
Wind Energ. Sci., 8, 1133–1152, 2023
https://doi.org/10.5194/wes-8-1133-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Applying a random time mapping to Mann-modeled
turbulence for the generation of intermittent wind fields

Khaled Yassin1, Arne Helms2, Daniela Moreno1, Hassan Kassem3, Leo Höning2,3, and
Laura J. Lukassen1

1ForWind, Institute of Physics, Carl von Ossietzky University Oldenburg,
Küpkersweg 70, 26129 Oldenburg, Germany

2Institute of Physics, Carl von Ossietzky University Oldenburg,
Küpkersweg 70, 26129 Oldenburg, Germany

3Fraunhofer Institute for Wind Energy Systems (Fraunhofer IWES),
Küpkersweg 70, 26129 Oldenburg, Germany

Correspondence: Khaled Yassin (khaled.yassin@uni-oldenburg.de) and Laura J. Lukassen
(laura.lukassen@uni-oldenburg.de)

Received: 16 November 2021 – Discussion started: 17 December 2021
Revised: 10 February 2023 – Accepted: 11 May 2023 – Published: 13 July 2023

Abstract. A new approach to derive a synthetic wind field model which combines spatial correlations from
the Mann model and intermittency is introduced. The term intermittency describes the transition from Gaussian
to non-Gaussian velocity increment statistics at small scales, where non-Gaussian velocity increment statistics
imply a higher probability for extreme values than a Gaussian distribution. The presented new model is named
the Time-mapped Mann model. The intermittency is introduced by applying a special random time-mapping
procedure to the regular Mann model. The time-mapping procedure is based on the so-called continuous-time
random walk model. As will be shown, the new Time-mapped Mann field reflects spatial correlations from the
Mann model in the plane perpendicular to flow direction and temporal intermittency. In the first wind turbine
study, the new Time-mapped Mann field and a regular Mann field are used as inflow to a wind turbine in a blade
element momentum simulation. It is shown that the wind field intermittency carries over to loads of the wind
turbine and, thus, shows the importance of carefully modeling synthetic wind fields.

1 Introduction

Wind energy plays a leading role in the energy transition
process to renewable energy these days. In 2020, the world
witnessed new wind energy installations of 93 GW, making
the global installed capacity of wind energy 743 GW accord-
ing to the Global Wind Energy Council (GWEC, 2021). The
growing demand for wind energy resulted in growing tur-
bine rotor diameters. This leads to an increase in loads on
the different turbine components like blades and tower. Nu-
merical simulations are now crucial to predict loads and per-
formance parameters in the early design stages. In this con-
text, wind fields should be accurately simulated to be able to
anticipate extreme load cases and fatigue loads on different

parts of the wind turbine to reach the optimum design with-
out compromising the structural limits of these components.
However, the physics of the turbulent wind fields are not yet
completely understood, and many models were proposed to
simulate these fields as described in the following.

The IEC 61400-1 standard for wind turbines (Han, 2007)
recommends using Gaussian-based atmospheric turbulence
models, namely Kaimal (Kaimal et al., 1972) and Mann
(Mann, 1994, 1998) models, to simulate turbulent wind
fields. These two turbulent wind field models imply the as-
sumption that the velocity increments of the wind fields be-
have in a Gaussian manner.

However, it is well documented that the velocity incre-
ments of real atmospheric wind fields show non-Gaussian
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behavior, which is widely called intermittency. Through the
heavy tails of the distribution, this implies a larger probability
for extreme values than in a Gaussian distribution. Boettcher
et al. (2003) showed that wind field measurements from near
the German North Sea coastline have a non-Gaussian distri-
bution of two-point statistics of velocity increments for cer-
tain mean wind velocity intervals. Also, Vindel et al. (2008)
have shown the intermittency of velocity increment statis-
tics in data of the atmospheric boundary layer velocity mea-
sured by Cuxart et al. (2000). More recent research like the
work of Liu et al. (2010) and Mücke et al. (2011) reached the
same conclusion. This means that extreme wind velocity in-
crements happen more often than what is predicted using the
turbulence models recommended by the IEC standard. Also,
Morales et al. (2012) presented a statistical scheme to assess
turbulent wind fields that uses both lower- and higher-order
one-point and two-point statistics. They have also compared
synthetic turbulent time series using the Kaimal model with
atmospheric turbulent wind field measurements from the re-
search platform FINO-1. They have shown that the synthetic
fields generated with the Kaimal model failed to grasp the
intermittent behavior of the wind field.

The questions that arise at this point are the following:
how can a synthetic wind field be modeled as realistically
as possible and how is this reflected in the turbine loads?
In this direction, Kleinhans (2008) proposed a new approach
to generate an intermittent wind field using the continuous-
time random walk (CTRW) theory. This approach is based
on stochastic differential equations and a function that maps
from an intrinsic time to real time to generate such an inter-
mittent field, whereas the spatial correlations are not as real-
istic as in the Mann field. A brief description of the CTRW
model will be introduced in Sect. 2.3. In addition to the
CTRW model, there also exist other models which can be
applied to generate synthetic wind fields with intermittent
features, e.g., by Friedrich et al. (2021) based on multi-point
statistics which are not further discussed here.

Gontier et al. (2007) compared the effect of the intermit-
tent CTRW wind field and other standard turbulence models
(Kaimal and von Kármán, 1948) on the fatigue loads of the
D8 small wind turbine at different wind speeds. The authors
have found that the simulated wind turbine loads in the case
of using the CTRW wind model show heavy-tailed second-
order statistics, while the loads simulated by using the other
two models do not show such a behavior. However, the au-
thors could not give definitive conclusions regarding the peak
loads from their simulations. Later, Mücke et al. (2011) com-
pared the statistics of wind fields generated by the Kaimal
model, intermittent wind fields generated using CTRW, and
the atmospheric wind data measured within the GROWIAN
project (Körber et al., 1988). The three cases were then used
in the NREL FAST (V6.01) (Jonkman and Jonkman, 2005)
blade element momentum (BEM) simulator to model the re-
sulting rotor torque of the 1.5 MW WindPACT (Malcolm and
Hansen, 2006) turbine. Also, the authors analyzed the stress

cycles for the rotor torque time series to study the effects of
the three wind fields on fatigue loads. They have concluded
that the statistics of the numerical results using the Kaimal
wind field qualitatively differ from the results obtained from
measurements. On the other hand, they have concluded that
the synthetic wind field generated by the CTRW managed
to reproduce the intermittency at small timescales. Also, the
CTRW field managed to qualitatively provide intermittent ro-
tor torque statistics like the resulting torque from measure-
ments.

Gong and Chen (2014) numerically investigated the short-
and long-term extreme responses of the onshore NREL
5 MW turbine for a Gaussian wind field using a Kaimal wind
spectrum and a second non-Gaussian wind field generated
by a translation process theory introduced by Gioffre et al.
(2000). They showed that the non-Gaussian wind field re-
sulted in larger extreme loads of the blade root edgewise and
tower fore–aft moments while the responses of a stand-still
wind turbine case were less sensitive to the non-Gaussianity
of the wind field. Schottler et al. (2017) applied an intermit-
tent wind field on a 0.58 m diameter model wind turbine in
a wind tunnel to measure the effect of such a wind field on
the thrust, power, and torque on the rotor. The authors found
out that the turbine did not smooth out the intermittency, and
they also concluded that assuming non-Gaussian wind fields
may lead to significant differences in loads on the turbine.

Schwarz et al. (2018, 2019) isolated and investigated the
effect of intermittent wind velocity on equivalent fatigue
loads of the NREL 5 MW wind turbine at different wind
speeds using BEM simulations. To isolate the effects of inter-
mittency, two different velocity fields were generated utiliz-
ing the CTRW model: a Gaussian and a non-Gaussian wind
field. Both of them have the same features except for the in-
termittency that was introduced in the non-Gaussian field uti-
lizing the time mapping, which was simply omitted in the
Gaussian case. For the two wind cases, three different spatial
correlations were investigated: fully correlated fields, delta-
correlated fields, and 3×3 sub-divided fully correlated fields.
After analyzing the results of the different cases, the authors
noticed that the highest effect of intermittency of the wind
fields on the loads can be observed in the fully correlated
case with a 5 % to 10 % increase in fatigue loads while it
completely disappears in the delta-correlated field. For the
3× 3 sub-divided fully correlated field, intermittent loads
were ranged between the other two cases. The authors con-
cluded that intermittency in the wind field had a significant
effect on loads.

Berg et al. (2016) also compared Gaussian and non-
Gaussian wind fields using large eddy simulations (LESs) in
the HAWC2 computational fluid dynamics (CFD) software
(Larsen and Hansen, 2007). They studied the effect of the
intermittency on the different blade, tower, and shaft loads
and deflections of the NREL 5 MW wind turbine. In contrast
with the aforementioned studies, they concluded that inter-
mittency has no significant effect on the studied parameters.
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This shows that even though many studies reveal the influ-
ence of intermittency, the effect needs further investigation.
Recently, Bangga and Lutz (2021) simulated the DANAERO
2 MW wind turbine under turbulent inflow using CFD and
BEM simulations. In their work, they have compared tip de-
flections, flapwise and edgewise loads on the blade root, and
the damage equivalent load (DEL) of the DANAERO wind
turbine affected by a synthetic turbulent Mann field. The re-
sults of the simulated loads and deflections in their research
have shown good agreement with measured data from the tur-
bine operating under the same conditions. Specifically, the
authors compared the flapwise, edgewise, and torsional de-
flections’ spectra of the turbine under laminar and turbulent
inflows. The presented analysis of the spectra is very de-
tailed. However, the spectra of the deflections are not enough
to study all aspects of the effects of turbulence.

In the present paper, a novel method to numerically gen-
erate a synthetic, intermittent turbulent wind field is intro-
duced. Within this new method, the time-mapping technique
introduced by Kleinhans (2008) is applied on a turbulent
wind field generated by the Mann model. A detailed com-
parison between our new wind field using this time-mapping
technique, referred to as the Time-mapped Mann field in the
following, and a standard Mann-modeled wind field is car-
ried out. As will be shown, the advantage of the new Time-
mapped Mann field is that it combines spatial correlations
from the Mann wind field and intermittent behavior. Also,
a first insightful comparison between selected mechanical
loads on a 1.5 MW wind turbine resulting from both the
Time-mapped Mann field and the standard Mann field is il-
lustrated. The analysis of these turbine loads reveals the ef-
fect of intermittency on wind turbine loads.

2 Scientific background on synthetic wind fields

Before illustrating the derivation of the new Time-mapped
Mann field, general wind field statistics that will be used to
analyze the generated wind fields are introduced in Sect. 2.1.
After that, in Sect. 2.2 and 2.3 the Mann and CTRW tur-
bulent wind field models are introduced. The main purpose
of this section is to provide the theoretical background for
the derivation of the new model and its analysis. This chap-
ter is also intended to be self-contained and provide all the
necessary equations for the introduction of the proposed new
Time-mapped Mann model.

2.1 Statistics of wind fields

For any turbulent wind field, the wind velocity time series
Ui can be expressed as a function of mean velocity 〈Ui〉 and
velocity fluctuation ui , with i = 1,2,3 in three-dimensional
space:

Ui = 〈Ui〉+ ui, (1)

where the angular brackets 〈.〉 denote an ensemble average.
Throughout this paper, the ensemble average is partly re-
placed by spatial or temporal averages for practical purposes
which will be indicated in the respective cases below. In our
case, we assume only a mean velocity in the x1 direction,
i.e., 〈U〉 = (〈U1〉,0,0), which is the inflow direction in the
following. From this decomposition, the turbulence intensity
(TI) can be calculated as follows:

TIi =
σi

〈U1〉
=

√
〈u2
i 〉

〈U1〉
, (2)

where i indicates the direction in which the turbulence in-
tensity is calculated with respect to the mean velocity in the
inflow component 〈U1〉 and σi is the variance of ui . The
turbulence intensity is a one-point statistics in space and
time of wind fields. However, for information on the spa-
tial structures, one-point statistics is not sufficient and two-
point statistics should be used for more information about the
wind fields. As an example, the co-variance tensor contains
two-point statistics:

Rij (r,x, t)= 〈ui(x, t)uj (x+ r, t)〉, (3)

where Rij is the two-point correlation which is independent
of the position x in the case of homogeneous turbulence and
r is the displacement vector between the two points. Since
Eq. (3) is a theoretical equation, there are no restrictions on
selecting the two points for the two-point statistics. However,
in practice, it is limited to the size of the data set of the wind
fields. The spectral velocity tensor for homogeneous turbu-
lence resulting from a Fourier transform of Eq. (3) gives
(Pope, 2001)

8ij (κ, t)=
1

(2π )3

∞∫
−∞

∞∫
−∞

∞∫
−∞

Rij (r, t)exp(−iκ · r)dr. (4)

In this equation, κ = (κ1,κ2,κ3) represents a three-
dimensional wavenumber vector for the three directions. The
one-dimensional spectrum follows from Eq. (4) by integra-
tion:

Fi(κ1, t)=

∞∫
−∞

∞∫
−∞

8ii(κ, t)dκ2dκ3

=
1

2π

∞∫
−∞

Rii(r1,0,0, t)exp(−iκ1r1)dr1, (5)

where the ii index refers to the respective diagonal element
of the tensor. The one-dimensional spectra with respect to κ2
and κ3 are computed accordingly. The spectral coherence for
the wavenumber κ1 with respect to two separate points in the
x2− x3 plane reads (Mann, 1994)

cohij (κ1,1x2,1x3, t)≡
|χij (κ1,1x2,1x3, t)|2

Fi(κ1, t)Fj (κ1, t)
, (6)
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with Fi(κ1, t) from Eq. (5) and the cross spectra χij as de-
fined below:

χij (κ1,1x2,1x3, t)

=
1

2π

∞∫
−∞

Rij (r1,1x2,1x3)exp(−iκ1r1)dr1 (7)

=

∞∫
−∞

∞∫
−∞

8ij (κ, t)exp(i(κ21x2+ κ31x3))dκ2dκ3, (8)

where 1x indicates the spatial step in three-dimensional
space with its components 1x1, 1x2, and 1x3 in the x1,
x2, and x3 directions, respectively. Another example of two-
point statistics is the increment statistics in space described
by

ṽi(x,1x, t)= ui(x+1x, t)− ui(x, t). (9)

Instead of spatial increments, one can also consider temporal
increments as

vi(x, t,τ )= ui(x, t + τ )− ui(x, t), (10)

where τ indicates the time lag. The probability density func-
tions (PDFs) of the introduced temporal increments vi have
been investigated (Vindel et al., 2008; Liu et al., 2010; Mücke
et al., 2011; Böttcher et al., 2007; Muzy et al., 2010) as part
of a more detailed characterization of wind turbulence be-
yond the standard guidelines. The Gaussian distribution is
completely described by the mean and the variance. Further
statistical information is required for characterizing a non-
Gaussian distribution. The so-called kurtosis of a distribution
allows quantification of its deviation from a Gaussian distri-
bution. For the temporal increments vi , the kurtosis is defined
as

Kurt(vi)(x, t,τ )=
〈vi(x, t,τ )4

〉

〈vi(x, t,τ )2〉2
. (11)

For a Gaussian distribution, the kurtosis equals 3. Higher val-
ues indicate a heavy-tailed distribution in which extreme ve-
locity increment values have a higher probability than pre-
dicted by a Gaussian distribution. We assume statistically
stationary turbulence and, hence, omit the time t in the equa-
tions in the following.

Figure 1 shows characteristics of temporal velocity in-
crement statistics of atmospheric wind speed measurements.
The data were collected at the site of a Nordex wind tur-
bine, located in northern Germany. The wind sensor was
mounted at a height of 125 m. Time series of 10 min in length
were considered for the analysis. These time series corre-
spond to the horizontal magnitude of the wind speed mea-
sured at the hub height with a sampling rate of 50 Hz; the
vertical component (U3) was neglected here. In total, 494
time series were provided. Similar to Eq. (1), the measured

wind speed can be decomposed as Umeas = 〈Umeas〉+ umeas,
where 〈Umeas〉 is calculated over the 10 min period. The
turbulence intensity for the measured data is calculated as
TImeas =

√
〈u2

meas〉/〈Umeas〉. All the mean values of the wind
direction, calculated over each of the 10 min periods, are dis-
tributed within a range of 165◦. The selection and preparation
of the data set were performed by Nordex according to inter-
nal objectives from the analysis. Here, we used the wind data
set for illustration purposes rather than for a rigorous investi-
gation of its characterization. Nevertheless, for our study, we
investigate the time series of the wind velocity with similar
first- and second-order moments. Accordingly, we selected a
subset of time series whose values of mean wind speed and
turbulence intensity are contained within a specific range.
The range is defined as 9± 1 m s−1 for the mean wind speed
and 0.15± 0.02 for the turbulence intensity. Further, we also
constrain the data in terms of their wind direction. For that,
we consider the mean direction calculated over the 10 min
period. Then, we define a range of ±20◦ from the main wind
direction at the specific site. After the selection process, 20
out of the 497 available time series are analyzed.

The increments for the atmospheric measured data
vmeas = umeas(x, t + τ )−umeas(x, t) were calculated similar
to Eq. (10). Then, the statistics of vmeas are computed for the
whole subset of 20 conditioned 10 min time series. Figure 1a
presents the PDFs of vmeas for different time lags τ from 1
to 60 s. For clarity of presentation, individual distributions
are depicted with different markers and shifted vertically. For
comparison, all the PDFs are normalized to a standard devia-
tion equal to 1, and the corresponding Gaussian distributions
are shown by a solid line.

As can be observed, the PDFs of vmeas for timescales τ
equal to 1, 5, and 10 s deviate from the respective Gaussian
distributions. Specifically, the distributions of vmeas show
heavy tails which represent the high probability of extreme
events, which is higher than for the Gaussian PDFs. This ef-
fect, which is called intermittency, is a well-known feature of
atmospheric wind as Vindel et al. (2008), Liu et al. (2010),
Mücke et al. (2011), and Böttcher et al. (2007) and many oth-
ers have found. Similar to the results from the investigations
mentioned earlier, Fig. 1a shows that the temporal increments
vmeas are intermittent over a broad range of time lags τ . The
evolution of the intermittency with τ can be quantified from
the kurtosis. Figure 1b shows the calculated kurtosis of the
PDFs according to Eq. (11) of the atmospheric increments
vmeas as a function of τ . The values of Kurt(vmeas) higher
than 3 reveal the intermittent behavior of the atmospheric
data over a wide range of τ . For the analyzed data, intermit-
tent features are distinguishable up to timescales of τ ≈ 11s
when Kurt(vmeas) converges to the Gaussian value of 3.

2.2 Mann model

The basis of the Mann model (Mann, 1994, 1998) is a
properly modeled spectral tensor according to Eq. (4). In
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Figure 1. Statistical description of turbulent wind measurements from a Nordex wind turbine located in northern Germany. (a) Normalized
PDFs of velocity increments vmeas for different values of τ . The distributions for different values of τ , increasing from top to bottom, are
depicted by different markers. In addition, solid lines correspond to Gaussian distributions with identical mean and standard deviation. In
principle, the curves would all lie on top of each other, but here the curves are shifted vertically for better visualization. (b) Kurtosis of
velocity increments vmeas as a function of τ . The angular brackets denote moving averages within the individual 600 s time series and then
over all data sets.

this model, the turbulent velocity field is assumed to be in-
compressible, and the velocity fluctuations are assumed to
be homogeneous in space. The resulting velocity field de-
pends on only three parameters, namely a length scale L; a
non-dimensional parameter 0, which is related to the eddy
lifetime and, hence, to the shear gradient; and a parameter
cKε

2/3 with cK as a constant and ε as the turbulent dissipa-
tion rate per unit mass. Within these assumptions, the second-
order statistics such as variances and cross spectra of real
wind can be met. In the case of isotropic turbulence (where
assuming no shear), the spectral tensor takes the form (Pope,
2001)

8iso
ij (κ)=

E(κ)
4πκ4

(
δijκ

2
− κiκj

)
, (12)

with κ as the magnitude of κ and E(κ) as the energy spec-
trum. E(κ) can be expressed with cKε2/3 and L that leads to
(von Kármán, 1948; Pope, 2001)

8iso
ij (κ)=

cKε
2/3L17/3

4π
δijκ

2
− κiκj

[1+ (Lκ)2]17/6 . (13)

The corresponding one-dimensional spectra result in Mann
(1994):

Fi(κ1)=
{ 9

55cKε
2/3 1

(L−2+κ2
1 )5/6 for i = 1

3
110cKε

2/3 3L−2
+8κ2

1
(L−2+κ2

1 )11/6 for i ∈ {2,3},
(14)

and, accordingly, the variance becomes

σ 2
iso = σ

2
1 = σ

2
2 = σ

2
3 =

9
55

√
π0

(
1
3

)
0
(

5
6

) cKε
2/3L2/3

≈ 0.688cKε
2/3L2/3, (15)

where in this equation the 0 denotes the mathematical
Gamma function. The value of the cKε2/3 parameter can
be found by fitting the model to specific site data assuming
isotropic turbulence and an infinitely large domain. Another
possible way to avoid such assumptions was suggested by
Larsen and Hansen (2007), who suggest choosing the value
of cKε2/3 arbitrarily and then re-scaling the velocity field
with a scaling factor. The value of cKε2/3 was taken accord-
ing to the Engineering Sciences Data Unit (ESDU, 1982)
spectral model to achieve TI1 ≈ 10% as will be explained
later in detail.

The Mann model provides a spatially correlated synthetic
turbulent wind field where spatial homogeneity is one of the
basic assumptions in deriving this model. However, since this
model is based on the spectra but not on increment statistics
of the atmospheric wind fields, it fails to display intermit-
tency which should have effects on several turbine loads as
shown in different previous research studies; see Sect. 1.

2.3 Continuous-time random walk (CTRW) model

Kleinhans (2008) introduced the idea of generating a syn-
thetic velocity time series u(s), on an intrinsic timescale s,
based on a coupled Ornstein–Uhlenbeck process (Uhlenbeck
and Ornstein, 1930) for u(s) and a reference wind speed
ur(s). Instead of a mean velocity, this reference wind speed
ur(s) is used in the modeling process which influences the
whole velocity field (Kleinhans, 2008).

After generating the velocity time series u(s) for all grid
points in a plane perpendicular to the flow velocity, a stochas-
tic process is applied to map the field from the intrinsic time
s to the physical time domain t . This mapping process is the
crucial feature of the model for generating intermittent char-
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acteristics in the wind field. The mapping process is defined
as (Fogedby, 1994)

dt(s)
ds
= τα(s), (16)

where τα follows an α-stable Lévy distribution with charac-
teristic exponent α (Kleinhans and Friedrich, 2007); for gen-
eral parameterization, cf. Metzler and Klafter (2000):

p(τα)=
1
π

Re


∞∫

0

dzexp
[
− izτα − zα exp

(
− i
πα

2

)] . (17)

Kleinhans (2008) generated the random variable τα accord-
ing to the implementation introduced by Weron (2001):

τα =
sin(α(V + π

2 ))

cos(V )
1
α

(
cos(V −α(V + π

2 ))
W

) 1−α
α

, (18)

where V is a uniformly distributed random variable that takes
a value in the range between ]− π

2 ,
π
2 [ andW is an exponen-

tially distributed variable with a mean value = 1. The Lévy
distribution is truncated for 0< τα < c if 0 < α < 1, where
c is a cutoff. The α-stable Lévy process with the parametriza-
tion as in Eq. (17) ensures that the τα does not take negative
values. Kleinhans (2008) showed that when continuous sta-
ble Lévy processes are used for the transformation from the
intrinsic time s to the physical time t , the process is dom-
inated by “waiting” regions. In this context, these regions
are periods during which the wind speed is constant, a fea-
ture that is not observed in the atmospheric wind. In order to
limit those periods to a realistic length, the Lévy distribution
is truncated at the cutoff c. When α = 1, p(τα) is not a Lévy
distribution anymore. It becomes a δ-correlated distribution
with τ1 =1. In that case, the mapping process from s to t is
linear, which makes u(s)= u(t), and no intermittent behavior
is introduced to the field.

As mentioned before, the main advantage of the CTRW
model is that it manages to generate an intermittent wind
field. However, the original CTRW model proposed by
Kleinhans (2008) assumes that the spatial correlations of the
velocity fluctuations between different points of the grid de-
cay exponentially with the distance between them. This as-
sumption must be understood as a simplification of atmo-
spheric turbulence. A modified version of the original CTRW
model was implemented by Schwarz et al. (2019) as intro-
duced in Sect. 1. They generated individual CTRW time se-
ries and arranged them to generate three different spatial cor-
relations in the wind field. Firstly, they set up fully corre-
lated wind fields by repeating the same velocity time series
in the whole x2–x3 plane (perpendicular to the inflow di-
rection). For the second arrangement, they generated delta-
correlated wind fields by setting up an independent Ornstein–
Uhlenbeck process at each point of the grid in the x2–x3
plane. Finally, they considered an intermediate version of a

3×3 sub-divided fully correlated wind field. In this third sce-
nario, the rotor plane was divided into a 3× 3 grid in which
each cell corresponds to a fully correlated area, but the nine
areas are uncorrelated between them. They found different
effects of the wind fields on the turbine loads depending on
the resolution (i.e., fully correlated, delta-correlated, or par-
tially correlated). However, no conclusive recommendation
was provided on which resolution is most realistic.

3 The new Time-mapped Mann model

The new proposed Time-mapped Mann model aims at main-
taining the spatial correlation provided by the Mann model
explained in Sect. 2.2 while introducing the intermittency
employing the time-mapping process of the CTRW model
explained in Sect. 2.3. Accordingly, in our new Time-mapped
Mann model, the Ornstein–Uhlenbeck process used to gen-
erate the wind field in the original CTRW model is replaced
with a Gaussian wind field using Mann’s model. The longitu-
dinal spatial dimension in the Mann model is converted into
the intrinsic time according to the Taylor hypothesis (Taylor,
1938). After that, the time mapping from intrinsic time s to
physical time t is applied to each step n using the discretized
form of Eq. (16) (Kleinhans, 2008):

t(sn+1)= t(sn)+Cα,c,1stτα(sn), (19)

where Cα,c,1st is a normalization factor that has the dimen-
sion of a time and depends on the Lévy exponent α, the cutoff
c, and the discretization parameter 1st = sn+1− sn. The in-
trinsic time step 1st is equidistant while the physical time
step 1tn is non-equidistant. The factor Cα,c,1st is introduced
so that the mean slope of t(s) is 1, which means that the de-
velopment of the physical time and the intrinsic time occurs
statistically at the same speed.

As shown in Fig. 2, the Time-mapped Mann model gener-
ates a turbulent wind field that is spatially correlated in the
two transversal directions (x2 and x3) since it is not changed
from the original Mann model besides an interpolation pro-
cedure explained below. On the other hand, the conversion
between the intrinsic and physical timescales using the ran-
dom τα leads to intermittent behavior in the longitudinal di-
rection x1 (or in other words in the temporal behavior since
the longitudinal direction x1 is converted to time with Tay-
lor’s hypothesis), as will be shown in Sect. 4. Accordingly, it
presents a compromise between Gaussian, non-intermittent
fields generated using the Mann model and the intermittent
CTRW model.

The effect of the generated intermittent wind field on loads
of a wind turbine is analyzed using a numerical BEM simu-
lation (described in Sect. 4.2). This numerical model requires
that the size of the time step 1t of the incoming wind field
is equidistant during the simulation. However, as schemati-
cally shown in Fig. 2, the time-mapping process described
by Eq. (19) generates non-equidistant time steps 1tn, pro-
portional to τα calculated with Eq. (18). Therefore, the wind
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Figure 2. Schematic illustration of turbulence boxes generated by the (a) Mann model with equidistant steps and (b) Time-mapped Mann
model after applying the time-mapping process resulting in non-equidistant steps.

speed Ui has to be linearly interpolated between the dis-
crete points obtained with the random numbers τα to the re-
quired discrete points distanced by a fixed time increment
1tBEM. An example of this interpolation is graphically il-
lustrated in Fig. 3. The dashed vertical red lines correspond
to the discrete times from the mapping process separated by
1tn ∝ τα . The red dots show the process Ui at those discrete
times. Similarly, the continuous vertical black lines depict
the times equally distanced by 1t =1tBEM. Then, the lin-
ear interpolation takes place between the red dots to obtain
the values of Ui at the times depicted by the black lines. The
resulting equally distanced discrete points are shown by the
black squares. For clarification purposes, the schematic il-
lustrations shown in Figs. 2 and 3 do not correspond to the
same time-mapping process but should just demonstrate the
mathematical process.

To generate a Mann box, the HAWC2 Mann turbulence
generator tool (DTU Wind Energy, 2018) is used. After that,
an in-house MATLAB (MATLAB, 2019) code is used to cre-
ate the Lévy distribution for τα to apply the time mapping and
interpolation processes.

4 Results and discussion

In this section, the analysis of the new Time-mapped Mann
wind field and exemplary resulting loads from this time map-
ping will be shown. To clarify the impact of intermittency
on the wind fields and loads in this work, all cases will be
compared to the original Mann wind field generated with the
same parameters to provide a fair comparison between the
two models.

4.1 Characteristics of the Time-mapped Mann model

This section provides a thorough comparison of statistical
quantities such as the spectral tensors, the coherence, and
the velocity increment distribution of both fields, the regu-
lar Mann and the new Time-mapped Mann wind field. The

dimensions of the grid for the generation of the wind fields
are selected according to Table 1, such that they can be used
for the BEM simulations in Sect. 4.2. In this case, the de-
fined grid has 32× 32 nodes with 1x2,m =1x3,m = 2.6 m
covering an 80.6m× 80.6m area. The original Mann field
is generated using the Mann model at mean wind speed
〈U1〉 = 20 m s−1; turbulence intensity in the flow direction,
which is the x1 direction in this case; TI1 = 10%; 0 = 0;
and cKε2/3

= 0.62 m4/3 s−2 according to the parameters of
the Mann model as introduced in the ESDU spectral model.
The value of TI1 = 10% was used in this work to keep the
same standard deviation value as used for the class B turbine
(average class) in the IEC 61400-1 standard (Han, 2007) at
20 m s−1 mean wind speed. Corresponding to 0 = 0, we as-
sume homogeneous turbulence and wind shear are not taken
into consideration in this work. Also, based on this assump-
tion, the velocity components can be averaged over each
slice to calculate the wind field statistics. According to Kelly
(2018), the L parameter can be calculated by

L= z
TI1

a
, (20)

where z is the height of the calculation point (which is the
turbine hub height in this work) and a is a shear exponent.
Equation (20) is used to calculate the length scale for multi-
megawatt wind turbines (Hannesdóttir et al., 2019). How-
ever, this equation is also used in the present work for a
1.5 MW wind turbine in order to enable a generalization for
larger wind turbines. Even though we assume no shear in
this work, the shear exponent value a is only used to calcu-
late the value of L with no effect on the wind velocities. Ac-
cording to the hub height of the studied 1.5 MW turbine with
z= 84 m and for neutral conditions with a shear exponent of
a = 1/7 (Schlichting and Gersten, 2016), Eq. (20) results in
L= 58.8 m.

For the Time-mapped Mann wind field, the three compo-
nents of the velocity fluctuations of each transverse plane
(x2–x3 in this case) are shifted according to the resulting
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Figure 3. Schematic illustration of the interpolation from non-equally distributed time increments 1tn ∝ τα to equally distributed time
increments 1tBEM for the BEM simulations.

Table 1. Mann box and time-mapping parameters for the generated wind fields.

nx1 nx2 = nx3 1x1,m 1x2,m =1x3,m 0 L cKε
2/3 TI1 〈U1〉 α

[−] [−] [m] [m] [−] [m] [m4/3 s−2] [%] [m s−1] [−]

1.31072× 105 32 2 2.6 0 58.8 0.62 10 20 0.6

t(s). When applying the time-mapping process to the wind
field, the same stochastic process (Cα,c,1stτα(sn)) is applied
to each point of the x2–x3 plane, and it is not a function of the
location of different points in the x2–x3 plane. Figure 4 shows
the resulting relationship between intrinsic timescale (s) and
real-time scale (t) used in the time-mapping process of the
original Mann field to the new Time-mapped Mann field ac-
cording to Eq. (19) for different values of α (in the Lévy
distribution). As noticed from this figure, the relationship be-
tween s and t is not an exact straight line, which means that
the resulting field will be different from the original field as
explained in Sect. 3. The values of τα in Eq. (19) follow a
Lévy’s distribution with the corresponding PDFs presented
in Fig. 5 at different values of α. In the following analysis and
simulations, we will only consider α = 0.6, which is high-
lighted with red lines in Figs. 4 and 5. Additionally, values
of c = 20 and 1st = 8 s were considered for the calculation
of the scaling factor Cα,c,1st in Eq. (19). These parameters
were selected through an iterative process to achieve values
of Kurt(v1), defined in Eq. (11), in a comparable range to
the data shown in Fig.1 and to other literature values like
Schwarz (2020). The iteration aimed not only to find values
of the parameters that match the desired values of Kurt(v1)
but also to keep other statistical values such as the standard
deviation and the spectrum of the time series of the wind ve-
locity.

The comparison between the Mann and the new Time-
mapped Mann wind fields regarding statistical properties is
performed in terms of one-point and two-point statistics from
Sect. 2.1. Starting with one-point statistics, the values of
the mean wind speed in the longitudinal direction U1 and

the corresponding standard deviation
√
〈u2

1〉 are presented
in Table 2. These values are calculated from the time se-
ries at the hub point (location of the hub of the turbine in

Figure 4. Relationship between the intrinsic timescale (s) and phys-
ical timescale (t) (resulting from τα in Eq. 19) at different values of
α.

Figure 5. Lévy probability distribution of τα as in Eq. (17) at dif-
ferent values of α.
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the BEM simulations; see Sect. 4.2). For better comparison,
the relative differences (Rel.Diff) calculated as the differ-
ence between both results over the result from Mann field
(i.e., (Time-map.−Mann)/Mann) are also presented in the
table.

The values of the relative differences for 〈U1〉 and
√
〈u2

1〉

are lower than 2%. This means, in terms of one-point statis-
tics at the hub point, that the two generated wind fields are
comparable. The slight differences between the two fields are
caused by the interpolation procedure explained in Fig. 3.
However, one-point statistics are not enough to show the ef-
fects of intermittency.

To show the effect of the time mapping on the spectral
properties of the new field, Fig. 6 shows a comparison be-
tween the spectra κ1〈Fi(κ1)〉I of three components of the
original Mann field and the new Time-mapped Mann field
where κ1 = 2πf/U1. In these figures, 〈.〉I denotes spatial
averaging over the plane I = {(x2,x3)|0≤ x2 ≤ l2,0≤ x3 ≤

l3}. Figure 6a shows the wavenumber spectrum of the u1 ve-
locity component in the longitudinal (x1) direction, while
Fig. 6b and c show the same comparison but for the u2
component in the x2 direction and the u3 component in
the x3 direction, respectively. The theoretical spectra of the
Mann field from Eq. (14) are plotted in the same figures to
show how the spectra should be distributed over the differ-
ent wavenumbers. Further to that, an uncorrelated, intermit-
tent wind field was also added for the comparison. This un-
correlated wind field is generated by arbitrarily shuffling the
grid points of the intermittent Time-mapped Mann field in
the transverse directions (x2 and x3 directions). Of course,
that still means that all points in the x2–x3 plane are shifted
by the same time step in the temporal direction, but now the
spatial correlations in the x2–x3 directions are disturbed by
mixing. This uncorrelated field is generated to show the dif-
ference between a correlated field in the transverse direction
(which is the Time-mapped Mann field) and a completely
uncorrelated turbulent field in the transverse direction.

Figure 6 shows the change in spectra due to the application
of time mapping on a turbulent Mann field. Discrepancies
between the two fields arise from the time-mapping process
and the interpolation procedure. The fields analyzed in Fig. 6
are the fields generated without re-scaling as explained in
Sect. 2.2 to make sure that the analyzed fields keep their orig-
inal characteristics before applying any mathematical scal-
ing. It can be noticed from the figures that the peak values of
κ1F1(κ1) occur at lower κ1 values compared to the theoretical
and the Mann spectra, and the time-mapped spectra curves
are shifted to the lift, i.e., towards lower κ1 values. Such
a shift results from the time-mapping process that slightly
changes the characteristics of the resulting field. Also, the
time-mapped field has a lower peak value of κ1F1(κ1). It is
expected that such a decrease happens due to the interpola-
tion introduced to the Mann model during the time-mapping
process.

From turbulence theory, there exist many other models
which address more statistical characteristics and are based
on a proper superposition of Gaussian statistics (Rosales
and Meneveau, 2006). A similar approach has also recently
been applied to the Mann model where the small-scale Gaus-
sian statistics of Mann wind fields with varying covariances
were superposed to yield small-scale intermittency (Friedrich
et al., 2021). However, our intention is to combine well-
established models in wind energy which we did by combin-
ing the Mann model with the time-mapping procedure from
the CTRW model. As a consequence, our model shows spa-
tial correlations in the x2–x3 plane similar to the Mann model
and allows us to investigate the influence of temporal inter-
mittency. For the uncorrelated intermittent field, a compara-
ble agreement as in the correlated case between this field and
the Time-mapped Mann field in the longitudinal direction x1
can be seen since the arbitrary shuffling was only applied in
the transverse directions.

The new model allows a detailed comparison between
Gaussian Mann and non-Gaussian Time-mapped Mann
fields. This comparison is shown in detail in this work. For
further investigation of these deviations between Mann and
Time-mapped Mann fields, Fig. A1 shows the same spectra
as shown in Fig. 6 but with an equal number of grid points
in all directions (in this case, nx1 = nx2 = nx3 = 512). This
case is referred to as the “cubic case”. The spectra of these
fields in Fig. A1 show that for a lower number of grid points
in the x1 direction, the differences in spectra between Mann
and the Time-mapped Mann field are lower.

As indicated in Sect. 2.1, the velocity spectrum is not suf-
ficient to show intermittency. Therefore, increment statistics
should be used in this case to show the effects of intermit-
tency. The coherence of velocity components (Eq. 6) of the
two wind fields in the three spatial directions is plotted versus
κ11x2 in Fig. 7 with 1x2 = 2.6 m. In this figure, the differ-
ence in the coherence of the two fields, as we move in the x2
direction, is obvious due to the time mapping in the longitu-
dinal direction. The Mann model is based on the von Kármán
energy spectrum, which is reflected by the coherence of the
Mann-modeled wind field. On the other hand, a comparison
between the coherence of the two wind fields versus κ21x3
for the cubic case is shown in Fig. A2 in the Appendix. In
the latter case, the differences in coherence between the two
fields are small. This is due to the unchanged x2–x3 planes
during the time-mapping process. This shows that the coher-
ence with respect to the longitudinal direction is highly in-
fluenced by the time mapping, whereas it is not with respect
to the transverse direction. That shows that the time mapping
goes at the cost of the spatial correlations in the x1 direction,
which is expected since the x1 axis is stretched and com-
pressed, which is also reflected by the spectrum in the x1
direction in Fig. 6a. By comparing Figs. 7 and A2, it can be
noticed that the plots in Fig. A2 look smoother. This is also
due to the difference in the number of grid points in the x1
direction between the two cases.
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Table 2. Values of the mean wind speed and standard deviation at the hub point in the longitudinal direction (〈U1〉 and
√
〈u2

1〉) for the Mann
(Mann) and Time-mapped Mann (Time-map.) wind fields.

Mean 〈U1〉 (hub) Standard deviation
√
〈u2

1〉 (hub)

Mann Time-map. Rel.Diff Mann Time-map. Rel.Diff

20.02 m s−1 19.98 m s−1
−0.20% 1.99 m s−1 1.96 m s−1

−1.51%

Figure 6. Comparison of averaged spectra in the (a) x1, (b) x2, and (c) x3 directions for the Mann field (FMann
i

(κi )), the Time-mapped

Mann field (FTime-map.
i

(κi )), an uncorrelated Time-mapped Mann field (e.g., FTime-map.-uncorr.
i

(κi )), and the theoretical spectra (F theory
i

(κi ))
calculated from Eq. (14).

Following on from the two-point statistics analysis, the
velocity increments v1 defined in Eq. (10) and the degree
of intermittency of the wind fields are analyzed. Figure 8
shows the comparison between the PDFs of the velocity in-
crement of both the Mann and the new Time-mapped Mann
wind fields. It is obvious in this figure how extreme events
in the case of the time-mapped wind field (the red markers)
have a higher probability than the corresponding events in the
case of the Gaussian Mann field (the black markers). Also, it
can be noticed that the intermittency increases with the de-
crease in τ . Note that this τ refers to the temporal increment
in Eq. (10) and not to the τα introduced in the context of
the Lévy distribution. Another important measure of the in-

crement statistics is the kurtosis calculated from Eq. (11). In
the case of the kurtosis of the wind fields, the angular brack-
ets denote averaging over time, and kurtosis, in this case, is
only a function of τ . Figure 9 shows a comparison between
the kurtosis of the velocity increment from the Mann field
and the Time-mapped Mann fields at different τ values. As
explained earlier, higher values of τ show a Gaussian distri-
bution with kurtosis of 3, and lower values of τ show more
deviation from the Gaussian PDF of the Mann field.
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Figure 7. Comparison of the coherence of velocity components in the (a) x1, (b) x2, and (c) x3 directions for both Mann and Time-mapped
Mann fields over wavenumber κ11x2 with 1x2 = 2.6 m and 1x3 = 0. Dark lines represent smoothed coherence values of the light lines
using a moving average method.

4.2 Analysis of the resulting wind turbine loads

After analyzing the effect of the time mapping on the differ-
ent statistics of the wind fields in the previous section, here
the effect on exemplary turbine loads is studied. The main
point of this section is to see whether the intermittency from
the wind field is carried to the turbine structure. If the turbine
loads are proven to reflect intermittency, this might have a
significant effect on the dynamic loads acting on the wind
turbine. For example, the damage equivalent loads (DEL)
calculated from fatigue analysis might be affected due to in-
termittency because the probability for extreme values in the
load increments is larger than for a Gaussian distribution.

In this work, BEM simulations of the NREL WindPACT
1.5 MW (Malcolm and Hansen, 2006) virtual wind turbine

are performed using the aeroelastic simulator NREL FAST
(v8.16) (Jonkman and Jonkman, 2016). The main character-
istics of the turbine and input parameters for the simulations
are summarized in Table 3. The wind fields used in these sim-
ulations are the same Mann and Time-mapped Mann fields
analyzed and compared in Sect. 4.1.

Four different load sensors were selected for analyzing the
effect of the intermittent wind: the bending moment at the
root of the blade in the flapwise direction (RootFlap), the
rotor torque (Torque), the rotor thrust (Thrust), and the bend-
ing moment at the base of the tower in the fore–aft direc-
tion (TwrForeAft). According to Schwarz (2020), these four
sensors are expected to be highly sensitive and mainly domi-
nated by aerodynamic forces in the direction of the flow and
not by other sources of load such as gravitational forces.
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Table 3. Main parameters of the turbine and numerical simulations. A description of the listed set-ups for the BEM simulation can be found
in Jonkman et al. (2016) and Jonkman and Jonkman (2016).

Parameter Value/description

Mean wind speed 〈U1〉 20 m s−1

Mean wind speed 〈U2〉 and 〈U3〉 (averaged over transverse plane) 0 m s−1

Turbulence intensity (TI1 = TI2 = TI3) at hub (Eq. 2) 0.10
Wind shear No
Rotor diameter 70 m
Hub height 84 m
Control Fixed pitch–fixed speed
Rotor speed 20 rpm
Pitch angle 20◦

Blade structural simulation Rigid
Simulation time 13 100 s
Sampling frequency 20 Hz
Airfoil aerodynamics Unsteady (Leishman and Beddoes, 1989)
Tip and hub loss Prandtl
Rotor tilt 5◦

Gravity effects Turned on
Structural degrees of freedom (DOFs) Turned off
Tower passage Turned off
Wake model Induction-BEM model

Figure 8. Spatially averaged PDF over transverse planes of velocity
increments of the Mann wind field (black) and the Time-mapped
Mann wind field (red) at different temporal increments τ . The black
thin lines are Gaussian distributions as a reference. In principle, the
curves would all lie on top of each other, but here the curves are
shifted vertically for a better visualization.

Firstly, the mean values and standard deviations calculated
over the length of the simulation are presented in Table 4.
Here, the results for the four load sensors of both the Time-
mapped Mann (Time-map.) and the Mann (Mann) wind field
are shown. Moreover, the relative differences (Rel.Diff) were
also calculated (i.e., (Time-map.−Mann)/Mann).

In Table 4, the relative differences of the mean values
and standard deviations of the analyzed sensors are less than

Figure 9. Kurtosis of Mann (black) and Time-mapped Mann (red)
fields (Eq. 11) at different temporal increments τ . For a Gaussian
distribution, the kurtosis is 3.

±1% between the Mann and the Time-mapped Mann wind
field. It can be seen that this difference is in the same order as
the differences in the mean wind speed 〈U1〉 and standard de-

viation
√
〈u2

1〉 at the hub point presented in Table 2. To inves-
tigate whether the intermittency in the wind field carries over
to the turbine loads, the incremental statistics of the loads are
evaluated. The load increments Mτ are defined similarly to
velocity increments in Eq. (10):

Mτ (t, τ )=M(t + τ )−M(t), (21)

where M is the time series of the load sensor and τ corre-
sponds to the time lag. Figure 10 shows the PDFs of Mτ for
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Table 4. Mean values and standard deviations of time series from BEM simulations for the Mann (Mann) and the Time-mapped Mann
(Time-map.) wind fields. The relative differences (Rel.Diff) between the two cases are calculated for better interpretation.

Sensor/Load
Mean Value Standard Deviation

Mann Time-map. Rel.Diff Mann Time-map. Rel.Diff

RootFlap 861 kN m 868 kN m 0.81% 253 kN m 251 kN m −0.79%
Torque 1126 kN m 1136 kN m 0.89% 269 kN m 267 kN m −0.74%
Thrust 157.76 kN 158.77 kN 0.64% 24.16 kN 24.09 kN −0.29%
TwrForeAft 10 317 kN m 10 406 kN m 0.86% 2017 kN m 2017 kN m 0%

the four selected load sensors, for τ = 3 s (top) up to τ = 30 s
(bottom) for the blade root flapwise bending moment and
τ = 1 s (top) up to τ = 30 s for the rotor thrust, rotor torque,
and tower fore–aft bending moment. For a direct compari-
son to the PDFs of the velocity increments v1, the values of
τ are selected analogously to Fig. 8. Similar to Figs. 1 and
8, all the individual PDFs are normalized to standard devia-
tion

√
〈M2

τ 〉 = 1. Here, the angular brackets denote moving
averages over the time series.

The resulting load increments Mτ follow the characteris-
tics of the wind velocity increments shown in Fig. 8. The
PDFs of the Mann load increments are very well described
by the Gaussian distribution. On the contrary, the PDFs of
the load increments resulting from the Time-mapped Mann
field deviate significantly from the Gaussian distribution for a
range of scales. The observed heavy tails shown by the time-
mapped PDFs reflect, as mentioned earlier, a higher proba-
bility of extreme load fluctuations than the probability of a
Gaussian distribution.

Figure 10a shows a special case for the RootFlap load. The
shown τ values differ from the other loads to make the inter-
mittency visible in this case. The RootFlap moment is dom-
inated by the 1P frequency while the other loads are domi-
nated by the 3P frequency. Consequently, showing the same
τ values in Fig. 10a as for the other loads would not reveal the
intermittency in our special case. The energy spectra of the
RootFlap and Thrust are shown in Appendix B for a deeper
understanding of the different frequencies of the loads.

Also, it turns out that the frequencies of the energy spec-
tra carry over to the frequencies in the kurtosis, as shown
in Fig. 11 for the thrust. A more detailed description of the
evolution of the intermittency of Mτ with τ is presented in
Fig. 11. Here, the results of Kurt(Mτ ) from Eq. (11) are cal-
culated exemplarily for the Thrust signal. It is visible that the
values of the kurtosis for the load case with the Time-mapped
Mann wind field are higher than 3 (the value of 3 indicates
a Gaussian distribution) for all the values of τ up to around
20 s. This proves the intermittent characteristics of the load-
ing. In contrast, the corresponding values for the Mann case
fluctuate around 3 for all the considered timescales, agree-
ing with the Gaussian statistics. Additionally, for timescales
below 1 s, a decreasing intermittent behavior of the load is
visible in the time-mapped case when decreasing τ . The kur-

tosis of the thrust in Fig. 11 is overall lower than that of the
corresponding wind field as shown in Fig. 8. This has been
also shown by Mücke et al. (2011), who have used an atmo-
spheric wind measurement as input to calculate the torque.

Further investigations should be done to explain the po-
tential sources of the observable bumps in the kurtosis of the
Time-mapped Mann case. A strong dependence of the peaks
on the rotational frequency of the rotor has been recognized
by the authors. However, this first turbine study aimed at in-
vestigating whether the intermittency which was introduced
to the wind field by deriving the Time-mapped Mann field
carries over to turbine loads in general. This has clearly been
shown here.

5 Conclusions

In this work, a new synthetic wind field model has been in-
troduced which combines spatial correlations from the well-
known Mann model and the effect of intermittency. Dur-
ing the derivation, the time-mapping procedure from the so-
called CTRW model has been applied to a Mann wind field
to generate intermittency. This new model is called the Time-
mapped Mann model. The CTRW model relies on stochastic
differential equations for the velocity and assumes exponen-
tially decaying velocity correlations. On the other hand, the
Mann model is based on a proper modeling of the spectrum
according to atmospheric conditions which are also recom-
mended by the standard IEC 61400-1. With our procedure,
we obtain a model which aims at keeping the spatial correla-
tions in the transverse directions from the Mann model, thus
following the IEC 61400-1 standard in this respect, and on
the other hand adding intermittency, which has also been re-
ported as a feature inherent in the wind field (Mücke et al.,
2011).

The analysis of the velocity spectra, as well as the PDF
and kurtosis of velocity increments, showed that this method
managed to generate an intermittent wind field in the lon-
gitudinal direction. On the other hand, this method keeps
the spatial correlation almost exactly as in the Mann field
in the other two directions. This is due to the way the time
mapping is applied where the velocity field “slices” (x2–x3
planes) of the Mann field are shifted by random time shifts.
Small differences in the compared statistics in transverse di-
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Figure 10. PDFs of load increments Mτ for the (a) blade root flapwise bending moment (RootFlap), (b) rotor thrust (Thrust), (c) rotor
torque (Torque), and (d) tower fore–aft bending moment (TwrForeAft) of the 1.5 MW turbine with Mann and Time-mapped Mann inflow
wind fields at different temporal increments τ . The red markers correspond to the Time-mapped Mann field cases, while the black markers
present the results for the Mann field cases. The black thin lines are Gaussian distributions as reference. The curves are shifted vertically for
visualization.

rections are due to the interpolation between the generated
time-shifted slices and the new, uniformly separated velocity
field slices.

Furthermore, the first analysis and comparison of loads
with respect to intermittency between Mann and time-
mapped wind fields on a 1.5 MW wind turbine was done. The
analysis of the loads showed that the intermittency is trans-
ported from the wind field to the structure of the wind tur-
bine. However, these loads are different in their response to
the wind field intermittency. The increment statistics showed
that in the analyzed case, the rotor thrust, rotor torque, and
tower fore–aft bending moment are strongly affected by the
intermittency in the wind field, whereas the blade root bend-
ing moment shows less intermittency. The resulting non-
Gaussian load increment distributions suggest that simulat-

ing wind turbines under Gaussian wind fields such as Mann
wind fields could potentially lead to an underestimation of
the probability of extreme loads.

An important future extension of the Time-mapped Mann
model would be an incorporation of shear in the Time-
mapped Mann model. The original Mann model has the op-
tion of imposing eddy stretching to account for shear. How-
ever, it may not be a straightforward process to add this eddy
stretching to the Time-mapped Mann field. The first ques-
tion is whether the eddy stretching should be added before or
after the time mapping, whereas the option to add it before
the time-mapping process may seem more reasonable. In the
future, the Time-mapped Mann model will be extended to in-
corporate the wind shear. Further, it has to be investigated if
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Figure 11. Kurtosis of the PDF of Mτ calculated for the Thrust
according to Eq. (11) at different temporal increments τ . The red
markers correspond to the Time-mapped Mann field, while the
black markers present the results for the Mann field. A value of
3 corresponds to a Gaussian distribution.

the areas with larger mean velocity should have a different
time mapping.

Also, in future research based on this work, the different
turbine loads and their response to turbulent inflow with in-
termittency could be investigated in more detail. This inves-
tigation should also involve different sizes of wind turbines
that cover a larger area of the wind fields, as well as vari-
able speed, and variable pitch wind turbines at a variety of
wind conditions. For example, such wind conditions could
be measured from wind sites to have better anticipation of
the turbine loads in the presence of intermittency. Another
possible future work would be to compare the impact of in-
termittency on different wind turbine loads at different wind
speeds to investigate whether there are effects of wind speeds
on the loads’ intermittency. Additionally, fatigue load could
be a subject of further investigation, which requires further
discussion since the rain flow cycle counting method may not
detect intermittency properly as discussed by Mücke et al.
(2011).

Appendix A: Analysis of a cubic field

For a further investigation of the effect of the time mapping
of wind fields on the spectra, a Mann box with nx1 = nx2 =

nx3 = 512 and 1x1,m =1x2,m =1x3,m = 1 m is studied in
this Appendix. The same comparison of spectra as described
in Sect. 4.1 is studied here for this cubic field. As introduced
in the previous sections, there are three different parame-
ters used to generate the box: the overall box size, the grid
cell size, and the number of cells. Since it is not possible to
change the value of one of these parameters alone without
changing at least one of the other two parameters to generate
a grid with comparable results, a new grid with cubic cells
was generated to have independence of the direction since
all directions have the same grid points and cell sizes.

In Fig. A1a, b, and c it can be seen that the spectra show
generally good agreement between the Mann and the Time-
mapped Mann field. The spectra in the longitudinal direction
x1 in Fig. A1a show a discrepancy due to the time-mapping
procedure which is applied to this direction. Further, all plots
show increasing discrepancies for larger wavenumbers which
should result from the interpolation procedure. Note that in
Fig. 6b and c where the resolution in the x2 and x3 direc-
tion was much coarser, the deviations already start at smaller
wavenumbers. The comparison of coherence of the same two
fields in Fig. A2 shows good agreement between the two
fields in the x2 and x3 directions. The small deviations re-
sult from the interpolation routine.
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Figure A1. Comparison of averaged spectra in the (a) x1, (b) x2, and (c) x3 directions, respectively, for the Mann field, the Time-mapped
Mann field, and the theoretical results calculated from Eq. (14).
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Figure A2. Comparison of the coherence of velocity components in the (a) x1, (b) x2, and (c) x3 directions for the Mann field and the
Time-mapped Mann field over wavenumber κ21x3 with 1x3 = 2.6m and 1x1 = 0.

Appendix B: Analysis of the energy spectra of
different loads

To investigate the phenomenon shown in Fig. 10a, in which
the RootFlap shows intermittency at other τ values, Fig. B1
shows a comparison between the energy spectra of two dif-
ferent loads, namely the blade root flapwise bending moment
RootFlap and the rotor thrust Thrust. It can be seen from this
figure that the energy spectrum of the Thrust shows peaks at
the 3P frequencies and higher, whereas the blade root flap-
wise bending moment RootFlap shows peaks at the 1P fre-
quency and higher.

This indicates that the fluctuations of the loads happen at
different frequencies, which entails applying different τ val-
ues in the PDF to be able to see the intermittency as shown
in Fig. 10.
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Figure B1. A comparison between the energy spectra of the blade
root flapwise bending moment RootFlap and rotor thrust Thrust of
the simulated wind turbine under a turbulent wind field generated
by the Time-mapped Mann model.

Code availability. The Mann wind field was generated using
the HAWC2 standalone Mann turbulence generator, which is
freely available from https://www.hawc2.dk/-/media/sites/hawc2/
hawc2-download/pre-processing-tools/mann_turb_x64.zip (DTU
Wind Energy, 2018). The MATLAB codes used for the time
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therefore are not publicly available.
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