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Abstract. A new generalized analytical model for representing body forces in numerical actuator disc models of
wind turbines is proposed and compared to results from a blade element momentum (BEM) model. The model is
an extension of a previously developed load model, which was based on the rotor disc being subject to a constant
circulation, modified for tip and root effects, corresponding to an optimum design case. By adding a parabolic
circulation distribution, corresponding to a solid-body approach of the flow in the near wake, it is possible to
take into account losses associated with off-design cases, corresponding to pitch regulation at high wind speeds.
The advantage of the model is that it does not depend on any detailed knowledge concerning the actual wind
turbine being analysed but only requires information about the thrust coefficient and tip-speed ratio. The model
is validated for different wind turbines operating under a wide range of operating conditions. The comparisons
show generally an excellent agreement with the BEM model even at very small thrust coefficients and tip-speed
ratios.

1 Introduction

The actuator disc concept has for many years been em-
ployed as a means to include body forces into the Navier–
Stokes equations for rotor computations of both single rotors
(e.g. Sørensen and Myken, 1992; Sørensen and Kock, 1995;
Ammara et al., 2002; Mikkelsen, 2003; Jimenez et al., 2007)
and multiple rotors operating in wind farms (e.g. Porté-Agel
et al., 2011; Nilsson et al., 2014; Stevens et al., 2018). The
simplest way of implementing body forces in the Navier–
Stokes equations is to let them be prescribed either as con-
stant loadings (Sørensen et al., 1999) or as prescribed radial
distributions (Simisiroglou et al., 2016). However, if more
detailed information regarding load distributions is required,
it is needed to know the actual rotor geometry, i.e. the twist
and chord distributions, as well as airfoil type at each cross
section, including the lift and drag characteristics of the air-
foils (Sørensen and Kock, 1995; Wu and Porté-Agel, 2011).
Besides this, it also requires information regarding the oper-
ational envelope of the rotor, i.e. the collective pitch setting
of the rotor blade and tip-speed ratio as function of incoming
wind speed. In many cases, however, this information is not

known, either because geometry and airfoil data are confi-
dential or simply because the developer has not yet decided
size and type of the turbines in the initial development phase
of a wind farm. There is therefore a need for a method that in
a simple way may represent the rotor loading by body forces
without prior knowledge of the wind turbine.

A systematic study on different ways to include body
forces was carried out by van der Laan et al. (2015), who
showed that knowing the details of the actual loading results
in a more reliable computation of the wake than simply as-
suming some more or less arbitrary shapes. In this study, a
load model was proposed based on using the dimensionless
load data from a known wind turbine to scale the loading
for other turbines. Such a method actually indicates that, in
dimensionless form, the rotor loading from one turbine is
not very different from any other turbine. This assumption
also forms the background for the analytical load model pro-
posed by Sørensen et al. (2019). The model of Sørensen et
al. (2019) is based on the assumption that, except near to root
and the tip, the circulation is constant along the rotor blade.
This makes it possible to derive an analytical set of equations
describing axial and tangential load distributions along the
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blade that only depends on tip-speed ratio and thrust coeffi-
cient. As a part of the model, the load at the tip is modified
by the usual tip correction (Glauert, 1935), and the root is
corrected by a polynomial. The model was validated using
large-eddy simulation (LES) actuator disc computations of
the Tjæreborg turbine and the DTU 10 MW reference rotor
operating at wind speeds corresponding to the design con-
ditions. A further study employing the model on commer-
cial wind turbine rotors operating at off-design conditions
was recently performed by Sørensen and Andersen (2020).
The studies showed that the analytical model performs ex-
cellently at design wind speeds (i.e. at wind speeds below the
rated), whereas the load distributions start to deviate from the
reference distributions when operating the turbine away from
the design load case. To complete the analytical load model
to cope with the full range of wind speeds encountered by
a wind turbine, there is therefore a need for a generalized
extended version of the model. The aim of the present inves-
tigation is to devise a technique to extend the analytical load
model to comprise wind turbines running under different op-
erating regimes, including off-design conditions.

The paper is organized as follows. In Sect. 2, the idea be-
hind the analytical model is explained, and the resulting set
of equations is derived. Section 3 contains a verification and
tuning of the model parameters, and in Sect. 4 results are pre-
sented and discussed. Section 5 contains a discussion of the
results, and the conclusion is given in Sect. 6.

2 Methodology

In this section the derivation of the analytical body force
model will be described in detail. First, the control strategy
of a modern wind turbine is introduced in order to state the
background for the extended version of the model, and next
the equations forming the analytical load model will be de-
rived.

2.1 Power and thrust coefficients

To derive an analytical load model that is applicable for all
wind speeds, it is required to understand the control strategy
of a modern wind turbine. Most turbines of today are tip-
speed regulated at wind speeds ranging from the cut-in wind
speed to the rated wind speed, which is the wind speed where
the produced power becomes equal to the installed generator
power. At higher wind speeds, the rotor is pitch regulated in
order to keep a constant power output. This involves turning
the rotor blades about their long axis using an active con-
trol system that senses the blade position and at the same
time measures the produced power to give the appropriate
instructions for changing the blade pitch. The idea of pitch
regulation is to limit the lift by locally decreasing the angles
of attack on the blade.

Figure 1. Typical power and thrust coefficient curves for a modern
(1500 kW) wind turbine (from Gu et al., 2015).

As shown by Sørensen and Larsen (2021), the power pro-
duction of a wind turbine at a given ambient mean wind
speed, U0, below rated wind speed may be approximated by
the following generic expression:

P (U0)= αU3
0 +β, (1)

where the coefficients α and β are determined as

α =
PG

U3
r −U

3
in
, β =−

PGU
3
in

U3
r −U

3
in
, (2)

where PG denotes the rated (installed) generator power, Uin
is the cut-in wind speed, and Ur is the rated wind speed. This
expression obviously allows for zero turbine production at
the cut-in wind speed. The thrust and power coefficient are
defined as

CT ≡
T

1/2ρARU
2
0
, CP ≡

P

1/2ρARU
3
0
, (3)

where T is the axial force, or thrust, acting on the rotor; P
is the power generated by the rotor; ρ is the air density; and
AR =

π
4D

2 is the rotor area, with D denoting the rotor di-
ameter. We assume that the wind turbine operates at its op-
timum (rated) condition, CP = CP,r

(
≡

PG
1/2ρARU3

r

)
, at wind

speeds lower than the rated wind speed, Ur, and at a constant
power yield, P = PG, at wind speeds higher than the rated
wind speed. This operational strategy is typical for a mod-
ern wind turbine, which is operated with a variable tip speed
at wind speeds below the rated one and which is pitch regu-
lated at higher wind speeds. An example of this is illustrated
in Fig. 1, which shows the performance curve of a 1500 kW
UP1500-86 wind turbine from Guodian United Power. It is
seen here that the change from tip-speed regulation to pitch
regulation takes place at a wind speed of about 10 m s−1.
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The rated wind speed is determined from Eq. (3) at the
condition where the generator operates at both maximum
power and maximum (rated) power coefficient,

Ur =
3

√
8PG

ρπD2CP,r
. (4)

With the above-given assumptions, the wind turbine power
curve is expressed as

P (U0)=
{
αU3

0 +β; Uin ≤ U0 <Ur
PG; Ur ≤ U0 ≤ Uout

, (5)

where the wind turbine cut-out wind speed is denoted asUout.
The corresponding thrust coefficient, CT, is approximated as

CT =

{
CT,r; Uin ≤ U0 <Ur
CT,r · (U0/Ur)−3.2

; Ur ≤ U0 ≤ Uout
. (6)

From this expression, it is seen that the thrust coefficient for
Ur ≤ U0 ≤ Uout decreases with the wind speed to the power
of −3.2. This value was recently derived analytically in a
work by van der Laan et al. (2022). If not known in advance,
typical values such asCT,r = 0.8 andCP,r = 0.48 may be em-
ployed to characterize the wind turbine performance of an
actual wind turbine.

2.2 Basic equations of the load model

Applying the Bernoulli equation in a rotating frame of refer-
ence across the rotor plane, we get the following expression
for the pressure drop over the rotor disc (see Glauert, 1935
or Sørensen, 2016):

1p = ρ�ruθ + 1/2ρu2
θ , (7)

where � is the angular velocity of the rotor, uθ is the az-
imuthal velocity in the wake just behind the rotor, and r is
the radial distance to the point considered. From this equa-
tion and the moment of momentum equation, sometimes re-
ferred to as Euler’s turbine equation, we get the following
two equations for the surface forces acting on the actuator
disc representing the wind turbine:

fz = ρuθ (�r + 1/2uθ ) , (8a)
fθ = ρuDuθ , (8b)

where fz and fθ are the axial and azimuthal surface forces,
respectively, and uD = uD(r) denotes the axial velocity in
the plane of the rotor. The geometry of the rotor and the used
coordinate system are illustrated in Fig. 2, which shows the
coordinates defining the rotor and associated velocities and
surface forces. We here take advantage of the fact that the
azimuthal velocity in the rotor plane is half of the one in the
wake. Recall here that we rely uniquely on momentum theory
and therefore do not consider the actual airfoil polar; hence,

Fig. 2b serves to illustrate the local coordinate system and
the velocity triangle.

In dimensionless form, the equations read

fz

1/2ρU2
0
=
uθ

U0

(
2λx+

uθ

U0

)
, (9a)

fθ

1/2ρU2
0
= 2

uD

U0

uθ

U0
, (9b)

where x = r/R is the dimensionless radial position, and λ=
�R/U0 is the tip-speed ratio.

The total axial force (thrust) and the power are determined
by integration of the above equations,

T =

R∫
0

fz2πrdr = 2πρ

R∫
0

ruθ (�r + 1/2uθ )dr, (10a)

and

P =�

R∫
0

rfθ2πrdr = 2πρ�uD

R∫
0

uθ r
2dr, (10b)

which in dimensionless form reads

CT =
T

1/2ρπR2U2
0
= 4λ

1∫
0

uθ

U0
x2dx+ 2

1∫
0

(
uθ

U0

)2

xdx,

(11a)

CP =
P

1/2ρπR2U3
0
= 4λ

1∫
0

uD

U0

uθ

U0
x2dx. (11b)

From the above relations it is seen that a closure of the equa-
tions only demands knowledge about the azimuthal velocity
distribution immediately behind the turbine.

For a wind turbine operating below the rated wind speed,
it is assumed that the rotor loading corresponds to the one
obtained for an optimum rotor. Although the design of mod-
ern wind turbine rotors is based on different design objec-
tives and constraints, the actual geometry generally does not
vary much. This assumption is supported by previous anal-
yses by comparing optimum blade geometries generated us-
ing different rotor models. In Sørensen (2016) and Sørensen
et al. (2021), a comparative study showed that, for tip-speed
ratios typically used for the design of modern wind turbines,
the different design methodologies approximately resulted in
the same blade geometries. The idea behind the analytical
model developed by Sørensen et al. (2019) is that an opti-
mally designed blade is achieved by representing the rotor
load by a constant circulation, modified with a tip correction,
F (r), and a root correction, g(r). However, when operating a
turbine at wind speeds higher than the rated one, it becomes
necessary to reduce the loading by regulating the pitch set-
ting in order to maintain a constant power output. The im-
pact of this is a redistribution of the loading, which no longer
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Figure 2. Geometry, kinematics, and forces acting on the rotor. (a) Forces acting in the rotor plane; (b) forces and velocity triangle on a
cross section of the rotor.

can be represented by a constant circulation. Since the dif-
ference in loading from the optimum one will create addi-
tional losses in the wake, the azimuthal velocity distribution
forming the loading in Eqs. (9a) and (9b) needs to include
terms taking this into account. In the proposed model, the
azimuthal velocity distribution not only is represented by the
induction from root and tip vortices but also includes a term
corresponding to a solid-body rotation of the wake. When
pitching the rotor, this term will be active and ensure that
the model includes the wake losses generated by the pitch
setting. Hence, in the new extended model, the azimuthal ve-
locity distribution is given as

uθ

U0
=

[q0

x
− S0x

]
g(x)F (x), (12)

where the first term in the bracket corresponds to the opti-
mum constant circulation condition, and the next term de-
fines the redistribution of circulation due to the change in
pitch setting when operating at wind speeds higher than the
rated. The quantities q0 and S0 are constants representing
the circulation of the optimum rotor and the rotation of the
solid-body term, respectively. It should be emphasized that
the used formula consists of a combination of a potential vor-
tex, uθ = C1/x, and a solid-body rotation, uθ = C2x, which
are both fundamental solutions to the steady incompressible
Euler and Navier–Stokes equations in the case of a parallel
flow. As tip correction we employ the model proposed by
Glauert (1935):

F =
2
π

arccos
[

exp
(
−
Nb(1− x)

2sinφ

)]
, (13)

where Nb denotes the number of rotor blades and φ is the lo-
cal flow angle, which approximately can be determined from
the formula

sinφ =
1√

1+ λ2x2/
(
uD
U0

)2
. (14)

It should be mentioned that we in the original work (Sørensen
et al., 2019) used the tip correction of Prandtl. However, to
be consistent with usual standards in blade element momen-
tum (BEM) theory, this is replaced by the tip correction of
Glauert. To account for the influence of the hub and the inner
non-lifting part of the rotor, a vortex core of size δ is intro-
duced, and an expression for the root correction is proposed
as follows:

g = 1− exp

[
−a

(
x

δ

)b]
, (15)

where δ = δ
R

denotes the dimensionless radial distance to the
point where the maximum azimuthal velocity is achieved.
With the proposed model, δ typically corresponds to the point
where the lifting surface of the rotor starts. In the general
case, the relation between the constants a and b is deter-
mined by differentiating Eq. (15) to determine the maximum
azimuthal velocity at x = δ. Here, we assume g to be repre-
sented by a fourth-order polynomial; hence, we get the values
b = 4 and a = 2.335. A derivation of the general relationship
between a and b is given in Appendix A.

Inserting Eq. (12) into Eqs. (9a) and (9b), the following
expressions are obtained:

fz

1/2ρU2
0
=

(
2λx+

(q0

x
− S0x

)
g(x)F (x)

)
[q0

x
− S0x

]
g(x)F (x), (16a)

fθ

1/2ρU2
0
= 2

uD

U0

[q0

x
− S0x

]
g(x)F (x). (16b)

Inserting Eq. (12) into Eq. (11a), we get
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CT =

1∫
0

2x
(

2λx+
(q0

x
− S0x

)
g(x)F (x)

)
[q0

x
− S0x

]
g(x)F (x)dx⇒ CT = 2a1q

2
0

+ 4a2λq0− 4a3S0q0− 4a4λS0+ 2a5S
2
0 . (17)

The coefficients from the integration are given as follows:

a1 =

1∫
0

g2F 2

x
dx; a2 =

1∫
0

gFxdx,

a3 =

1∫
0

g2F 2xdx; a4 =

1∫
0

gFx3dx,

a5 =

1∫
0

g2F 2x3dx.

From Eq. (17), the dimensionless reference circulation is de-
termined as

q0 =√
(a2λ− a3S0)2

+ a1
(
1/2CT+ 2a4λS0− a5S

2
0
)
− (a2λ− a3S0)

a1
. (18)

Inserting Eq. (12) into Eq. (11b), we get

CP = 4λ

1∫
0

x2 uD

U0

[q0

x
− S0x

]
g(x)F (x)dx⇒

CP = 4λ (a6q0− a7S0) , (19)

where a6 =
1∫

0

uD
U0
gFxdx, and a7 =

1∫
0

uD
U0
gFx3dx.

It is seen that, keeping the axial velocity inside the inte-
gration, Eq. (19) allows for solutions involving non-constant
inflow uD = uD(x). In Sørensen et al. (2019) it was demon-
strated how arbitrary inflow velocity distributions can be in-
cluded to determine local load distributions. However, in the
present work, where the focus is on validating the basic ap-
proach, we assume a constant inflow. In this case, we get

CP = 4λ
uD

U0
(a2q0− a4S0) . (20)

Knowing the power coefficient, the axial velocity in the rotor
plane is given as(
uD

U0

)
=

CP

4λ (a2q0− a4S0)
. (21)

The above-described system of equations forms the basis of
the proposed analytical load model. Input to the model is (λ,

CT, CP) or, alternatively, (λ, CT, uD/U0), depending on the
aim of the analysis.

At wind speeds below the rated, the rotor is operated at a
constant tip-speed ratio; hence, S0 = 0 and the reference cir-
culation is only a function of the rated tip-speed ratio, thrust
coefficient, and power coefficient, q0,r = q0(λr,CT,r,CP,r).
From Eq. (18), we get

q0,r =

√
λ2

r a
2
2 + 1/2a1CT,r− λra2

a1
, (22)

with the axial flow in the rotor plane computed from(
uD

U0

)
r
=

CP,r

4λra2q0,r
. (23)

Hence, setting S0 = 0, the dimensionless loading can be ob-
tained directly as in the original analytical model derived by
Sørensen et al. (2019). In Sørensen and Andersen (2020) this
approach was shown to give excellent results for rotors op-
erating at rated conditions. However, at operating conditions
far from the rated, the assumption of a constant circulation
supplemented with tip and root corrections was found not to
be sufficient, and an extended modelling, as the one proposed
here (Eq. 12), is required. In this context, two main questions
remain to be answered. First, does the proposed extended
model, Eqs. (16a) and (16b), actually represent the loads on a
real rotor operating at off-design conditions? Secondly, since
an additional parameter, S0, is introduced, an additional re-
lationship connecting this parameter and the existing input
parameters is required in order to establish a solution at off
design. How do we model this? These two questions will be
addressed in the following section.

3 Verification and tuning of model

In this section, we verify the basic behaviour of the proposed
load model and tune the modelling parameter S0.

3.1 Verification of the model at off-design conditions

A simple way to verify the applicability of the proposed
model to represent the loadings at off-design conditions is to
compare it to results obtained from blade element momen-
tum (BEM) computations of an actual wind turbine. Since
the parameter, S0, is not known, we simply try different val-
ues and chose the one that gives the best fit of the analytical
load distributions to those computed by the BEM technique.
As a reference, we chose the geometry of the NEG Micon
NM80 wind turbine, which in the previous study by Sørensen
and Andersen (2020) was employed to test the model for
S0 = 0 (more details about the NM80 turbine are given in
Appendix B). Here, we chose three different operating con-
ditions, one corresponding to the rated condition (CT = 0.82)
and two off-design conditions (CT = 0.26 and CT = 0.13).
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Figure 3. Comparison between analytical model and BEM computations. Solid lines: BEM computations, triangles: analytical model as-
suming S0 = 0, and circles: analytical model using “optimized” S0 values. (a) Normal load distributions; (b) tangential load distributions.

In the following we compare dimensionless normal and
tangential load distributions along a blade. The distributions
are normalized by ρRU2

0 ; hence, the dimensionless quanti-
ties are given as

Cn =
Fn[N/m]

ρRU2
0
; Ct =

Ft[N/m]

ρRU2
0
, (24)

where Fn is the normal loading and Ft is the tangential
loading on each blade. As the analytical loads in Eqs. (9a)
and (9b) are given per area unit for the full rotor, the load
coefficients are computed as

Cn =

(
fz

1/2ρU2
0

)
·

(
πx

Nb

)
; Ct =

(
fθ

1/2ρU2
0

)
·

(
πx

Nb

)
, (25)

where Nb denotes the number of blades.
The results are shown in Fig. 3, which depicts distributions

of normal loadings (left) and tangential loadings (right). In
the plots, the BEM computations are given as solid lines, and
the analytical results are given symbols (a triangle for S0 = 0
and a circle for the “optimum” S0 value). First, it is observed
that the comparison between BEM and the analytical model
at rated conditions (black curves) displays an excellent agree-
ment. Here, the optimum S0 value is zero, confirming that the
original model actually is working well for the case at which
it is developed. In the two off-design cases, on the other hand,
it is clearly seen that it is required to extend the model with
an additional term. In particular, the tangential loading be-
comes way off if we maintain a value of S0 = 0, where the
distributions tends to keep a nearly constant tangential load
distribution over the main part of the rotor blade. Since we
have no expression to determine S0, we try different values
and choose the one that gives the distributions most close to
the BEM computations. In Appendix C, assuming that the
blade in the extreme case locally near the tip will start to
operate as a propeller, it was possible to derive a simple re-
lation for the maximum value of S0, stating that S0 < 0.08.
In the present case, by trial and error, the values are found to
be S0 = 0.019 for CT = 0.26 and S0 = 0.044 for CT = 0.13.

Employing these values, the comparison displays an excel-
lent agreement for both the normal and tangential load dis-
tributions, demonstrating that the proposed model actually
takes into account the main features of the load distributions
at off-design conditions. However, it is still needed to de-
velop a general expression for the rotation parameter S0.

3.2 Modelling of the rotation parameter S0

To determine an expression for the rotation parameter S0, we
first recognize that S0 is equal to zero for a rotor operating
at rated conditions. Hence, it is natural to seek for an ex-
pression that depends on how far the rotor is operating from
the rated one, i.e. search for a relationship S0 = S0(λr−λ) or
S0 = S0(CT,r−CT), where λr andCT,r denote the rated values
of the tip-speed ratio and the thrust coefficient, respectively.
To accomplish this, as a starting point we carry out a series
of BEM computations for actual wind turbines operating at
different conditions. The used wind turbines are the Vestas
V27 and V52 turbines and the NEG Micon NM80 turbine.
The relevant data for the turbines are given in Appendix B.
The computations are carried out at different operating con-
ditions, and the outcome is employed to determine if there
exists a simple parameterizable relationship between S0 and
the input variables. Hence, for each combination of λ and
CT, a BEM computation of the normal and tangential load-
ing distributions is carried out, and the value of S0 that best
fits the distributions with the analytical model is determined.
The outcome of this is for the three wind turbines and dif-
ferent combinations of tip-speed ratio and thrust coefficients
shown in Fig. 4, where S0 is plotted as a function of normal-
ized values of the tip-speed ratio, (λr− λ)/λr, and thrust co-
efficient, (CT,r−CT)/CT,r. Analysing the two distributions,
it is seen that using the normalized tip-speed ratio to deter-
mine S0 results in some scatter of the data, whereas there is
a more unique relationship between S0 and the normalized
thrust coefficient.

Employing a simple least squares fit using the relationship
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Figure 4. Correlation between rotation parameter, S0, and dimensionless relative tip-speed ratio (a) and thrust coefficient (b). Red cir-
cles: V27, blue circles: V52, and black circles: NM80.

Figure 5. Curve fit given the parameterization of S0 with respect
to the normalized thrust coefficient. Red circles: V27, blue cir-
cles: V52, and black circles: NM80.

S0 = α

(
CT,r−CT

CT,r

)β
, (26)

we get the values α = 0.08 and β = 3 for CT < CT,r and
α = 0.05 and β = 1 for CT ≥ CT,r. The result of the fit is
shown in Fig. 5, which displays a very good agreement be-
tween the computed points and the curve fit. Hence, the clo-
sure of the equations is accomplished by exploiting the be-
low expression to connect the rotation parameter S0 with the
normalized thrust coefficient:

S0 =

 0.08 ·
(
CT,r−CT
CT,r

)3
; CT < CT,r

0.05 ·
(
CT,r−CT
CT,r

)
; CT ≥ CT,r

. (27)

As a conclusion of the parameterization, we now have a clo-
sure of S0 at off-design conditions that, besides the actual
thrust coefficient, CT, also demands knowledge about the
rated thrust coefficient, CT,r. For an actual wind turbine, this
value is normally given as a part of the general technical data.
If this is not known, a value of 0.8, which is typical for a com-
mercial wind turbine, may be employed.

4 Results

In the following we show various comparative results for
three different wind turbines operating at a broad range of
conditions. The BEM computations are carried out using full
knowledge regarding the actual blade geometry and associ-
ated airfoil data. The operational conditions contain all kinds
of combinations between the tip-speed ratio and the thrust
coefficient, including high wind speeds, corresponding with
low thrust coefficients. In this case, the thrust coefficient is
lowered by pitching the rotor blades. In contrast with the de-
tailed input required in the BEM computations, the analytic
model only demands tip-speed ratio, thrust coefficient, and
power coefficient as input. The computations are carried out
for a constant axial inflow without shear and turbulence. As
demonstrated in Sørensen et al. (2019), shear and turbulence
are easily introduced into the model when carrying out ac-
tual CFD actuator disc computations, but it is not the objec-
tive of the present work to include this. Here we focus on
assessing the models ability to represent loadings for differ-
ent turbines operating at off-design conditions. The chosen
wind turbines represent sizes with a range of nameplate ca-
pacity from 225 to 2750 kW. The data for the wind turbines
are given below in Appendix B, which shows nameplate ca-
pacity, rotor diameter, and design tip-speed ratio. The latter
information is included to assess where the best agreement
between the analytical model and the BEM computations can
be expected to take place.

In Figs. 6–8 the load distributions are compared for three
wind turbines operating at a wide range of off-design condi-
tions, with thrust coefficients ranging from 0.1 to 0.97 and
tip-speed ratios between 3 and 13, where the turbine is ei-
ther pitch regulated or running at upstart conditions. The only
input to the analytical model is the tip-speed ratio, λ, and
the CT and CP values from the BEM computations. Figure 6
shows comparative normal and tangential force distributions
for the V27 rotor. As seen, there is a generally a very good
agreement between the analytical and the BEM-computed
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Figure 6. Normal and tangential force coefficient distribution of the V27 turbine at different tip-speed ratios and thrust coefficients. Circles:
analytical model; solid lines: BEM computations.

Figure 7. Normal and tangential force coefficient distribution of the V52 turbine at different tip-speed ratios and thrust coefficients. Circles:
analytical model; solid lines: BEM computations.

Figure 8. Normal and tangential force coefficient distribution of the NM80 turbine at different tip-speed ratios and thrust coefficients. Circles:
analytical model; solid lines: BEM computations.

normal force distributions. The agreement between analyti-
cal and computed tangential force coefficients is good over
most of the rotor surface but not as convincing as for the nor-
mal force distributions. The biggest deviation between com-
puted and analytical tangential loadings is seen to appear at

the inner part of the blade for moderate CT values, whereas
the best comparisons are obtained for high and low CT val-
ues. Figure 7 compares computed and analytical force coef-
ficients for the V52 wind turbine. As compared to the V27
data, we here observe an even better agreement between an-
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alytical and computed force distributions. In particular, the
comparison between the analytical representation of the tan-
gential force distribution and the computed one is excellent
for all the predicted cases. However, some deviation is ob-
served for the normal force coefficients at the outer part of
the blade. The best comparison between the analytical and
the computed force coefficients is found for the NM80 tur-
bine, as shown in Fig. 8. Here we observe an excellent agree-
ment between the analytical and numerical curves for all CT
values.

5 Discussion

The comparisons between the BEM computations and the an-
alytical load distributions are generally in very good agree-
ment with each other, even for wind turbines operating far
away from the rated design-based conditions. This actually
supports the underlying hypothesis that there exists a gen-
eral way of describing the loading on a wind turbine using a
simple analytical expression with only very few input param-
eters. For the present investigation, input parameters are the
thrust and power coefficients as function of tip-speed ratio.
In a large-eddy simulation of, for example, a wind farm, the
velocity distribution on the actuator disc (i.e. the rotor) is an
inherent part of the simulation, and the unknown in this case
is the generated power (see, for example, Nilsson et al., 2014,
or van der Laan et al., 2015). There may be other ways of rep-
resenting and generalizing the expressions for the loadings.
The one proposed here, using circulation and rotation of the
wake flow as a guideline to parameterize the loads, seems
actually to work quite well. One may argue that using the
BEM technique, which normally is characterized as a low-
fidelity approach, as the basis for determining the missing
relationship between the S0 parameter and the thrust coeffi-
cient is not accurate enough. An answer to this is partly that
the BEM technique, even today, is the only design tool used
in industry for designing wind turbine rotors and partly that
the methodology presented here is general, and the param-
eterization and tuning of the model easily can be improved
later using more sophisticated prediction tools.

6 Conclusion

A generalized analytical body force model has been devel-
oped and validated against load distributions generated by a
BEM model. The model, which is an extension of an ear-
lier model that was only valid for optimum operating rotors,
now includes load expressions for wind turbine rotors oper-
ating at off-design conditions. The essential part of the model
is based on combining an expression for constant circula-
tion with a solid-body rotation approach to take into account
losses when operating the rotor at off-design conditions. A
comparison with BEM computations was carried out using
three wind turbines of different sizes running at a range of

different operating conditions. The results are very convinc-
ing, showing generally a very good agreement between the
simple analytical model and the BEM results. The compar-
ison demonstrates that a simple analytical model with very
good precision can be utilized to represent the loading on
wind turbines, at both design and off-design conditions.

Appendix A

The expression for the root correction is derived from the
idea that the inner part of the rotor is a viscous correction to
the potential vortex forming the lift-producing part of load-
ing. At design conditions (where S0 = 0), the azimuthal ve-
locity distribution near the root is given as

uθ

U0
=
q0

x

[
1− exp

[
−a

(
x

δ

)b]]
, (A1)

where we implicitly assume that F = 1. To determine the re-
lationship between the constants a and b, we assume that
the azimuthal velocity attains its maximum at the radial po-
sition, where x = δ. Hence, the relation between a and b is
determined by differentiating Eq. (A1) with respect to x and
setting this expression equal to zero at x = δ. Differentiating
Eq. (A1) with respect to x gives

d
dx

(
uθ

U0

)
=−

q0

x2

[
1− exp

[
−a

(
x

δ

)b]]

+
q0

x
exp

[
−a

(
x

δ

)b]
ab

δ

(
x

δ

)b−1

. (A2)

Inserting x = δ and setting the expression equal to zero gives
the following relation between a and b:

(a · b+ 1)exp(−a)= 1. (A3)

We observe here that the expression does not include the vis-
cous core size, δ, but is a generic expression for the relation-
ship between the parameters a and b. Since the equation is
non-linear, it is required to solve it numerically. Doing this,
the relationship between a and b is as shown in Fig. A1. In
the present work, we put b = 4 and get that a = 2.335.

Appendix B

Here we give the main characteristics of the turbines used
in the study. We do not present detailed data, such as chord
and twist distributions or the employed airfoil character-
istics, as they are confidential. However, for the present
study these data are not needed, since only the outcome
of the BEM computations is required to develop and val-
idate the developed model. Details of the Vestas V27 tur-
bine can be found in Resor and LeBlanc (2014) and Kelley
and White (2018), and for the V52 turbine, the reader is re-
ferred to the home page https://en.wind-turbine-models.com/
turbines/71-vestas-v52 (last access: May 2023).

https://doi.org/10.5194/wes-8-1017-2023 Wind Energ. Sci., 8, 1017–1027, 2023

https://en.wind-turbine-models.com/turbines/71-vestas-v52
https://en.wind-turbine-models.com/turbines/71-vestas-v52


1026 J. N. Sørensen: Generalized analytical body force model for actuator disc computations of wind turbines

Figure A1. Plot showing the relationship between the parameters a
and b (Eq. A3).

Table B1. Wind turbine characteristics.

Vestas Vestas NEG
V27 V52 Micon

NM80

Name plate capacity [kW] 225 850 2750
Diameter [m] 27 52 80
Design tip-speed ratio [–] 7.6 8.3 8.6

Appendix C

Here we derive a simple guideline for determining an up-
per limit of the rotation constant S0, which was introduced
in Eq. (12) to take into account off-design operating condi-
tions. First, as explained in Sect. 2.1, for wind speeds exceed-
ing the rated, the off-design conditions are given by pitching
the blades, keeping a constant or nearly constant tip speed.
Hence, for increasing wind speeds the tip-speed ratio de-
creases, and by increasing the pitch angle the power pro-
duction is maintained at a constant value, corresponding to
the nameplate capacity of the turbine. Unfortunately, there is
no simple way of relating this process to the determination
of S0. Instead, we resort to some simple physical consider-
ations. First, assuming the tip-speed ratio to be larger than
about three, with a very good approximation, Eq. (17) may
be written as

CT ' 4a2λq0− 4a4λS0, (C1)

from which we get

q0 '

(
a4

a2

)
S0+

CT

4a2λ
. (C2)

Next, if the rotor has to run locally in a turbine mode, i.e. if
it everywhere along the blade extracts energy from the wind,
the tangential force component, fθ , has to be positive. How-
ever, at high wind speeds a pitch-regulated wind turbine rotor
will locally, starting around the tip, begin to operate as a pro-
peller, i.e. fθ will become negative and start to deliver energy

to the flow. Assuming now that the rotor somewhere near the
tip starts to act locally as a propeller, from Eq. (16) we get
that the term (q0/x− S0x) becomes negative. Assuming that
this happens at a reference point x = xp, we get

q0 ' S0x
2
p . (C3)

Combining Eqs. (C2) and (C3), we get that

S0 '
CT

4λ
(
a2x2

p − a4

) . (C4)

With the approximate values a2 ' 0.4 and a4 ' 0.2, we get
that

S0 ' 1.25
CT

λ
(

2x2
p − 1

) , (C5)

which serves as a simple guideline for the upper value of S0.
In the cases that have been run in the present study, the most
extreme values were CT = 0.1 and λ= 3.56, where the V52
rotor was found to go into a propeller mode at xp = 0.85,
resulting in an upper limit S0,max ' 0.08.
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