simple retrieval.

The threshold is applied to the wind speed field recalcu-
lated with Eq. (10) instead of the original radial velocity field
used for the ATS method. Therefore direct comparison of the
thresholds is complicated. Instead, we compare the thresh-
olded images and evaluate the detection accuracy against the
manual wake identification.

4.5 Manual wake identification and characterization

We perform a manual segmentation to select an optimal
threshold for each lidar scan and use it as a “true” identifi-
cation. The manual threshold is defined in a way to represent
the minimum threshold required to identify a wake shape
suitable for the automatic centerline detection as described
in Sect. 4.2. The comparison against manual wake identifica-
tion then would show whether the ATS method is capable of

automatizing the threshold selection and improving its flexi-
bility compared to the deficit-based thresholding.

Since the available scans represent different wake–wake
interactions, the criteria for a reasonable threshold vary over
the subsets. In order to reduce human error, we use the fol-
lowing qualitative criteria:

1. The shape of the wake should be distinguishable enough
not to be misinterpreted as noise.

2. The noise should be reduced near wind turbines AV7
and AV10 but is allowed near AV11 since its wake has
low importance in this study.

3. The identified wakes from AV7 and AV10 should not
merge to ease the centerline detection.

We also perform a manual centerline detection. A cen-
terline is drawn over the lidar scan as a line or series of
points. For further comparison with other wake characteri-
zation methods, it is converted to the Cartesian coordinates
using a plot digitizer. Unlike the manual threshold detection,
the manual wake characterization is more prone to errors,
especially in the far-wake region, where the wake becomes
less distinguishable from the free flow. Due to ambiguity and
complexity of the manual centerline detection, we select only
a few lidar scans to demonstrate the methods’ performance in
the parallel, aligned, and bimodal subsets.

For brevity, the wake identification and characterization
methods are further referred to as listed in Table 2.

5 Proof of concept: wake identification and
characterization from the LES data

In this section, we demonstrate the performance of the ATS
method in application to the LES data and compare the result
to the Gaussian method.

An instantaneous LES wake reveals complex spatial fea-
tures to be detected, although its intensity histogram remains
rather smooth (Fig. 9b). The ATS method detects a continu-
ous structure in the near wake and the beginning of the far
wake, while the wake at x/D > 10 is represented as series
of small disconnected structures (Fig. 12b and c). The ATS
method does not capture the wake expansion, but only a trail
of the low-wind-speed areas.

Since the ATS method extracts the outer contour of a
shape, small holes inside the detected wake are automati-
cally filled and do not affect the intersection-based centerline
search (Fig. 13a). The current algorithm processes only the
first continuous wake shape. Extending the centerline down-
stream requires a procedure to identify which of the small
detected shapes actually belong to the far wake and the con-
nection order. The former problem is more relevant for a lidar
scan, which has less uniform background flow compared to
the LES data.
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Table 2. Summary of the wake detection methods.

Name Main characteristics

Manual Input data: radial velocity field.
Identification: threshold value based on the visual evaluation.
Characterization: digitized centerline drawn over the lidar scan.
Automation: no.
Flexibility: yes.

Deficit-based Input data: retrieved velocity field, Eq. (9), reference wind speed.
Identification: threshold value based on the wake deficit compared to the free flow.
Characterization: not performed.
Automation: yes.
Flexibility: no.

Gaussian Input data: radial velocity field, wind direction, and wind turbine locations.
Identification: Gaussian function fitted to the wake profile.
Characterization: performed simultaneously with the wake identification.
Automation: yes.
Flexibility: partial.

ATS Input data: radial velocity field, wind direction (optional), and wind turbine locations.
Identification: threshold value from the intensity histogram.
Characterization: midpoints of the concentric arcs crossing the wake contour.
Automation: yes.
Flexibility: partial.

Figure 12. Wake and centerline identification for a sample instan-
taneous LES wake: (a) normalized flow field, same as Fig. 9b;
(b) thresholded flow field; and (c) wake shapes color-coded to show
connectivity.

Figure 13c compares the wake centerline and edges de-
tected by the Gaussian and ATS methods. Both methods per-
form well in the range of 1< x/D < 10 and show good
agreement on the same distance (Fig. 13c). Downstream
(x/D > 10), the wake becomes weaker as it recovers to the
free flow. If the wake deficit function becomes too flat to fit
accurately, the fitting result may place the wake center in-
correctly or overestimate the standard deviation and, con-
sequently, the wake width. The ATS method detects only

Figure 13. Sample wake identification and characterization using
idealized LES data. (a) Thresholded data overlaid with the contour
of the wake shape; (b) thresholded data overlaid with the wake
boundaries and centerline detected by the Gaussian method; and
(c) ATS and Gaussian wake detection results, overlaid.

disconnected structures in the far wake. Nevertheless, those
structures primarily lie within the wake edges detected by
the Gaussian method. The Gaussian centerline also passes
through the centers of the ATS-detected structures. A good
agreement between methods can be explained by the fact that
the ATS method searches for regions of high intensity, i.e.,
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low wind speed. At the same time, the Gaussian method ap-
proximates a wake center at the point of high wake deficit,
which also corresponds to low wind speed.

Overall, the Gaussian and ATS centerline search methods
show complementary flaws. The Gaussian method may esti-
mate the wake center correctly on a weak wake profile but re-
turns a large standard deviation, leading to an overestimation
of the wake width. The Gaussian method does not always
interpret strong wake meandering correctly and mistakes a
wake turn for a wide wake. Conversely, the ATS method is
capable of discerning a complex wake shape but has prob-
lems with the centerline detection if the wake shape is too
irregular due to wake merging or mixing with noise.

6 Results

For the lidar data, we perform an extensive comparison to the
manual wake identification and characterization and evaluate
the accuracy of the ATS method. We further compare the per-
formance of the ATS and Gaussian methods and discuss the
application of the ATS method in the centerline detection.
We show both ensemble statistics and demonstrate the meth-
ods’ performance on sample scans showing each of the most
represented non-corrupted subsets: parallel, aligned, and bi-
modal.

6.1 Comparison of the ATS wake identification against
the manual identification and deficit-based
thresholding

We construct a confusion matrix to assess the performance
of the methods for a single lidar scan. The 2× 2 confusion
matrix describes the comparison of the automatic threshold-
ing methods (deficit-based or ATS; see Table 2) against the
manual method and contains the following outcomes.

– True positive (TP) – the point is detected as a wake point
by both manual and automatic identification.

– True negative (TN) – the point is detected as a free-flow
point by both manual and automatic identification.

– False positive (FP) – the point is detected as a wake
point by the automatic method but is a free-flow point
in the manual identification.

– False negative (FN) – the point is detected as a free-flow
point by the automatic method but is a wake point in the
manual identification.

If the automatic identification is accurate with respect to
the manual identification, TP and TN values tend to 100 %,
while FP and FN are close to zero.

The bimodal subset can be considered the most conve-
nient for the manual threshold segmentation. It utilizes the
strict criterion for the manual threshold that the wake shapes
should not merge (Fig. 14d). In the example, the ATS method

Figure 14. Scan 599 (bimodal subset), wake identification. (a) The
original data in the Cartesian coordinates, (b, c) confusion matri-
ces for the ATS and deficit-based methods, (d) manual threshold
selected in a way to separate the two wakes, and (e, f) thresholds
estimated by the ATS and deficit-based methods.

sets the threshold higher compared to the manual identifica-
tion (Fig. 14e). Hence the far-wake area is slightly reduced.
The deficit-based method (Fig. 14f) produces a similar result.

The aligned-wake subset utilizes the same manual thresh-
old criteria for the wake splitting as the bimodal subset
(Fig. 15), although the condition may be harder to fulfill.
For some lidar scans, the far wake from the turbine AV10
and the near wake from AV7 cannot be separated, unless the
threshold is increased so that the far wake is not identified
(Fig. 15d). In this case, detecting a general shape of the wake
takes priority. The manual threshold is then more subjective
than that of the bimodal subset. The deficit-based method un-
derestimates the threshold more significantly than in the bi-
modal case and produces larger percentage of false positives
than the ATS method (Fig. 15f).

The parallel-wake subset is the most challenging, for
both the manual identification and the automatic methods
(Fig. 16). The wind direction in the subset is approaching
210◦, where the crosswind effects start (Fig. 3) and noise
appears at the border of a lidar scan. Unlike the corrupted
scans with a high number of non-physical wind speed values,
the region around the wind turbines AV7 and AV10 contains
valid measurements and still allows us to perform wake iden-
tification with relative success. However, the wake identifica-
tion accuracy declines due to the border noise, and only one
wake can be extracted well enough to perform the analysis
on the wake centerline and shape evolution. If the thresh-
old is increased to distinguish wakes and noise, the wake
from AV10 remains nearly undetected as can be seen from
Fig. 16d. The ATS method returns a lower threshold that im-
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Figure 15. Scan 221 (aligned-wake subset), wake identification.
(a) The original data in the Cartesian coordinates, (b, c) confusion
matrices for the ATS and deficit-based methods, (d) manual thresh-
old selected in a way to separate the two wakes, and (e, f) thresholds
estimated by the ATS and deficit-based methods.

proves the distinguishing of the shape of the AV10 wake but
falsely detects noise as a part of the AV7 wake (Fig. 16e).
The deficit-based method estimates the threshold rather ac-
curately but may detect additional false positives near wind
turbines (Fig. 16f).

We summarize the comparison of true negative and true
positive detections in the box plots (Fig. 17) for the different
subsets.

Due to the amount of noise, the parallel-wake subset is
challenging for both methods. Nevertheless, the ATS method
approaches manual identification rather effectively, while the
deficit-based method leaves a decent amount of noise which
may alter the identified wake shape (Fig. 16f).

Both methods score nearly 100 % for the true positive de-
tections in the aligned subset (Fig. 17b). The result is caused
by the criterion for the manual threshold: separate two dif-
ferent wakes. The criterion is too strict for both automatic
methods to achieve; therefore, they always underestimate the
threshold. Still, the ATS method gets closer to the manual
threshold, which is reflected in lower variation in true nega-
tive detections compared to the deficit-based threshold.

The deficit-based and ATS wake identifications behave
rather similarly for the bimodal subset (Fig. 17c) with re-
spect to the manual wake identification. The variations in the
bimodal subset are primarily caused by the wakes forming
in the lidar near range, which is scanned at higher resolution
than the rest of a scan. That is, any small threshold change
affects more points at the wake edges than it would for the
parallel or aligned subsets and results in stronger fluctuations
in TP–FN values.

Figure 16. Scan 60 (parallel-wake subset), wake identification.
(a) The original data in the Cartesian coordinates, (b, c) confusion
matrices for the ATS and deficit-based methods, (d) manual thresh-
old selected in a way to reduce noise but keep a general shape of the
wakes, and (e, f) thresholds estimated by the ATS and deficit-based
methods.

Figure 17. Ensemble statistics of true negative and true positive
detections within the subsets.

To reduce the influence of ambiguity of the manual de-
tection, we construct a confusion matrix for each subset of
25 consecutive lidar scans instead of single scans. The cor-
rupted scans are excluded from the comparison, since high
noise prevented the manual detection for most of the scans.
Table 3 summarizes the detection outcomes for each subset.
The ATS and deficit-based method perform comparably in
terms of true positives in the aligned and bimodal subsets.
However, the number of false positives for the deficit-based
method indicates a high probability of identifying noise as a
wake. Additionally, the percentage of false positives strongly
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Table 3. Comparison of the thresholding methods’ performance against the manual wake identification.

Manual–deficit, % Manual–ATS, %

Data type Subset Scans TP FN FP TN TP FN FP TN

Parallel wakes 3 51–75 55 45 5 95 80 20 2 98
4 76–100 69 31 4 96 97 3 4 96
5 101–125 76 24 9 91 91 9 4 96
6 126–150 85 15 9 91 95 5 4 96
7 151–175 96 4 23 77 98 2 3 97

11 251–275 95 5 22 78 99 1 4 96
12 276–300 71 29 7 93 93 7 2 98
16 376–400 80 20 6 94 96 4 3 97

Transitional 17 401–425 93 7 19 81 87 13 0 100

Aligned wakes 8 176–200 99 1 28 72 98 2 1 99
9 201–225 100 0 13 87 100 0 10 90

10 226–250 100 0 23 77 98 2 3 97

Bimodal 17 426–450 88 12 2 98 82 18 0 100
18 451–475 83 17 1 99 89 11 0 100
19 476–500 97 3 5 95 96 4 4 96
20 501–525 97 3 7 93 85 15 2 98
21 526–550 99 1 15 85 90 10 5 95
22 551–575 100 0 20 80 90 10 8 92
23 576–600 85 15 2 98 94 6 4 96

fluctuates within the same type of the subset, making the
fixed threshold method unreliable.

While the number of true positives for the ATS method
may drop to 80 % for a complex subset, the number of
true negatives consistently stays near 95 % – the background
flow is mostly detected correctly regardless of the subset
type, which is an improvement compared to the deficit-based
method. Compared to manual detection, the ATS method
does not always separate wake and noise correctly, particu-
larly for the parallel-wake subset (Fig. 15) and thus requires
additional filtering. For the aligned and bimodal subsets, the
ATS method is capable of detecting the general wake shape
rather similarly to the manual detection.

It should be noted that the deficit-based wake identifica-
tion requires a free-flow wind speed to define the threshold
and an additional preprocessing of a lidar scan – a correc-
tion based on the wind direction or a more complex lidar
retrieval method. The ATS method runs solely on the lidar
data and does not require information besides what is already
contained in a lidar scan.

6.2 Comparison of the wake characterization using
Gaussian and ATS methods

We perform the wake characterization by searching for the
wake centerline from the thresholded image produced with
the ATS method as described in Sect. 4.2 or by applying
the Gaussian method as described in Sect. 4.3. First, we pro-
vide a comparison of selected scans against the manual wake

characterization from the lidar scan image as described in
Sect. 4.5. The found centerlines are compared by fitting the
regression lines to the relative coordinates, so that each local
coordinate system is centered at a selected wind turbine.

The parallel-wake subset (Fig. 18) contains a short but pro-
nounced wake from the wind turbine AV7 and a long weaker
wake from the wind turbine AV10. Since the AV10 wake is
frequently detected as a series of small disconnected struc-
tures, the current ATS method detects the centerline only for
the first continuous shape, which rarely extends beyond the
near-wake region. The manual and Gaussian wake charac-
terization can be carried further into the far-wake region but
become rather uncertain as the far wake recovers to the free
flow or mixes with the border noise. Considering the prob-
lems that the border noise poses for the wake identification
in less clean scans (Fig. 16), the characterization outcome
can be improved by excluding the near-border sector of 1–2◦

width from the identification process.
The aligned-wake subset (Fig. 19) shows a distinctive fea-

ture: the wakes are aligned along the line connecting two
wind turbines, resulting into the merge of the AV10 far wake
and the AV7 near wake. Additionally, the connecting line is
parallel to the Y axis in Cartesian coordinates, so the center-
line tends toX = const when the wakes are perfectly aligned.
Hence, the coefficient of determination R2 either approaches
zero or becomes negative and does not indicate the quality of
the regression fit.
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Figure 18. Scan 59 (parallel-wake subset). (a) An overview of the detected centerlines and regression fits for (b) AV7 and (c) AV10.

Figure 19. Scan 221 (aligned-wake subset). (a) An overview of the detected centerlines and regression fits for (b) AV7 and (c) AV10.

The bimodal subset (Fig. 20) has the longest wakes in the
data set. The wake identification in the far wake (i.e., lidar
near range) is hindered by wake merging and the narrow-
ness of the scanned area. For example, the ATS method may
underestimate the threshold and detect merging wakes as a
single shape. The ATS-based threshold can be adjusted to
guarantee the wake splitting. The adjustment is performed
automatically by increasing the threshold with an increment
of 0.05 until the stopping criterion – the wind turbines belong
(or are located near) to different wake shapes – is reached.

The merging wakes also affect the accuracy of the Gaus-
sian method: high wake deficit in the neighboring wake may
lead to an incorrect detection of a wake center after the fit-
ting. The characterization inaccuracy in the lidar near range

is compensated for by a higher overall number of data points
available for fitting, compared to the other subsets.

Figure 21 shows an example of wake identification per-
formed on a lidar scan from the aligned-wake subset. The
subset is characterized by the wake merging near AV7. The
formed structure proves to be challenging for a Gaussian
method, as the centerline point and far-wake width for AV10
are estimated incorrectly.

The ATS method detects wakes as a single shape. Unlike
the bimodal subset, the merging wakes in the aligned-wake
subset do not necessarily worsen the performance of the cen-
terline detection method. The centerline is first detected for
the AV10 wake, from which the wake direction can be esti-
mated. Since the wakes are merged, the centerline detection
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Figure 20. Scan 599 (bimodal subset). (a) An overview of the detected centerlines and regression fits for (b) AV7 and (c) AV10.

Figure 21. Scan 222 (aligned-wake subset) sample wake identifi-
cation and characterization showing (a) comparison of the ATS and
Gaussian methods, (b) wakes identified by the ATS method after
the threshold is applied, and wind and wake direction.

for AV10 continues in the AV7 wake. The centerline search
for AV7 starts at the corresponding turbine location and is
performed in the direction of the AV10 wake, thus excluding
the merge region from the search. Thus the centerline of the
AV7 wake gets detected twice if no stopping criterion (e.g.,
the AV10 centerline passes the AV7 location) is activated.
Both detected centerlines agree in the AV7 wake region and
follow the Gaussian centerline rather well. Near-border wake
centers of the AV7 wake deviate from the presumed center-
line because border noise is erroneously attributed as a part
of the wake.

When it comes to the comparison of wake characterization
over the whole data set, the effect of weak wakes or merging
on the Gaussian method performance complicates a direct

Table 4. Rules for scoring Gaussian and ATS centerline search
method performance.

Score Gaussian method ATS centerline search

0 The method failed to find the wake at all, or less than
10 % of the visible wake was identified.

0.5 The centerline loosely
matches the wake
centerline, but the wake
width is overestimated or
undefined.

The wake shape is
readable from the
thresholded image, but
the centerline is
incomplete or erroneous.

1 The method had correctly identified at least 75% of
the visible wake and its centerline.

comparison. Due to the errors, the Gaussian centerline cannot
be taken as a “true” value and requires verification on its own.

Instead, we perform a visual comparison of the Gaussian
and ATS centerline search methods to score their success
rate. The performance of both methods rather differs along
the wake; therefore we evaluate the detection result on two
segments: l ≤ 4D and l > 4D from the wind turbine. The
l ≤ 4D segment usually covers the most well-resolved part
of the wake in non-corrupted scans; we attribute it as the near
wake. The rest of the wake would be then referred to as the
far wake and characterized by lower wake deficit. Next, we
score the success rate based on whether the method was able
to identify both wake shape and centerline, failed on one of
the tasks, or did not distinguish the wake at all (Table 4).

As mentioned for the LES wake identification and charac-
terization (Sect. 5), the ATS and Gaussian methods are prone
to errors in different aspects. A partial success for the Gaus-
sian method would usually mean a centerline estimated with
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Figure 22. Overview of the Gaussian and ATS method performance
on the wake detection and characterization.

a large standard deviation, while a partial success for the ATS
method would be the detection of the wake shape but not the
full centerline.

A summary for the data set excluding corrupted scans is
presented in Fig. 22 by showing the counts for each outcome
and their distribution between the subsets.

The near wakes are well resolved and show a high num-
ber of outcomes where both methods succeed. The partial
detections are spread differently. The non-perfect outcomes
for the AV7 near wake are spread rather equally (Fig. 22a).
The increased error rate of the ATS method in the AV7 near
wake is caused by either strong border noise (parallel subset)
or strong upstream wake influence (aligned subset) – both
distort the detected wake shape.

Due to the studied wind directions, the AV10 near wake
is not subjected to the upstream turbine influence. The wake
is very clear and poses problems mainly for the ATS method
in the parallel subset, when it cannot be identified as a con-
tinuous shape. Hence, the ATS method under-performs and
stops at the wake identification, while the Gaussian method
can succeed in both aspects (Fig. 22c).

The comparison of AV7 far wake accuracy (Fig. 22b) is
relevant only for the bimodal subset, where the correspond-
ing wake reaches the required length. Detection outcomes for
the AV7 far wake follow a pattern that resembles the other
cases: very low counts of partial or full success when one of
the methods fails and higher counts for partial and full suc-
cess of both methods.

The exception from this pattern is the AV10 far wake
(Fig. 22d). Both methods achieve partial success most often.
The decreased success rate is primarily caused by the wake
merging in bimodal and aligned subsets. When it comes to

Figure 23. Comparison between reference wind direction (WIND)
and estimated wake direction (WAKE).

the parallel-wake subset, both methods are likely to fail. The
weak AV10 far wake limits efficiency of both methods: the
threshold is not enough to separate the wake from the free
flow, and the fitting cannot be carried on to the nearly flat
wake deficit function.

The low count of (0, 1) pairs throughout the comparison
indicates that none of the methods outperform the others in
any part of the wake. If one method fails, the other usually
fails too or achieves only a partial success.

6.3 Wind and wake direction

The regression line fitted to the ATS-detected centerline also
indicates the wake direction. A strong mismatch between ref-
erence wind direction and wake direction can be seen for
most lidar scans from the data set (Fig. 23b).

Comparing the directions for the whole data set, we ob-
serve a clear trend for the wake direction deviating clockwise
from the reference wind direction until the crosswind effects
start at 210◦ (Fig. 23).

The valid points for the reference wind directions less than
210◦ group into two distinct clusters (Fig. 23). The leftmost
cluster corresponds to the bimodal subset and lies within the
range of wind directions of 140–170◦. Another cluster con-
tains the results for the aligned, transitional, and parallel-
wake subsets and covers the range of wind directions of 170–
210◦. Fitting a linear regression to each group returns a sim-
ilar slope but a different intercept value. Although the fitted
line slope is not equal to one, the regression fit on the selected
range shows a nearly constant offset between wind and wake
direction, with the bimodal subset having noticeably lower
difference than other subsets.

The vertical veer and clockwise rotation of the wake in the
Northern Hemisphere due to the Coriolis force are known ef-
fects causing wake rotation and were confirmed by observa-
tions and LES studies of wind farms (Magnusson and Smed-
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Figure 24. Scan 553 (bimodal subset). (a) Intensity histogram of
the normalized data, (b) the ATS method search for the thresholds,
and (c) thresholded image.

man, 1994; Abkar and Porté-Agel, 2016; van der Laan and
Sørensen, 2017). The wind turbine AV7, closest to the li-
dar, is scanned nearly at the hub height, while the farther
wind turbines, AV10 and AV11, are scanned near the top-
tip height (Fig. 1). Due to the elevation and vertical veer,
the wind and wake direction discrepancy is the strongest for
AV10 and AV11. Nevertheless, we also observe a deflection
for the near wake of AV7, although the noticeable effects of
the Coriolis force are usually recorded for the downwind dis-
tance of 6D or higher. The additional discrepancy can be
explained by the yaw misalignment (Bromm et al., 2018),
reference measurement uncertainty (Gaumond et al., 2014),
and lidar installation’s imperfection. The wake direction vari-
ation for the bimodal subset (reference wind direction 140–
160◦) was possibly reduced because of the longer wakes and,
consequently, more precise estimation of the wake direction.
We do not have additional data to distinguish these factors
and leave it for a future study.

The outliers showing strong differences between wind and
wake direction highlight the lidar scans where the wake iden-
tification and characterization were hindered by noise or
strong irregularity of the wake. The wind–wake direction plot
can be used for diagnostic purposes to select the lidar scans
that require additional processing prior to the wake identifi-
cation.

6.4 Wake identification in the bimodal subset using the
ATS method

Bimodal subsets often have a distinctive double peak in the
intensity histogram (Fig. 24a). The highest histogram peak
corresponds to the free flow. The second peak forms due to a
long far wake from AV10 and subsequent merging of the two
wakes.

The double peak from the histogram translates into two lo-
cal minimums in the second derivative graph (Fig. 24b). The
occasions of two local maximums in the first derivative were

rarer in the regarded data set. Applying the ATS method to
both second derivative minimums provides a unique oppor-
tunity to estimate two thresholds T2 and T3 in addition to
the threshold T1 from the first derivative. The final thresh-
old values either separate the full wake from the free flow
((T1+ T2)/2) or extract only the most intense part of the
wake ((T1+ T3)/2) (Fig. 24c). The splitting point falls ap-
proximately at the downstream distance of 4–5D, marking a
transition from the near to far wake.

We ran the ATS method without subset-specific param-
eters, meaning that it always estimated only one threshold
for the wake identification. During the threshold estimation
(Sect. 4.1), the current algorithm selects the global maximum
or minimum of the first and second derivatives, respectively.
The free-flow histogram peak usually results in the global
maximum of the first derivative in our data set and does not
affect the performance of the ATS method. However, the lo-
cal minimum values of the second derivative appear to be
more sensitive to the intensity distribution. Relying on the
global minimum may lead to selecting a stricter threshold T3
(Fig. 24b). A strict threshold does not detect most of the far
wake, as shown in Fig. 24c.

A less strict threshold T2 could be chosen based on the
proximity to T1 as a control value. However, it would re-
quire an automatic check of whether another local minimum
can produce a valid threshold. The implementation posed a
challenge if the current algorithm ran without subset-specific
parameters and produced erroneous threshold estimation for
other scans. We refrained from using a more complex ap-
proach in the bimodal subset for now. The current ATS
method, therefore, overestimated the threshold and did not
identify the full wake in about 8 % of the bimodal cases.

7 Conclusions

We developed a set of methods to analyze lidar scans for
wake identification and characterization. During the study,
we focused on the procedures that would automatically pro-
cess a large data set and primarily rely on the information
contained in the lidar data or site characteristics such as li-
dar and wind turbine positions. To structure the analysis of
the results, we split our data set into several subsets, group-
ing the scans with similar characteristics. While the classi-
fication could be performed based on the wind direction or
visual inspection, we introduced entropy as a criterion to
reflect the flow characteristics. When calculated in the az-
imuthal or radial direction, Shannon entropy is sensitive to
the disturbances caused by wakes and allows scan classifi-
cation if the wind direction is unknown. The entropy values
also highlighted the lidar scans that were unsuitable for the
analysis due to the high number of non-physical measure-
ments caused by the crosswind effects. The classification by
entropy criteria introduced in the study was not yet used to
apply scan-specific corrections during the thresholding.
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An existing automatic thresholding method, the deficit-
based method as referred to in the study, thresholds the wind
speed data at 95 % of the free-flow wind speed and was ini-
tially suggested for more regular wind tunnel wakes. The
reliance on the actual wind speed hinders the deficit-based
method performance on the lidar data – a retrieval proce-
dure should be applied to the measured radial velocity to
reconstruct the wind field. Additionally, the fixed ratio of
95 % does not regard the quality of a lidar scan. To overcome
these disadvantages, we proposed an automatic thresholding
method for wake identification, the ATS method, based on
the method for whitecap detection on the ocean surface. The
method did not require knowledge of the actual wind speed
and could be applied to the radial velocity data. The prepara-
tory step applied normalization through scaling data to the
range of [0, 1], thus requiring the removal of outliers during
the lidar scan preprocessing.

The comparison to the manual thresholding showed that
the ATS method generally performed better than the deficit-
based method and on the par with manual wake identifi-
cation, which opened a possibility to use it when manual
thresholding is infeasible.

We also described an automatic method for the wake
centerline search from the thresholded data. The centerline
search could run without wind direction provided by making
a rough approximation of the wake direction. However, the
current algorithm processes only the first continuous shape,
limiting the application to the wind fields with little noise and
obstructing the wake identification.

We compared the centerline found from the thresholded
data to the Gaussian fit method. Although the Gaussian
method performance on the lidar scans was not as good as
on the LES data, the wake characterization in the near-wake
region showed an agreement between the methods with re-
spect to the manual centerline detection. At the same time,
the accuracy of both Gaussian and ATS-based methods de-
creased in the far-wake region, especially for noisy data or in
the case of wake–wake interaction. In the latter case, the ATS
method often identified two wakes as a single shape, affect-
ing the centerline search algorithm. The algorithm performs
better when the wake directly hits the downstream wind tur-
bine – the merged wakes can be considered one wake and
have a common centerline. When the wakes are forming side
by side and get close to each other, the threshold may need
additional adjustment until the identified wake shape is split.

The results showed that automatic thresholding from the
intensity histogram was viable for the wake identification
not only for the LES but also lidar data. We see a potential
to improve the wake characterization algorithm to detect the
centerline of the whole wake and plan to present it in future
studies.

Figure A1. Comparison of the intensity distribution in the origi-
nal (raw) data and image plotted using Python Matplotlib with dif-
ferent grayscale color maps.

Appendix A: Image data processing

An image has several properties which may affect the al-
gorithm performance compared to the use of the raw wind
speed data.

1. Image resolution in dots per inch (dpi). The resolution
of 72 dpi transforms an original data point into an image
pixel as one-to-one approximately. Higher resolution in-
creases the number of pixels per data point. Lower res-
olution merges several data points into one pixel.

2. Color map. The ATS method relies on the image
grayscale intensity as an input. A non-grayscale im-
age can be desaturated, but the color map of the orig-
inal image then should be sequential rather than per-
ceptually uniform or diverging. For the latter, the con-
version to the grayscale gradually reduces the contrast
between high and low values, making the wake identifi-
cation impossible. Additionally, several grayscale color
maps exist. Depending on the color map, the intensity
histogram of an image may shift to the left or right com-
pared to the raw data. We observed this effect when the
“Greys” color map of the Python Matplotlib (Caswell
et al., 2021) library was used. This color map empha-
sizes light tones; as a result, the intensity histogram peak
slightly shifts to the right, although the general shape of
the peak is preserved (Fig. A1). The color maps “bi-
nary” or “gray” from the same library return the result
that follows the original data.

3. Image intensity. As processed by Python, the values are
rounded up to second digits, and some are assigned to
different bins compared to the original data. The his-
togram and CDF have stronger oscillations than the raw
data (Fig. A1) and require smoothing before the appli-
cation of the ATS method.

Running an automated threshold detection on the image
raises another question: how much does the image resolution
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Figure A2. (a, b) Normalized wind speed data with far wakes high-
lighted and (c, d) corresponding grayscale intensity histograms of
the lidar scan 551.

affect the identification accuracy compared to the raw data.
We apply the ATS algorithm to raw and image data under
different resolutions: 72, 150, and 300 dpi. We observe little
influence from the image resolution, except for a few LES
cases, where the low resolution of 72 dpi affected the thresh-
old detection. In those cases, the detected threshold is lower
than in fine-resolution cases, and, therefore, a larger shape
is identified as a wake. The image resolution of 150 dpi and
above agrees well with the wake identification from the raw
data. The general shape of an image intensity histogram does
not depend on the image resolution. The image resolution of
150 dpi or higher is recommended for use, although 72 dpi
also produces good detection results.

In the case of lidar measurements, the wake identification
from the image data can be performed in two ways: by plot-
ting the original data in either polar or Cartesian coordinates.
The wake identification from the polar coordinate image does
not bear a notable difference from the raw data, apart from
the aforementioned specifics of the image resolution and in-
tensity. However, if the lidar data are plotted in the Cartesian
coordinates as a scanned sector, the lidar close and far ranges
get distorted, affecting the percentage of the area covered by
the wakes and, consequently, the histogram shape.

The effect is most pronounced when the wind blows to-
wards the lidar. As described in the subset overview in
Sect. 3.2, this wind direction and wake behavior result in
the bimodal intensity histogram. The leftmost high peak con-
tains points from the free flow, while the second low peak
accumulates points from the far wake. The second peak gets

smoothed when the input data are changed from the normal-
ized wind speed to the grayscale image plotted in Cartesian
coordinates. As can be seen from the comparison (Fig. A2),
the lower peak corresponds to the data in the lidar’s close
range. After the conversion to the Cartesian coordinates, the
close range area shrinks significantly, while the free-flow
area on the far lidar range enlarges. The transition between
coordinate systems changes the balance between wake and
free-flow pixels and virtually increases the share of the latter.

Code and data availability. The Python code for wake
identification using the ATS method, centerline detection
and a sample lidar data set are available upon request at
https://doi.org/10.5281/zenodo.5888236 (Krutova, 2022b).

Video supplement. The videos https://doi.org/10.5446/54055
(Krutova, 2021) and https://doi.org/10.5446/56710 (Krutova,
2022a) demonstrates wake identification results for all lidar scans
in the data set. No post-processing is performed after running the
ATS algorithm.
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