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Abstract. This study investigates the performance of pumping-mode ground-generation airborne wind energy
systems (AWESs) by determining cyclical, feasible, power-optimal flight trajectories based on realistic vertical
wind velocity profiles. These 10 min profiles, derived from mesoscale weather simulations at an offshore and
an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power
by optimizing the trajectory. To reduce the computational cost, representative wind conditions are determined
based on k-means clustering. The results describe the influence of wind speed magnitude and profile shape on the
power, tether tension, tether reeling speed, and kite trajectory during a pumping cycle. The effect of mesoscale-
simulated wind profiles on power curves is illustrated by comparing them to logarithmic wind profiles. Offshore,
the results are in good agreement, while onshore power curves differ due to more frequent non-monotonic wind
conditions. Results are references against a simplified quasi-steady-state model and wind turbine model. This
study investigates how power curves based on mesoscale-simulated wind profiles are affected by the choice of
reference height. Our data show that optimal operating heights are generally below 400 m with most AWESs
operating at around 200 m.

1 Introduction

Airborne wind energy systems (AWESs) aspire to harvest
stronger and less turbulent winds at mid-altitude, here de-
fined as heights between 100 and 1000 m, presumably be-
yond what is achievable with conventional wind turbines
(WTs). The prospects of higher energy yield combined with
reduced capital cost motivate the development of this new
class of renewable energy technology (Lunney et al., 2017;
Fagiano and Milanese, 2012). Unlike conventional WTs,
which in recent decades have converged to a single con-
cept with three blades and a conical tower, several different
AWES concepts and designs are being investigated by nu-
merous companies and research institutes (Cherubini et al.,
2015; Vermillion et al., 2021; Fagiano et al., 2022). These
kite-inspired systems consist of three main components: one
or more tethered aircraft or kites, one or more ground sta-

tions, and one or more tethers to connect the flying com-
ponents to the ground. This study focuses on the two-phase
cyclic, ground-generation concept, also referred to as pump-
ing mode (Luchsinger, 2013). During the reel-out or produc-
tion phase, the kite pulls a tether from a drum on the ground,
which is connected to a generator, thereby producing elec-
tricity. This is followed by the reel-in phase during which
the kite returns to its initial position and reduces its aerody-
namic forces in order to de-power. There are several ways to
reduce the aerodynamic forces on a kite, such as adjusting its
angle of attack or flying it out of the wind window. Various
other concepts such as fly-gen, aerostat, and rotary lift are not
considered in this study (Cherubini et al., 2015). Since this
technology is still in a relatively early stage of development,
validation and comparison of power production estimates is
difficult. Several studies (van der Vlugt et al., 2013; Schelber-
gen et al., 2020; Vander Lind, 2013; Ranneberg et al., 2018)
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compared computed power curves with experimental perfor-
mance data. At present, there is no standardized power curve
definition or reference design that would allow for compar-
ison between different concepts and conventional wind tur-
bines. However, the goal of Eijkelhof and Schmehl (2022)
and Eijkelhof et al. (2020) was to create a reference design
for a multi-megawatt AWES. It is not the goal of this study
to determine a general power curve but rather to investigate
the power variation in a specific design derived from realistic
wind profiles.

Recent consensus among the scientific community defined
a power curve as the maximum average cycle power, which
is the combination of consecutive reel-out and reel-in phases,
as a function of wind speed at pattern height, which is the
time-averaged height during the reel-out power-producing
phase (Airborne Wind Europe, 2021). Together with the site-
specific wind resource, wind park planners and manufactur-
ers can use power curves to estimate annual energy produc-
tion (AEP), which can be combined with a cost model to
determine the levelized cost of electricity (LCOE) and fi-
nancial viability (Malz et al., 2020a). Unlike conventional
WTs, where the wind speed probability distribution at hub
height is used to determine AEP, AWES continuously change
their operating height, making it difficult to determine AEP
with this approach. AWES performance highly depends on
the shape and magnitude of the wind speed profile over the
operating height range. Using simple wind profile approxi-
mations, such as logarithmic or exponential wind speed pro-
files, can provide an estimate of long-term average condi-
tions. However, these approximations cannot account for the
wide range of profile shapes that occur over short periods
of time or changes that occur on a daily or seasonal basis
(Emeis, 2013). This can reduce the accuracy of the predicted
power output. However, such wind speed profiles can be em-
ployed to estimate average performance and are the standard
in most AWES power estimation studies.

In their study, van der Vlugt et al. (2013) described
TU Delft’s 20 kW inflatable wing technology demonstra-
tor and compared a statistically derived power curve to re-
sults from a theoretical performance model. The wind and
power models used in this study were taken from Fechner
and Schmehl (2013). The wind model is based on a stan-
dard exponential wind speed profile approximation, while
the power model uses a multi-phase quantitative susceptibil-
ity mapping (QSM). A follow-up study (van der Vlugt et al.,
2019) added more detail to specific cycle trajectories. Heil-
mann and Houle (2013) used exponential wind speed profiles
and a standard Rayleigh distribution to estimate performance
and cost. Their power curve is modeled based on a QSM by
Luchsinger (2013) using the averaged flight path height of
the kite as the wind speed reference height. An LCOE be-
tween EUR 40 and 110 per megawatt hour was estimated for
different annual average wind speeds. Faggiani and Schmehl
(2018) used a similar pumping-mode QSM to estimate power
output based on wind speed at the operating height of the

kite. They developed a cost model to estimate the achievable
LCOE of an entire kite wind farm. Their analyses showed
that the cost of energy decreases and the quality of the elec-
trical power increases with increasing number of kites. Ran-
neberg et al. (2018) studied the performance of a soft-kite
pumping-mode AWES by determining its power curves at
various reference heights for different logarithmic wind pro-
files. The study found that the yield variation for these loga-
rithmic wind profiles was quite small. Additionally, the yield
for a specific site was estimated using detailed wind speed
profiles from COSMO-DE, and the results were found to be
consistent with more detailed simulations of the EnerKíte
EK30 prototype (EnerKíte GmbH, 2022). Leuthold et al.
(2018) investigated power-optimal trajectories of a ground-
generation multikite configuration for a range of logarithmic
wind speed profiles. Three distinct operational regions were
identified: Region I where power is used to maintain alti-
tude, Region II where power harvesting increases up to the
designed wind speed, and Region III where power extrac-
tion is intentionally limited due to the physical constraints of
the system. Licitra et al. (2019) estimated the performance
and power curve of a fixed-kite ground-generation AWES by
generating power-optimal trajectories using a power law ap-
proximation of the wind speed profile. The results were val-
idated against data from Ampyx Power AP2 (Licitra, 2018;
Malz et al., 2019; Ampyx Power BV, 2020). Eijkelhof and
Schmehl (2022) found that mass had a detrimental effect on
power-optimal trajectories for a large-scale single-kite fixed-
wing AWES. To determine power curves, the authors used
normalized average offshore wind speed profiles from the Ij-
muiden measurement tower. Sommerfeld et al. (2022) used
the same methodology and wind data as in this study to ex-
amine the effects of size scaling and improvements in aero-
dynamic efficiency on a single-kite fixed-wing reference sys-
tem. The authors found that it is likely better to deploy mul-
tiple smaller-scale devices rather than a single large-scale
system because of negative mass-scaling effects. De Schut-
ter et al. (2019) analyzed the performance of utility-scale,
stacked multikite systems using logarithmic wind speed pro-
files as boundary conditions for a nonlinear optimization
problem. The authors used the same optimization framework
as in the present investigation. They found that this multi-
kite strategy could make power generation largely indepen-
dent of wing size. Malz et al. (2020b) efficiently estimated
the performance of a single-kite drag-mode AWES for large
wind data sets by combining an optimal control performance
model with smart initialization and machine learning. Wind
speed profiles from the MERRA-2 reanalysis model (Gelaro
et al., 2017) were clustered into characteristic profile shapes
and interpolated using Lagrangian polynomials (Sect. 4.4).
The authors showed that ordering the wind parameters by
the wind speed at the average operational height (300 m) sig-
nificantly reduced the computation time. Aull et al. (2020)
explored the design and sizing of fly-gen rigid-kite sys-
tems based on a steady-state model with simple aerodynamic
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and mass-scaling approximations. At each scale, the rela-
tionships between size, efficiency, power output, and cost
were determined. The wind resource was described by an
exponential wind shear model with a Weibull distribution.
The main conclusion was that physics and economics favor
a larger number of small units. Bechtle et al. (2019) used
ERA5 reanalysis data to assess wind resources at high alti-
tudes throughout Europe. They described the available wind
energy without considering a specific conversion mechanism
and included a description of wind speed and probability at
various heights. The effect of variable height harvesting was
demonstrated for a location in the English Channel. Schel-
bergen et al. (2020) proposed a clustering procedure to obtain
wind statistics from the Dutch Offshore Wind Atlas (DOWA)
data set. Principal component analysis and k-means cluster-
ing were used to determine representative wind speed pro-
file shapes. To estimate the AEP of a small-scale pumping
AWES located at Cabauw in the center of the Netherlands,
several power curves were derived for each wind speed pro-
file shape using a flexible-kite, pumping-mode QSM devel-
oped by van der Vlugt et al. (2019). Faggiani and Schmehl
(2018) studied the economic impact of various design aspects
of wind parks, including the spatial stacking of systems, the
number of units, the size of kites, and phase-shifted opera-
tion. The performance of the system was estimated using a
QSM developed by Schmehl et al. (2013) and van der Vlugt
et al. (2019), assuming a range of wind speeds at the operat-
ing height of the kite. The AEP LCOE could be assessed by
combining a detailed cost model with an assumed Weibull
probability distribution. The study found that increasing the
number of kites had several scale effects, such as decreas-
ing the cost of energy and increasing the quality of elec-
trical power. Wind speed profiles are governed by weather
phenomena and environmental and location-dependent con-
ditions on a multitude of temporal and spatial scales. The
preferred means of determining wind conditions for wind
energy converters are long-term, high-resolution measure-
ments. At mid-altitudes, these measurements can only be ob-
tained through long-range remote sensing methods such as
lidar (light detection and ranging) or sodar (sonic detection
and ranging). Measuring wind conditions at mid-altitudes is
costly and difficult due to reduced data availability (Sommer-
feld et al., 2019a). Additionally, publicly available measure-
ments are scarce. Therefore, wind data in this study are de-
rived from Weather Research and Forecasting (WRF) model
mesoscale simulations (Skamarock et al., 2008). However,
the described trajectory optimization methodology can be ap-
plied to any wind data set such as wind atlas data or mea-
surements. Numerical mesoscale weather prediction mod-
els such as WRF, which is well known for conventional
WT siting applications (Salvação and Guedes Soares, 2018;
Dörenkämper et al., 2020), are used to estimate wind con-
ditions on timescales of a few minutes to years. Sommer-
feld et al. (2019b) compared the simulated onshore data used
in this study, located in northern Germany near the city of

Pritzwalk, to lidar measurements and found a good agree-
ment between both data sets. Data from the FINO3 research
platform in the North Sea can be used as a reference for the
simulated offshore conditions in this study. The present study
investigates the performance of AWES subject to 10 min
average wind data, which is the standard for conventional
WTs, while the New European Wind Atlas (NEWA) only
provides 30 min average data (Witha et al., 2019). We use
these higher-resolution wind data because the higher tempo-
ral, spatial, and vertical resolution reduces averaging and al-
lows for the investigation of more realistic wind conditions.

This paper’s main contribution is the examination of how
realistic onshore and offshore wind profiles, compared to a
standard log profile, affect the power-optimal performance
of AWESs, as well as how the choice of reference height im-
pacts the power curve, particularly given the wide range of
wind speed profile shapes. This study is a continuation of
previous analyses of lidar measurements (Sommerfeld et al.,
2019a) and WRF simulations (Sommerfeld et al., 2019b) at
the onshore location. To demonstrate the validity and ap-
plicability of the data, several wind characteristics are de-
scribed. These include annual wind speed probability distri-
butions up to 1000 m, annual wind direction statistics, and
wind speed profile shapes. The data are categorized using k-
means clustering (Lloyd, 1982; Hartigan and Wong, 1979)
which classifies the wind data at each location into groups of
similar wind speeds and vertical profile shapes. Three repre-
sentative 10 min wind velocity vectors U are sampled from
each of these 20 clusters (total 60 vectors out of 52 560 wind
data points per location) and serve as boundary conditions
for the AWEBox trajectory optimization (De Schutter et al.,
2020). The profiles with the 5th, 50th, and 95th percentiles
of wind speed at an a priori guess of the pattern trajec-
tory height zpth ≈ 100m≤ z ≤ 400m (Airborne Wind Eu-
rope, 2021) are selected because they encompass the most
probable wind conditions within each cluster while exclud-
ing non-representative extremes. Section 6.3 verifies that
choice and compares the impact of reference height on the
power curve. This drastically reduces the computational cost
as only a few selected profiles are used to represent the entire
spectrum with sufficient resolution to investigate the varia-
tion in power.

The AWEBox optimization model allows for the inves-
tigation of dynamic performance parameters, such as air-
craft trajectories, tether tension, tether reeling speed, and
power which highly depend on the wind conditions. The air-
craft model is based on the well-investigated and published
Ampyx Power AP2 prototype (Licitra, 2018; Malz et al.,
2019; Ampyx Power BV, 2020), adjusted to a projected sur-
face area of A= 20 m2 to generate results for more realis-
tic and probable devices. The maximized power curves, esti-
mated based on average cycle powers and wind speed at ref-
erence height U ref = U (zref), are compared to performance
predictions using a simple AWES QSM and a steady-state
WT model. The variation in performance caused by realis-
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tic wind data is referenced against predictions based on sim-
ple logarithmic wind speed profiles. The a priori guess of
100m≤ zref ≤ 400 m is confirmed by comparing the impact
of different reference heights on the power curves.

The structure of this research is as follows. Section 2 in-
troduces the mesoscale WRF model, analyzes the offshore
and onshore wind resource, introduces the k-means clus-
tering algorithm, and summarizes the results of the clus-
tered wind vectors. Section 3 introduces the dynamic AWES
model, which includes an aircraft and tether model, as well as
ground station constraints. Section 4 describes the AWEBox
optimization toolbox and summarizes the aircraft parame-
ters, system constraints, and initial conditions. This is fol-
lowed by a description of the WT and AWES reference mod-
els in Sect. 5. The results presented in Sect. 6 include flight
trajectories and time series data for various performance pa-
rameters, as well as a statistical analysis of the tether length,
operating altitude, and power curve estimations. Section 7
summarizes the findings and concludes with an outlook and
motivation for future work.

2 Wind conditions

Section 2.1 introduces the model and setup of the onshore
and offshore mesoscale WRF simulations. Section 2.2 ana-
lyzes wind statistics to give an insight into the wind regime at
both locations. Clustering, which is introduced in Sect. 2.3,
is used to identify groups of similar vertical wind profiles
and to select representative profiles from these groups. This
significantly reduces the computational cost as only a few
selected profiles are necessary to represent the wind regime.
Section 2.4 and 2.5 describe the resulting clusters and their
statistical correlation with temporal and meteorological phe-
nomena.

2.1 Mesoscale simulations

This study compares the performance of airborne wind en-
ergy systems (AWESs) at two locations in Europe, one on-
shore and one offshore (Fig. 1). The wind conditions for
the chosen years are assumed to be representative of wind
conditions at these locations. However, the wind data have
not been compared to long-term wind atlas data and have
not been corrected using long-term simulations. The onshore
data represent wind conditions at the Pritzwalk Sommers-
berg airport (lat: 53◦10′47.00′′ N, long: 12◦11′20.98′′ E) in
northern Germany and comprise 12 months of WRF simula-
tion data between September 2015 and September 2016. The
area surrounding the airport consists mainly of flat agricul-
tural land with the town of Pritzwalk in the south, making it
a suitable location for wind energy generation (Sommerfeld
et al., 2019a, b). The FINO3 research platform in the North
Sea (lat: 55◦11.7′ N, long: 7◦9.5′ E) was chosen as a repre-
sentative offshore location due to its proximity to several off-
shore wind farms and the number of comprehensive refer-

Figure 1. Map of northern Germany with the representative on-
shore (Pritzwalk) and offshore (FINO3) locations highlighted by
black dots.

ence measurements (Peña et al., 2015). The offshore simu-
lation covers the time frame between September 2013 and
September 2014.

The mesoscale simulations used the Weather Research and
Forecasting (WRF) model (Powers et al., 2023). The onshore
simulation was performed with version 3.6.1 (Skamarock
et al., 2008) prior to the 2018 release of WRF version 4.0.2
(Skamarock et al., 2021), in which offshore simulations were
computed. The setup of the model was adapted and con-
stantly improved for wind energy applications by the authors
of the present article for various projects and applications in
recent years (Dörenkämper et al., 2015, 2017; Dörenkäm-
per et al., 2020; Hahmann et al., 2020; Sommerfeld et al.,
2019b). The focus of this study is not on the detailed compar-
ison between mesoscale models but on AWES performance
subject to realistic onshore and offshore wind conditions.
Both WRF models provide adequate temporal and spatial
resolution for preliminary performance assessment, despite
the differences in setup and time frame.

Each simulation consists of three nested domains around
their respective location (black dot in Fig. 1). The innermost
domain (D03) has the finest resolution and is nested within
the middle domain (D02), which is nested within the outer-
most domain (D01) with the coarsest resolution. The simu-
lations use one-way nesting where the outer domains define
the boundary conditions for the inner domains. Atmospheric
boundary conditions are defined by ERA-Interim (Dee et al.,
2011) for the onshore location and by ERA5 (Hersbach and
Dick, 2016) reanalysis data for the offshore location. Sea sur-
face parameters for the offshore location, such as sea sur-
face temperature and sea ice analysis, are based on OSTIA
(Donlon et al., 2012). These data sets have proven to pro-
vide good results for wind-energy-relevant heights and sites
(Olauson, 2018; Hahmann et al., 2020). Four-dimensional
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Table 1. Key setup parameters of the onshore and offshore mesoscale WRF simulations to generate the wind data used in this study.

Model parameter Settings

Onshore Offshore

WRF model version 3.5.1 4.0.2
Time period 1 Sep 2015 to 31 Aug 2016 30 Aug 2013 to 14 Oct 2014
Reanalysis data set ERA-Interim ERA5 & OSTIA
Horizontal grid size (D01, D02, D03) 120× 120, 121× 121, 121× 121 150× 150, 151× 151, 151× 151
Horizontal resolution (D01, D02, D03) 27, 9, 3 km 18, 6, 2 km
Vertical grid levels 60σ levels (about 25 below 2 km) 60σ levels (about 25 below 2 km)
Nesting One-way One-way
Initialization strategy Single run 240 h runs plus 24 h spin-up time
Nudging Analysis nudging (FDDA) Analysis nudging (FDDA)
PBL scheme MYNN level 2.5 MYNN level 2.5

data assimilation (FDDA), also known as analysis nudging,
nudges the simulation of the outer domain towards the atmo-
spheric boundary conditions throughout the simulation time
to reduce numerical drifting and provide smoother bound-
ary conditions. Both simulations use the Mellor–Yamada–
Nakanishi–Niino (MYNN) 2.5 (Nakanishi and Niino, 2009)
level scheme for the planetary boundary layer (PBL) physics.
The onshore simulation was carried out in a single 12-month
simulation run from 1 September 2015 to 31 August 2016.
The offshore simulation period covered a 410 d period from
30 August 2013 to 14 October 2014 and was divided into
41 simulations of 10 d each, with an additional 24 h of spin-
up time per run. Spin-up is the period in which the model
produces results that may not be reliable due to initializa-
tion using coarser global atmospheric reanalysis data. WRF
calculates the vertical coordinate using a hybrid hydrostatic
pressure coordinate, which is a function of surface and at-
mospheric pressure (Skamarock et al., 2021). Data at each
vertical, terrain-following pressure coordinate (sigma level)
are converted to geometric heights using the postprocess-
ing methodology described by Dörenkämper et al. (2020).
Table 1 summarizes the key model settings used in this
study. All simulations were performed on the EDDY high-
performance computing clusters at the University of Olden-
burg (Carl von Ossietzky Universität Oldenburg, 2018).

2.2 Wind regime

Figure 2 depicts the wind roses of the computed annual wind
conditions at 100 m (Fig. 2a and b) and 500 m (Fig. 2c and d)
height onshore (left) and offshore (right). The dominant wind
direction at both locations is southwest, turning clockwise
with increasing altitude.

Directional variability decreases, and the wind speed U ,
which is the magnitude of the wind vector U , increases with
height, following the expected trends in the Northern Hemi-
sphere (Arya and Holton, 2001; Stull, 1988). The average
onshore wind direction turns about 14◦ between 100 and
500 m, whereas average offshore wind direction only veers

approximately 5◦. The offshore wind direction turns ap-
proximately 10 additional degrees above 500 m, resulting in
roughly the same westerly wind direction at around 1000 m.
Due to the prevailing unstable conditions offshore accompa-
nied by strong vertical mixing, the investigated heights show
less veer than onshore. Wind shear at the offshore location is
lower compared to the onshore location due to lower surface
roughness.

Figure 3 shows the annual horizontal wind speed proba-
bility distributions at each height level for both locations.
These distributions give insight into the wind statistics at
specific heights but not into the statistics of the wind pro-
file shapes. The nonlinear color gradient allows for the rep-
resentation of the entire relative probability range. Onshore
(Fig. 3a) U are relatively low and have a fairly narrow de-
viation below 300 m due to dominant surface effects. Above
this height the distribution broadens, but a high probability of
low wind speeds remains for the entire height range. The dis-
tributions show bimodal characteristics caused by different
atmospheric stratification. Low wind speeds are commonly
associated with unstable and high wind speeds with neutral
or stable atmospheric conditions.

Such multimodal distributions at higher altitudes are bet-
ter described by the sum of two or more probability distri-
butions, as standard Weibull or Rayleigh distributions cannot
capture this phenomenon (Sommerfeld et al., 2019a). Off-
shore U (Fig. 3b) display a wider distribution at all heights,
as they are less affected by surface effects. Similarly to on-
shore, the offshore frequency distribution also shows a high
probability of lower U (between 5–10 m s−1) at all heights.
Higher U at lower altitudes benefit conventional WT and
weaken the argument for offshore AWESs, as one of their
benefits would be to harness energy from the stronger winds
at higher altitudes. However, other reasons for placing AWES
offshore are the safety and land use regulations and the
potential cost benefits of a smaller support structure (off-
shorewind.biz, 2018; Lunney et al., 2017; Ellis and Ferraro,
2016).
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Figure 2. Wind roses of annual wind direction and speed statistics at Pritzwalk (onshore) and FINO3 (offshore) for heights of 100 and 500 m
during the simulated years.

Figure 3. Comparison of WRF-simulated annual wind speed U
probability distributions at each height level between onshore (a)
and offshore (b) up to 1000 m. The nonlinear color scheme rep-
resents the high probability of low altitude, particularly onshore,
while still differentiating the lower, wide-spread frequencies at
higher altitudes.

The Obukhov length L (Obukhov, 1971; Sempreviva and
Gryning, 1996),

L=
−u3
∗θv

kg

(
1
QS
+

0.61
QLθ

)
, (1)

commonly characterizes the near-surface atmospheric stabil-
ity, which highly affects the shape of the wind speed pro-
file U , which is the magnitude of the wind velocity profile
U . We extend the concept to mid-altitudes between 100 and
1000 m. The Obukhov length is a function of the simulated
friction velocity u∗, the virtual potential temperature θv, the

Table 2. Stability classes based on Obukhov length L (bins from
Floors et al., 2011) and associated annual probability at Pritzwalk
(onshore) and FINO3 (offshore), based on WRF simulations.

Stability class L [m] Onshore Offshore

Unstable (U) −200≤ L≤−100 7.27 % 13.66 %
Nearly unstable (NU) −500≤ L≤−200 7.09 % 16.34 %
Neutral (N) |L| ≥ 500 20.71 % 22.82 %
Nearly stable (NS) 200≤ L≤ 500 12.56 % 5.15 %
Stable (S) 50≤ L≤ 200 17.24 % 6.20 %
Very stable (VS) 10≤ L≤ 50 10.04 % 2.96 %
Other −100≤ L≤ 10 25.09 % 32.87 %

potential temperature θ , the kinematic virtual sensible sur-
face heat flux QS, the kinematic virtual latent heat flux QL,
the von Kármán constant k, and the gravitational accelera-
tion g. Various stability classifications based on the Obukhov
length have been defined for different wind energy sites. Ta-
ble 2 summarizes the Obukhov length bin widths used by
Floors et al. (2011) and the frequency of occurrence of each
stability class onshore and offshore, consistent with Sommer-
feld et al. (2019b).

Neutral stratification occurs approximately 20 % of the
year at both locations. The lower heat capacity of the land
surface leads to a faster heat transfer and a quicker surface
cool-off which favors the development of stable stratifica-
tion (≈ 17 % onshore vs. ≈ 6 % offshore). The offshore lo-
cation has a higher probability of unstable conditions, which
is likely caused by a warmer ocean surface compared to the
air above (Archer et al., 2016).
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Figure 4. Representative wind velocity profile U ′ in its original direction and rotated so that the primary wind direction of the resulting
profile U points in the x direction. Panel (a) shows the top view, panel (b) shows the front view, panel (c) shows the side view, and panel
(d) shows the isometric view. The primary wind direction is defined by the average wind vectors U ′(zref) (black) and U (zref) (blue) between
100 and 400 m (dashed lines). As an example, the wind vector at z= 150 m (red) (a, d) is decomposed into u and v (b, c).

Both unstable and stable conditions can lead to non-
logarithmic and non-monotonic U profiles. Unstable condi-
tions are often accompanied by almost uniform U profiles
due to increased mixing, whereas low-level jets (LLJs) can
develop during the nocturnal stable onshore boundary layer
(Banta, 2008). Both locations have a high chance of unas-
signed conditions (labeled as “other”) which are mostly as-
sociated with low wind speeds.

2.3 Clustering of wind conditions

An accepted method to describe the near-surface atmo-
sphere is atmospheric stability, commonly quantified by the
Obukhov length (Obukhov, 1971; Sempreviva and Gryning,
1996), which exclusively uses surface data (Sect. 2.2 and
Eq. 1). Previous studies (Sommerfeld et al., 2019a, b) showed
that Obukhov-length-classified wind speed profiles U di-
verge with height, especially during neutral and stable con-
ditions. This indicates vertically heterogeneous atmospheric
stability and suggests that surface-based stability categoriza-
tion is insufficient for higher altitudes. Unlike classifying
wind regimes by atmospheric stability, which requires ad-
ditional temperature and heat flux data, clustering only uses
wind data at multiple heights to group profiles by similar-
ity. This results in more cohesive profile groups (Schelber-
gen et al., 2020). Therefore, clustering can also be applied to
wind-only measurements such as lidar.

The k-means clustering algorithm (Pedregosa et al., 2011)
used in this study is chosen for its ease of use and scalability
due to the high dimensionality of the data set. Many other al-
gorithms produce similar results, but a comparison between
clustering algorithms is beyond the scope of this research.

The wind velocity profiles U ′ (Fig. 4, black) are rotated
such that the main wind component U (zref)= U (100m≤
z ≤ 400m) points in the positive x direction U (blue) in or-
der to remove directional dependencies. The velocity com-
ponents at each height level are decomposed into u in the
main wind direction and into v perpendicular to it (red). The
wind speed profile U is not shown. This results in more ho-
mogeneous clusters and simplifies the comparison of wind
data and AWEBox results. It is analogous to assuming omni-
directional operation.

The wind velocity data up to 1000 m are comprised of data
points at 30 height levels and in two directions. The cluster-
ing algorithm assigns each data point to one of the k clusters
represented by their respective cluster mean, also called the
centroid. These centroids are chosen to minimize the sum of
the Euclidean distances to every data point within each clus-
ter. This cost function is also referred to as inertia or within-
cluster sum of squares. As such, the centroids are usually
not actual data points, but rather the clusters’ average, and
will at best coincide with a data point by chance. The clus-
ter labels are the result of random initialization and have no
mathematical meaning. We therefore sort and label the clus-
ters by average U (zref) between 100–400 m for the following
analyses in Sect. 2.4. The variable k refers to the fixed and
predefined number of clusters. The choice of k significantly
affects the accuracy of the wind resource description, as well
as the computational cost. The choice of k is informed by
the elbow method, named after the characteristic line chart
that resembles an arm, and the silhouette score. The “elbow”
(the point of inflection of the curve) is a good indication that
the underlying model fits well for the corresponding number
of clusters. k can be chosen at a point where the inertia re-

https://doi.org/10.5194/wes-8-1153-2023 Wind Energ. Sci., 8, 1153–1178, 2023



1160 M. Sommerfeld et al.: Impact of wind profiles on ground-generation airborne wind energy system performance

Figure 5. The k-means clustering inertia over of number of clusters k (a) for 1 year of onshore (blue) and offshore (orange) wind velocity
profiles U up to 1000 m. The onshore (b) and offshore (d) silhouette coefficients express the distance to neighboring clusters and are color
coded according to averageU (zref) between 100 and 400 m, the same as in Figs. 6, 9, 10, and 11. The dashed red line represents the silhouette
score, which is the average silhouette coefficient. Silhouette score (c) over number of clusters k for both locations. The number of clusters
k = 10 has been chosen for presentation purposes only. The analyses in the “Results and discussion” section use k = 20 clusters.

Figure 6. Onshore (a, c) and offshore (b, d) average annual wind speed profiles (centroids) resulting from k-means clustering for k =
10 (a, b). All WRF-simulated wind speed profiles U are depicted in gray. The centroids are sorted, labeled, and color coded in ascending
order of average U (zref) between heights of 100 and 400 m. The corresponding cluster frequency of occurrence f for each cluster C is shown
in (c) and (d) below.

duction becomes marginally small or decreases linearly (Pe-
dregosa et al., 2011).

Absolute values of inertia (Fig. 5a) are not a normalized
metric and scale with the size of the considered data set. On
the other hand, the silhouette coefficients (Fig. 5b and d) are
normalized between −1 (worst) and 1 (best). They indicate
the membership of a data point to its cluster in comparison
to other clusters, i.e., the proximity of each data point in
one cluster to data points in neighboring clusters (Pedregosa
et al., 2011). A negative value suggests that a data point could
be assigned to the wrong cluster. The silhouette score, de-
picted by a dashed red vertical line, is the average of all sil-

houette coefficients for a fixed number of clusters k. For vi-
sualization purposes, k = 10 clusters have been chosen. Each
cluster is sorted and color coded according to averageU (zref)
between 100 and 400 m and color, the same as in Fig. 6. Per-
forming these silhouette score analyses for multiple k results
in the trend shown in Fig. 5c. A k value of 20 seems to be a
good choice for the available data sets because the decrease
in inertia for a higher number of clusters is only moderate,
suggesting that the additional computational cost may not be
worthwhile. Similarly, the silhouette score remains almost
constant for higher numbers of clusters. Therefore, k = 20
has been chosen for the analyses in Sect. 6.
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Figure 7. Vertical onshore U categorized using the k-means clustering algorithm. The analyses in Sect. 6 employ k = 20 clusters. Here
k = 10 is chosen for visualization purposes. The average profile (centroid) is shown in blue, and the profiles associated with this cluster are
shown in gray. Clusters 1 to 10 (a–j) are sorted and labeled in ascending order of average centroid U (zref) between 100 and 400 m. The
corresponding cluster frequency f for each cluster C is shown in Fig. 6. The optimization-toolbox-implemented U are highlighted with a
red line.

2.4 Analyses of clustered profiles

For visualization purposes, the following subsections de-
scribe the wind conditions at both locations using only k =
10 clusters. The analyses in the “Results and discussion” sec-
tion (Sect. 6) use k = 20 clusters.

Figure 6a and b show the average of the clustered wind
speed profiles U , also referred to as centroids. Their colors
correspond to the averageU (zref) between heights of 100 and
400 m. All WRF-simulated U are depicted in gray. The clus-
ter probabilities (Fig. 6c and d) are sorted by average cen-
troid speed within the considered height range, represented
by their colors and labels (C = 1–10).

As expected, offshore U (Fig. 6b) at low altitudes are
higher and wind shear is lower than onshore (Fig. 6a). In
general, offshore centroids are more monotonic, as they do
not exhibit a distinct U peak (i.e., LLJs), and achieve higher
maximum wind speeds than onshore. The U profiles within
each cluster cover a relatively small range, suggesting consis-
tent clusters. Figure 7 (onshore) and Fig. 8 show the distribu-
tion of U within each of the clusters. At both locations, the
first two clusters (Figs. 7a, b and 8a, b) exhibit very low wind
shear with a low and almost constant U above 200 m. These
low wind speed clusters amount to approximately 25 % on-
shore (Fig. 6c) and 20 % offshore (Fig. 6d), as can be seen in
the corresponding cluster frequency of occurrence f . A stan-
dard logarithmic wind profile does not accurately describe
such almost constant profiles which could lead to an over-
estimation of U at higher altitudes. AWESs must either be
capable of functioning at low U or be able to safely land and
take off autonomously. Onshore clusters 4 and 5 (Figs. 7d, e

and 8d, e) seem to mostly consist of non-monotonic profiles,
as these centroids show a distinct LLJ nose at about 200 and
300 m. The offshore centroids of clusters 7 and 8 (Figs. 7g, h
and 8g, h) also show a slight wind shear inversion at higher
altitudes.

Clusters C = 1 (a) to C = 10 (j) are sorted by the aver-
age centroid (blue line) wind speed between U (zref = 100–
400 m). The red lines indicate the profiles associated with
the 5th, 50th, and 95th percentiles of U (zref) within each
cluster. To reduce computational cost, only these profiles
are later implemented into the AWEBox optimization tool-
box. We selected these profiles because they are less likely
to be irregular outliers than the extrema of the cluster while
still representing the variation within their respective clus-
ter. These profiles illustrate the variations within their re-
spective cluster and are not average profiles like the cluster
centroids or scaled or semi-empirical approximations such as
the logarithmic wind profile. Evidently, the magnitude of the
wind speed plays a dominant role in the clustering process.
A clearer wind profile shape distinction could be achieved
by normalizing the data before clustering it (Molina-García
et al., 2019; Schelbergen et al., 2020).

2.5 Analysis of clustered statistics

This subsection examines the relationship between the clus-
ters and monthly, diurnal, and atmospheric stability. These
analyses reveal patterns that give insight into the wind regime
and the resulting changes in AWES performance. Subsequent
sections examine wind data from k = 20 clusters, while
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Figure 8. Vertical offshore wind speed profiles categorized using the k-means clustering algorithm. The analyses in Sect. 6 employ k = 20
clusters. Here k = 10 is chosen for visualization purposes. The average profile (centroid) is shown in blue, and the profiles associated with this
cluster are shown in gray. Clusters 1 to 10 (a–j) are sorted and labeled in ascending order of average centroid U (zref) between 100 and 400 m.
The corresponding cluster frequency f for each cluster C is shown in Fig. 6. The optimization-toolbox-implemented U are highlighted with
a red line.

Figure 9. Monthly frequency of k-means clustered onshore (top) and offshore (bottom) wind velocity profiles U for a representative k = 10.
All clusters are sorted and color coded according to their U (zref = 100–400 m). The corresponding centroid associated with each cluster can
be found in Fig. 6.

here only k = 10 clusters are chosen for presentation pur-
poses. Clusters are sorted in ascending order of average cen-
troid wind speed U (zref = 100–400 m) and color coded as in
Figs. 5 and 6.

Both locations exhibit a clear annual pattern as shown in
Fig. 9. High wind speeds are more common during winter,
while low wind speeds are more prevalent in summer. This
is likely due to the seasonal difference in surface heating and
the resulting differences in atmospheric mixing. The two on-
shore and offshore clusters associated with the highest wind
speed are almost exclusively present during November to
February.

Offshore data indicate minimal diurnal variation as shown
in Fig. 10, with only a slight increase in the frequency of
lower-wind-speed clusters during the day. Onshore clusters,

on the other hand, are more dependent on the diurnal cycle
with a higher likelihood of low-speed clusters after sunrise.
The frequency of onshore cluster 4, which includes a LLJ
nose (Fig. 6), decreases to almost zero during the day and
rises at night, supporting the notion that this cluster is linked
to nocturnal LLJs.

The wind velocity clusters (Fig. 11) show a correlation
with atmospheric stability. Low wind speed clusters make up
about 20 % to 30 % of the annual wind resource. These clus-
ters exhibit Obukhov lengths close to zero (probably caused
by very low friction velocity u∗) and are classified as “other”
according to Floors et al. (2011) (Table 2). Unstable (U) and
near-unstable (NU) conditions are associated slightly higher
wind speeds. The highest wind speeds develop during neu-
tral (N) and near-stable (NS) conditions. It should be ac-
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Figure 10. Diurnal frequency of k-means clustered onshore (top) and offshore (bottom) wind velocity profiles U for a representative k = 10.
All clusters are sorted and color coded according to their U (zref = 100–400 m). The corresponding centroid associated with each cluster can
be found in Fig. 6.

Figure 11. Atmospheric stability (U: unstable; NU: nearly unstable; N: neutral; NS: nearly stable; S: stable; VS: very stable) distribution of
k-means clustered onshore (top) and offshore (bottom) wind velocity profiles U for a representative k = 10. The associated stability classes
are based on Obukhov length (Table 2). All clusters are sorted and color coded according to their U (zref = 100–400 m). The corresponding
centroid associated with each cluster can be found in Fig. 6.

knowledged that strong winds driven by large pressure gradi-
ents can lead to neutral stratification. LLJ profiles associated
with onshore cluster 4 are most likely to develop during sta-
ble (S) and very stable (VS) conditions.

In summary, k-means clustering can effectively group
wind velocity profiles with similar characteristics up to high
altitudes. These clusters are correlated with seasonal and di-
urnal changes, as well as atmospheric stability. The magni-
tude of the wind velocity profiles appears to have a greater
impact on the resulting clusters than the shape of the pro-
file. The algorithm is able to identify non-monotonic profile
shapes that are less common, including profiles with LLJs.
Normalizing the profiles before clustering can provide more
information about the different shapes of the vertical profiles,
but this was not done in this study.

3 Dynamic AWES model

This section introduces the dynamic AWES model used in
the AWEBox trajectory optimization toolbox (De Schutter
et al., 2020). Section 3.1 provides a summary of the sys-
tem configuration. The aerodynamic model is presented in

Sect. 3.2, while the aircraft mass model is introduced in
Sect. 3.3.

3.1 Model configuration

The rigid-body model considers a 6-degrees-of-freedom
(DOF) fixed-wing aircraft which is connected to the ground
via a straight tether. The introduction of the tether reduces the
DOFs to 5 (Terink et al., 2011). The model uses precomputed
second-order polynomials to describe the aerodynamic coef-
ficients (Sect. 3.2) which are controlled via aileron, elevator,
and rudder deflection (Malz et al., 2019).

The longitudinal dynamics of the tether is controlled via
the tether jerk

...

l from which the tether acceleration l̈, reeling
speed l̇, and length l are determined. The tether is modeled as
a single solid rod which supports neither compressive forces
nor bending moments (De Schutter et al., 2019). The rod is
divided into 10 segments. Tether drag is calculated individ-
ually for each segment, using the local apparent wind speed
(Bronnenmeyer, 2018). The tether drag of every segment is
equally distributed between the two endpoints. This leads to
an underestimation of total tether drag at the kite (Leuthold
et al., 2018). The ground station dynamics are not modeled
explicitly but are implemented using a set of constraints.
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Figure 12. Ampyx Power AP2 reference kite aerodynamic lift cL (a) and drag cD,total coefficients (b) (Malz et al., 2019; Ampyx Power BV,
2020), including tether drag according to Eq. (2), for a projected wing surface area A= 20 m2 and tether diameter of d = 7.8 mm. Tether
length varies between 250 and 1000 m. Panel (c) shows the pitch moment coefficient cm as a function of angle of attack α. The bottom figures
display lift over drag (d), glide ratio over angle of attack (e), and c3

R/c
2
D,total over angle of attack (f).

These constraints serve as an example of a system rather
than representing a fully optimized design. A reel-in speed
of l̇in = 15 m s−1 and reel-out speed of l̇out = 10 m s−1 are
assumed to be realistic winch motor constraints based on in-
formation provided by a ground station manufacturer and lit-
erature review. This results in a reel-out to reel-in ratio of 2

3 .
A maximum tether acceleration of l̈ = 20 m s−2 is imposed
to comply with generator torque limits. The tether diameter
is selected to be able to withstand 3 times (safety factor of
SF= 3) the maximum tether tension of Fmax

tether = 50 kN. This
results in a rated average cycle power of about Prated ≈ 260–
300 kW, according to AWEBox simulations.

3.2 Aerodynamic model

The presented model utilizes the Ampyx Power AP2 aerody-
namic coefficients from De Schutter et al. (2020), Malz et al.
(2019), and Ampyx Power BV (2020). The AP2 reference is
scaled from a projected wing surface area of AAP2 = 3 m2 to
A= 20 m2 to generate results for more realistic and probable
devices, while the aspect ratio is kept constant at AR= 10.
The total combined drag coefficient of the aircraft and tether
cD,total,

cD,total = cD,kite+
1
4
ld

A
cD,tether, (2)

depends on the diameter d and length l of the tether, as well
as the projected surface area A and the aerodynamic drag
coefficient cD,kite of the kite. To illustrate the effect of a
longer tether, we utilize a simple tether drag estimation for
a cylindrical tether with constant diameter and an aerody-
namic tether drag coefficient cD,tether of 1.0. This value would
be even higher for braided tethers. Assuming a constant and

uniform wind speed, the line integral along the tether results
in a total effective drag coefficient of ld/4A and accounts
for the different reference areas for cD,kite and cD,tether. See
Houska and Diehl (2007), Argatov and Silvennoinen (2013),
and van der Vlugt et al. (2019) for details. Figure 12 visual-
ized the tether drag impact on the aerodynamic coefficients
for tether lengths up to l = 1000 m.

The lift coefficient cL (Fig. 12a) is approximated as a
second-order polynomial function of angle of attack α to
simulate stall effects. A polynomial description is necessary
for the entire range of angle of attack, as the optimization
algorithm requires a two-times differentiable function. For
the sake of simplicity, a piecewise, continuous, and differ-
entiable function has not been implemented. As a result, the
implemented cL (blue) slightly exceeds the linear (orange)
lift coefficient cref

L of the AP2 reference (Malz et al., 2019)
between −5≤ α ≤ 10◦. The side slip angle β is included in
the model, but variations in aerodynamic coefficients due to
β are neglected. The pitch moment (Fig. 12c) is assumed to
behave linearly. Changes in the drag coefficient (Fig. 12b)
are approximated by a second-order polynomial. Tether drag
is independent of α and therefore added to the zero-lift drag
coefficient. The resultant aerodynamic force coefficient cR is
represented as

cR =
√
cL2 + cD,total2 . (3)

The drag polar in Fig. 12d depicts the relationship between
the kite’s lift coefficient cL and total drag coefficient cD,total
for the tethered aircraft. The maximum values of the glide
ratio cL/cD,total (Fig. 12e) and the ratio c3

R/c
2
D,total (Fig. 12f),

which is one of the main determining factors of AWES power
(Loyd, 1980; Schmehl et al., 2013), decrease significantly
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Figure 13. Published actual (circle) and anticipated (square) aircraft mass scaling provided by Makani (red color scheme) (Echeverri et al.,
2020) and Ampyx Power (blue color scheme) (Ampyx Power BV, 2020; Kruijff and Ruiterkamp, 2018). Diamond-shaped data (green color
scheme) depict the mass of scaled-up versions of Ampyx Power prototypes used in research papers (Haas et al., 2019; Eijkelhof et al., 2020;
van Hagen et al., 2023). For most data, mass scales with a scaling exponent between κ = 2.2–2.6 (gray area). The chosen mass-scaling
exponent of κ = 2.4 is represented by a dashed line, and the investigated scaled AP2 design is highlighted by a red X.

with tether length and shift towards higher angles of attack.
The impact of tether drag on the total drag coefficient is less
significant for larger kites because its impact decreases with
the size of the aircraft.

3.3 Aircraft mass model

The aircraft dynamics are described by a single rigid body
of mass mkite and moment of inertia J, subject to aerody-
namic forces and moments. The inertial properties mkite and
J are determined by upscaling the AP2 reference kite from
AAP2 = 3 m2 to A= 20 m2. The mass mscaled and moment
of inertia Jscaled of a fixed-wing aircraft scale as functions
of the wing span b and aspect ratio AR, which is kept con-
stant and whose impact on scaling is neglected here, with a
mass-scaling exponent κ (Noth and Siegwart, 2006):

mscaled =mref

(
b

bref

)κ
, (4)

Jscaled = Jref

(
b

bref

)κ+2

. (5)

Pure geometric scaling of solid bodies, in contrast to air-
craft structures that use a lightweight structural frame, cor-
responds to Galileo’s square–cube law with κ = 3. In real-
ity, as has been seen for the development of conventional
WTs, design and material improvements occur over time.
An appropriate mass-scaling factor was determined based
on a review of the available literature. Figure 13 depicts ac-
tual (circle) and anticipated (square) aircraft mass scaling
provided by Makani (red color scheme) and Ampyx Power
(blue color scheme). The diamond-shaped data points (green
color scheme) are scaled-up versions of Ampyx Power pro-
totypes used in several research papers (Haas et al., 2019;
Eijkelhof et al., 2020; van Hagen et al., 2023). The gray area
encompasses most of the data points with κ = 2.2–2.6. We

chose κ = 2.4 based on a curve fit of the available published
sizing study data. This appears to be an ambitious goal for
rigid kites but attainable for flexible ones. The mass of these
hollow tensile structures filled with air mostly scales with
the wing surface area, leading to significantly lower mass-
scaling exponents and more beneficial mass scaling. Som-
merfeld et al. (2022) examined the impact of various size,
mass, and aerodynamic scaling factors on performance.

4 Optimal control model

AWESs need to dynamically adapt to changing wind condi-
tions to maximize power generation and ensure safe opera-
tion. Section 4.1 introduces the dynamic trajectory optimiza-
tion toolbox AWEBox (De Schutter et al., 2020). We describe
the most important boundary conditions in Sect. 4.2 and ini-
tial conditions in Sect. 4.3. Section 4.4 explains the imple-
mentation of the previously described wind profiles (Sect. 2).

4.1 AWES model overview

Maximizing the average cycle power can be formulated as
a trajectory optimization problem, which takes into account
the interaction between the tether, kite, and ground station.
This study analyzes the mechanical power produced by a sin-
gle aircraft tethered with a straight line throughout one pro-
duction cycle, including reeling in and out, while disregard-
ing take-off and landing. Power production is intrinsically
linked to the aircraft’s flight dynamics, as the AWES never
reaches a steady state over the course of a power cycle. Gen-
erating dynamically feasible and power-optimal flight trajec-
tories is nontrivial, given the nonlinear and unstable system
dynamics and the presence of various flight envelope con-
straints. Optimal control methods are a natural candidate to
tackle such problems, given their inherent ability to deal
with nonlinear, constrained multiple-input–multiple-output
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systems (De Schutter et al., 2019; Leuthold et al., 2018). This
trajectory optimization is a highly nonlinear and non-convex
problem which can have multiple local optima. The initial
and final states of each trajectory must be equal to ensure
periodic operation but are freely chosen by the optimizer. In
periodic optimal control, an optimization problem is solved
by computing periodic system states and control inputs that
maximize a performance index (here average power output
P ) while satisfying the system’s dynamic equations and con-
straints. We use this approach to generate a variety of realis-
tic trajectories from WRF-simulated wind velocity profiles.
Any wind data sets, such as wind atlas data, lidar, or met
mast measurements, can be implemented into the optimiza-
tion model via a two-times differentiable function, depending
on the scope and purpose of the investigation.

4.2 Constraints

Several important constraints define the operational enve-
lope. The most important constraints such as tether length,
tether reeling speed, and tether force are summarized in
Table 3. The following constraints define a representative
and not design-optimized AWES. The power of a ground-
generation AWES is limited by the tether force, which is de-
fined by the tensile strength σ tether

max , tether diameter d, and the
tether reeling speed l̇. The tether diameter is chosen such that
the maximum tether tension is approximately Fmax

tether = 50 kN
with an additional safety factor of SF= 3. This produces a
peak power of Ppeak ≈ 500 kW, with a maximum reel-out
speed of l̇ = 10 m s−1. This corresponds to a rated average
cycle power of approximately Prated ≈ 260–300 kW. We as-
sume a reel-out to reel-in tether reeling speed ratio of 2

3 to be
within winch design limitations. The tether length constraint
is relatively lenient to allow the optimizer to investigate a
wide range of possible operating heights zoper. The flight en-
velope is constrained by limitations on the aircraft’s acceler-
ation and roll and pitch angles (to prevent collision with the
tether), as well as the angle of attack α and side slip angle β.
A minimal operating height of zmin = 50m+ b

2 is imposed
for safety reasons.

4.3 Initialization

The trajectory optimization process is highly nonlinear and
non-convex, resulting in multiple local optima. These solu-
tions depend on the chosen initial conditions. Some of the
locally optimal solutions may be feasible and within the
constraints but may have undesirable characteristics such as
looping maneuvers during reel-in or excessively high oper-
ating altitudes. As a result, it is necessary to evaluate the
quality of all solutions. To solve the complex optimization
problem, initial guesses are generated using a homotopy
technique similar to Gros et al. (2013). This technique ini-
tially fully relaxes the dynamic constraints using fictitious
forces and moments to reduce model nonlinearity and cou-

Table 3. Selected AWES design parameters for the original AP2
reference system (Malz et al., 2019) and the scaled-up A= 20 m2

design analyzed in this study. Values in square brackets represent
the upper and lower bounds, which are implemented as inequality
constraints.

Parameter AP2 Design 1

Aircraft

A [m2
] 3 20

ckite [m] 0.55 1.42
bkite [m] 5.5 14.1
AR [–] 10 10
mkite [kg] 36.8 355
α [◦] [−10 : 30]
β [◦] [−15 : 15]

Tether

l [m] [1 : 2000]
l̇ [m s−1

] [−15 : 10]
l̈ [m s−2

] [−10 : 10]
d [mm] 7.3
σ tether

[Pa] 3.6× 109

SF [–] 3

Operational
zmin [m] 60
α [◦] [−10 : 20]
β [◦] [−5 : 5]

pling, which improves the convergence of Newton-type opti-
mization techniques. The constraints are then gradually re-
introduced until the relaxed problem matches the original
problem. The trajectory optimization is initialized with a cir-
cular trajectory in downwind direction (positive x direction)
with a fixed number of nloop = 5 loop maneuvers at a 30◦ el-
evation angle, an initial tether length linit = 500 m, and an es-
timated aircraft speed of vinit = 10 m s−1 along the entire ini-
tial trajectory. This initialization is kept constant for all ver-
tical wind velocity profiles. The number of loop maneuvers
is not part of the objective function and remains unchanged
during all optimization runs. Further investigation is needed
to determine the impact of the number of loops. However,
previous analyses have shown that the average cycle power
estimated by AWEBox is relatively unaffected by the number
of loops. It is likely beneficial to reduce the number of loops
with wind speeds because the system can reel out faster at
higher wind speeds and reach maximum tether length faster.

4.4 Wind profile implementation

To reduce the computational cost while maintaining an ade-
quate representation, we only implement three wind veloc-
ity profiles from each cluster into the trajectory optimiza-
tion toolbox. More profiles could be chosen for an in-depth
analysis. The power for a total number of 60 wind profiles,
three profiles for each of the k = 20 clusters (Sect. 2.3), for
each location is maximized. The three selected profiles corre-
spond to the 5th, 50th, and 95th percentiles of average wind
speed U (zref = 100–400 m) within each cluster. We assume
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Figure 14. Representative WRF-simulated vertical onshore wind speed profiles U (a) and hodograph (top view) up to 1000 m (c). The
highlighted sections indicate Lagrangian polynomial fit of the wind velocity at operating height. Panel (b) and panel (d) show the side and
top view of the corresponding AWEBox-optimized trajectories. The reference wind speed in the legend is U ref = U (100m≤ zref ≤ 400m).
The results correspond to the time series shown in Fig. 16.

that these profiles represent the cluster’s spectrum of wind
conditions at operating height zoper. The AWEBox includes
a simplified atmospheric model based on international stan-
dard atmosphere to account for the variation in air density.

The vertical wind velocity profiles U′ are rotated such that
the main wind direction, which is defined as the average di-
rection between 100 and 400 m, points in the positive x di-
rection (Fig. 4). As a result the wind velocity components
at every height consist of a main component u in the x di-
rection and transverse component v in the y direction. The
results can be seen in the hodographs of Figs. 14c and 15c.

The AWEBox toolbox uses the gradient-based MA57
solver (HSL, 2020) in IPOPT (Waechter and Laird, 2016)
to solve the nonlinear control problem. Therefore, it is nec-
essary to interpolate the vertical wind velocity profiles with a
two-times continuously differentiable function. We chose to
use Lagrangian polynomials (Abramowitz and Stegun, 1965)
because the resulting polynomials pass through the input data
points. To avoid over-fitting a limited number of data points
are implemented. These data points are chosen based on the
anticipated zoper to best represent the wind conditions at rel-
evant heights.

For comparison, logarithmic wind speed profiles,

Ulog = U10

(
log10 (z/z0)

log10 (z10/z0)

)
, (6)

with a roughness length of zonshore
0 = 0.1 and zoffshore

0 =

0.001 are implemented into the trajectory optimization tool-
box.

The reference wind speed U10 at the reference height
z10 = 10 m varies from 3 to 20 m s−1 with a step size of
1U10 = 1 m s−1.

5 Reference models

This section introduces a simplified quasi-steady-state
AWES reference model (QSM) (Sect. 5.1) and a steady-state
WT model (Sect. 5.2). The so generated analytical solutions
will serve as a reference for the optimization results.

5.1 AWES reference model

The QSM estimates the mechanical power of ground-
generation AWES based on the assumption that the trajec-
tory of the tethered aircraft can be approximated by a pro-
gression through steady equilibrium states where tether ten-
sion and total aerodynamic force are aligned. We simplify
the QSM by approximating the reel-out and reel-in trajec-
tory with a single state and neglecting the effects of gravity.
The QSM, based on Argatov et al. (2009) and generalized by
Schmehl et al. (2013) and van der Vlugt et al. (2019), approx-
imates the aircraft as a point mass. Its position is described in
terms of spherical coordinates, i.e., the radial distance from
the ground station, the elevation angle ε, and azimuth angle
φ relative to the direction of the mean wind velocity vector
U . For lightweight soft-wing kites, this is a reasonably good
approximation because the low mass of the kite leads to very
short acceleration times. The model includes losses caused
by the misalignment of the tether and the wind velocity vec-
tor. The same design parameters, system constraints, and
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wind conditions (Sect. 2) apply to the optimization model
(Sect. 4.2), as well as the QSM reference model. We maxi-
mize the cycle average power PQSM by varying l, l̇ and z and
assuming an optimal ratio c3

R/c
2
D,total.

The average cycle power PQSM,

PQSM =
Pouttout−Pintin

ttotal
= Pout

l̇in

l̇out+ l̇in
−Pin

l̇out

l̇out+ l̇in
, (7)

can be estimated from the reel-out power Pout, the power
losses during reel-in Pin, the reel-in time tin, and reel-out
time tout. We assume reel-in power losses Pin to be zero
because optimal reel-in tether tension is negligible. This re-
duces the average cycle power by up to 30 %, depending on
wind speed. Due to the cyclic nature of the trajectory, we
can determine the ratio of the reel-in time tin and reel-out
time tout to the total cycle time ttotal from the reel-in speed
l̇in and reel-out speed l̇out. l̇out depends on the wind speed,
while l̇in =−15 m s−1 is assumed to be the maximum reel-in
speed.

During the reel-in and reel-out phases, we assume that the
tether force Ftether and reeling speed remain constant. The
time it takes to transition between these two phases is not
taken into account. Pout is calculated from the product of
tether reeling speed l̇ and tether tension Ftether:

Pout = Ftether l̇out =
ρ

2
AU2

appcR

(
cR

cD,total

)2

l̇out. (8)

Tether tension is a function of the apparent wind speed
Uapp, air density ρ, and the resultant aerodynamic force co-
efficient cR (Eq. 3). The apparent wind speed can be nondi-
mensionalized by

Uapp

U (z)
= (cosε cosφ− f )

√
1+

(
L

D

)2

. (9)

The tether reeling speed l̇ is nondimensionalized by defining
the reeling factor:

f =
l̇

U (z)
. (10)

The elevation ε and azimuth angle φ constrain f ≤

cosε cosφ because the magnitude of the apparent wind speed
cannot be negative. Combining Eqs. (8) and (10) results in

Pout =
ρ

2
AU (z)3cR

(
cR

cD,total

)2

f (cosε cosφ− f )2. (11)

The optimal reeling factor fopt =
1
3 cosε cosφ can be ob-

tained from Eq. (11) through an extreme value analysis. We
assume an average reel-out trajectory represented by a sin-
gle crosswind state instead of tracking the actual trajectory.
The trajectory center is aligned with the main wind direction
(φ = 0◦). The elevation angle ε is determined using the tether

length l and operating height zoper. Ftether is constrained by
the tether diameter d , the tensile strength σ tether

max , and the
safety factor SF:

Ftether ≤
d2

4
πσ tether

max . (12)

The power-harvesting factor ζ (Diehl, 2013) is an AWES per-
formance metric:

ζ =
P

Parea
=

P

1
2ρAU

3
ref

. (13)

The harvested power P is expressed relative to the kinetic
wind energy flow rate Parea, Parea being a mathematical con-
cept rather than a physical power flux, through an area equiv-
alent to the wing surface area A to nondimensionalize the
power. ζ can be derived from Eq. (8) by setting the elevation
angle ε and the azimuth angle φ to zero.

5.2 WT reference model

This section introduces a simplified steady-state reference
WT model that calculates power as

PWT =
1
2
ρcWT

p AWTU
3 (zWT) , (14)

with a hub height of zWT = 100 m for both onshore and
offshore conditions. The rotor diameter DWT ≈ 26.9 m is
sized such that an equivalent rated power of Prated = 260 kW
is reached at a rated wind speed of Urated(zWT = 100m)=
12 m s−1, assuming a constant power coefficient of cWT

p =

0.45. The power is kept constant above the rated wind speed.
The performance of the WT model, dynamic optimization
toolbox, and QSM is estimated using the same sampled
WRF-simulated wind conditions (Sect. 2).

6 Results and discussion

This section analyses the optimization results and compares
them to the reference models. Section 6.1 investigates power-
optimal trajectories and the time series of operational param-
eters. Section 6.2 examines operating height statistics, tether
length, and elevation angle trends. Section 6.3 visualizes the
impact of wind speeds at different reference heights on the
power curve. We compare three different wind speeds: the
wind speed at a reference height of 100 m U ref = U (zref =

100m), the average wind speed at pattern trajectory height
U ref = U (zref = zPTH), and the average wind speed at an a
priori guess of pattern trajectory height U ref = U (100m≤
zref ≤ 400m). The investigated power curves do not repre-
sent design-optimal performance. Section 6.4 examines the
variation in average cycle power caused by realistic wind
profiles simulated by WRF and compares them to reference
power estimates based on logarithmic profiles. All results are
subject to the same constraints and design parameters intro-
duced in Sects. 3 and 4.
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Figure 15. Representative WRF-simulated vertical offshore wind speed profiles U (a) and hodograph (top view) up to 1000 m (c). The
highlighted sections indicate Lagrangian polynomial fit of the wind velocity at operating height. Panel (b) and panel (d) show the side and
top view of the corresponding AWEBox-optimized trajectories. The reference wind speed in the legend is U ref = U (100m≤ zref ≤ 400m).
The results correspond to the time series shown in Fig. 17.

6.1 Flight trajectory and time series results

Figure 14 compares representative onshore and offshore
power-optimal flight trajectories. These results have been
chosen to visualize typical performance-optimized trajec-
tories for realistic wind conditions determined with the
AWEBox. The reference wind speed U ref in the legend is the
average wind speed at the a priori guess of the pattern trajec-
tory height zref(100 m≤ zref ≤ 400m).

Figure 14a shows the magnitude of the vertical wind ve-
locity profile U . Figure 14c shows the corresponding top
view of the wind velocity profile, rotated such that the main
wind component (average wind direction between 100 and
400 m) u points in the positive x direction. The WRF-
simulated wind profiles are shown in gray. The highlighted
segments depict the Lagrangian polynomial fit (Abramowitz
and Stegun, 1965) at operating heights. These polynomials
that have been incorporated into the optimization toolbox
provide a sufficient fit for the wind data. Figure 14b and d
show a side (x–z plane) and top view (x–y plane) of the op-
timized trajectories. The optimization predicts an increase in
tether length, operating height, and stroke length with wind
speed. Figure 15 shows similar results for the offshore loca-
tion. Figure 16 illustrates the corresponding temporal devel-
opment of important operational parameters.

The optimizer maximizes tether tension by adjusting the
reel-out speed and angle of attack (Fig. 16a) during reel-
out even for lower wind speeds and adjusts the reel-out
speed (Fig. 16c) to maximize average cycle power. This
causes the reeling factor to exceed its optimal value of
fopt =

1
3 cosε cosφ at high wind speeds, resulting in an in-

crease in power (Fig. 16e) even when the maximum tether
force has been reached. The low-wind-speed example U ref =

5.4 m s−1 (blue) seems to be just above cut-in wind speeds.
The tether reeling speed decreases to zero for a prolonged
period during the reel-out phase in order to generate enough
lift to keep the aircraft aloft. The production period remains
almost constant (t ≈ 60 s) for the moderate- and high-wind-
speed trajectories (orange, green, and red), while the reel-in
period increases with wind speed due to the increased reel-
out length caused by a higher average reel-out speed. There
are significant power losses during the transition between the
production and retraction phases when the tether is reeled in,
and the tension remains high because the aircraft is unable
to de-power quickly enough. During the reel-in phase, the
tether reeling speed reaches its limit and the tether tension de-
creases to zero. This happens as the aircraft reduces its angle
of attack and lift, as shown in Fig. 16d. At higher wind speeds
the optimizer increases the elevation angle and reduces angle
of attack to stay within the constraints. This can result in odd
or unexpected trajectories, even though these local minima
are feasible solutions within the system constraints. Tether
length (Fig. 16f) generally increases with wind speed as the
system reels out faster, increases its elevation angle, and op-
erates at higher altitude. Similar results for the offshore loca-
tion are shown in Fig. 17.

6.2 Tether length, elevation angle, and operating altitude

Figure 18a illustrates the range of tether lengths l for each
of the 60 onshore (blue) and offshore (orange) wind veloc-
ity profiles. The maxima and minima are highlighted by cir-
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Figure 16. Time series of instantaneous tether tension (a), apparent wind speed (b), tether-reeling speed (c), angle of attack (d), power
output (e), and tether length (f) over one pumping based on representative onshore WRF-simulated wind data. The results correspond to
trajectories shown in Fig. 14.

Figure 17. Time series of instantaneous tether tension (a), apparent wind speed (b), tether-reeling speed (c), angle of attack (d), power
output (e), and tether length (f) over one pumping based on representative offshore WRF-simulated wind data. The results correspond to
trajectories shown in Fig. 15.

cles and plotted over the reference wind speed U (zref = 100–
400 m).

None of the optimizations reach the maximum tether
length constraint of lmax = 2000 m because a longer tether
would not be advantageous due to the added drag and weight,
which would decrease performance. Both locations show a
trend towards longer tethers up to rated wind speed, where
the reel-out speed and tension are almost constant and close

to their respective constraint (Fig. 16). The maximum tether
length remains almost constant above rated wind speed,
while the minimum tether length increases slightly, reduc-
ing the total stroke length. The elevation angle (Fig. 18b) de-
creases as the tether length increases. The optimizer tries to
keep the elevation angle low in order to reduce misalignment
(cosine) losses between the tether and the wind velocity vec-
tor. The onshore elevation angle is slightly higher because
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Figure 18. Tether length range (a) and frequency distribution of operating height zoper (b) over reference wind speed U (zref = 100–400 m)
based on AWEBox trajectory optimizations of k = 20 onshore (blue) and offshore (orange) clusters.

Figure 19. Onshore (a) and offshore (b) AWES power curve approximations with wind speeds at zref = 100 m (blue), 100m≤ zref ≤ 400m
(orange), and zref = zPTH (green) reference heights. The dashed lines represent least-square spline interpolations that have been added to aid
in visualization.

of the increased wind shear, which makes higher operating
altitudes more justifiable. This can also be seen in Fig. 18c
which shows the frequency distribution of operating altitude.
Of the optimal operating heights, 78.6 % onshore and 74.7 %
offshore are below 400 m, confirming the findings in Som-
merfeld et al. (2019a, b). Larger or multikite AWESs could
benefit from higher operating altitudes due to their higher lift
to tether drag ratio and lift to tether weight ratio, but more
detailed analyses are required.

6.3 Impact of reference height on power curve

The power curve of wind energy converters quantifies the
power that can be harvested at a given reference wind speed.
For conventional WTs the wind speed at hub-height is com-
monly used as the reference wind speed. Whether this is ap-
propriate for ever-growing towers and longer rotor blades is
debatable (Van Sark et al., 2019; Wharton and Lundquist,
2012; European Wind Energy Association, 2012). Defining
a reference wind speed for AWES is not trivial, as the oper-
ating height depends on the shape and magnitude of the ver-
tical wind speed profile. The choice of reference wind speed
impacts the power curve representation. The AWE glossary
(Airborne Wind Europe, 2021) recommends using the wind

speed at pattern trajectory height zPTH, which is the expected
or logged time-averaged height during the power production
phase, as the reference wind speed. We estimate 100m≤
zref ≤ 400m as an a priori guess of the pattern trajectory
height. Figure 19 compares onshore (Fig. 19a) and offshore
(Fig. 19b) average cycle power over U (zref = 100 m) (blue),
U (zref = zPTH) (green), and an a priori guess of the wind
speed at pattern trajectory height U (100m≤ zref ≤ 400m)
(orange).

Each data point corresponds to one of the sampled WRF-
simulated wind velocity profiles U . The dashed lines, which
are only added as visual aid, are a least-square spline inter-
polation of the approximately 60 data points. Based on these
results, we can conclude that the selection of the reference
height is more important for onshore conditions. The onshore
wind conditions with their higher number of non-monotonic
wind profiles and higher wind shear lead to larger devia-
tions from the typical power curve shape described in Lic-
itra et al. (2019), Airborne Wind Europe (2021), and others.
The higher wind shear onshore leads to a shift towards lower
wind speeds for a reference height of zref = 100 m. The a pri-
ori pattern trajectory height guess of 100m≤ zref ≤ 400m is
relatively close to the actual zPTH, especially for lower wind
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speeds. At very high wind speeds above U ref ≥ 20 m s−1 the
zPTH power shifts towards higher wind speeds indicating an
increased operating height.

The more homogeneous offshore wind conditions result
in less power variation. The three different reference heights
have almost no impact on the offshore power curve up to the
rated wind speed. Above U ref ≥ 20 m s−1 the power curves
diverge and the average cycle power decreases. This seems
to be a result of the AWEBox optimization and its initializa-
tion with a fixed number of loop maneuvers. As the wind
speed and reel-out speed increase, the aircraft cannot com-
plete all the loop maneuvers before reaching the maximum
tether length and transitioning into reel-in. Therefore, one of
the loop maneuvers is performed when already reeling in,
leading to an increase in tether tension (Fig. A1a) and addi-
tional losses during the reel-in period (Fig. A1e). The corre-
sponding trajectories are shown in Fig. A2.

6.4 Reference model power comparison

Figure 20 compares the variation in the power curve for a
reference wind speed of U ref(100m≤ zref ≤ 400m) based
on sampled WRF-simulated wind data (blue) and power es-
timates based on standard logarithmic wind speed profiles
(red). These results are verified against the QSM (Sect. 5.1,
orange) and WT reference models (Sect. 5.2, green).

The QSM and WT reference model use the same sam-
pled WRF-simulated wind data. No cut-out wind speed is
defined. The cut-in wind speed of U ref ≈ 5 m s−1 is the re-
sult of unconverged optimizations. The optimization algo-
rithm was not able to find a feasible trajectory for these
low wind speeds, indicating that the wind is insufficient to
keep the AWES aloft and produce power. The QSM and WT
model estimate power for these wind speeds. Rated power
is achieved around Urated ≈ 12–15 m s−1, depending on the
wind speed profile shape. At these wind speeds the reel-out
speed is almost constant, while a constant reel-out tension is
already achieved at lower wind speeds (Fig. 16).

The logarithmic wind speed profiles (Eq. 6) use rough-
ness lengths of zonshore

0 = 0.1 and zoffshore
0 = 0.001. Onshore,

the power predicted based on WRF wind data is often
higher than the power predicted using logarithmic profiles
(Fig. 20a). This is likely due to higher than predicted wind
shear and the presence of LLJs that are not represented by
logarithmic profiles. Offshore, the logarithmic and WRF data
are in close agreement with the logarithmic results because
most of the simulated wind profiles are more monotonic.

The ζ trends for both onshore (Fig. 20c) and offshore
(Fig. 20d) conditions show a decrease with increasing wind
speed and are consistent with the QSM. WT power fluc-
tuates due to the choice of reference height. AWESs out-
perform WTs up to rated wind speed, particularly onshore
where AWESs can take advantage of higher wind speeds
aloft. Lower wind shear offshore reduces the need to operate
at higher altitudes, reducing the benefit of AWESs. The QSM

predicts the highest power, as anticipated, due to its simpli-
fied assumptions such as constant power during reel-out and
reel-in and neglected mass.

7 Conclusions and outlook

This research compares the optimal performance of a single-
aircraft, ground-generation AWES using mesoscale wind
data simulated by the WRF model to the performance cal-
culated using standard logarithmic wind profiles. It also de-
scribes trajectories, instantaneous performance, and trends in
tether length and operating height. These analyses use 1 year
of onshore wind data at Pritzwalk in northern Germany and
1 year of offshore wind data at the FINO3 research platform
in the North Sea to drive the AWEBox optimization, which
determines dynamically feasible, power-optimal trajectories.
The annual wind data are categorized into k = 20 clusters
of vertical wind velocity profiles U using a k-means cluster-
ing algorithm. To decrease the computational expense, three
profiles based on the 5th, 50th, and 95th percentiles of wind
speed between U ref(100≤ zref ≤ 400m) for each cluster are
incorporated into the performance optimization model. The
performance model uses a scaled Ampyx Power AP2 aircraft
with a wing surface area of A= 20 m2 and is subject to re-
alistic tether and operational constraints. Our investigation
into the impact of wind speed at reference height found that
the a priori guess of 100≤ z ≤ 400 m is a good guess for the
investigated AWES design and size. Optimal average cycle
power is compared to a quasi-steady-state AWES model and
a steady-state WT model.

The optimization model is able to determine power-
optimal trajectories for complex, non-monotonic wind ve-
locity profiles. The optimized results are only marginally
lower than those obtained using the simplified QSM, which
neglects the effects of gravity and only simulates a single
reel-in and reel-out state instead of the entire trajectory. The
predicted onshore AWES power exceeds the WT reference
model. This is because AWES can adapt their operating al-
titude to benefit from higher wind shear or LLJs. Offshore
wind velocity profiles are generally more monotonic and ex-
hibit higher wind speeds with less turbulence and wind shear.
As a result, offshore winds produce average power that is
similar to their logarithmic approximation. Due to the initial-
ization of the AWEBox with a fixed number of loop maneu-
vers, which is not a variable in the objective function, high-
wind-speed trajectories show loops during the reel-in period
which reduce the average cycle power. This can lead to a
deterioration of the trajectory at high wind speeds, as the op-
timizer struggles to stay within the tether tension and tether
reeling speed constraints.

An investigation of the time series data shows that the op-
timizer first maximizes tether tension by adjusting reel-out
speed and angle of attack. As the wind speed increases, the
tether reel-out speed approaches its maximum limit and be-
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Figure 20. Average cycle power P and power-harvesting factor ζ for the onshore (a, c) and offshore (b, d) locations as a function of average
wind speed U ref between 100 and 400 m. The data points obtained from AWEBox (blue), QSM (orange), and the WT model (green) are
based on WRF wind data and are compared to AWEBox data derived from standard logarithmic wind speed profiles (red).

comes more constant, whereas at lower wind speeds, the reel-
out speed varies more. Up to rated wind speed, when average
tether tension and tether reeling speed are maximized, the op-
timizer increases the deployed tether length and reduces the
elevation angle to operate at optimal height. At higher wind
speeds, the elevation angle increases to de-power the system
and stay within design constraints. As a result, approximately
75 % of the optimal onshore and offshore operating heights
are below 400 m. The offshore power curve appears to be in-
dependent of the reference height due to the lower number of
non-monotonic wind speed profiles and lower wind shear. In
contrast, the choice of reference height is more important for
the onshore power curve.

The mesoscale wind simulations, which include a year’s
worth of wind data with a temporal resolution of 10 min, are
analyzed and categorized for both onshore and offshore lo-
cations. The annual wind roses for heights of 100 and 500 m
confirm the expected wind speed increase and clockwise ro-
tation at both locations. Offshore shows a lower wind shear
and veer than onshore. Annual wind speed statistics reveal
that low wind speeds still occur at a fairly high probability
up to 1000 m at both locations. The k-means clustering algo-
rithm is able to categorize the wind regime and identify LLJs,
as well as various non-logarithmic and non-monotonic wind
profiles. The primary factor in assigning a profile to a clus-
ter appears to be wind speed, while the shape of the profile
seems to have a lesser impact. Individual clusters produce co-
herent groups of similar wind profiles whose probability cor-
relates with seasonal, diurnal, and atmospheric stability vari-
ation. The k-means clustering method provides good insight
into the wind regime, especially for higher altitudes where
classification by Obukhov length is inadequate.

As a continuation of this study, the power curves and re-
alistic wind conditions described here could be utilized to
calculate AEP estimations. Further research is required into

AWES power curves and their reference wind speed, which
could be accomplished by deriving shape-specific power
curves from normalized wind speed profiles or by consid-
ering the correlation between wind speeds at different refer-
ence heights. Future work should include a variable number
of loop maneuvers as a variable in the optimization objec-
tive function. Using the same data and model, it is possi-
ble to investigate the annual and diurnal AWES power vari-
ation in comparison to WT performance. A parallel sizing
study (Sommerfeld et al., 2022) using the same wind clus-
tered wind data investigated the impact of mass and aero-
dynamic efficiency on AWES performance. Adding a design
optimization to the AWEBox model could enable location-
specific aircraft and tether investigation.
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Appendix A: Figures

Figure A1. Time series of instantaneous tether tension (a), apparent wind speed (b), tether-reeling speed (c), angle of attack (d), power
output (e), and tether length (f) over one pumping based on high-wind-speed WRF-simulated offshore wind data. The results correspond to
the trajectories shown in Fig. A2.

Figure A2. High-wind-speed WRF-simulated vertical offshore wind speed profiles (a) and hodograph (top view) up to 1000 m (c). The
highlighted sections indicate Lagrangian polynomial fit of the wind velocity at operating height. Panel (b) and panel (d) show the side and
top view of the corresponding AWEBox-optimized trajectories. The reference wind speed in the legend is U ref = U (100m≤ zref ≤ 400m).
The results correspond to the time series shown in Fig. A1.
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