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Abstract. As offshore wind farm development expands, accurate wind resource forecasting over the ocean
is needed. One important yet relatively unexplored aspect of offshore wind resource assessment is the role of
sea surface temperature (SST). Models are generally forced with reanalysis data sets, which employ daily SST
products. Compared with observations, significant variations in SSTs that occur on finer timescales are often
not captured. Consequently, shorter-lived events such as sea breezes and low-level jets (among others), which
are influenced by SSTs, may not be correctly represented in model results. The use of hourly SST products
may improve the forecasting of these events. In this study, we examine the sensitivity of model output from the
Weather Research and Forecasting model (WRF) 4.2.1 to different SST products. We first evaluate three different
data sets: the Multiscale Ultrahigh Resolution (MUR25) SST analysis, a daily, 0.25◦× 0.25◦ resolution product;
the Operational Sea Surface Temperature and Ice Analysis (OSTIA), a daily, 0.054◦× 0.054◦ resolution product;
and SSTs from the Geostationary Operational Environmental Satellite 16 (GOES-16), an hourly, 0.02◦× 0.02◦

resolution product. GOES-16 is not processed at the same level as OSTIA and MUR25; therefore, the product
requires gap-filling using an interpolation method to create a complete map with no missing data points. OSTIA
and GOES-16 SSTs validate markedly better against buoy observations than MUR25, so these two products are
selected for use with model simulations, while MUR25 is at this point removed from consideration. We run the
model for June and July of 2020 and find that for this time period, in the Mid-Atlantic, although OSTIA SSTs
overall validate better against in situ observations taken via a buoy array in the area, the two products result in
comparable hub-height (140 m) wind characterization performance on monthly timescales. Additionally, during
hours-long flagged events (< 30 h each) that show statistically significant wind speed deviations between the
two simulations, both simulations once again demonstrate similar validation performance (differences in bias,
earth mover’s distance, correlation, and root mean square error on the order of 10−1 or less), with GOES-16
winds validating nominally better than OSTIA winds. With a more refined GOES-16 product, which has been
not only gap-filled but also assimilated with in situ SST measurements in the region, it is likely that hub-height
winds characterized by GOES-16-informed simulations would definitively validate better than those informed
by OSTIA SSTs.
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1 Introduction

The United States Atlantic coast is a development site for up-
coming offshore wind projects. There are 15 leasing areas lo-
cated throughout the Atlantic Outer Continental Shelf, where
a number of offshore wind farms are planned to be developed
(Bureau of Ocean Energy Management, 2018). Therefore,
characterizing offshore boundary layer winds in the region
has risen in importance. Accurate forecasting will provide
developers with a better understanding of local wind patterns,
which can inform wind farm planning and layout decisions
(Banta et al., 2018). Additionally, improved weather predic-
tion will allow for real-time adjustments of turbine operation
to increase their operating efficiency and protect them against
unnecessary wear and tear (Gutierrez et al., 2016, 2017; Deb-
nath et al., 2021).

The Mid-Atlantic Bight (MAB) is an offshore cold pool
region spanning the eastern United States coast from North
Carolina up through Cape Cod, Massachusetts, and it over-
lies the offshore wind leasing areas. The cold pool forms dur-
ing the summer months, when the ocean becomes strongly
stratified and the thermocline traps colder water near the
ocean floor. During the transition to winter, as sea surface
temperatures (SSTs) drop, the stratification weakens and the
cold pool breaks down. Thus, the cold pool generally persists
from the spring through the fall. Southerly winds that drive
surface currents offshore will result in coastal upwelling of
this colder water, and, at times, strong winds associated with
storm development can mix the cold pool upward, cooling
the surface and influencing near-surface temperatures and
winds (Colle and Novak, 2010; Chen et al., 2018; Murphy
et al., 2021).

Accurate representation of the MAB in forecasting mod-
els is important because SSTs are closely tied to offshore
winds. Horizontal temperature gradients between land and
the ocean, as well as vertical temperature gradients over the
ocean – which can form, for example, when SSTs are anoma-
lously cold, as with the MAB – help define offshore airflow.
In particular, variations in temperature can lead to or impact
short-lived offshore events occurring on hourly timescales,

such as sea breezes and low-level jets (LLJs). Sea breezes
are driven by the land–sea temperature difference, which, if
strong enough (around 5 ◦C or greater), can generate a circu-
lation between the water and the land (Stull, 2015). With a
relatively colder ocean, as during summer months, this leads
to a near-ground breeze blowing landward, with a weak re-
circulation toward the ocean aloft (Miller et al., 2003; Lom-
bardo et al., 2018). Similarly, the near-surface horizontal and
air–sea temperature differences dictate the strength of strati-
fication over the ocean. Studies have found a robust link be-
tween atmospheric stability and LLJ development, so accu-
rately representing SSTs is key to modeling near-surface sta-
bility and, accordingly, LLJs (Gerber et al., 1989; Källstrand,
1998; Kikuchi et al., 2020; Debnath et al., 2021). A Weather
Research and Forecasting model (WRF) analysis of the re-
gion conducted by Aird et al. (2022) found that in the MAB
leasing areas specifically LLJs occurred in 12 % of the hours
in June 2010–2011. Both LLJs and sea breezes can affect
individual wind turbine and whole farm operation, so fore-
casting them correctly can improve power output and turbine
reliability (Nunalee and Basu, 2014; Pichugina et al., 2017;
Murphy et al., 2020; Xia et al., 2021).

Typical climate and weather model initialization and
forcing inputs are reanalysis products, such as ERA5 and
MERRA-2, which are global data sets that assimilate model
output with observations to create a comprehensive picture
of climate at each time step considered (Gelaro et al., 2017;
Hersbach et al., 2020). These data sets primarily include
global SST products that are produced at lower temporal and
spatial resolutions than what can be available via regional,
geostationary satellites. These coarser-resolution data sets,
therefore, do not capture observed hourly and, in many cases,
diurnal fluctuations in SSTs, which may influence their abil-
ity to properly force sea breezes and LLJs. Some preliminary
comparisons between weather simulations, forced with dif-
ferent SST products, indicate that this particular input can
have a significant impact on modeled offshore wind speeds
(Byun et al., 2007; Chen et al., 2011; Dragaud et al., 2019;
Kikuchi et al., 2020).

Few studies have examined the impact of finer-temporal-
resolution SST products specifically on wind forecasting,
and to the authors’ knowledge, none so far have focused
on the Mid-Atlantic. There have been studies looking at
numerical weather prediction model (NWP) sensitivity to
SST, but they have considered other regions or different, of-
ten coarser-spatial- and coarser-temporal-resolution products
(Chen et al., 2011; Park et al., 2011; Shimada et al., 2015;
Dragaud et al., 2019; Kikuchi et al., 2020; Li et al., 2021).
In this article, we explore the effects of forcing the Weather
Research and Forecasting model (WRF), an NWP used for
research and operational weather forecasting, with different
SST data sets characterized by different spatial and tempo-
ral resolutions in the Mid-Atlantic region during the summer
months. Specifically, we address differences in model perfor-
mance on monthly timescales and then contrast characteriza-
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tion effectiveness during shorter wind events. Section 2 lays
out the data, model setup, and methods used in this study.
Section 3 explains the findings of our simulations, and Sect. 4
explores their implications. Finally, Sect. 5 summarizes the
intent of the study as well as its findings.

2 Methods

We first validate three different SST data sets against obser-
vations taken at an array of buoys off the Mid-Atlantic coast
during the months of June and July 2020. Following valida-
tion, we select two of the three data sets for use as inputs to
two different model simulations in the MAB region, which
are identically configured aside from the SST data. August is
not considered due to data availability constraints at the time
of the study. The output data are compared with in situ mea-
surements taken at buoys (SSTs) and floating lidars (winds)
in the region. A 140 m hub height is assumed, based on the
analysis of regions with moderate wind resource by Lantz
et al. (2019). We evaluate performance primarily via a set
of validation metrics calculated on monthly timescales. We
then flag specific events during which the model generally
captures regional winds, but output from the two simulations
deviate significantly (defined in this study as 1 or more stan-
dard deviations from their mean differences) from one an-
other. Again, validation analysis is performed for these peri-
ods.

2.1 In situ and lidar data

This study makes use of both SST and wind profile obser-
vational data for model validation. SSTs are provided by
the National Buoy Data Center (NBDC) at several loca-
tions along the Mid-Atlantic coast, as listed in Table 1 and
shown in Fig. 1. Buoy data located at the Atlantic Shores
Offshore Wind ASOW-6 location are also used (Fig. 1b).
Wind data have been taken from the Atlantic Shores Off-
shore Wind floating lidar and the two New York State Energy
Research and Development Authority (NYSERDA) floating
lidars, whose locations are listed in Table 1. These lidars
provide wind speed and wind direction at 10 min intervals
from either 10 m (Atlantic Shores) or 40 m (NYSERDA) up
through 250 m above sea level. There are periods of missing
data for all buoys and lidars.

2.2 Model setup

WRF version 4.2.1 is the NWP employed in this study
(Powers et al., 2017). WRF is a fully compressible, non-
hydrostatic model that is used for both research and opera-
tional applications. Our model setup, including key physics
and dynamics options, is outlined in Table 2.

The study area spans the majority of the MAB, with the
nested domain (grid spacing of 2 km× 2 km) running from

the mid-Virginia coast to the south up through Cape Cod to
the north (Fig. 1a).

2.3 Sea surface temperature data

We compare how well three different SST data sets validate
against buoy observations and subsequently select the two
best-performing data sets to force our simulations (Table 3).
Aside from these different SST product inputs, the rest of the
model parameters in the simulations remain identical.

We have selected the ERA5 global reanalysis data set to
force our simulations. The Operational Sea Surface Temper-
ature and Ice Analysis (OSTIA) is the SST data set native to
this product (Hersbach et al., 2020). As such, when included
as part of ERA5, OSTIA’s resolution has been adjusted to
match ERA5’s 31 km spatial resolution and hourly tempo-
ral resolution. For our simulations, however, we overwrite
these SSTs with the OSTIA data set at its original resolution
of 0.05◦, MUR25 data set at its 0.25◦ resolution, and GOES-
16 data set at its resolution of 0.02◦.

The coarsest-resolution product we consider is the
0.25◦ Multi-scale Ultra-high Resolution SST analysis
(MUR25). MUR25 is a daily product that assimilates ob-
servations and model data to render a complete global grid
with SSTs. MUR25 has undergone pre- and post-processing,
and the SSTs in the data set are foundation temperatures,
which are measured deep enough in the water to discount
diurnal temperature fluctuations. MUR25 has a spatial reso-
lution of 0.25◦× 0.25◦ (Chin et al., 2017), which is signifi-
cantly coarser than either of the other two SST data sets we
evaluate.

Our next SST selection, the Operational Sea Surface Tem-
perature and Sea Ice Analysis (OSTIA) system, is a daily
global product that combines in situ observations taken from
buoys and ships, model output, and multiple remotely sensed
SST data sets (Stark et al., 2007; Donlon et al., 2012). Similar
to MUR25, it is a complete product in that it has no missing
data. OSTIA has a spatial resolution of 0.05◦× 0.05◦. Ad-
ditionally, as a daily product like MUR25, OSTIA provides
foundation SSTs (Stark et al., 2007; Donlon et al., 2012;
Fiedler et al., 2019).

Our finest-resolution product is taken via GOES-16, which
is a geostationary, regional satellite with a spatial resolution
of 0.02◦× 0.02◦ (Schmit et al., 2005, 2017). This product
does not assimilate its measurements with in situ data. While
GOES-16 does not offer global coverage and, therefore, can-
not be used for certain world regions, it does cover the Mid-
Atlantic Bureau of Ocean Energy Management (BOEM) off-
shore wind lease areas, which is our region of interest. Be-
cause GOES-16 has an hourly resolution, it can capture diur-
nal changes in SST and, therefore, measure surface tempera-
ture (Schmit et al., 2005, 2008).

Due to the lesser level of processing in the GOES-16 data
set, it contains numerous data gaps that must be filled. These
missing data are the result of a post-processing algorithm that
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Figure 1. The WRF domains (a) and a zoomed-in, more detailed look at a subset of the nested domain, with markers indicating the lidars
(stars) and buoys (hollow circles) that were used in this study (b). The Atlantic Shores and two NYSERDA locations each host both a buoy
and a lidar. Planning areas are outlined in white.

Table 1. Buoy and lidar locations, owner, and data availability.

Buoy or lidar Name Latitude (◦) Longitude (◦) SST depth (m) % data available Owner

Lidar and buoy E05 40.1614 −72.7396 0.8 100.0 NYSERDA
Lidar and buoy E06 39.6273 −73.4123 0.8 100.0 NYSERDA
Lidar and buoy ASOW-6 39.2717 −73.8892 1 84.89 Atlantic Shores
Buoy 44017 40.693 −72.049 1.5 96.32 NDBC
Buoy 44025 40.251 −73.164 1.5 96.46 NDBC
Buoy 44065 40.369 −73.703 1.5 96.51 NDBC
Buoy 44075 40.363 −70.883 1 29.66 Ocean Observatories Initiative
Buoy 44076 40.137 −70.775 1 29.58 Ocean Observatories Initiative
Buoy 44077 39.940 −70.883 1 100.0 Ocean Observatories Initiative
Buoy 44091 39.768 −73.770 0.46 100.0 U.S. Army Corps of Engineers
Buoy 44097 40.967 −71.126 0.46 100.0 Ocean Observatories Initiative

flags pixels that fall below a specified temperature threshold,
which is applied prior to release of the data set. This filter is
in place to remove cloud cover. While this method is effective
with regard to its defined intent, it can also erroneously dis-
card valid pixels that capture the cold water upwelling typical

to the MAB region during the warmer months, and, although
this cold-pixel filter is also a common practice in global SST
data sets (OSTIA), the high level of post-processing applied
in those products interpolates over and fills the missing grid
cells prior to release.
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Table 2. Model setup.

WRF parameter Selection

Number of domains 2
Domain resolution 6 km (parent), 2 km (nest)
Output time resolution 5 min
Vertical levels 61
Reanalysis data ERA5 (Hersbach et al., 2020)
Microphysics Ferrier (Schoenberg Ferrier, 1994)
Radiation scheme RRTMG (longwave and shortwave) (Iacono et al., 2008)
Planetary boundary layer Nakanishi and Niino (MYNN) (Nakanishi and Niino, 2006)
Surface layer parameterization MYNN (Nakanishi and Niino, 2009)
Land surface scheme Unified Noah land-surface model (Tewari et al., 2004)
Cumulus parameterization Kain–Fritsch (Kain and Fritsch, 1993)
Upper-level damping Rayleigh at 5 km depth

Table 3. SST data sets used in this study.

Parameter MUR25 OSTIA GOES-16

Satellite coverage Global Global Regional
Temporal resolution Daily Daily Hourly
Spatial resolution 0.25◦ 0.054◦ 0.02◦

Temperature type Foundation Foundation SST
Processing level Gridded and assimilated with in situ observations Gridded and assimilated with in situ observations Gridded only
Gap-filling Released product is filled Released product is filled DINEOF needed

To gap-fill the GOES-16 data set so that we may use it
in our simulations, we employ the Data INterpolating Em-
perical Orthogonal Function algorithm, or DINEOF, which
is an open-source application that applies empirical orthog-
onal function (EOF) analysis to reconstruct incomplete data
sets (Ping et al., 2016). The program was originally designed
to specifically gap-fill remotely observed SSTs that contain
missing data due to cloud-flagging and removal algorithms
(as is the case with the GOES-16 data) and has demonstrated
strong results in past studies (Alvera-Azcárate et al., 2005;
Ping et al., 2016).

We additionally include in the GOES-16 SST data set
the sensor-specific error statistics (SSES) bias field that is
included with the distributed product. This component ac-
counts for retrieval bias using a statistical algorithm designed
to correct for errors in the SST field. Compared with the SST
values alone, the bias-corrected GOES-16 data offsets an in-
herent warm bias in the raw data.

2.4 Event selection

We are particularly interested in understanding how well the
model forecasts shorter wind events, as LLJs and sea breezes
occur on hourly timescales. We have created a set of param-
eters that, when met, detect relatively brief time periods (on
the order of hours to days) during which one simulation may
be outperforming the other, which we then more closely ex-

amine to evaluate differences in their wind profile character-
ization and SST validation.

For an event to be flagged, it must meet the following cri-
teria.

1. Correlation for both models is above 0.5 at hub height
for two of the three lidar locations.

2. Differences in wind speeds between the two models
must be greater than 1 standard deviation from the
monthly mean difference.

3. Gaps during which the wind speed difference drops
below 1 standard deviation must not persist for more
than 2 h during a single event.

4. Events must last for at least 1 h.

This set of event characteristics first acts to filter out peri-
ods during which WRF is generally under-performing – pos-
sibly due to model shortcomings outside of SST forcing – so
that the performance difference in the selected events may be
with more certainty attributed to SSTs. Then, events are lo-
cated during which the two simulations forecast statistically
significantly different hub-height wind speeds, which persist
for a period of time long enough to substantially affect power
generation.

https://doi.org/10.5194/wes-8-1-2023 Wind Energ. Sci., 8, 1–23, 2023



6 S. Redfern et al.: Offshore wind energy forecasting sensitivity to sea surface temperature input in the Mid-Atlantic

Table 4. Error metrics considered in this study.

Error metric Equation

Bias p− o

Unbiased root mean square error (RMSE)
[

1
N

∑N
n=1[(pn−p)(on− o)]2

] 1
2

Square of correlation coefficient (R2)
[

1
N

∑N
n=1(pn−p)(on−o)

σpσo

]2

Wasserstein metric/earth mover’s distance (EMD)
∑m
i=1

∑n
j=1Mijdij

2.5 Validation metrics

To evaluate which simulation performs best during our study
period, we calculate sets of validation metrics, as outlined
by Optis et al. (2020). Specifically, we look at SSTs and
140 m (hub-height) wind speeds on both monthly and event
timescales. The metrics we calculate are named and defined
in Table 4, and they give a quantification of the error present
in each case.

The bias provides information on the average simulation
performance during the evaluation period – specifically, if
the model is consistently over- or under-predicting the out-
put variable in consideration. Unbiased root mean square er-
ror (RMSE) provides a more nuanced look at the spread of
the error in the results. The square of the correlation coeffi-
cient (referred to from here forward as correlation) quantifies
how well the simulations’ variables change in coordination
with those of the observations. Finally, the Wasserstein met-
ric, also known as earth mover’s distance (EMD), measures
the difference between the observed and simulated variable
distributions.

3 Results

We first assess how well each SST data set compares
with buoy data. Following SST validation, we evaluate the
model’s wind characterization performance when forced
with different SST data. We assume a hub height of 140 m
and compare output winds at this altitude against measure-
ments taken via floating lidars off the Mid-Atlantic coast.
Specifically, we analyze monthly performance and then se-
lect several shorter periods during June and July 2020 during
which we compare wind characterization accuracy.

After evaluation of the SST data sets, only OSTIA- and
GOES-16-forced WRF simulations are compared, as during
July – one-half of our study period – MUR25 SSTs val-
idate significantly worse against buoy measurements than
the other two products. OSTIA SSTs validate the best out
of the three data sets. Average, simulated hub-height winds
across monthly periods validate similarly for both OSTIA
and GOES-16. At an event-scale temporal resolution – that
is, on the order of hours – GOES-16 and OSTIA perform
comparably, with GOES-16 marginally outperforming OS-
TIA.

3.1 Sea surface temperature performance

We evaluate SST performance by linearly interpolating the
satellite-based products to 10 min intervals (the in situ data
output resolution) and making a brief qualitative assessment
followed by calculating and comparing at each buoy valida-
tion metrics for the different products.

The time series plots in Fig. 2 show that while GOES-16
tracks the diurnal cycle seen by observations, the other two
products do not (the highlighted time frames in the figure
are wind events that are discussed in Sect. 3.3). Despite this
feature, however, there exist a number of periods each month
when GOES-16 does not accurately capture observed dips in
temperature, and, during many of these times, the daily data
sets, though missing the nuance of GOES-16, better represent
the colder SSTs.

A comparison of all three products shows markedly poorer
validation against the floating lidar buoys, for at least two
metrics at each buoy, by MUR25 as compared with GOES-
16 and OSTIA during July 2020 (Table 5). Because July 2020
is one-half of our study period, we remove MUR25 from fur-
ther analysis.

Over the course of June and July combined, looking across
the entire buoy array, OSTIA overall outperforms GOES-16,
as shown in Fig. 3. Both products have a relatively strong
cold bias (between −0.1 and −0.25 ◦C) compared with ob-
servations at the three lidar locations. GOES-16 presents a
negative bias at five additional buoys, and OSTIA has a neg-
ative bias at one other buoy. Both SST products display warm
biases at buoys 44017 (off the northeast coast of Long Island)
and 44076 (the farthest offshore location considered, south-
east of Cape Cod). Although GOES-16 follows the diurnal
cycle rather than representing only the daily average SSTs, as
is the case with OSTIA, on average the correlation across all
sites is comparable between the two SST products. RMSE is
higher for GOES-16 at every buoy (with an average 0.64 ◦C,
compared with 0.52 ◦C for OSTIA), and EMD for GOES-16
is higher than that for OSTIA at every location except the
floating lidars (an average of 0.27, compared with 0.21 for
OSTIA).

Although OSTIA on average, across all buoys surveyed,
better represents measured SSTs, GOES-16 performs bet-
ter on average across only the floating lidar sites – Atlantic
Shores, NYSERDA E05, and NYSERDA E06 (Table 6).
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Figure 2. Time series of MUR25, OSTIA, GOES-16, and in situ measurements of SST at the Atlantic Shores buoy for June and July at
Atlantic Shores (a), NYSERDA E05 (b), and NYSERDA E06 (c). Specific wind events that are evaluated in Sect. 3.3 are highlighted in gray.

Table 5. Validation metrics for each remotely sensed data source at Atlantic Shores, NYSERDA E05, and NYSERDA E06 on a 10 min output
interval for July 2020.

Data source Bias (◦C) RMSE (◦C) R2 EMD

Atlantic Shores MUR25 0.41 0.90 0.68 0.49
OSTIA −0.17 0.71 0.8 0.37
GOES-16 −0.01 0.76 0.76 0.35

NYSERDA E05 MUR25 0.06 0.80 0.76 0.37
OSTIA −0.14 0.59 0.88 0.32
GOES-16 −0.13 0.63 0.86 0.31

NYSERDA NE06 MUR25 0.21 0.83 0.68 0.28
OSTIA −0.14 0.61 0.83 0.27
GOES-16 −0.02 0.64 0.81 0.2

3.2 Monthly wind speeds

The probability distribution functions (PDFs) of hub-height
wind speeds at each lidar show that WRF, on a monthly
timescale and with a 10 min output resolution, generally cap-
tures the shape of the observed wind speed distribution at

each lidar (Fig. 4), which suggests that the model itself is
performing as it should. The wind speed distributions for
each simulation maintain an even closer similarity in shape
to one another, which highlights the biases directly related to
the particular SST data set being used. A box plot of wind
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8 S. Redfern et al.: Offshore wind energy forecasting sensitivity to sea surface temperature input in the Mid-Atlantic

Figure 3. Mean bias, RMSE, correlation, and EMD for GOES-16 and OSTIA SSTs at each buoy location shown, combined for June and
July, along with the average metrics over all sites for each product.

Table 6. Average performance metrics for OSTIA and GOES-16
SSTs across the three floating lidar sites for June and July 2020.

Metric OSTIA GOES-16

Bias (◦C) −0.21 −0.15
RMSE (◦C) 0.67 0.65
Correlation 0.97 0.97
EMD 0.31 0.27

speeds across the entire domain for each simulation and for
both months (not shown) indicates that although GOES-16
and OSTIA present near-identical average hub-height wind
speeds, GOES-16 winds show a greater spread than OSTIA.
Additionally, in both simulations, whole-domain winds in
June tend to be significantly faster than July winds (Fig. 4).

A comparison between each of the two simulations of
monthly hub-height wind speed bias and correlation shows
that they perform quite similarly during both June and July
(bias and correlation shown in Fig. 5). Both products over-
predict wind speeds, except at the two NYSERDA lidars dur-
ing June. The correlation of each product’s forecasted winds
with observations, from 100 m above sea level and higher, is
above 0.65 at all three lidars during both June and July.

A map of the domain displaying the June and July average
wind speed differences between the GOES-16- and OSTIA-
forced simulations, overlaid by wind barbs indicating the av-
erage GOES-16 wind speeds, is shown in Fig. 6. In general,
wind speeds deviate from each other only by small amounts

Table 7. Weather events selected for evaluation.

Start date (UTC) End date (UTC) Event length

21 Jun 2020 13:40:00 22 Jun 2020 15:20:00 25 h 40 m
10 Jul 2020 06:25:00 11 Jul 2020 09:00:00 26 h 25 m
18 Jul 2020 02:05:00 18 Jul 2020 14:10:00 12 h 5 m

on a monthly timescale. The results show maximum average
wind speed differences between the two simulations of up to
0.25 ms−1 for each month.

3.3 Event-scale wind speeds

Using the event selection algorithm detailed in Sect. 2.4, we
locate three periods – one in June and two in July – during
which 140 m wind speeds in the OSTIA and GOES-16 sim-
ulations differ from one another by statistically significant
amounts and still both validate relatively well against obser-
vations (r2> 0.6 at two or more lidars), per the criteria out-
lined in Sect. 2.4. These events are listed in Table 7. Lidars at
which there are relatively large observational data gaps dur-
ing these time periods (> 20 %) are not considered. There-
fore, data from only two locations for the June event and the
second July event are used. For all three cases, at each lidar
being considered, GOES-16 delivers overall stronger char-
acterization of 140 m wind speeds than OSTIA. Validation
metrics vary at different heights, so vertical profiles of bias,
r2, RMSE, and EMD for each event can be found in Ap-
pendix A.
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Figure 4. PDFs of 140 m wind speeds at each lidar location, for June (a, c, and e) and July (b, d, and f), taken via observations (gray),
GOES-16-forced model output (blue), and OSTIA-forced model output (red).

3.3.1 21–22 June 2020 event

We have identified an event that meets our criteria beginning
on 21 June 2020 at 13:40:00 UTC and ending on 22 June
2020 at 15:20:00 UTC. During this time period, offshore
winds near the coast are southerly, with a tendency to follow
the coastline as they rotate around a high-pressure system
southeast of New Jersey.

Differences in SSTs between the two simulations do not
correspond with significant 140 m wind speed differences
at the three lidars; however, in other areas of the domain,
including a region planned for development just south of
Rhode Island (Fig. 1, marked by “RI”), these differences
are larger, with magnitudes reaching over 2 ms−1 (Fig. 7).
There are not significant SST differences noted within that
region, although land surface temperatures may contribute to
a stronger temperature gradient.

A planar depiction of 140 m wind speeds across the entire
domain shows that, although the mean of the magnitude of
the differences is roughly 0.25 ms−1, they vary by location
across the region. The maximum difference in average wind
speeds during this event is actually 2.25 ms−1. This is note-

worthy, as wind speed differences of this size have significant
implications regarding power generation.

Model output from the two simulations captures the ob-
served trend of a wind speed increase – but model outputted
wind speeds deviate significantly from each another leading
into a first ramping event, during a second ramp event, and
once wind speeds began to stabilize (Fig. 8). Observational
data are only available at the two NYSERDA lidars during
these periods. The Atlantic Shores lidar has significant data
gaps, so validation at this location is not conducted.

Event validation metrics at both lidars indicate stronger
performance by the GOES-16 simulation than OSTIA, par-
ticularly at vertical levels associated with typical offshore
turbine hub heights. Validation metrics at hub height (140 m)
for the two simulations at NYSERDA E05 and NYSERDA
E06 are shown in Fig. 9. Averaged correlation between the
two sites is 0.78 for GOES-16 and 0.76 for OSTIA. The
bias at each site is comparable between the two simulations,
at−0.26 and−0.24 ms−1 for OSTIA and GOES-16, respec-
tively. Model performance across the vertical should be taken
into consideration if the rotor-equivalent wind speed is used
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Figure 5. Modeled hub-height wind speed bias and correlation for simulations forced with GOES-16 (blue) and OSTIA (red) SSTs during
June and July 2020 at the Atlantic Shores lidar (a–d), the NYSERDA E05 lidar (e–h), and the NYSERDA E06 lidar (i–l).

Figure 6. Modeled hub-height (140 m) wind speed differences,
GOES-16 – OSTIA, for June (a) and July (b).

Figure 7. Differences (GOES-16 – OSTIA) in average 140 m wind
speeds (a) and SSTs (b) over the entire domain for the 21–22 June
event.
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Figure 8. Hub-height (140 m) wind speeds and wind directions at the NYSERDA E05 (a, c) and NYSERDA E06 (b, d) lidars during the
21–22 June event. Atlantic Shores is not shown due to a lack of observational data.

to calculate power generation during extreme shear events,
as well as when looking at turbines of varying hub heights.
Of note is that both RMSE and EMD are lower for GOES-16
at all heights (Appendix A).

3.3.2 10–11 July 2020 event

We have next flagged an event that occurred between 10 July
2020 at 06:25:00 UTC and 11 July 2020 at 09:00:00 UTC.
Synoptically, Tropical Storm Fay was observed to be mov-
ing in a southerly direction through the region during this
time. High wind speeds, which peaked on 10 July 2020 at
18:00:00 UTC, may be attributed to this storm. Average wind
directions also reflect the storm path (Fig. 10). Differences
in average wind speed between the two simulations peak at
only 1.35 ms−1 – which is around 1 ms−1 less than the max-
imum difference during the June event. The mean difference
in the magnitudes of average wind speeds across the domain
is 0.2 ms−1.

With the winds blowing in a south-southeasterly direction
across the leasing area and the differences in GOES-16 show-
ing a relatively stronger temperature gradient across that area
in the direction of the wind, the GOES-16 simulation out-
puts stronger wind speeds compared with OSTIA (Fig. 10).
This is reflected in the overall bias seen at the three lidars, al-
though both simulations overall underestimate wind speeds
during this time (Fig. 11).

Near-complete wind data sets exist at all three lidars for
the duration of this event. Validation metrics show a cor-
relation of 0.45 or greater between model output and ob-
servations, for both simulations, at 140 m at each lidar site.
The models perform the best, across all four metrics, at NY-
SERDA E06. Average r2 between the two products is compa-
rable, at 0.62. Bias strength peaks at −1.29 ms−1 at Atlantic
Shores in the GOES-16 simulation. The bias is strongly neg-

Figure 9. Hub-height wind speed validation metrics at the NY-
SERDA E05 and NYSERDA E06 lidars during the 21–22 June
event: bias, RMSE, correlation, and EMD.
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Figure 10. Differences (GOES-16 – OSTIA) in average 140 m wind speed (a) and average SST (b) during the 10–11 July event.

Figure 11. Wind speed validation metrics at a 140 m hub height
at the Atlantic Shores, NYSERDA E05, and NYSERDA E06 lidars
during the 10–11 July event: bias, RMSE, correlation, and EMD.

ative at Atlantic Shores but is positive at NYSERDA E05, the
northernmost lidar, in the GOES-16 simulation. On average,
bias in the OSTIA simulation is 0.11 ms−1 stronger (more
negative) than that in the GOES-16 simulation. Hub-height
(140 m) validation metrics for each simulation at each lidar
are shown in Fig. 11.

The GOES-16 and OSTIA simulations output statistically
significantly different 140 m wind speeds during this period.
Both generally track the major observed wind speed patterns
at each observation site, although the timing and magnitude
of some longer-scale changes are missed by the models. For
example, although the models captured the wind speed in-
crease beginning on 10 July 2020 at 09:00:00 UTC at At-
lantic Shores, both erroneously forecast a subsequent down-,
up-, and then down-ramp event (Fig. 12a). At NYSERDA
E05, the initial spike in observed speeds occurred several
hours earlier than the models forecasted (Fig. 12c), and, at
NYSERDA E06, the models miss the timing and magnitude
of a dip in wind speeds that was observed between 10 July
2020 at 15:00:00 UTC and 10 July 2020 at 20:00:00 UTC;
they forecast a much larger drop in speed, almost 10 ms−1

compared with the original 6 ms−1, beginning just as the ob-
served dip recovers. These faults all contribute to the rela-
tively lower correlation of model output from both simula-
tions with observations for this event.

3.3.3 18 July 2020 event

The last flagged event occurred between 18 July 2020 at
02:05:00 UTC and 18 July 2020 at 14:10:00 UTC. During
this time, a high-pressure system was moving westerly into
the region, causing a fall in wind speeds throughout the
morning. This front spanned eastward into the Atlantic and
aligned perpendicular to the New Jersey coast. Hub-height
wind speed differences between the two simulations are var-
ied throughout the domain, with a maximum difference in the
magnitudes of average event wind speeds of 1.7 ms−1 and a
mean difference of 0.29 ms−1 (Fig. 13). Larger differences,
in particular, are found near the coast, and positive/negative
differences vary spatially.
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Figure 12. Hub-height (140 m) wind speed and wind direction at the Atlantic Shores lidar (a, b), the NYSERDA E05 lidar (c, d), and the
NYSERDA E06 lidar (e, f) during the 10–11 July event.

Figure 13. Differences (GOES-16 – OSTIA) in average 140 m
wind speeds (a) and average SSTs (b) and during the 18 July event.

Sufficient data for this event are present at Atlantic Shores
and NYSERDA E06 but not at NYSERDA E05. Validation
analysis for the event at the two lidars indicates that overall
the products perform comparably, although OSTIA shows an
almost 0.5 ms−1 stronger bias at NYSERDA E06. At lower
heights (Fig. A3), there is clear evidence of GOES-16 out-
performing OSTIA at Atlantic Shores. Farther north, at NY-
SERDA E06, the relative performance of each simulation
is variable. Validation metrics at Atlantic Shores and NY-
SERDA E06 are shown in Fig. 14. Of note is that PDFs of
140 m wind speeds during this time (not shown) indicate bi-
modality in the observed wind speed distribution. Although
OSTIA captures this feature, GOES-16 misses it almost en-
tirely – at both lidars.

Over this event’s time period, 140 m wind speeds drop at
both locations from over 14 ms−1 to less than 3 ms−1, before
beginning to increase again. As with the previous two cases,
the models capture the general wind speed trend of slow-
ing throughout the duration of the event, although they both
present errors in the magnitude of wind speeds and the tim-
ing of wind profile changes. In this case, at NYSERDA E06
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Figure 14. Hub-height (140 m) wind speed validation metrics at the
Atlantic Shores and NYSERDA E06 lidars during the 18 July event:
bias, RMSE, correlation, and EMD.

they predict a shift in wind direction before one was observed
(there is insufficient wind direction data at NYSERDA E05
to make a determination about if this holds true at both li-
dars). Both simulations exhibit greater spread in wind speeds
at each lidar than observations, and both have slower average
velocities (Fig. 15).

4 Discussion

In Sect. 3, we saw varied performance between the two SST
products, depending on the variable in consideration (SST
or winds) and the timescale (monthly or event scale). SST
in OSTIA validated better than GOES-16 across the buoy
array. However, hub-height wind speeds at each lidar loca-
tion, for each month, point to a similar performance by both
data sets. More nuanced events that occurred over hourly-to-
daily timescales, which were selected based on differences
between simulation output and overall WRF performance,
also indicate comparable performance between the two sim-
ulations, with, in general, a slightly stronger performance us-
ing GOES-16 SSTs. Events such as these are of importance
to wind energy forecasts because we found that they often
correlate with wind ramps, during which times wind speeds
fall below the rated power section of turbine power curves.
In this region, power output is very sensitive to fluctuations
in wind speed. Therefore, obtaining the most accurate wind
forecast within this regime is important.

Although OSTIA SSTs at the lidars validate better than
GOES-16, modeled hub-height (140 m) winds do not demon-
strate the same trend. Compared with the 140 m wind heat
maps for the events (Figs. 9, 11, and 14), good wind char-
acterization performance does not necessarily correspond to
good SST validation (Appendix B), which implies that SSTs
across the full study area, not just localized temperatures,
may have an impact on winds in the leasing area.

To further examine the disjointedness between SST and
wind speed point validations, we consider model perfor-
mance during each event in conjunction with how well their
corresponding SSTs validate with observations across the
buoy array (where data are available). During the 21–22 June
event, 140 m wind speed bias and EMD in both simulations
are the lowest of all the cases considered (Fig. 9), but there
is an overall cold SST bias (−0.31 ◦C for OSTIA, −0.84 ◦C
for GOES-16) across the buoy arrays, and SST correlation
is very poor (Fig. B1). During the 10–11 July event, OS-
TIA SSTs validate better than GOES-16 (Fig. B2), but the
two simulation’s hub-height wind speeds validate similarly,
with relatively poor performance across all validation metrics
compared with the other flagged events. During the 18 July
event, while SSTs from both products validated the best out
of the three events (Fig. B3) and the models captured the
overall trend in wind speeds with correlations of 0.88 for both
simulations, EMD and the magnitude of the bias were both
greater than the 21–22 June event.

Across all three events there is no clear relationship be-
tween wind forecasting ability and SST correctness. How-
ever, as with the monthly analysis, the relatively larger differ-
ences between SST and wind speed validations in the GOES-
16 event simulations compared with those of OSTIA suggest
that GOES-16’s finer temporal and spatial resolutions may
more accurately influence larger-scale dynamics throughout
the region, leading to greater forecasting skill. Though be-
yond the scope of this study, more widespread in situ obser-
vations and validation of the two data sets against observa-
tions would help address how large of an effect this is. Such
a study would additionally allow for a better understanding of
how much a nuanced representation of diurnal SST cycling
(as in the GOES-16 product, Fig. 2) influences the accuracy
of wind forecasting in the region.

Rapid fluctuations in wind speed, on the order of minutes
to hours, are overall not well captured by either simulation.
This is most evident during the 10–11 July event, when the
magnitude and timing of wind speed changes are most mis-
aligned. Correlation in particular is low (0.62), and RMSE is
high (3 ms−1). In comparison, during the 18 July event, when
wind speeds slow without any ramping, both simulations per-
form better; in particular, correlation is relatively strong for
both (0.88). Similarly, during the 21–22 June event, which
lacks any sharp ramping, correlation is also above 0.75 for
both GOES-16 and OSTIA. Shorter, weaker fluctuations in
wind speed during this event are not well captured by either
simulation (Fig. 8), although GOES-16 validates with nom-
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Figure 15. Hub-height (140 m) wind speed and wind direction at the Atlantic Shores lidar (a, c) and the NYSERDA E06 lidar (b, d) during
the 18 July event.

Figure 16. Differences (GOES-16 – OSTIA) in average SST for June (a) and July (c), and in modeled 140 m wind speeds for June (b) and
July (d).

inally less error (Fig. 9). It is possible that GOES-16’s finer
resolution may contribute to its slightly stronger performance
in this case, as the product does capture hourly fluctuations
in SSTs. In contrast, during the 10–11 July storm, winds are
so strong and variable that SST resolution does not appear to
make a significant difference, and the two simulations both
show significant error.

Also of note are the differences in weather between June
and July in the Mid-Atlantic region. June average wind
speeds are faster than those in July for both simulations.
Overall cooler SSTs throughout the region are also present
in June, with a weaker temperature gradient in the cold bub-
ble offshore of Cape Cod than in July. The difference in tem-
perature in this region between GOES-16 and OSTIA is more
pronounced in July, with GOES-16 showing warmer monthly
average SSTs (Fig. 16). The corresponding average wind

speed and surface pressure differences between the products
are also more distinct in July. While the two simulations val-
idated similarly for each month, in the more turbulent July
environment, OSTIA outperforms GOES-16. However, due
to the greater number of missing pixels that required gap-
filling in July as compared with June (36.86 % more over
the course of each month, resulting from the increased cloud
cover – and the possible stronger coastal cold pool), this in-
dication of product superiority may be questionable. The ad-
dition of more refined post-processing to account for incor-
rectly cloud-filtered pixels, as shown in Murphy et al. (2021),
has been demonstrated to improve the accuracy of GOES-
16 SSTs. A comparison of simulations using OSTIA against
those using the sophisticated GOES-16 product should be
conducted in the future to evaluate the level of improvement
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delivered using the latter’s more computationally expensive
data set.

5 Conclusions

In this study, we evaluated how SST inputs affect how well
WRF forecasts winds off the Mid-Atlantic coast. We initially
considered three remotely sensed SST data sets and validated
them against in situ observations taken at various buoys in
the region. The first data set, OSTIA, has a 0.05◦ resolution,
is output at a daily interval, and is assimilated with in situ
observations. The second product, GOES-16, has a finer res-
olution of 0.02◦ and is generated on an hourly interval but
does not have the same level of post-processing as OSTIA.
The data set contains gaps and lacks assimilation with in situ
observations. To account for missing data, we ran an EOF
process to statistically analyze trends in each monthly data
set and fill its gaps. The third SST data set, MUR25, has a
0.2◦ spatial resolution and a daily temporal resolution, and
similar to OSTIA it is assimilated with in situ observations.
MUR25 was removed from further analysis after SST vali-
dation, as its performance compared with the other two data
sets was notably poor.

Following SST validation, WRF was run for June and
July of 2020 in the Mid-Atlantic domain depicted in Fig. 1.
The simulation setups were identical with the exception of
the input SST field (key model parameters presented in Ta-
ble 2). We compared the characterized 140 m (hub-height)
winds against lidar observations by calculating correlation,
bias, RMSE, and EMD on both monthly and event-length
(hourly) timescales. Times during which there was signif-
icant difference in wind speed output from the two simu-
lations and the general WRF performance was satisfactory
were flagged as events. Our findings indicated that while OS-
TIA SSTs validated better against buoy measurements, the
model validated comparably when forced with each SST data
set, with GOES-16 having output nominally more accurate
wind speeds. These findings suggest that the differences in
temporal and spatial resolution between the two SST prod-
ucts influence wind speed characterization, with finer resolu-
tions leading to better forecasting skill.

Overall, this study shows that SST inputs to WRF do affect
forecasted winds and how well they validate against observa-
tions in future leasing areas in the Mid-Atlantic. Although
GOES-16 SSTs validate worse against buoy observations
than OSTIA SSTs, on both monthly and event timescales, the
wind characterization produced using GOES-16 inputs vali-
dates as well as, or in some cases better than, the OSTIA
characterization, indicating that finer temporal and spatial
SST resolution may contribute to improved wind forecasts
in this region. To further explore this, a higher-quality post-
processed GOES-16 data set assimilated with in situ obser-
vations, such as that created by Murphy et al. (2021), could

be evaluated in future studies; generating a comparable data
set was beyond the scope of this study.

This step of the research is in its early stages, and more
cases need to be considered – on both monthly and event
scales. Future work should focus on identifying and analyz-
ing more promising events – in particular, wind ramps and
low-pressure systems, as they have shown to produce larger
differences between GOES-16- and OSTIA-forced model
output. Wind direction validation, as well, should be consid-
ered in the future, as it was beyond the scope of this study.

Appendix A: Average validation metrics through
200 m for flagged cases

Contents of this Appendix include plots of horizontally av-
eraged bias, correlation, RMSE, and EMD from sea level
through a vertical height of 200 m for each flagged case at
each relevant lidar. Figure A1 shows metrics at the two NY-
SERDA lidars for the 21–22 June event, Fig. A2 shows met-
rics at all three lidars for the 10–11 July event, and Fig. A3
shows metrics at Atlantic Shores and NYSERDA E06 for the
18 July event. The GOES-16 simulations are indicated by the
blue lines and labeled with “G”, while the OSTIA simula-
tions are shown in red and labeled with “O”. The labels AS,
E05, and E06 refer to Atlantic Shores, NYSERDA E05, and
NYSERDA E06, respectively.

Figure A1. Validation metrics at NYSERDA E05 and NYSERDA
E06 during the 21–22 June event: bias (a), RMSE (b), correla-
tion (c), and EMD (d). Hub height is marked by a horizontal line
at 140 m. The label “G” refers to GOES-16 simulations, while “O”
refers to OSTIA simulations.
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Figure A2. Validation metrics at Atlantic Shores, NYSERDA
E05, and NYSERDA E06 during the 10–11 July event: bias (a),
RMSE (b), correlation (c), and EMD (d). Hub height is marked by
a horizontal line at 140 m. The label “G” refers to GOES-16 simu-
lations, while “O” refers to OSTIA simulations.

Figure A3. Validation metrics at Atlantic Shores and NYSERDA
E06 during the 18 July event: bias (a), RMSE (b), correlation (c),
and EMD (d). Hub height is marked by a horizontal line at 140 m.
The label “G” refers to GOES-16 simulations, while “O” refers to
OSTIA simulations.

Appendix B: Sea surface temperature validation
metrics for the flagged events

Contents of this Appendix include heat maps of SST valida-
tion metrics for each of the three events flagged in this study.
Each plot includes a different subset of the buoy array; loca-
tions with missing data were removed from analysis on a case
by case basis. The average value for each metric across all
buoys considered is located on the far right side of each row.
The validation metrics considered are bias, RMSE, correla-
tion, and EMD. Figure B1 shows SST validation metrics for
the 21–22 June event, Fig. B2 shows SST validation metrics
for the 10–11 July event, and Fig. B3 shows SST validation
metrics for the 18 July event.
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Figure B1. SST validation metrics (bias, RMSE, correlation, EMD) during the 21–22 June event, calculated across a subset of the buoy
array. Omitted buoys are absent due to missing observational data at those locations.

Figure B2. SST validation metrics (bias, RMSE, correlation, EMD) during the 10–11 July event, calculated across a subset of the buoy
array. Omitted buoys are absent due to missing observational data at those locations.
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Figure B3. SST validation metrics (bias, RMSE, correlation, EMD) during the 18 July event, calculated across a subset of the buoy array.
Omitted buoys are absent due to missing observational data at those locations.

Appendix C: Wind speed validation heat maps at
100 m and 120 m

Although this study considered a hub height of 140 m and
therefore analyzed wind speeds primarily at that height, we
include here validation metrics for each flagged event, at
each lidar, for 100 m and 120 m hub heights. The 140 m hub
heights are expected to be close to the standard for offshore
wind development (Lantz et al., 2019), but shorter turbines
may also be constructed; additionally, having a better under-
standing of model performance across the rotor-swept area
and not just at hub height can better inform wind power po-
tential characterization.

Below, Fig. C1 presents 100 m model performance at the
two NYSERDA lidars for the 21–22 June event, and Fig. C2
shows performance metrics for the same event and lidars at
120 m. At both heights, GOES-16 performs slightly better
than OSTIA.

Figure C3 shows 100 m model performance at all three li-
dars for the 10–11 July event, and Fig. C4 presents perfor-
mance metrics at all three lidars for the 10–11 July event at
120 m. While GOES-16 shows a higher average wind speed
bias than OSTIA, the results from GOES-16 have a lower av-
erage RMSE and a higher average correlation than OSTIA.
The wind speed bias at all three lidars is notably strong, with
a negative bias at Atlantic Shores (over 1 ms−1 slower than
observed) and a positive bias at both NYSERDA lidars (well
over 1 ms−1 at a 120 m hub height at NYSERDA E05).

Figure C5 depicts 100 m model performance at Atlantic
Shores and NYSERDA E06 for the 18 July event, and
Fig. C6 shows performance metrics at Atlantic Shores and
NYSERDA E06 for the 18 July event at 120 m. Although
both simulations’ hub-height wind speeds show comparable
correlation with observations, OSTIA has an over 0.1 ms−1

stronger wind speed bias than GOES-16, and GOES-16 val-
idates with lower RMSE and EMD values.
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Figure C1. The 100 m hub-height validation metrics at NYSERDA
E05 and NYSERDA E06 during the 21–22 June event: bias, RMSE,
correlation, and EMD.

Figure C2. The 120 m hub-height validation metrics at NYSERDA
E05 and NYSERDA E06 during the 21–22 June event: bias, RMSE,
correlation, and EMD.

Figure C3. The 100 m hub-height validation metrics at NYSERDA
E05 and NYSERDA E06 during the 10–11 July event: bias, RMSE,
correlation, and EMD.

Figure C4. The 120 m hub-height validation metrics at NYSERDA
E05 and NYSERDA E06 during the 10–11 July event: bias, RMSE,
correlation, and EMD.
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Figure C5. The 100 m hub-height validation metrics at Atlantic
Shores and NYSERDA E06 during the 18 July event: bias, RMSE,
correlation, and EMD.

Figure C6. The 120 m hub-height validation metrics at Atlantic
Shores and NYSERDA E06 during the 18 July event: bias, RMSE,
correlation, and EMD.
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