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Abstract. Wind turbines are complex multidisciplinary systems that are challenging to design because of the
tightly coupled interactions between different subsystems. Computational modeling attempts to resolve these
couplings so we can efficiently explore new wind turbine systems early in the design process. Low-fidelity
models are computationally efficient but make assumptions and simplifications that limit the accuracy of design
studies, whereas high-fidelity models capture more of the actual physics but with increased computational cost.
This paper details the use of multifidelity methods for optimizing wind turbine designs by using information
from both low- and high-fidelity models to find an optimal solution at reduced cost. Specifically, a trust-region
approach is used with a novel corrective function built from a nonlinear surrogate model. We find that for a
diverse set of design problems — with examples given in rotor blade geometry design, wind turbine controller
design, and wind power plant layout optimization — the multifidelity method finds the optimal design using 38 %—
58 % of the computational cost of the high-fidelity-only optimization. The success of the multifidelity method in
disparate applications suggests that it could be more broadly applied to other wind energy or otherwise generic

applications.

1 Introduction

Wind turbines are complex systems, where aerodynamic,
structural, acoustic, controls, manufacturing, logistic, and
technoeconomic considerations are all design drivers. To de-
sign the optimal wind energy system, multidisciplinary de-
sign optimization (MDO) approaches help capture the inter-
connected trade-offs among these disciplines while dramat-
ically reducing the time and cost of design processes com-
pared to sequential single-discipline design approaches. The
past two decades have seen the development of a variety
of MDO models for wind turbine design, such as Giguere
and Selig (2000), Fuglsang and Madsen (1999), Ning et al.
(2014), Ashuri et al. (2014), Fischer et al. (2014), Pourra-
jabian et al. (2016), Ning and Petch (2016), Bortolotti et al.
(2016), Barlas et al. (2021), among many others.

Choosing the correct fidelity level of analyses used in the
MDO process is a crucial decision for the designer, who must
meet the need of reasonable accuracy with tractable compu-
tational costs. Although lower-fidelity tools offer the possi-

bility to explore a broad solution space and investigate un-
common design choices thanks to the lower computational
costs, they often run the risk of oversimplifying the design
problem, which could lead to solutions that in reality might
underperform or violate unresolved constraints. In contrast,
higher-fidelity models are usually incompatible with numeri-
cal optimizations that rely on hundreds or thousands of func-
tion evaluations. Higher computational costs can therefore be
tolerated only when doing spot checks and potential design
changes are small.

During the design process, model fidelity usually increases
from low to high as more configuration and sizing choices
are finalized. Low-fidelity models are usually applied dur-
ing the early, conceptual stages of design, when many dif-
ferent options, architectures, goals, constraints, etc. are be-
ing considered. Because designing these systems using only
high-fidelity tools would lead to impossibly long develop-
ment cycles caused by the computational expense, designers
generally start with low-fidelity tools and increase simulation
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fidelity as the design cycle progresses. This approach usually
works fairly well in practice, but it requires frequent interven-
tions and the expertise of the designers. More importantly, it
still runs the risk of leading to suboptimal design solutions
when the designs are evaluated using more accurate models.

An alternative pathway consists of adopting formal multi-
fidelity design optimization approaches. These methods cap-
ture realistic physical trends while reducing the computa-
tional cost compared to optimizing using only high-fidelity
methods. For applications where single-fidelity design and
model iterations work well, multifidelity approaches simply
make the design process more efficient by combining infor-
mation from the low- and high-fidelity models.

Multifidelity optimization methods have a long his-
tory across multiple fields, including applied mathematics
(Kennedy and O’Hagan, 2000; Forrester et al., 2007; Pe-
herstorfer et al., 2018), aerospace engineering (Robinson
et al., 2008; March and Willcox, 2012), and wind energy.
Specifically for wind energy, multifidelity methods have
been used for aeroelastic blade design (Maki et al., 2012;
McWilliam et al., 2017; Abdallah et al., 2019), wind plant
layout optimization (Rahbari et al., 2014; Réthoré et al.,
2014), and wake steering uncertainty quantification (Quick
et al., 2019).

An important subset of multifidelity optimization meth-
ods involves surrogate-based optimization (SBO), which is
examined within this paper. In SBO, an approximative or
reduced-order model is constructed and optimization is per-
formed in that space instead of directly querying high-fidelity
models, as detailed by Forrester and Keane (2009). Koziel
and Leifsson (2013) give an overview of SBO providing
guidance for how best to implement it, whereas other work
has focused on efficient global optimization using surrogates
(Jones et al., 1998; Viana et al., 2013). The present work fur-
ther builds upon these efforts by applying multifidelity opti-
mization methods using nonlinear surrogate models for wind
energy design problems.

Delving deeper into the literature on multifidelity opti-
mization within wind energy, Maki et al. (2012) use a series
of nested and sequential optimizations along with metamod-
els to minimize the cost of energy for a given turbine design
considering multiple fidelities. Réthoré et al. (2014) intro-
duce TOPFARM, a tool for multifidelity layout optimiza-
tion of wind farms, and they demonstrate sequential opti-
mizations at increasing levels of fidelity to show how opti-
mal results from one model can speed up the design process
for a higher fidelity model. McWilliam et al. (2017) used an
approximation model management framework (AMMEF) ap-
proach to perform multifidelity aerostructural optimization
of a wind turbine blade. That work established AMMEF as
a reasonable tool to enable multifidelity blade design, but it
showed that the additional complexity of the AMMEF algo-
rithm led to slower overall convergence than high-fidelity-
only optimization. This shows that the efficacy of multifi-
delity methods for wind turbine design is both method and
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model dependent, and there is room for improvement for de-
veloping a method that works more generally without expert
intervention.

Building on previous work, questions remain about how
to best use multifidelity methods for different wind energy
applications. For example, depending on the relative compu-
tational cost of the low- and high-fidelity models, different
approaches might be more effective. Additionally, the opti-
mization problem size directly impacts how effective certain
methods are. We address these questions and examine how
multifidelity methods can achieve high-performing designs
at lower computational cost.

In this paper, we present best practices for using multifi-
delity optimization methods for wind energy design applica-
tions. We do so by first detailing a trust-region-based multi-
fidelity method with a novel correction function built on top
of nonlinear surrogate models. We then formulate and solve
three optimization problems: aerodynamic blade design for
the IEA 15 MW reference wind turbine; a controls optimiza-
tion using both linearized and nonlinear state—space mod-
els; and a wind power plant layout problem. The problems
studied here were selected as they examine different disci-
plines within the larger wind plant design problem and serve
as meaningful representative cases to benchmark the multi-
fidelity optimization method against commonly used single-
fidelity methods. All tools and application cases studied here
are open source, allowing researchers to compare their meth-
ods, applications, and results directly with this paper. By
solving disparate optimization problems involving different
simulation models, we demonstrate how multifidelity meth-
ods can be effectively used for the design of complex wind
energy systems.

Section 2 introduces the trust-region multifidelity opti-
mization method we have implemented. Then Sect. 3 com-
pares the computational cost and design performance of the
multifidelity optimization method as compared to both low-
and high-fidelity optimization. Sections 3.1, 3.2, and 3.3 ex-
amine case studies concerning aerodynamic blade design,
controller design, and power plant layout, respectively. Each
case study section details the design problem, approach,
and tools used, which differ for each study. Lastly, Sect. 4
presents key findings and takeaways, including which prob-
lem types within wind energy are best suited for multifidelity
optimization.

2 Multifidelity optimization methodology

2.1 Multifidelity methods

In an optimization problem, we seek the minimum of a func-
tion within a design space subject to arbitrary constraints.
The optimizer selects design variable values, evaluates com-
putational models at that design point to obtain objective
and constraint values, and then repeats until convergence
is reached. In multifidelity optimization, multiple different
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Figure 1. XDSM diagram of the trust-region method, specifically showing the top-level and inner-level optimizations.

types of computational models are queried and information
from each model is combined to determine where to sam-
ple the design space next. A comprehensive survey of mul-
tifidelity methods is presented by Peherstorfer et al. (2018),
where various approaches are categorized as one of adaption,
fusion, or filtering, with guidelines for matching methods to
application. In this work, we focus on the multifidelity opti-
mization method using the adaptation model management
strategy and simplified physics-based low-fidelity models.
We selected this model management strategy because it is
nonintrusive and straightforward to implement in a general
manner.

Here we loosely define fidelity as a qualitative measure of
the accuracy of the underlying physical equations being mod-
eled compared to the real world. Related to fidelity is the con-
cept of resolution, or how finely discretized a domain or set
of inputs might be.

2.2 Trust-region optimization method

We use a trust-region approach to perform multifidelity opti-
mization. This method is well studied in the fields of applied
mathematics, computational sciences, and aerospace engi-
neering (Alexandrov et al., 1998, 2001; March and Willcox,
2012). It has also been used in other wind energy research,
though those studies focused on different applications (Park
and Law, 2015; Yu et al., 2018) or used simplified corrective
functions (McWilliam et al., 2017).

The trust-region method used in this work is shown in Al-
gorithm 1 and is adapted from March and Willcox (2012).
The method has been modified to relax the mathematical re-
quirements for linearity on the corrective function, which al-
lows for a better representation of nonlinear representations
between fidelities. Additionally, constraint values are han-
dled in the same way as the objective function. Specifically,
individual surrogate models are created for each function of
interest.
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Algorithm 1 An updated multifidelity trust-region algorithm
adapted from March and Willcox (2012).

I: k<0
2: while Ay > TOL do {check for convergence when trust region
size, A, is smaller than threshold}
3: s < argmin feorr (X +Sk) 3 ISk || < Ag {compute step, s,
by solving trust region subproblem with design vector, X}

4:  store value of fhigh(X+8k) {run high-fidelity function, if not

evaluated previously}
JShigh (Xk)— fhigh (X +8k)

5 pk <— Feon R0~ Feom (XX F51) {ratio of actual improvement to
predicted improvement, p}
X; +sg, ifpp >0
6: Xpyp < ke Sk Pk ) {accept or reject the trial
Xk otherwise
point according to py }
min{y1Ar, Amax}, if pp >
7o Apyp < 1 Ak Amax} ] Pke=1 , {update trust
Yok if pr <7
region size with expansion and contraction parameters,
v &yo.}

8. update surrogate-corrected low-fidelity model feorr,k+1(X)
9: end while

The trust-region method progression is shown in Fig. 1
using the extended design structure matrix (XDSM) graph-
ical data flow format from Lambe and Martins (2012). The
XDSM diagram format shows analysis and optimization pro-
cesses as on-diagonal blocks in green and blue, respectively.
Off-diagonal gray boxes show which data is passed between
those process blocks and they are connected by gray lines to
show data flow. Following this diagram for the trust-region
method, the low- and high-fidelity models are first called at
a set of initial design points to establish the corrective func-
tion between the fidelities. The corrected function is defined
as fcorrected = flow—ﬁdelity + f; surrogate - Then, a subset of the
design space is established where the corrected low-fidelity
model is trusted. Local optimization within this region is then
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Figure 2. Trust-region optimization progression in the 1D example. In the Oth iteration (a), the initial trust region does not contain the entire
design space. In the 2nd iteration (b), the trust region has grown as the local optimizer found the best answer at the bounds of the trust region.
In the 11th iteration (c), the trust region narrows around the local minima.
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Figure 3. Both the function and gradient values of the multifidelity
approximation converge to the high-fidelity values for the 1D ex-
ample.

performed, and the high-fidelity model is queried at the lo-
cally optimal point. Based on the actual reduction in the ob-
jective value compared to the expected reduction, the trust
region is either expanded or contracted. The local optimiza-
tion is then repeated within this new trust region, and the
process is repeated.

A simple 1D example of how the trust region converges
is shown in Fig. 2, which highlights how the corrected low-
fidelity model is used to approximate the high-fidelity model.
The trust region for local optimization is shown with a gray
bar. Based on the criteria defined in step 4 of Algorithm 1,
the trust region expands if the newly queried high-fidelity
point does not decrease optimality by the expected amount
and contracts if the value decrease threshold is met. We also
show how the function and gradient values of the multifi-
delity approximation converge to the high-fidelity values for
the same 1D example in Fig. 3.

2.3 Corrective function between low- and high-fidelity
models

Within the trust-region method, we need to construct an ap-
proximation for the high-fidelity model using the low-fidelity
model and a corrective function. This approximation is de-
vised to be interpolative, which means that the corrected
low-fidelity model is equal to the high-fidelity model at the
points where we have high-fidelity data. This condition is not
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strictly necessary but leads to better-posed multifidelity prob-
lems. In previous work in wind energy (McWilliam et al.,
2017), this corrective function was simply an additive and/or
multiplicative factor, leading to a first-order linear correla-
tion between the models. When dealing with nonlinear de-
sign spaces, it makes sense to use a more complex corrective
function that can account for nonlinear differences between
the fidelity levels because there is no assurance that the trust
region is small enough to support a linear approximation of
the high-fidelity space.

In this work, we use a nonlinear surrogate model to
construct the corrective function as feorrected = flow-fidelity +
Ssurrogate> Which allows us to capture arbitrary correlations
between the models. This nonlinear surrogate formulation
is especially useful when we do not have an a priori sim-
ple understanding of the correlation between the different fi-
delity levels, which is common in physics-based modeling.
Recent advances in surrogate modeling have increased the
accuracy for a given model when using a fixed number of
data points while simultaneously decreasing computational
cost. One example is the Kriging partial least squares (KPLS)
method (Bouhlel et al., 2016), which is based on the Krig-
ing method (Cressie, 1988). Typically, as problem dimen-
sionality increases, the cost of training the surrogate model
increases as well; however, KPLS has much lower initializa-
tion and training costs than ordinary Kriging due to its in-
ternal dimension reduction, leading to a lower computational
cost when training the model (Bouhlel et al., 2016). Addi-
tionally, the gain in surrogate accuracy is generally worth the
increased cost compared to using a simple piecewise linear
fit.

A detailed explanation of KPLS is provided by Bouhlel
et al. (2016), including how training cost varies with di-
mensionality and number of training points. Across multi-
ple benchmarks presented in that paper, KPLS obtains bet-
ter accuracy in less central processing unit (CPU) time than
Kriging. The cost of training the surrogate increases sublin-
early as both dimensionality and number of training points
increase. These gains are afforded by the partial least squares
method that projects the relationships between the output and
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1.0

input variables into a new space formed by the principal com-
ponents (Bouhlel et al., 2016). The number of high-fidelity
function evaluations needed to obtain reasonable accuracy is
problem dependent and largely based on the nonlinearity of
the design space.

Figure 4 shows the impact of the corrective function on
the corrected low-fidelity model for a canonical 1D prob-
lem and relatively few data points. Here, we plot the low-
fidelity, high-fidelity, corrected low-fidelity, and corrective
function all on the same plots. Each case was trained us-
ing the same number and location of model samples. Fig-
ure 4a shows that using a simple piecewise linear fit achieves
reasonable results, but it does not capture the high-fidelity
function well. Sensibly, increasing the order of the corrective
function might produce a better result, but Fig. 4b shows that
a piecewise cubic fit leads to a worse fit, far from the data
points. Lastly, Fig. 4c shows how a KPLS-based corrective
function does very well at capturing the high-fidelity model
trends in between the data points.
Although the trends shown in these figures suggest that
KPLS is the best corrective function, the performance and
accuracy of these corrections is entirely problem dependent.
For other problems, a different surrogate model may be more
advantageous. That said, these advanced surrogate model-
ing techniques generally capture multidimensional nonlin-
ear correlations much better than more simplistic functions,
especially when using a small number of high-fidelity data
points. Additionally, if we wanted to obtain a better fit with
the high-fidelity model, we could use gradient information
at each data point to ensure that the corrected low-fidelity
model has the same gradient values at those points. For
this work, however, we purposefully do not assume that we
have any high-fidelity gradient information, which makes the
methods presented here applicable to a wider range of real-
world tools and applications. For the following case studies,
we use a KPLS-based corrective function with the number of
sampling points depending on the application. The KPLS im-
plementation is taken from the open-source surrogate mod-
eling toolbox (SMT) presented by Bouhlel et al. (2019) and
available at github.com/SMTorg/smt.
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Figure 4. Corrective function formulation with piecewise linear reasonably approximating the higher-fidelity model (a), piecewise cubic in-
troducing unwanted oscillations in the approximation (b), and KPLS-based corrective function matching the high-fidelity most accurately (c).

Regarding our selected surrogate model as the correc-
tive function, we must note that the multifidelity optimum
may not necessarily exactly match the high-fidelity optimum.
Whereas prior work focused on producing a provably conver-

gent trust-region approach as detailed by March and Willcox

3 Case studies

(2012), we do not impose that requirement in this work. This
allows for more freedom in the type of corrective function
used and is predicated on the basis that the multifidelity opti-
mum is close to the high-fidelity optimum in an engineering
sense instead of a numerical one. The following case studies
show differences between the optimal results in some cases
and are commented on in more detail within their respective
sections.

We now study the efficacy of the multifidelity trust-region
method on three different case studies representing com-
mon optimization problems within wind energy. In order, we
examine aerodynamic blade design, controller design, and
power plant layout design. Within each subsection, we first
detail the computational models used, the optimization prob-
lem formulation, and then show the multifidelity method’s
results. We also perform single-fidelity optimizations using
each of the low- and high-fidelity models to have a basis of
comparison for the multifidelity results. These single-fidelity
optimizations are formulated with the same design variables,
constraints, and objectives as in the multifidelity approach. In
each case, the single-fidelity optimizations are solved using
the gradient-based SNOPT (Sparse Nonlinear OPTimizer,
Stanford Business Software, Inc) method (Gill et al., 2005)
with finite differencing used to obtain the gradients.

The three case studies show problems with 7, 1, and 14 de-
sign variables. This is intended to showcase the multifidelity
method’s scaling across optimization problems of different
sizes. We use the KPLS surrogate as our correction method,
which scales well as the problem dimensionality increases
(Bouhlel et al., 2016), though the dimensionality of problems

we can reasonably solve is limited by the finite-differencing
process used to obtain the gradients. The effects of these
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methods on the case study results are discussed in detail be-
low.

3.1 Blade design optimization

This case study focuses on creating an aerodynamically op-
timal blade, a common and challenging problem in wind tur-
bine design. Blades are commonly designed using relatively
low-fidelity aerodynamic models, such as steady-state blade-
element momentum theory (BEMT), which does not cap-
ture the effects that unsteady 3D flows have on blade perfor-
mance. Using multifidelity optimization methods for blade
design would allow for more accurate aerodynamic consid-
erations earlier in the design cycle.

3.1.1  Model descriptions and tools used

The multifidelity optimization method is implemented in the
Wind Energy with Integrated Servo-control (WEIS) frame-
work (NREL, 2021c). WEIS is a new design tool that en-
ables multifidelity wind turbine design by integrating the
capabilities of multiple tools from the National Renewable
Energy Laboratory (NREL). Of the numerous WEIS com-
ponent models, the ones active in the first two case stud-
ies in this paper include the systems engineering frame-
work Wind-Plant Integrated System Design & Engineering
Model (WISDEM®) (NREL, 2021d), the aeroservoelastic
solver OpenFAST (NREL, 2021b), the auto-tuning Refer-
ence OpenSource Controller (ROSCO) (NREL, 2020), the
wind solver TurbSim (Jonkman, 2009), as well as several
pre- and post-processing routines. The primary goal of WEIS
is to provide a framework for the controller codesign of float-
ing wind turbines alongside turbine and platform geometry at
multiple fidelity levels. In this paper, we do not include float-
ing dynamics, because incorporating that degree of complex-
ity into the other case studies is the focus of future work. The
next subsections present more details on the models of WEIS
adopted in this work and the formulation of the optimization
problem.

Within WEIS, users have the option to individually acti-
vate WISDEM and OpenFAST, with additional customiza-
tion available for all of the various submodules. In this way,
numerous simulation pathways are available, creating a spec-
trum of fidelity options.

WISDEM is built using OpenMDAO (Gray et al., 2019),
the open-source Python-based optimization framework de-
veloped at the National Aeronautics and Space Administra-
tion’s Glenn Research Center. WISDEM models the wind
turbine as an assembly of blocks, where each block models
a specific component of the machine. The blocks are ordered
following the load path — namely from the blades toward the
tower — and once the machine is sized, cost models are called
to compute the levelized cost of energy. WISDEM computes
only steady-state performance and loads and is therefore con-
sidered a lower-fidelity simulation tool.

Wind Energ. Sci., 7, 991-1006, 2022

Wind turbine aerodynamics in WISDEM are computed
with the CCBlade module, which implements the formula-
tion of the BEMT presented in Ning (2014), with hub and
tip losses accounted for. The RotorSE module in WISDEM
combines the CCBlade-computed aerodynamic loads with a
1D element beam solver, based on Frame3DD (Gavin, 2014),
which accounts for centrifugal stiffening but otherwise as-
sumes a rigid rotor with no aeroelastic iteration.

OpenFAST is a multiphysics, multifidelity tool for simu-
lating the coupled dynamic response of wind turbines in the
time domain. It is well represented in the literature and has
undergone numerous validation studies. In this work, Open-
FAST serves as the high-fidelity level of the multifidelity op-
timization approach.

The aerodynamics in OpenFAST are handled by the mod-
ule AeroDyn15, whose theory is described in Moriarty and
Hansen (2005). AeroDynl5 implements various permuta-
tions of the BEMT theory and, since recently, a free-wake
vortex aerodynamic model (Shaler et al., 2020). Among the
unsteady effects, the airfoil aerodynamics include the On-
era stall model. Full aeroelastic coupling is implemented in
OpenFAST by combining the aerodynamic loads from Aero-
Dyn with the blade structural dynamics simulated by Elas-
toDyn using Rayleigh-Ritz shape functions. The user can
model the wind as a steady-state flow or via turbulent wind
grids with the affiliated TurbSim (Jonkman, 2009) model.
OpenFAST also includes two aerodynamic models of the
tower — namely the Powles and the Eames models — and
couples the turbine elastic behavior with the rotor and tower
aerodynamics.

3.1.2 Optimization problem formulation

To study the efficacy of the trust region multifidelity method,
we set up a simple blade design optimization case study us-
ing the IEA 15 MW reference wind turbine (Gaertner et al.,
2020) as the baseline. This reference turbine has a rotor di-
ameter of 242.2m and a hub height of 150 m. The objec-
tive of the study is to maximize the electrical power of the
generator at a given wind speed, 9ms~!, by varying the
blade twist and chord. Notably, the problem focuses only on
rotor aerodynamic performance and does not consider any
structural constraints or subsystem design constraints. For
the low-fidelity model, we use the steady-state BEMT solver
CCBlade, as described in Sect. 3.1.1. For the high-fidelity
model, we use the unsteady BEMT solver within AeroDyn15
with the dynamic generator torque controller active. The in-
flow includes turbulence, and flapwise and edgewise blade
flexibility is accounted for.

The blade and twist profiles along the blade are controlled
by continuous spline interpolations. Each profile is indepen-
dently parameterized using six control points, with the first
two points fixed for both twist and chord and the outermost
point fixed for chord. The twist control point design vari-
ables act as an adder on top of the original distribution, and
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J. Jasa et al.: Effectively using multifidelity optimization for wind turbine design

20

—— Initial

—— Optimized in CCBlade

15 —— Optimized in AeroDyn

—— Optimized using multifidelity

Twist [°]
-
o

v

0.0 02 04 06 038 1.0
Blade Nondimensional Span [-]

(a) Twist distributions along the blade span

Figure 5. Baseline and optimized chord and twist distributions.

997

w

IS

w

Chord [m]

N

— Initial

—— Optimized in CCBlade

—— Optimized in AeroDyn

—— Optimized using multifidelity

-

0.0 02 04 06 0.8 1.0
Blade Nondimensional Span [-]

(b) Chord distributions along the blade span

Table 1. Optimization problem formulation for the unconstrained power maximization case.

Category Name Quantity Lower Upper Units
bound bound
Objective Power 1 - - MW
Design variables  Twist adder 4 —1432 1432 °
Chord multiplier 3 0.5 1.50 -

the chord control point design variables act as a multiplier.
This results in seven design variables, as shown in Table 1.

To fairly evaluate the performance of the multifidelity
method, we conducted three different blade chord and twist
design optimizations:

1. design optimization using only the low-fidelity model,
CCBlade;

2. design optimization using only the high-fidelity model,
AeroDynl5;

3. design optimization using the trust-region multifidelity
method with the KPLS corrective function.

As a last step, we cross-checked the designs by computing
the performance for each of the three blade shapes in both
CCBlade and AeroDyn15.

3.1.3 Optimization results

The results of the single-fidelity and multifidelity optimiza-
tions are reported in Table 2. The optimization of the chord
and twist in CCBlade achieves the highest power of the three
designs when evaluated by CCBlade, but the lowest of the
three in AeroDynl15. On the contrary, the single-fidelity op-
timization in AeroDyn15 and the multifidelity optimization
successfully identify the configuration generating the high-
est power in the high-fidelity model, with only small numer-
ical differences in performance between them. This result is
even more compelling when considering the computational
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cost of the three optimizations. The low-fidelity-only opti-
mization completed in just under 9 CPU hours with 360 calls
to CCBlade. The high-fidelity-only optimization took nearly
three times as long, with more than 1511 function calls to
AeroDynl5 due to the noisy gradients that are common in
unsteady turbulent simulations. In contrast, the multifidelity
optimization made only 63 calls to AeroDynl5 but over
2500 calls to CCBlade, with a net CPU time of 10.61 h, only
19 % higher than the low-fidelity-only optimization.

Figure 5 shows the design solutions identified in the
three optimizations. The single-fidelity optimization with
CCBlade increases the power generation by simultaneously
decreasing the twist and chord, effectively increasing the an-
gles of attack along the blade span and narrowing the margin
to stall. Both the single-fidelity optimization in AeroDyn15
and the multifidelity optimization choose instead the oppo-
site route and increase the chord and twist, effectively reduc-
ing the angles of attack along the blade span. The different
design trends can be explained by the unsteadiness of the
operational angles of attack at high fidelity caused by the
turbulent wind. Such oscillations are less problematic with
a higher twist and lower angles of attack, whereas when the
blade operates at a lower twist and higher angles of attack,
the turbulent wind frequently pushes the blade close to or
into stall, increasing drag and decreasing power.

Although the multi- and high-fidelity optimal objective
values are close, within 0.2 % of each other, the optimal de-
signs differ greatly. This is because the power-maximization
problem results in a quite flat design space where multi-

Wind Energ. Sci., 7, 991-1006, 2022




998

Table 2. Optimal results for aerodynamic blade power maximization.
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Performance evaluation

Design Lo-ficalls Hi-ficalls CPUtime Lo-fipower Hi-fi power
- - h kW kW
Low fidelity 360 - 8.91 9683.5 10733
High fidelity - 1511 23.97 9646.1 11043
Multifidelity 2564 63 10.61 9412.5 11023

ple different designs produce close to the same objective
value. Given more constraints, a more complex set of de-
sign variables, or a different objective function, the flatness
and multimodality of the design space would change. For
this case study, the low- and high-fidelity models have differ-
ently shaped design spaces with different optima. Addition-
ally, because the high-fidelity optimum was obtained using
a gradient-based method, the optimal answer is closer to the
initial design point. We see that the trust-region multifidelity
approach searches the design space more to find its optimal
answer.

In this case study, the optimal low- and high-fidelity de-
signs differ due to the models capturing different physics.
The rotor design space is relatively flat, as discussed in
McWilliam et al. (2021), though adding additional realis-
tic constraints and design variables alters the design space
to be better posed, as discussed in Bortolotti et al. (2020).
The blade design case study presented showcases the multi-
fidelity method well, by focusing more on the different opti-
mization results than the underlying physical models.

3.2 Controls optimization

Optimal turbine control, or specifically, determining how to
vary the pitch and yaw of the turbine for optimal performance
and longevity, is a complex and commonly studied field.
To demonstrate multifidelity optimization on a wind turbine
control problem, we tune the control bandwidth, wpc, of the
above-rated pitch controller to minimize tower fatigue loads
with a constraint on the maximum generator speed. When
the generator speed exceeds some limit, the supervisory con-
troller triggers a shutdown procedure, which reduces the net
annual energy production (AEP). Tower loads drive the tower
design and its capital expenditures. The pitch control band-
width determines the proportional-integral (PI) gains of the
blade pitch controller. Generally, lower bandwidths reduce
tower loads but increase generator speed transients, so we
expect the results of this optimization procedure to seek the
lowest bandwidth, such that the generator speed constraint is
not violated.
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Figure 6. High- and low-fidelity control models. The high-fidelity
model runs OpenFAST with the ROSCO controller and a full-
field (FF) turbulent wind input. The low-fidelity models are de-
scribed in Egs. (1)—(3) and use a rotor-averaged wind speed as the
input. Both models output time series that can be processed to de-
rive operational and load measures.

3.2.1 Model descriptions and tools used

We simulate both a linearized and nonlinear version of the
IEA 15MW wind turbine with the University of Maine’s
VolturnUS semisubmersible (Allen et al., 2020) in extreme
turbulence with a mean wind speed of 16 ms~!. For the non-
linear simulation, we use OpenFAST with the ROSCO con-
troller (NREL, 2020) and a full-field turbulent wind input
generated using TurbSim. When this turbulent wind input is
sampled by the blades, it results in 3P (per revolution) oscil-
lating loads on the tower. The nonlinear OpenFAST model
is run for 800 simulation seconds, which requires approxi-
mately 3 min on a standard laptop computer, and represents
the high-fidelity model for this case study.

To serve as the low-fidelity model, we simulate a lin-
earized turbine and control model, which requires less than
3 s on a standard laptop computer. To create these low-fidelity
models, we run OpenFAST in its linear mode, which cre-
ates linearized snapshots of the turbine at several azimuth
positions for a fixed wind speed (Jonkman and Jonkman,
2016). These linear snapshots are averaged using the multi-
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blade coordinate transform (Bir, 2010) to create a linear time-
invariant system relative to the turbine’s operating points:

X = Aup)x +Bup) [ —uop (up)], )]
Y — Yop n) = C(up)x +D(up) [u —uop (up)], ()

where u, x, and y are the inputs, states, and outputs of the lin-
earized turbine, respectively. The input and output operating
points, uop and y,, respectively, and the state-space matri-
ces A, B, C, and D are determined during the OpenFAST lin-
earization process. When multiple wind speeds, uy, are lin-
earized, we construct a set of state-space systems, which can
be interpolated based on the mean wind speed, uj,, so the sys-
tem matrices and operating points are a function of . In this
study, we focus on above-rated control, and we linearize the
turbine model at mean wind speeds of 14, 16, and 18 m s~ L

For the pitch control input, which is part of u, we connect
the output of a linearized ROSCO controller:

O =kp (wg - a)rat) +ki / (a)g - CUrat) + kﬂoat/xIMUy 3)

where kp and k; are the PI gains of the pitch controller, and
kfioat = —9.49 s is the floating feedback gain. The PI gains
are a function of the bandwidth, wpc, and turbine parameters
(Abbas et al., 2022). Generally, as the design variable wpc
increases, the PI gains also increase.

The inputs to the controller are the generator speed, wg,
and an acceleration measurement from the nacelle inertial
measurement unit (IMU) in the nodding direction, Xmvu;
these are in y. When the linear turbine and control models
are connected, we have a set of closed-loop linear turbine
models that depend on the wind speed.

Instead of a full-field turbulent wind input, as in the high-
fidelity model, the rotor average wind speed is used to simu-
late the linear model. The mean rotor average wind speed is
used to determine the single closed-loop linear model from
the set by linearly interpolating the state-space matrices and
operating points. We then integrate the linear system over
time, which results in a time series that is similar to the non-
linear model (Fig. 7). Nonlinear aerodynamic and hydrody-
namic effects are not captured in the linear state-space model,
but they are part of the operating points. In the linear simula-
tions, a constant operating point is chosen for the whole 800 s
simulation (with the first 200 s typically omitted as startup
transients).

Both the linear and nonlinear turbine outputs can be pro-
cessed to compute the generator speed maxima (constraint)
and the damage equivalent loading (DELs) on the tower (ob-
jective), as shown in Fig. 8. In general, trends, or changes,
in the linear and nonlinear models are in agreement and as
expected: increasing the pitch control bandwidth increases
tower DELs and platform motion, while decreasing genera-
tor speed transients. The linear models do not capture the 3P
harmonic loading on the tower, which accounts for most of
the difference in the tower base fore—aft DELs between the
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Table 3. Optimization problem formulation for the controls opti-
mization case.

Category Name Lower Upper Units
bound  bound
Objective Tower base moment DEL - - -
Variables wpC 0.1 04 -
Constraints  Generator speed - 9 rpm
Platform pitch - 5 °

two models. Finally, the magnitude of the optimization con-
straints (maximum generator speed and platform pitch angle)
are more accurately sampled from the nonlinear simulations;
therefore, these constraints are active only in the nonlinear
simulations, which creates a good stress test for the multifi-
delity optimization, where some constraints are violated only
in the high-fidelity simulation.

3.2.2 Optimization problem formulation

The objective, design variables, and constraints for the con-
trols optimization problems are shown in Table 3.

3.2.3 Optimization results

As in the previous case study, we performed single-fidelity
optimization using both the low- and high-fidelity models
and compared the results to the multifidelity trust-region
method. Table 4 contains the optimal wpc values and the
corresponding functions of interest from each optimization.
Using the high-fidelity optimization to evaluate true perfor-
mance, the low-fidelity-only optimization finds an infeasible
solution that violates the generator speed constraint. Revis-
iting Fig. 8, this is expected due to the linearized model not
resolving the same magnitude or trends found in the nonlin-
ear model. Although the optimal pitch control bandwidths in
the high- and multifidelity optimizations differ, the actual dif-
ference in objective value is relatively small, approximately
0.03 %, and the constraints are satisfied in both cases.

Table 4 also shows that the multifidelity method finds
an optimal answer using 62 % less computational expense
than the high-fidelity optimization. The one-time cost of lin-
earizing the model across three wind speeds is included for
both the low- and multifidelity computational cost columns.
Specifically, this upfront cost requires 944 core-seconds, but
then each function call to the low-fidelity model is quite low,
at 0.55 core-seconds. Each function call to the high-fidelity
model requires 248 core-seconds.

3.3 Wind power plant layout optimization

Wind power plant layout optimization is the practice of plac-
ing wind turbines within a plant to minimize the power pro-
duction losses caused by wakes from upstream turbines. This
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Table 4. Optimal results for the controls problem.

Design Lo-ficalls Hi-ficalls CPU time wpC Hi-fi DEL  Hi-fi max gen speed  Hi-fi max plat pitch
- - h - - rpm °

Low fidelity 8 - 0.263  0.1000 105389 9.8246 4.4500

High fidelity - 74 5.10 0.1935 111080 8.9379 4.4606

Multifidelity 755 23 1.96 0.1891 111114 8.9867 4.5088
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is a well studied and challenging optimization problem due
to the inherent multimodality of the design space (Samorani,
2013; Baker et al., 2019; Khan and Rehman, 2013; Stanley
and Ning, 2019). Turbine-wake interactions require high-
fidelity simulations, including large-eddy simulations, to cor-
rectly resolve the highly complex flows within a wind power
plant (Fleming et al., 2013; Churchfield et al., 2016); how-
ever, the large computational expense of these simulations
limits their use in design optimization problems, which has
encouraged the development of wind power plant simulation
tools that straddle multiple levels of fidelity (Sprague et al.,
2020; Réthoré et al., 2014). In this case study, we optimize
the layout of turbines using multiple different wake models
and resolutions to represent different levels of fidelity.

3.3.1 Model descriptions and tools used

To more easily study how wind turbine layout and controls
affect plant performance using less computational cost, mul-
tiple analytic wake models have been developed, including
the Jensen (Jensen, 1983), Gaussian (Bastankhah and Porté-
Agel, 2014), and Gauss—Curl Hybrid (GCH) (King et al.,
2021) models. Listed in order of increasing fidelity, these
analytic models capture simplified wake physics and have
been verified against high-fidelity simulations and validated
against experimental results (King et al., 2021).

In this paper, we use the Jensen and GCH as the low- and
high-fidelity wake models, respectively. The Jensen wake
model uses a simplistic velocity deficit to represent the wake,
and this deficit is summed when wakes interact using the
sum-of-squares method (Jensen, 1983). Additionally, the ve-
locity deficit fans out linearly behind the turbine. The wakes
from the Jensen model for the initial plant used in this study
are shown in Fig. 9a. The GCH model modifies the Gaussian
model (Bastankhah and Porté-Agel, 2014) by including an-
alytic approximations from the curl model (Martinez-Tossas
et al., 2019), which leads to a wake model that better resem-
bles results from high-fidelity simulations. These more com-
plex flow interactions are visible in Fig. 9b, which also uses
a sum-of-squares method for wake interaction.

These wake models are already integrated into FLOw
Redirection and Induction in Steady State (FLORIS) (NREL,
2021a), a controls-oriented wake-modeling tool that per-
forms wind power plant simulation and optimization.
FLORIS is an open-source tool that provides a common ap-
plication programming interface for multiple wake models,
which allows us to easily investigate different levels of fi-
delity.

In addition to using different wake models, our low- and
high-fidelity models for this problem use different wind roses
and wind speed bin resolutions, leading to accuracy and com-
putational differences caused by both fidelity and resolution.
The low-fidelity model samples six equally spaced wind di-
rections (60° bins) and five wind speeds from 0 to 26 m s,
whereas the high-fidelity model samples 18 wind directions
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(20° bins) and 14 wind speeds from 0 to 26 ms~'. These rel-
atively coarse discretizations were selected so that the opti-
mization studies could be easily run on a laptop workstation.
Both models use a Weibull distribution for the wind speed
frequencies.

3.3.2 Optimization problem formulation

For this study, we optimize the locations of seven wind tur-
bines within an area of 360 000 m>. Additionally, we impose
a two-rotor-diameter (2D or 262 m) spacing constraint be-
tween turbines to create a well-posed optimization problem.
We aggregate these turbine—turbine spacing constraints using
the Kreisselmeier—Steinhauser functional (Poon and Martins,
2007), which reduces the number of constraints from 21
to 1, producing a less complex optimization problem. This
problem formulation leads to 14 design variables, one ob-
jective, and one constraint, as shown in Table 5. The wind
turbine model is based on the NREL 5 MW reference tur-
bine (Jonkman et al., 2009) and is provided within FLORIS.

3.3.3 Optimization results

As in the first two case studies, we performed single-fidelity
and multifidelity optimizations for this plant layout case,
with the high-fidelity AEP evaluated at the optimal design
from each method shown in Table 6. Each call to the low-
and high-fidelity models took 0.212 and 7.13 s, respectively,
meaning that the high-fidelity model is 33.6 times as expen-
sive as the low-fidelity model to evaluate. Overall, we see
that the multifidelity method takes 58 % as many core-hours
to find an optimal answer as the high-fidelity method. The
multifidelity method resulted in a better layout than the low-
fidelity optimization; however, this AEP value was less than
that from the high-fidelity optimization. Examining the phys-
ical layouts from the high- and multifidelity cases shown in
Fig. 10, the results do not appear drastically different, al-
though only one wind direction and speed from the wind rose
is shown. The main difference between the two cases lies in
the location of the central turbine, which is farther north in
the high-fidelity case. Note that in all cases, the turbine spac-
ing constraint is not active at the optimal design; thus, the
trade-off between the computational savings and the optimal-
ity of the obtained design would vary based on the number
of wind turbine locations optimized.

This wind power plant layout problem presents an interest-
ing case for the multifidelity method due to the highly non-
linear design space as well as the number of design variables.
The corrective function used to correlate the two fidelity lev-
els needs to be able to capture sharp changes in AEP with
respect to changes in turbine location. By using surrogate
corrective functions, as detailed in Sect. 2.3, we are able to
account for the design space nonlinearities. As the number
of design variables increases, however, the number of points
needed to correctly correlate the two fidelities also increases.
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Table 5. Optimization problem formulation for the wind power plant layout AEP maximization case.

Category Name Quantity Lower Upper Units
bound bound
Objective AEP 1 - - GWh
Variables Turbine x-locations 7 0.0 6000 m
Turbine y-locations 7 0.0 6000 m
Constraints  Turbine spacing 1 262 (2D) - m

Table 6. Optimization results for the wind power plant layout AEP
maximization case.

Design Lo-ficalls Hi-ficalls CPUtime Hi-fi AEP
- - hrs GWh
Low fidelity 6382 - 0.376 81.855
High fidelity - 3975 7.87 82.367
Multifidelity 56939 618 4.58 81.972

Wind Energ. Sci., 7, 991-1006, 2022

This trend is not due to the type of corrective function used
but is instead due to the well-known “curse of dimensional-
ity”, which dictates that the cost of constructing an accurate
representation of a high-dimensional space increases greatly
as the number of dimensions increases. These costs are prob-
lem dependent, and this power plant layout problem is known
to be highly nonlinear and high dimensional, which leads to
a relatively large number of training points to correctly cor-
relate the low- and high-fidelity models.

4 Conclusions
We have shown that multifidelity optimization methods are

effective for a variety of wind energy applications to de-
crease the computational cost needed to find an optimal de-
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Table 7. Each case is summarized here, showing the multifidelity method takes less computational time than the high-fidelity-only optimiza-
tion while finding improved designs compared to the low-fidelity-only approach.

Problem Blade design Controls Plant layout

CPU time  Hi-fi power CPU time Hi-fi DEL CPU time Hi-fi AEP
Method h kW h Nm h GWh
Low fidelity 8.91 10733 0.263 105389 0.376 81.855
High fidelity 23.97 11043 5.10 111080 7.87 82.367
Multifidelity 10.61 11023 1.96 111114 4.58 81.972

sign. Optimizing using only a low-fidelity model might miss
important physical trends that the high- and multifidelity ap-
proaches will correctly capture. Researchers can adopt the
multifidelity method described here following the example
cases uploaded to the code repository.

Across three distinct applications — aerodynamic blade de-
sign, controls tuning, and wind power plant layout optimiza-
tion — we have shown that obtaining an optimal result re-
quires less computational cost compared to high-fidelity op-
timization, as depicted in Table 7. In each case, the mul-
tifidelity method finds a more optimal result than the low-
fidelity-only approach. Due to multimodality in the prob-
lems’ design spaces and optimization tolerances, the multi-
fidelity method does not necessarily converge to exactly the
high-fidelity optimum. We discussed the optimal designs and
the differences between the high- and multifidelity results in
detail in each of the case study subsections.

Although we used a traditional trust-region approach for
multifidelity optimization, we offered a new corrective func-
tion technique based on efficient KPLS surrogate models,
and we demonstrated its efficacy across three case studies.
In this way, the methods and results presented in this paper
should be useful to wind energy researchers who seek opti-
mal designs when using multiple levels of model fidelity.

There are some limitations to the types of design problems
for which multifidelity methods are effective. Specifically,
there needs to be an established model fidelity hierarchy with
one model known to be of higher fidelity than another. If
the accuracy of the models is unknown, then the trust-region
method presented here is ill posed. Each model used in the
multifidelity method must receive the same inputs and return
the same outputs so the corrective function between fidelity
levels can be constructed. Additionally, higher-dimensional
design spaces lead to larger computational cost in order to
adequately explore the space. This is especially true in the
case of multimodal problems where there may be many local
optima, such as the plant layout problem. Finally, multifi-
delity methods are less beneficial when there is not a large
difference between the computational expense of the mod-
els. Many engineering design problems meet these require-
ments, but special care is needed to select appropriate levels
of model fidelity and to pose a reasonable optimization prob-
lem.
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Future work could involve more complicated design prob-
lems, additional fidelity tiers, or different types of model dis-
ciplines. For example, further work could solve the blade
aerodynamic design problem using the multifidelity method
with BEM and a computational fluid dynamics or vortex
wake model. Additionally, performance improvements from
other multifidelity methods could be incorporated, such as
gradient-based surrogate models using high-fidelity gradi-
ents, or more intelligent expected improvement algorithms
to find the next point to query using the high-fidelity model.
This would decrease the computational cost of performing
these optimizations but would require additional developer
time to construct the framework and models correctly. As the
optimization problems increase in complexity, the best multi-
fidelity strategy might differ, including which type of correc-
tive function or how many correlative design points to use.
A series of model fidelities could also be considered, with
nested trust regions to conduct the model fidelity manage-
ment. Lastly, in this paper we examined multiple disciplines
in wind energy systems engineering, but there are additional
subsets of model disciplines that could benefit from design
exploration through these multifidelity methods.
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