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Abstract. For rotor design applications, such as wind turbine rotors or urban air mobility (UAM) rotorcraft and
flying-car design, there is a significant challenge in quickly and accurately modeling rotors operating in com-
plex, turbulent flow fields. One potential path for deriving reasonably accurate but low-cost rotor performance
predictions is available through the application of data-driven surrogate modeling. In this study, an initial investi-
gation is undertaken to apply a proper orthogonal decomposition (POD)-based reduced-order model (ROM) for
predicting rotor distributed loads. The POD ROM was derived based on computational fluid dynamics (CFD)
results and utilized to produce distributed-pressure predictions on rotor blades subjected to topology change due
to variations in the twist and taper ratio. Rotor twist, 6, was varied between 0, 10, 20, and 30°, while the taper
ratio, A, was varied as 1.0, 0.9, 0.8, and 0.7. For a demonstration of the approach, all rotors consisted of a single
blade. The POD ROM was validated for three operation cases: a high-pitch or a high-thrust rotor in hover, a
low-pitch or a low-thrust rotor in hover, and a rotor in forward flight at a low speed resembling wind turbine op-
eration with wind shear. Results showed that reasonably accurate distributed-load predictions could be achieved
and the resulting surrogate model can predict loads at a minimal computational cost. The computational cost
for the hovering blade surface pressure prediction was reduced from 12h on 440 cores required for CFD to a
fraction of a second on a single core required for POD. For rotors in forward flight, cost was reduced from 20 h
on 440 cores to less than a second on a single core. The POD ROM was used to carry out a design optimization
of the rotor such that the figure of merit was maximized for hovering-rotor cases and the lift-to-drag effective

ratio was maximized in forward flight.

1 Introduction

In fields such as wind energy and urban air mobility (UAM),
it is common practice for rotor analysis to include fluid-
structure interactions, structural dynamics, vehicle compo-
nent sizing, topology optimization, flight simulation, etc. For
each of these tasks, it is essential that there exists a model ca-
pable of providing load predictions to a reasonable degree of
fidelity for a variety of rotor configurations. One approach to
obtaining these load predictions is through mid-fidelity de-
sign tools. Over the years, numerous such modeling software
programs have been developed. For UAM, examples include
the Comprehensive Analytical Model of Rotorcraft Aerody-
namics and Dynamics (CAMRAD) (Johnson, 1992), Rotor-
craft Comprehensive Analysis System (RCAS) (Saberi et al.,

2004), and Comprehensive Hierarchical Aeromechanics Ro-
torcraft Model (CHARM) (Quackenbush et al., 1999). Ad-
ditionally, modeling software such as Fatigue, Aerodynam-
ics, Structures, and Turbulence (FAST) (Jonkman and Buhl,
2005); BLADED (DNV, 2018); and HAWC?2 (Larsen and
Hansen, 2007) have been developed for wind turbine design
applications. Through leveraging these analysis tools, nu-
merous subtopics of interest have been investigated, ranging
from multi-rotor performance prediction (Liew et al., 2020;
Conley and Shirazi, 2021) to aeroelasticity (Kecskemety
and McNamara, 2016; Yeo et al., 2018). When applied to
the early stages of rotor optimization, typically mid-fidelity
tools provide an excellent path to identifying a limited de-
sign space from which an optimal solution can be obtained.
Yet, there still remain significant limitations to mid-fidelity
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analysis tool sets when applied to rotor operation in com-
plex flow fields. These limitations become particularly pro-
nounced when considering that many UAM rotorcraft will
likely have rotors operating in vortex-dominated, highly tur-
bulent flow fields, particularly those rotorcraft proposed for
operation in multi-rotor configurations or in close proximity
to buildings. For wind energy applications, a greater subtopic
of concern relates to the optimization of grid layout for wind
farms as well as the aeroelastic effects of turbines in yaw. As
more rotorcraft and wind turbine designs begin to account for
these operating conditions, uncertainty in mid-fidelity tools
has led to a broadening of optimal design spaces found in the
early stages of the conceptual design process.

One potential solution for narrowing this design space
is to apply computational fluid dynamics (CFD). Numer-
ous solvers (mStrand — Lakshminarayan et al., 2017; SU2 —
Morelli et al., 2021; OpenFOAM — Nuernberg and Tao, 2018;
etc.) have been developed to help streamline the process of
CFD simulation of rotors. Specifically for wind turbine appli-
cations, significant progress has been made by the National
Renewable Energy Laboratory (NREL) in streamlining the
progress of completing large-eddy simulation (LES) atmo-
spheric boundary layer simulations coupled with wind tur-
bines through their OpenFAST tool sets (Jonkman, 2013).
Through leveraging such tool sets, studies of isolated rotors
have been shown to be capable of resolving flow fields rel-
evant for performance and loads of isolated rotors in hov-
er/forward flight (Fitzgibbon et al., 2020), during rotorcraft
pitch-up maneuvers (Abhishek et al., 2011), and in rotor—
ship wake interactions (Crozon et al., 2018). Many recent
publications have demonstrated the feasibility of deploying
such modeling techniques for wind turbine applications. Of-
ten in these works, the computational cost is reduced through
modeling turbine blades with actuator line and disk-based
approaches as opposed to body-fitted grids (Camp and Cal,
2019; Houck et al., 2022). In work completed by Sood et al.
(2022), high-fidelity LESs were completed for five different
inflow conditions of the Lillgrund wind farm. Close com-
parisons were then drawn between CFD computations and
field measurements for turbine power production, loading,
and wake recovery. Further work completed by Stanly et al.
(2022) demonstrated recent improvements in actuator line
modeling have led to significant advancements in rotor load
predictions when coupled with LES models, allowing for
comparisons within 1 % for rotor power requirements.

However, for engineering tasks that require hundreds if not
thousands of iterations such as design optimization, full CFD
modeling is not a viable option. Despite significant advance-
ments in both the hardware (Chau, 2019) and the software
(Wang and Zhai, 2016) rotorcraft CFD simulations still re-
main too computationally expensive for many engineering
tasks. For a detailed comprehensive CFD analysis of a full-
scale rotorcraft or wind turbine, computational expense com-
monly requires simulation on large computer clusters with
run times ranging from days to weeks (Neerarambam et al.,
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2021). It is this resource and time limitation that has led to
a desire for devising CFD-based surrogate models. While
currently available computational resources limit the num-
ber of CFD simulations during conceptual design to a few
tens of runs, recent studies have shown that by retaining
a truncated subset of dominant flow features, a useful and
meaningful reduced-order model (ROM) can be constructed
(Colella et al., 2021; Liu et al., 2021). In a recent exam-
ple from Sengers et al. (2022), LESs were first completed
for a single isolated turbine where rotor configuration was
modeled numerically with an actuator disk. Simulations were
completed while varying inflow conditions into the actuator
disk. Solutions from these LESs were leveraged to construct
a ROM which mapped inflow conditions to the overall nor-
malized wake center deficit, vertical position with respect to
hub height, and vertical extension of the wake. A compari-
son of the ROM to new LESs showed the ROM was capa-
ble of producing accurate predictions for parametric defini-
tions of the turbine’s wake. Further studies have additionally
demonstrated the feasibility of generating meaningful surro-
gate models for turbine wake flows (Ashwin Renganathan
et al., 2022; De Cillis et al., 2021). Yet, while such a ROM
may be useful for optimizing the grid layout of wind farms,
for the design optimization of the rotor itself, greater empha-
sis must be placed on achieving an accurate representation
of the rotor’s surface load distribution. Such a ROM would
allow for the consideration of peak rotor loading, rotor radial
loading, rotor stall, etc., all in the earliest stages of the rotor
design process.

As such, in this study, an example of a ROM-based surro-
gate model for distributed surface loading on rotors will be
presented. The objective of this study is to present a frame-
work with which design engineers can improve insight into
a domain given limited sampling and to efficiently inform
regions of interest for future sampling. This ROM was con-
structed in a two-step process. First, a low-rank subspace
was identified. This subspace can be found using a variety of
modal decomposition methods such as proper orthogonal de-
composition (POD), dynamic mode decomposition (DMD)
(Schmid, 2010), and spectral proper orthogonal decompo-
sition (SPOD) (Sieber et al., 2016). These methods are all
based on the assumption that the flow field of interest can
be decomposed into a limited set of dominant characteristics
(Ma et al., 2000). In the present work, the POD algorithm
was utilized to identify a low-rank subspace. Once a sub-
space was identified, an interpolation scheme was then ap-
plied to make predictions, rather than to characterize the field
(Ali et al., 2017). Recent work has shown that these ROM-
based surrogate models are able to retain a high degree of
fidelity while operating at a minimal computational cost. Ex-
amples of areas of ROM application include wake modeling
(Ali and Cal, 2020; Zehtabiyan-Rezaie et al., 2022; Hamilton
et al., 2018), combustion (Chang et al., 2019), turbine blade
modeling (Jin et al., 2017), boundary layer ingestion (Cin-
quegrana and Vitagliano, 2021), and store separation (Peters
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et al., 2021, 2022a, b, 2023). Work completed by De Cillis
et al. (2022b) demonstrated the derivation of a DMD-based
ROM for rotor wake predictions. In this study, LESs were
completed for flow impinging on a wind turbine. The DMD
algorithm was then deployed to extract leading spatial and
temporal modes which were further leveraged to construct
a ROM for the turbine’s wake. Additional work completed
by De Cillis et al. (2022a) and Ali et al. (2016) has demon-
strated how similar ROMs can be derived while leveraging
POD modes. Meanwhile, others have focused instead on de-
ploying deep-learning-based models for turbulent fluctuation
predictions in the wake (Ali et al., 2021).

While previous studies have applied POD-, DMD-, or neu-
ral network (NN)-based ROMs to isolated bodies and airfoils
with varying inflow conditions, there have been few demon-
strations of modeling surface pressure distributions for three-
dimensional moving bodies, particularly once variation in
surface topology is considered. A significant contributing
factor to this absence of literature is that data-driven mod-
eling relies heavily on the assumption that dominant physics
for the system of interest are comprehensively captured in
the training dataset. For this reason many applications of
data-driven ROMs, while valuable demonstrations, rely on
two-dimensional flows (airfoil load prediction; Yonekura and
Suzuki, 2021), steady-state assumptions (supersonic flows;
Dreyer et al., 2021), or systems where symmetry/periodic-
ity boundary conditions can be leveraged (rotor—stator mod-
eling; Cizmas and Palacios, 2003) such that CFD computa-
tional expense is minimized and the number of sample points
can be maximized. For rotorcraft applications of CFD-based
data-driven ROMs, whether they be POD, DMD, or even NN
based, the computational expense is comparatively large, re-
sulting in a minimal sampling of the domain. As such, the
POD ROMs demonstrated in this study will need to extract
meaningful information from a relatively small number of
samples.

Typically, there are two ways in which a parametric-
interpolation-based POD ROM could fail to produce mean-
ingful predictions. The first potential situation could be
through the POD algorithm being incapable of represent-
ing the space with a limited expansion of modes. Ultimately
POD mode retention could be expanded to several hundreds
of modes. However, this high mode count often results in
more challenging interpolations. Typically, while initial POD
modes can smoothly be correlated to design parameters,
higher mode numbers are often more stochastic, resulting in
more challenging interpolations. The other way a POD ROM
may fail to provide accurate predictions is through under-
sampling a sufficiently non-linear design space. If a design
space is found to be highly non-linear, then the total num-
ber of CFD simulations required to derive a model may no
longer warrant or even justify the construction of a ROM.
Analogous limitations exist for DMD and NNs, which often
require very large datasets for training and significant com-
puting resources. However, ROMs based on DMD, POD, or
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NNs possess similar accuracy in reproducing CFD data (Pe-
ters et al., 2022c; Raissi et al., 2019).

To investigate POD ROM capability in the field of ro-
tor pressure load predictions, a POD ROM was derived and
tested under three operating conditions for a single, isolated
blade. The isolated blade was chosen in order to replicate
wind turbine or helicopter rotor operation at a reasonable
computational cost. Isolated rotor blades however have been
employed in both experimental (Ramasamy et al., 2009) and
theoretical studies for detailed investigation of characteristic
features such as the tip vortex. With each demonstration case,
design space complexity was increased to test POD ROM
reconstruction and interpolation capability. In each scenario,
the rotor blade’s taper ratio and twist were varied to construct
16 CFD simulations using the OVERFLOW solver (Buning
etal., 1988). A POD ROM was constructed from these cases,
validated against three additional combinations of taper and
twist, and then employed to achieve a design optimization of
the rotor blade.

While the results of this study will demonstrate the de-
rived surrogate models are capable of producing accurate
distributed-load predictions, identified solutions should not
be viewed as true optimal solutions. Despite the validation of
each surrogate model, it is important to note that identified
optimal solutions often exist within highly non-linear subsec-
tions of the domain. As such, in the absence of further valida-
tion, identified optimal locations should be viewed as regions
of high interest for future sampling rather than true opti-
mal points. To help illustrate this point, the surrogate-model-
identified optimal solution for forward flight was compared
against five additional CFD simulations. These additional
CFD simulations both validate the surrogate-model-derived
optimal solution and attempt to identify solution variation
near the computed optimal point. Given the comparable high
level of non-linearity of the domain for forward flight com-
pared to hovering cases and good performance of the hover-
ing ROMs, only the forward-flight optimal solution will be
compared to further CFD simulation.

In this work, for hovering-rotor demonstration cases, fig-
ures of merit and slices for the coefficient of pressure at the
r/R =0.95 radial station of the blade are used as metrics
for ROM prediction accuracy. For the forward-flight demon-
stration case, both the lift-to-drag effective ratio and inte-
grated sectional coefficients of thrust are used as metrics for
ROM prediction accuracy. With these three ROMs, the study
aims to provide insight into the capabilities of POD ROMs
for distributed-load predictions and rotor performance pre-
diction given a variation in blade topology over a variety of
standard rotor operating conditions.

The rest of this paper is organized as follows. The CFD
simulation case setup, grid generation methods, and opti-
mization algorithm are all outlined in the “Numerical ap-
proach” section first. The “ROM approach” section then out-
lines the modal decomposition and interpolation schemes
used in this work. The “Results and discussion” section
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Table 1. The 16 geometries used for derivation of the POD ROM
in both hover and forward flight.

Twist 0

Taper ratio A 0° 10 20° 30°

1.0 cl c2 c3 c4
0.9 c5 c6 c7 c8
0.8 c9 cl0 cll clI2
0.7 cl3 cl4 cl5 cl6

provides an overview of the study’s findings. Results are
split between hovering-rotor and forward-flight demonstra-
tion cases. In the final section, Conclusions, closing remarks
are summarized along with future applications of work.

2 Numerical approach

Before this study could begin, a procedure was required for
efficiently generating rotor blade grids given a linear varia-
tion in the parameters of taper ratio and twist. This procedure
was necessary not only for generating grids for CFD simula-
tion but also for applying the POD ROM for iterative design
optimization. As such, a procedure was developed over the
course of this study which allows for a parametric definition
of rotor blades. The procedure starts by reading a single input
file that holds the definition of the rotor blade’s twist (0), ta-
per (1), sweep, dihedral, and airfoil cross-section at a number
of spanwise stations. These input file formats can be obtained
either from National Aeronautics and Space Administration
(NASA) Design and Analysis of Rotorcraft (NDARC) (John-
son, 2015) geometry files or from CAMRAD. A PLOT3D
(Walatka, 1990) file is then generated for the rotor’s Carte-
sian surface grid. With the meshing algorithm defined, the
study began generating the 16 blades, as defined in Table 1,
and 3 validation grids, as outlined in Table 2. Each blade con-
sisted of 276 chordwise and 128 spanwise nodes for a total
surface cell count of 34 944. All 16 blades had a mean chord
of 0.3048 m (1 ft) and a radius of R = 3.048 m (10 ft). Exam-
ples of blades from cases c1 and c16 can be seen in Fig. 1.
After surrogate models were derived and local optimal points
were obtained, five additional blades were generated to vali-
date the surrogate model optimal solution found for rotors in
forward flight. These additional blades included one geome-
try to validate the local optimal point found, two to identify
local variation in the lift-to-drag effective ratio with respect
to twist, and two to identify local variation in the lift-to-drag
effective ratio with respect to taper. A summary of these ad-
ditional geometries are provided in Table 3.

Each rotor was limited to a single blade to simplify ro-
tor geometry and limit the influence of variables not repre-
sented in the POD ROM affecting blade pressure distribu-
tions. It should be noted that this geometric constraint is not
consistent with blade counts found on rotorcraft, and thus
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(a)cl

(b) cl6

Figure 1. Comparison of two geometries used in this study. Panel
(a) shows 6 =0° and A = 1.0. Panel (b) shows 6 =30° and A =
0.7.

Table 2. The three geometries used for validation of the POD ROM
in both hover and forward flight.

Geometries  Twist  Taper
vl 15° 1.0
v2 0° 0.85
v3 15° 0.85

Table 3. The five geometries used for comparing the POD ROM
optimal solution against CFD simulation.

Geometries  Twist  Taper
Case 1 6.21°  0.96
Case 2 4.21°  0.96
Case 3 8.21°  0.96
Case 4 6.21° 098
Case 5 6.21° 094

typical rotor performance for UAM aircraft may not be rep-
resented in the current study. Nonetheless, this geometric
constraint still allows for pressure distributions representa-
tive of those found for blades in hover and forward flight to
be modeled, thus allowing the study to efficiently identify a
POD ROM’s applicability to the field of rotorcraft engineer-
ing. The selected geometries produce a constrained domain
within which a POD ROM can be tested for its ability to re-
construct typical load distributions found on blades and to
model their evolution as a blade’s twist and taper ratio vary.
To generate closed surfaces for the rotor’s root and tip
faces, the Chimera Grid Tools (CGT) WINGCAP software
was used (Chan, 2005; Rogers et al., 1998). The CGT is

https://doi.org/10.5194/wes-8-1201-2023



N. Peters et al.: A data-driven reduced-order model of an isolated rotor

Figure 2. Example of blade volume mesh generated for rotor ge-
ometry cl, shown as slices of volume mesh at radial positions of
x/R =0.30, 0.57, and 0.86. Surface grids generated for rotor tip
and root faces are additionally depicted.

a tool set developed by NASA for the purpose of pre- and
post-processing of chimera overset grids (Benek et al., 1986),
particularly for use in NASA’s OVERFLOW CFD solver.
Volume grids were generated from the surface meshes us-
ing CGT’s hyperbolic grid generator HYPGEN (Chan et al.,
1993) software. An example of the HYPGEN-generated ex-
trusion is shown in Fig. 2. The total near-body volume cell
count for each case is 3.5 million. Normal spacing at the
surface was at a y* of 1, and growth was limited to a rate
of 1.2. A Cartesian background mesh was then constructed
with pressure far-field boundary conditions extending 15 ro-
tor radii from origin. The SAMCart solver was used for the
background mesh.

For numerical simulation, the OVERFLOW CFD solver
was used. OVERFLOW was developed by NASA and uses
a series of structured, overset grids to model fluid flows.
For turbulence modeling, the one-equation Spalart—Allmaras
model was used with curvature corrections (Spalart and All-
maras, 1992). Second-order temporal and spatial accuracy
was used. To assist in case setup, the CREATE-AV Helios
modeling tool was used (Wissink et al., 2016; Sankaran et al.,
2010). The Helios code takes a modular approach to numer-
ical simulation in which users are allowed to interchange
meshing and solver algorithms and thus allows for a broader
flexibility for the code to be applied to a variety of top-
ics (Wissink et al., 2018; Anusonti-Inthra, 2018; Ho et al.,
2019). For the hovering-rotor cases, five startup revolutions
were completed before extracting rotor surface pressures. For
the forward-flight cases, eight rotor revolutions were com-
pleted before extracting rotor surface pressures. Startup rev-
olutions were selected such that periodic solutions were ob-
tained. Clearly, because of these requirements, the cost of
the CFD simulations is high. Each forward-flight CFD simu-
lation required 12 h to compute on 440 cores.

https://doi.org/10.5194/wes-8-1201-2023

1205

For the high-thrust hovering rotor, 16 CFD simulations
covering geometries outlined in Table 1 were completed with
a fixed collective of 8°. These cases were used to construct
the first POD ROM. This ROM was then validated against
the three additional validation rotor geometries outlined in
Table 2. For the low-thrust hovering rotor, CFD simulations
were again completed, covering geometries outlined in Ta-
ble 1 with a fixed collective of 4°. A POD-ROM-based sur-
rogate model was constructed and validated for all three val-
idation geometries. For the rotor in forward flight, the same
simulations were completed with a fixed collective of 4° and
free-stream flow of M = 0.1 moving in the positive x-axis
direction. For all CFD simulations, a tip Mach number of
Mip = 0.5 was used. For this study, no cyclic pitching or
flapping motion was prescribed for the blade. Additionally,
the rotor is not trimmed for the balancing of forces or mo-
ments, and all rotors are considered to be rigid rotors.

The surrogate model based on the POD ROM was sub-
sequently used to optimize the blade’s twist and taper ratio
such that either the hovering figure of merit (FM) or the
forward-flight lift-to-drag effective ratio (L/De) would be
maximized. To undergo this optimization, three blade surface
grids were first generated. The first grid was generated using
the current iteration’s solution for optimal twist and taper ra-
tio. Two additional grids were then generated: the first used
a 0.1 % increase in twist, while the second used a 0.1 % in-
crease in taper ratio. Solutions for distributed pressures were
obtained using the derived POD ROM, from which loads
were integrated and used to solve for either the FM or the
L /De of each blade. First derivatives for either FM or L/De
with respect to twist and the taper ratio were solved using a
first-order Euler approximation and were used to select new
optimal twist and a new optimal taper ratio through the usage
of a steepest-descent algorithm. A criterion of 0.1 % change
in solution was selected as a stopping condition.

In this study, FM was computed using Eq. (1). To com-
pute both the coefficient of thrust, Ct, and the coefficient
of torque, Cgp, blade distributed-surface-pressure solutions
were numerically integrated. For rotors in forward flight, in-
tegrated sectional coefficients of thrust were plotted from az-
imuth 0 to 360°. While viscous CFD solutions were obtained
in this study, shear stresses were not utilized when comput-
ing integrated loads for either the POD ROM or CFD. Given
that the objective of this study was to provide an initial inves-
tigation of POD ROM distributed-load prediction capability
for rotor blades, expanding the POD ROM to include multi-
directional shear loads was not warranted in the current work.

ey’

Cov2.0

For the rotor in forward-flight cases, L/De was computed
by first integrating distributed pressure loads for mean rotor
lift L during the blades’ rotation. Distributed pressure loads
were then integrated to find mean power P required by the

FM = 6]
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rotor during the blades’ rotation. Once again, viscous loads
were not utilized when computing integrated loads for either
the POD ROM or the CFD predictions. The formulation used
to compute L/De is shown in Eq. (2), where v is forward
velocity.

Lv
L/De = - 2

3 ROM approach

In this section, the methodology used for ROM-based surro-
gate model construction will be outlined. The method used
in this study consisted of two steps. The modal decompo-
sition method will be reviewed first. Next, the interpolation
approach used in this study to construct the surrogate model
from the POD ROM modes will be reviewed.

3.1 Proper orthogonal decomposition

The POD was introduced as a method for extracting a low-
dimensional subspace which captures the majority of the
variance, often referred to as energy, from the full phase
space (Holmes et al., 1996). While there exist numerous for-
mulations for POD, in this paper the snapshot method as in-
troduced by Sirovich (1987) will be used. In this approach
any scalar of the flow field can be represented by the sum
of the scalar’s time average, u(x), and n orthonormal POD
modes ®;(x) times the temporal coefficient a;(¢). Note that
in this summary of the POD algorithm, x represents not just
spatial positions in the computational domain but also addi-
tional variations in twist and the taper ratio of the rotor. In
this study, surface pressure solutions were used to formulate
the snapshot matrix. The relationship is shown below, where
a;(1) = ((u(x, ) — X)), o] ().

u(x, 1) =ux)+ »_ai()®;i(x) 3)

i=1

To obtain @;(x), the a snapshot matrix u(x, ¢) is first formed.
In this matrix, the row space holds spatial information while
the column space holds temporal information. The perturba-
tion matrix, u(x,t)’, is calculated by subtracting the snap-
shot matrix’s time average. The POD modes are then found
through a singular value decomposition (SVD) of u(x, 1)/,
where the subset of modes @; is extracted from U. In Eq. (4),
U contains the eigenvectors for u(x, )’ times its transpose,
VT contains the eigenvectors of the transpose of u(x,?)
times itself, and X contains the singular values of the SVD.

ux,r) =UxV’ 4)

The process of reducing the dimensionality of the dataset
down to a low-rank subspace has been described in numerous
publications (Brunton and Kutz, 2019; Holmes et al., 1996).
For the present study, the process of selecting an adequate

Wind Energ. Sci., 8, 1201-1223, 2023

N. Peters et al.: A data-driven reduced-order model of an isolated rotor

subspace was based on energy retention. For this approach,
the number of modes which must be retained is dependent on
the behavior of the singular values, s, found in the diagonal
of the ¥ matrix. Given that s is little more than the square
of the eigenvalues of (u(x, 1), u(x, ) T), this then serves as a
representation of how much of the snapshot matrix’s energy,
E, is being captured by each mode. The amount of energy
being captured in each mode can then be visualized by plot-
ting the ratio of each singular value s; to the sum of s denoted
at 5. The objective is then to retain a subset of modes, n, such
that Eq. (5) is satisfied.

E=le% )

Once a POD model of the form of Eq. (3) has been con-
structed for the surface loads of various cases, an interpola-
tion scheme is needed in order to make use of these modes
for intermediate case predictions.

3.2 Two-dimensional surface map interpolation

In order to produce a continuous representation of the tempo-
ral coefficients, a two-dimensional mapping was constructed.
During the construction of these mappings, the objective was
to produce a continuous representation for the temporal co-
efficients. This continuous representation was provided by
relating twist 6 and the taper ratio X to the temporal coeffi-
cients a;(1).

a;(t)=F(2.,0) (6)

Note that for the two-dimensional surface mapping method,
it is an inherent requirement that the two variables selected
combine to produce a unique definition of each snapshot. In
the case of this study, selection of interpolation parameters
becomes trivial. By selecting A and 6 as the mapping vari-
ables, any location on the snapshot matrix could be uniquely
identified and a spline surface could be fit for each mode’s
temporal coefficients. The advantage is that this method is
relatively simple, accurate, and computationally inexpensive
to setup. There is no training requirement as in neural net-
works, and there are no large matrix inversions to make;
additionally the user has a much greater degree of control
over how the mapping can be constructed — whether with a
polynomial, linear, or logarithmic fit depending on the prior
knowledge of the problem at hand.

4 Results and discussion

In this section, the results for CFD simulation, the POD ROM
reconstruction, and necessary validations of the ROM and
surrogate models will be presented. Results are primarily
split between the hovering and forward-flight demonstration
cases. These two sections will each be further split into three
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additional sections showing CFD simulation results, POD
ROM reconstruction results, and POD ROM validation re-
sults.

4.1 Hovering-rotor cases

In the first two scenarios of POD ROM rotor blade modeling,
an isolated rotor blade in hovering conditions is used. With
these two demonstration cases, the study was able to first test
for the most basic operating conditions that a rotorcraft-based
POD ROM would be required to model. For an isolated rotor
blade in hover after the initial transients are removed, time
variance can be neglected, and thus the focus of the analysis
is limited to POD ROM capability for the accuracy of both
the reconstruction and the prediction of the spatial charac-
teristics of the domain. This truncation of the time domain
leads to the additional advantage of minimizing the size of
the snapshot matrix required for the POD ROM to model. As
opposed to time-varying systems, such as rotors in forward
flight, where numerous snapshots are required per sampling
point of the domain to accurately capture the time dynamics
of each CFD simulation, for the hovering rotor only a single
snapshot is required per sampling point. This relatively small
snapshot matrix both minimizes the computational expense
of deriving the POD ROM and helps to limit information
content in the system, thus maximizing the ability of each
POD mode to retain a high percentage of the total energy.

By reducing the rotor collective to vary between high-
and low-thrust hovering-rotor scenarios, there is an over-
all increase in design space non-linearity and spatial infor-
mation complexity within the domain. In this demonstra-
tion case, the influence that this increased complexity has
on POD ROM capability to both replicate and predict ro-
tor load distributions are investigated. Evidence for the in-
creased complexity of spatial information can be found when
comparing rotor pressure distributions between high- and
low-thrust configurations. For the high-thrust case, the ro-
tor’s wake is convected downstream rapidly. This results in
the rotor wake having a smaller degree of influence on the
overall rotor pressure distributions. The coefficients of pres-
sure were taken at the /R = (.95 radial station on the rotor
for case c4 (A =1.0, § =30°) and are plotted in Fig. 3a to
demonstrate the largely smooth variations in surface pressure
of the blade. These relatively small gradients in surface pres-
sure typically result in smaller POD mode retention counts
required to comprehensively represent the system.

This is in contrast to the low-thrust hovering cases where
distributed loads vary to a larger degree in the spanwise di-
rection, particularly at the rotor’s tip, caused by the blade’s
wake being convected away at a slower rate. As a result, there
is a significant increase in tip wake interactions with the ro-
tor’s pressure distribution. Results for low-thrust hovering-
rotor coefficients of pressure at the /R = 0.95 radial station
for case c4 (A = 1.0, 8 = 30°) are plotted in Fig. 3b. These
results demonstrate that the non-linearity of coefficients of
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pressure distributions at the /R = 0.95 radial station has in-
creased.

This increase in complexity may lead to a significant mod-
eling challenge for POD-based surrogate ROMs. As more
spatial information is introduced into the domain, energy
content may become distributed over a larger range of POD
modes. Yet, for an interpolation-based surrogate POD ROM
to make accurate predictions of a domain, a limited number
of POD modes should be retained. While initial POD modes
can typically be related well to parameters of interest of the
domain, modes associated with higher mode counts tend to
be stochastic, making derivation of meaningful interpolation
models rigorous. Thus, by applying the POD ROM to both
high- and low-thrust hovering cases, the study investigates
the influence that this increased spatial complexity has on
the capability of the POD ROM to replicate the domain with
a minimal POD mode retention count.

An alternative approach to distributed-pressure-load mod-
eling could be to avoid modal decomposition methods al-
together and deploy a kernel-based learning method in the
form of a convolutional neural network (CNN). A significant
advantage that CNN models have over POD models is their
ability to extract features from a dataset at various scales and
translations. Once a flow feature is identified, such as rotor
vortex rings (Abras and Hariharan, 2022) or shockwaves (Liu
et al., 2019), the feature can be either identified or replicated
at various positions and scales within the domain of interest
with minimal computational effort. Given these characteris-
tics, CNNs have historically shown relatively few limitations
in their capability to replicate training datasets in comparison
to modal decomposition-based methods.

However, while CNNs have shown an enhanced capabil-
ity to extract meaningful features from complex datasets,
there exist significant challenges in deriving a network ca-
pable of utilizing these features for meaningful predictions.
These challenges become particularly pronounced when de-
riving CNN models from a sparse sampling of the domain.
Typically, to learn meaningful relationships between param-
eters of interest and the dynamics of the domain, a suffi-
ciently large sampling of the domain must be obtained. Such
large sampling may be possible in the case of either two-
dimensional or three-dimensional steady-state CFD simula-
tions. Yet, for unsteady three-dimensional CFD simulations
with multi-body motion, as is required for UAM rotorcraft
CFD modeling, computational expense greatly limits the ca-
pability to obtain the required sampling of a domain. Addi-
tionally, there is also a significant computational expense as-
sociated with deriving CNN models compared to POD mod-
els. Both hovering-rotor POD ROMs were derived in less
than a second of computing time. Meanwhile, a CNN de-
rived by the study for a similar rotor performance prediction
application required over 12 h of computing time despite be-
ing deployed to a graphical processing unit (GPU). Given
the limited domain sampling capability associated with CFD
simulations of the UAM field and significant computational
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Figure 3. Coefficients of pressure at /R = 0.95 as computed through CFD for both high-thrust hover (a) and low-thrust hover (b). Com-

parison is shown for sample geometry c4.

expense associated with deriving CNNSs, the application of
ROM modeling techniques to UAM rotorcraft at present re-
mains largely limited to modal decomposition-based meth-
ods.

In addition to an increase in complexity of the surface
pressure distribution, there is a significant influence that the
rotor collective has on the range of load distributions within
the design space. When observing surface plots for the in-
tegrated figure of merit (FM) of both high- and low-thrust
demonstration cases (Fig. 4), a series of key observations
can be drawn. First and foremost is the increased range of
FM, and thus increased range of pressure distributions, that
the POD ROM is required to model. For the rotor in high-
thrust, hover FM varies from 0.65 to 0.73. Yet, by decreasing
the rotor collective, the range of FM for the low-thrust hover-
ing rotor nearly doubles, resulting in FM varying from 0.45
to 0.67. Note that the minimums and maximums for the do-
mains are found from the sparse CFD simulation sampling of
the domain and may not necessarily reflect true local optimal
solutions of the respective domains.

Based on the limited number of CFD runs (16 for each
case), Fig. 4 also demonstrates how reducing the rotor col-
lective can lead to an increase in design space non-linearity.
In Fig. 4a, gradients of FM with respect to 6 and A are shown
to be minimal. The FM is shown to have a near-uniform de-
crease radially from the local optimum in the design space,
thus resulting in a largely linear relationship between FM
and the rotors A and 6. For the high-thrust-rotor maximum,
FM can continuously be found near 6 = 20° as A goes from
A =1.0to A = 0.7. For the high-thrust hovering rotor, a local
optimum of FM = 0.7307 is found at A = 1.0 and 6 = 20°
through sparse sampling of the domain with CFD simulation.

As the collective is decreased for the low-thrust-rotor FM
(Fig. 4b), FM is shown to both be varying non-uniformly ra-
dially from the local optimum and have a varying local opti-
mal 6 as A goes from 1.0 to 0.7. When A = 1.0, local optimal
6 is found to be around 6 = 10°, while A = 0.7 results in a

Wind Energ. Sci., 8, 1201-1223, 2023

local optimal twist of & =30°. Thus, A and 0 are shown to
have varying, non-linear influences over the domain of inter-
est. While this increase in non-linearity will not lead to dete-
rioration in the reconstruction capabilities of POD ROMs, as
it does not necessarily produce more complex spatial infor-
mation, it will ultimately create a more challenging modeling
requirement for POD ROMs to produce accurate distributed-
load predictions. The characteristic of having multiple vari-
ables with widely varying degrees of influence on the system
is commonplace for many practical rotorcraft applications in-
cluding hysteresis modeling, aeroelasticity, controls, etc. If
a multi-variable data-driven model is to be successfully de-
rived for rotorcraft applications, it must be capable of effi-
ciently extracting the relationship each design variable has
with rotor surface loads, whether that relationship is linear,
quadratic, logarithmic, etc. For the low-thrust hovering ro-
tor, a local optimum of FM = 0.6675 is found at A = 1.0 and
6 = 10° through sparse sampling of the domain with CFD
simulation.

4.1.1  Hovering ROM reconstruction

After completing all 16 high-thrust hovering-rotor CFD sim-
ulations, solutions for surface pressure were compiled to
form a single snapshot matrix. The POD algorithm was then
used on this snapshot matrix after which an energy retention
criterion was prescribed as outlined in Eq. (5). The percent
energy retention per POD mode retention count can be found
in Fig. 5a. Given the limited number of snapshots used to de-
fine the design space and thus the increased ability of POD
modes to retain energy, a relatively large energy retention cri-
terion of 99.9 % was set, after which it was determined that
only eight POD modes were required to produce the desired
energy retention. This procedure was then repeated for the
low-thrust-rotor demonstration case, and results for the per-
cent energy retention per POD mode retention count can be
found in Fig. 5b. Results of this analysis demonstrated that
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despite the increase in complexity of the spatial information
in the domain, the POD algorithm still appears to be capable
of efficiently capturing this information in a limited mode
retention count. It should be noted that for both high- and
low-thrust hover configurations, pressure distributions do not
vary in the azimuth direction, which greatly reduces the dis-
tribution of energy over the POD modes.

Once a POD mode retention count of eight was selected,
POD modes were projected back to the domain to evaluate
POD ROM reconstruction capability. In evaluating load re-
construction capabilities of surface pressure distribution for
case c4, shown in Fig. 6 for both collective cases of hover,
it can be seen that loads are being modeled with a reason-
able degree of fidelity in comparison to CFD. Pressure coeffi-
cient distributions at the /R = 0.95 radial station are shown
to be correctly accounted for with the reduced representa-
tion. To assist in demonstrating a comparable level of ROM
fidelity over all radial stations of the blade, local contribu-
tions to the coefficient of thrust were computed at each ra-
dial station of the blade. Results of this analysis, shown in
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Fig. 7, demonstrate that a reasonably accurate representation
is achieved at all radial stations. Furthermore, results showed
that the maximum percent error between CFD and ROM sur-
face pressures for all 16 reconstructions for all radial stations
was 1 %. This deviation for both high- and low-thrust hov-
ering cases was located at the stagnation location near the
r/R = 0.95 radial station of the blade. Historically, model-
ing flow features with large gradients through modal decom-
position techniques with minimum mode retention counts
has proven challenging, particularly as these gradients move
within the domain. For the case of the hovering rotor, the
largest pressure gradients in the domain occur at the stag-
nation location. The spatial position of this location on the
blade then varies as a function of 8, A, and r/R. Yet, despite
these challenges, the results of this study show that leading-
edge gradients are captured with sufficient accuracy, so FM
is still being modeled with a reasonable degree of fidelity.
The maximum percent error for reconstructed FM for both
high- and low-thrust hover was 0.41 %. Percent errors in FM
reconstructions are shown in Table 4.
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Figure 7. Comparison between the POD ROM and CFD for the spanwise distribution of the coefficient of thrust. Comparison is shown for
sample geometry c4 in both high-thrust hover (a) and low-thrust hover (b).

Table 4. Maximum percent error between CFD- and POD-ROM-
computed FM for geometries c1 to c16.

Twist 0
Taper ratioA  0° 10°  20°  30°
1.0 020 036 0.19 0.04
0.9 0.06 0.09 0.07 0.16
0.8 0.01 0.10 0.12 041
0.7 0.11 0.07 0.08 0.08

4.1.2 Hovering ROM validation

After constructing the POD ROM and comparing reconstruc-
tions to CFD solutions, the study then moved to quantify
POD ROM predictive capabilities for the geometries outlined
in Table 2 for both high- and low-thrust demonstration cases.
This validation was completed in two steps. First, distributed
coefficients of pressure were compared between POD ROM
prediction and CFD simulation, after which these loads were
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integrated to identify FM. When comparing surface pressure
distributions for both high- and low-thrust hover, it was found
that with a minimum mode count the POD ROM was capable
of providing reasonable full-distributed-load predictions for
all three validation geometries. When considering prediction,
results for validation of the ROM with case v3, presented in
Figs. 8 and 9, demonstrate that while near-exact predictions
can be achieved for the high-thrust hovering configuration,
in low-thrust hover, small discrepancies exist between CFD
simulation and ROM prediction near /R = 0.8 to 0.9.

These predicted surface pressures were then integrated to
find FM. When comparing this FM to CFD for the high-
thrust hover cases, it was found that for all three validation
geometries the percent error never exceeded 1 %, thus pro-
viding strong evidence that a POD ROM can be efficiently
deployed to model a rotor blade’s full distributed load with a
reasonable degree of fidelity. A summary of prediction capa-
bilities for the POD ROM is shown in Table 5.

However, the same level of fidelity in integrated load com-
parison was not achieved once the rotor collective was de-
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Figure 9. Comparison between the POD ROM and CFD for the spanwise distribution in the coefficient of thrust. Comparison is shown for
sample geometry v3 in both high-thrust hover (a) and low-thrust hover (b).

Table 5. Summary of percent errors in the coefficient of thrust,
torque, and figure-of-merit predictions using the POD ROM derived
for high-thrust hover.

Geometries Crt Co FM

vl 047% 0.62% 0.09%
v2 0.03% 081% 0.77%
v3 0.80% 084% 0.37%

creased. While the percent error for validation geometry v1
was limited to 0.5 %, the same level of fidelity was not
achieved for validation geometries v2 and v3 as shown in
Table 6. Surface pressure prediction errors once again never
exceed a maximum of 1.5 % for the low-thrust hover. Yet,
this error is shown to now occur over a sufficiently larger re-
gion of the blade, thus resulting in a significant increase in in-
tegrated load error, raising FM prediction error from 0.77 %
and 0.37 % for cases v2 and v3 of the high-thrust hover to
4.26 % and 4.25 % for the low-thrust hover. Results of the
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Table 6. Summary of percent errors in the coefficient of thrust,
torque, and figure-of-merit predictions using the POD ROM derived
for low-thrust hover.

Geometries Crt Co FM

vl 023% 0.15% 0.49%
v2 0.80% 294% 426%
v3 1.65% 1.69% 4.25%

low-thrust-rotor case show that the capability of a POD ROM
to make accurate load predictions is highly dependent on how
well sampled the domain of interest is.

While this conclusion may be intuitive, properly achiev-
ing a level of sufficient sampling is not. Even in this rel-
atively simple demonstration, it has been observed that by
simply varying the rotor’s collective, there was a significant
increase in design space complexity. Driving this variation in
complexity is the increased influence of rotor tip vortices on
the wake, resulting in increased complexity in load distribu-
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tions near the rotor’s tip. The effects of the rotor tip vortices
on POD ROM prediction capability can be observed as in-
creased ROM prediction error in the near-tip region of the
rotor. While this increase in complexity was not limiting to
POD ROM reconstruction capabilities, it was shown to cause
a significant deterioration in POD ROM prediction capabili-
ties. Thus, as the design space complexity increased and do-
main sampling remained the same, an undersampling of A in
the low-thrust hover domain became apparent. These results
highlight how often this task of achieving sufficient sampling
of a domain may become an iterative task, requiring a fur-
ther refinement of the sampling of the domain. To construct
a more accurate ROM in the case of low-thrust hover, further
sampling with new A values in this domain is required.

Yet, even with the limited sampling on the domain, the
POD ROM still provides reasonably accurate predictions
once accounting for the significant reduction in computa-
tional expense in evaluating each validation case. For both
high- and low-thrust hover, surface pressures as computed
by CFD required 12h of computing time across 440 cores.
Meanwhile, the POD ROM was capable of making compa-
rable predictions of surface pressures in just a fraction of a
second on a single core. In addition, prior CFD sampling
of the low-thrust hover domain indicated that local optimal
FM was consistently located at A = 1.0 and thus resulted
in an optimization dependent on finding an optimal 8. For
the case of low-thrust hover, it was identified that the POD
ROM was capable of providing reasonably accurate predic-
tions for variations in 6. Given this prior knowledge of the
domain and the significant reduction in computational ex-
pense, it became possible to directly apply this POD ROM
to carry out a design optimization of the rotor blade to de-
rive a local maximum of FM. Results showed that an opti-
mal geometry of 6 =21.7° and A = 1.0 for high-thrust hover
and 6 = 10° and A = 1.0 for low-thrust hover could be found
while taking 1 min of compute time on a single core. A to-
tal of 20 iterations were required to obtain the optimal solu-
tion. However, it should be noted that these optimal solutions
found should not be viewed as true local optimal solutions.
Despite the low prediction error identified during validation,
the optimal solutions obtained still exist within a relatively
non-linear subsection of the computational domain, a region
which may require further sampling to sufficiently model. As
such, the optimal solutions identified should rather be viewed
as regions of interest for future sampling. Nonetheless, these
results show that by sampling a given design space a POD
ROM can be efficiently derived such that a low-cost and ac-
curate model of the blade’s surface pressures can be obtained
and practically deployed to a relevant rotor design task.

In addition to providing an efficient means of identifying
local optimal positions within a domain, the significant re-
duction to computational expense additionally provides the
capability to efficiently obtain an increased understanding of
the design space of interest. Given the high expense of CFD
modeling, only a limited sampling of any domain of interest

Wind Energ. Sci., 8, 1201-1223, 2023

N. Peters et al.: A data-driven reduced-order model of an isolated rotor

can be achieved. Yet, the results of this study have demon-
strated how this limited sampling can be leveraged to obtain
reasonably accurate, low-cost models capable of providing
an increased understanding of the domain of interest. When
analyzing surface plots for FM as computed via CFD, only a
limited representation of the domain can be achieved. How-
ever, by leveraging a validated POD ROM, orders of magni-
tude more sampling points of the domain can be achieved,
thus producing an increased resolution of the domain of in-
terest. To demonstrate this capability, 900 additional samples
of the domain were obtained via surface pressure predictions
provided by the POD ROM and blade geometries generated
through the study’s grid generation algorithm. Results of this
analysis are presented in Fig. 10. While this further analy-
sis indicated that the local optimum of both CFD and POD
ROM representation of the low-thrust hover domain results
in the same local optimal FM, results for high-thrust hover
highlight how a POD ROM can be leveraged to help possi-
bly identify previously unknown optimal locations within the
design space.

4.2 Forward flight

Up to this point in the study, the focus has been placed on
hovering-rotor blades. Given that these cases would produce
a pressure distribution that is invariant to changes in the az-
imuth, the study could limit the focus of POD ROM model-
ing capability to spatial information and thus limit the snap-
shot matrix to a set of 16 snapshots. However, for practical
implementation, it is essential to demonstrate the applicabil-
ity of ROMs for both spatially varying and time-varying do-
mains. As such, in this section, a POD-ROM-based surrogate
model will be used for the prediction of the load distribution
of a rotor in forward flight.

There are numerous challenges that may arise for extend-
ing the POD ROM to rotors in forward flight. The most
prevalent of these is an increase in the non-linear relation-
ship between design variables and surface pressures. To con-
struct contour plots shown in Fig. 11, Ct is computed locally
at each radial station of the rotor at azimuth increments of
4.5°. As shown in Fig. 11, case ¢4 (A =1.0, 8 =30°) and
case ¢5 (A =0.9, 0 = 0°) have widely differing Ct distribu-
tions between an azimuth of 0—60° and a spanwise position
up to /R =0.50. This variation is a result of flow sepa-
ration occurring as the blade travels counterclockwise past
the zero-azimuth position. From Fig. 11 it can be seen that
through varying 6 and A, the degree to which flow will sep-
arate on the blade will vary greatly. This flow separation and
reattachment provide a significant increase in dataset com-
plexity which could potentially exacerbate the issue of the
POD ROM either not having enough sample points to make
meaningful interpolations or not being capable of represent-
ing the system with low mode retention counts. The latter of
these issues will be addressed in the next section.
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hover (b).
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Figure 11. Contours of Cr as the blade rotates from an azimuth of 0 to 360°. Incoming flow is entering from the 180° direction while blade

is rotating counterclockwise.

Contributing to the difficulties of modeling the forward-
flight case are the differing influences A and 6 have on ro-
tor L/De. In Fig. 12 L/De as computed from integrated
CFD-modeled pressure loads is plotted versus A and 6. Re-
sults demonstrate the significant parabolic influence 6 has
over blade load distributions. Rotor L/De is shown to ex-
ponentially decrease as 6 deviates from 10°. This relation-
ship is in contrast to the linear and relatively small influence
A has on L /De. For the hovering-rotor cases, the POD ROM
was shown capable of modeling a multi-variable system with
each variable holding a varying degree of influence over the
system. Yet, the forward-flight case provides a more extreme
case of multi-variable modeling wherein there is clearly a
dominant term in the domain. Thus, the modeling challenge
present in the forward-flight case will include demonstrating
that while the POD ROM is truncating low-energy informa-
tion from the system, it does not truncate interdependencies
between input parameters and blade surface pressure distri-
butions.
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Figure 13. Percent energy retention per retained mode count for 8,
16, and 32 POD modes.

4.2.1 Forward-flight ROM reconstruction

After all 16 forward-flight CFD simulations were completed,
a single snapshot matrix was formed. To form this snapshot
matrix, solutions for rotor pressure distributions were written
every 4.5° such that sufficient resolution would be obtained
to model both separation and reattachment flow at the correct
azimuth angles. It should be noted that a sensitivity study
comparing azimuth step size and ROM prediction capabil-
ity was not completed in this work. Rather, the step size for
variation in azimuth was selected to be comparable with step
sizes utilized in typically leveraged reduced-representation
rotor models such as actuator-line-based models. As a result,
for each CFD simulation, 74 snapshots for rotor surface pres-
sures were retained corresponding to a single snapshot matrix
with 1184 snapshots. After completing this snapshot matrix,
the POD algorithm was used and the percent energy reten-
tion per POD mode retention count was plotted, and results
are presented in Fig. 13. Given the significant increase in en-
ergy content in the system in comparison to the hovering-
rotor cases, energy retention was decreased to 90 % so as to
avoid retaining an excessive number of POD modes. It was
identified that 16 POD modes were required to hit this energy
retention criterion.

After undergoing the POD algorithm and identifying the
number of retained POD modes, the study projected these
modes back to the original snapshot matrix to identify how
well the domain of interest is represented with the selected
mode count. Reconstructions and reconstruction error can be
found in Figs. 14 and 15. This observation provides two im-
portant conclusions. First, through the addition of flow sepa-
ration and a varying azimuth angle, the energy content in the
training dataset has been expanded. This expansion in energy
content has led to an increase in the mode retention count re-
quired to obtain independent reconstructions.

A second important observation is that despite the expan-
sion in energy content, POD is shown to be capable of rep-
resenting the full rotor disks of all 16 geometries with only
16 modes. For accurate reconstructions, modes retained were
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Table 7. Maximum percent error between CFD- and POD-ROM-
computed L /De for geometries c1 to c16.

Twist 6
Taper ratio A 0° 10° 20° 30°
1.0 0.0043 0.18 1.13  0.28
0.9 0.10 139 046 0.11
0.8 041 127 028 0.058
0.7 073 1.13 023 024

limited to modes with reasonably smooth variation with re-
spect to 8 and A. These results highlight that the POD algo-
rithm appears to be exceptionally well suited for applications
modeling periodic pressure distributions of rotors. The max-
imum percent error of Ct found for reconstructions of all
16 geometries was found to be below 0.1 %. Not only sec-
tional Ct values but also integrated values for L/De were
shown to be modeled accurately. The maximum percent er-
ror for reconstructions of all 16 geometries was found to
be 1.39 %. Percent errors for all 16 geometries are outlined
in Table 7. In the following section, the effect of increased
distributed-load complexity on POD ROM prediction capa-
bilities will be demonstrated.

4.2.2 Forward-flight ROM validation

Further validation of the POD ROM in forward-flight predic-
tions is produced for geometries v1, v2, and v3 and compared
to CFD simulation. Both prediction and error contours of sec-
tional Ct for all three validation geometries are summarized
in Fig. 16. Results show that for all three validation cases,
the POD ROM makes reasonably accurate predictions for Ct
across the rotor’s complete cycle. For the vast majority of the
motion of the blade, load distributions are being predicted al-
most exactly. The distributed-load prediction error is largely
limited to the correct prediction of flow separation and reat-
tachment azimuth angle positions. Results demonstrate that
once the flow is either separated or attached, the POD ROM
is capable of producing reasonably accurate distributed-load
predictions. In addition to comparing rotor disk C, rotor per-
formance predictions via integrated L /De are compared be-
tween CFD simulation and POD ROM emulation. Results,
shown in Table 10, demonstrate that the POD ROM is capa-
ble of providing reasonably accurate rotor performance pre-
dictions subject to variations in both twist and the taper ra-
tios of the rotor. The maximum percent error never exceeds
0.50 % compared to CFD simulation.

These observations underline the two critical takeaways
from this study. First, if a modal decomposition algorithm
is to be deployed for surface pressure modeling, it must be
capable of efficiently representing a complex domain. In this
study, it has been shown that for a wide variety of operating
conditions, the POD algorithm performs exceptionally well
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Figure 14. Contours of POD reconstruction for the CFD data of Fig. 11a and error for Ct as the blade rotates from an azimuth of 0 to 360°.
Incoming flow is entering from the 180° direction while the blade is rotating counterclockwise.
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Figure 15. Contours of POD reconstruction for the CFD data of Fig. 11b and error for Ct as the blade rotates from an azimuth of 0 to 360°.
Incoming flow is entering from the 180° direction while the blade is rotating counterclockwise.

at representing rotor surface pressures with minimum mode
retention counts.

The second observation is that for the application of the
POD ROM to rotor surface pressure modeling, a subspace
must be sufficiently sampled such that the influence of de-
sign variables on load distributions is fully captured. It is im-
portant to note that prior knowledge of a system, particularly
when applied to UAM aircraft, may be limited. As such, prior
understanding of the required sample size may not be held,
and an iterative approach must be taken to find the sufficient
sampling size required for a POD ROM. When investigat-
ing the high-thrust rotor, this study found that 16 samples
were sufficient to provide near-exact predictions for surface
pressures. Yet, when considering the low-thrust rotor it was
identified that while efficient reconstructions could be made
through POD, more sampling conditions were required for
accurate interpolations. This was due to an increase in de-
sign space complexity with respect to A.

For the case of a rotor in forward flight, it was found that
similarly to high-thrust rotors, the design space could be rep-
resented exceptionally well with the 16 sampling cases. Yet,
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a deeper analysis of POD modes demonstrates that the total
number of CFD sampling cases required to model the rotor’s
disk could be further reduced. In Fig. 18a through c, varia-
tion in POD modes 1, 2, and 8 with respect to 6 and A is
plotted. Results indicate that initial POD modes linearly vary
within the system, while for mode counts 8 and up the mode
relationship to design variables becomes significantly non-
linear. These results highlight that the majority of the energy
for the rotor in forward flight varies linearly. To demonstrate
the dominance of linearly determined variance in the system,
a POD ROM was derived from retaining just four sampling
points, cases cl, ¢4, c13, and c16, thus producing only a lin-
ear mapping. In Fig. 17, Cr errors are presented for all three
validation cases once only four sampling conditions are used.
Results for sectional Ct integrated from the POD ROM sur-
face pressure predictions are comparable to those obtained
when using all 16 CFD simulation sampling points. Results,
presented in Table 8, also demonstrate that an accurate rep-
resentation of total integrated lift can be obtained from the
derived model with percent errors for rotor lift predictions
never exceeding 1 %. Yet, while rotor lift predictions were
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Figure 16. Contours of POD ROM prediction and error compared to CFD using 16 sample cases for the rotor’s coefficient of thrust, C, as
the blade rotates from an azimuth of 0 to 360°. Incoming flow is entering from the 180° direction while the blade is rotating counterclockwise.

shown to retain a reasonable degree of fidelity, there was a
significant deviation in rotor power predictions. Thus, the
results of this analysis indicated that rotor lift performance
is dominated by linearly varying high-energy POD modes,
while rotor drag performance is dominated by the non-linear
low-energy POD modes.

To improve power performance predictions of the POD
ROM, the number of sampling points can be increased such
that an accurate representation of the non-linear variation in
the low-energy POD modes can be obtained. It should be
noted that this non-linear variation is limited to variation in
the 6 space. As such, to achieve this increased representation
of low-energy POD mode variation, a combination of four

Wind Energ. Sci., 8, 1201-1223, 2023

Table 8. Summary of percent errors in lift (L), power (P), and
L /De predictions using the POD ROM from four training points.

Geometries L P L/De
vl 061% 624% 164%
v2 021% 045% 0.24%
v3 0.23 % 64% 178 %
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the blade rotates from an azimuth of 0 to 360°. Incoming flow is entering from the 180° direction while the blade is rotating counterclockwise.

# and two A sampling points were retained such that a POD
ROM was derived from cases cl, c2, c3, c4, c13, cl4, cl15,
and c16. Results for rotor performance predictions with this
POD ROM are presented in Table 9 and demonstrate that
despite halving the number of sampling points from 16 to
8, similar levels of fidelity for rotor performance predictions
can still be achieved.

Just as in the hovering cases, there was a significant re-
duction in computational expense obtained when using the
reduced model. The POD ROM evaluation of rotor surface
pressures across the entire periodic motion took a fraction
of a second on a single core. Meanwhile, the CFD simu-
lation required 20h on 440 cores. Once the reduced model

https://doi.org/10.5194/wes-8-1201-2023

Table 9. Summary of percent errors in lift (L), power (P), and
L /De predictions using the POD ROM from eight training points.

Geometries L P L/De
vl 030% 042% 0.13%
v2 009% 0.13% 0.04%
v3 017% 3.02% 3.26%

Wind Energ. Sci., 8, 1201-1223, 2023
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was applied to the design optimization of the rotor such that
local optimal L/De was obtained, an optimal solution was
found within 10 min of computing time on a single core.
Results of this optimization, along with surface mappings
constructed from obtaining 900 additional rotor performance
predictions of the domain, are plotted in Fig. 18 for the POD
ROM derived from 4, 8, and 16 CFD sampling points. All
three optimization results hint at a significant capability of
the POD ROM to efficiently extract meaningful information
from a domain of interest with limited sampling such that a
greater understanding of the design space can be obtained.
In Fig. 18d, it is shown that despite only ever sampling the
corners of the domain and thus deriving linear relationships,
the non-linear influence that 6 holds over rotor performance
can still be captured. While this influence is exaggerated in
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magnitude, resulting from inconsistencies in modeling power
requirements, the overall trend of this influence is preserved
such that a previously unknown local optimal solution in the
area of 8 = 12.4° and A =1 can be obtained. By doubling
the sampling size from four to eight, shown in Fig. 18e, it
can be seen that not only can a relevant local optimal de-
sign point be identified but also a higher level of fidelity
can be achieved for performance predictions. Through fur-
ther increasing sampling of the domain, shown in Fig. 18f,
it is hinted that there perhaps exist additional local optimal
solutions within the design space as 6 goes from 6 to 12°
and A goes from 0.7 to 1. While the POD ROM derived
from all 16 sampling points identified a local optimal solu-
tion of L/De =16.1 at 8 = 6.21° and A = 0.96, the second
optimal solution found using this model was L /De = 16.0 at
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Table 10. Summary of percent errors in lift (L), power (P), and
L /De predictions using the POD ROM from 16 training points.

Geometries L P L/De
vl 0.13% 023% 0.10%
v2 0.065% 030% 0.24%
v3 005% 047% 041%

6 = 11.5° and A = 1. The second optimal solution found us-
ing the POD ROM derived from 16 sampling points was less
than a single degree off from the optimal solution obtained
using only 4 sampling points.

However, caution must be exercised even when the POD
ROM derived from all 16 sampling points is leveraged for
optimization. Results presented in Table 10 demonstrate a
reasonable degree of fidelity in ROM-integrated performance
predictions for a variety of test cases. However, in Fig. 18f it
is observed that there exists a significant increase in the com-
plexity of the design space near the identified optimal point.
It is further observed that, unlike in previous cases, this in-
creased complexity is not limited to variations in 6 but ad-
ditionally appears in A, leading to several local optimal solu-
tions being predicted. While previous steps were taken to val-
idate the surrogate model, results presented in Fig. 18f indi-
cate all three validation cases exist within the largely linearly
varying sub-region of the domain. Of additional concern is
the low rate of CFD sampling that exists within the range
0 =5°to 15° and A = 0.9 to 1.0, a sub-region of the domain
with just two CFD samplings. As such, it becomes challeng-
ing to know if local optimal points identified are truly mean-
ingful insights into the design space or simply the result of
erroneous superpositioning of POD modes.

To address this concern and gain further insight into the
domain, five additional CFD simulations were completed.
Rotor geometries for each case are summarized in Table 3.
Percent error between POD ROM and CFD simulation L /De
performance predictions are presented in Table 11. Addition-
ally, L/De for all five additional simulations are plotted in
Fig. 18f. Results indicate that concerns regarding undersam-
pling are valid. It is demonstrated that, as a result of erro-
neous POD mode superpositioning by the ROM, emulated
non-linearities with respect to A are non-physical. Rather,
L/De was found to continuously increase as A increases.
Once again, it was identified that while rotor lift performance
metrics could adequately be modeled, noticeable discrepan-
cies existed with respect to the power required.

The results of this final analysis demonstrate a common
theme of caution which must be exercised whenever a data-
driven ROM is implemented. In some cases, a derived ROM
may be capable of providing further insight into the domain
than the limited sampling may allow. For example, results
presented in Fig. 18d indicated that there existed a local op-
timal twist solution around a twist of ~ 12°. Further sam-
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Table 11. Summary of percent errors in lift (L), power (P), and
L /De predictions using the POD ROM from 16 training points com-
pared to geometries outlined in Table 3.

Geometries L P L/De

Case 1 0.1730% 4.9118% 4.9836 %
Case 2 0.1529% 5.0659% 5.1752%
Case 3 0.1761% 2.7032%  2.5973 %
Case 4 03736% 4.4862% 4.3058 %
Case 5 0.0008% 4.9500%  5.2069 %

pling of the domain indicated that this insight into the de-
sign space was largely correct. In other cases, the derived
ROM may improperly predict non-physical features provid-
ing incorrect insight. Results presented in Table 11 clearly
indicate that the POD ROM is improperly modeling A’s in-
fluence on the domain. Yet, even in this case, further analysis
indicated the POD ROM was still providing potentially im-
proved insight into the domain. By only observing the CFD
simulation results in Fig. 12, there appears to be a linear tran-
sition from 6 = 10 to 0°. Yet, further CFD samplings pre-
sented in Table 11 indicated that there is potentially a rapid
increase in L/De before plateauing at around 5° twist. This
phenomenon is additionally observed in the POD ROM pre-
dictions for constant A = 0.7, 0.8, 0.9, and 1.0. Additionally,
this further sampling seemed to indicate a true local optimal
solution similar to results predicted in Fig. 18d and e. These
results appear to back the claim that erroneous superposition-
ing of POD modes when 16 samples are leveraged is leading
to increases in local error in limited regions of the domain.
However, to validate these findings, once again further sam-
pling is required. As is the case with any data-driven model,
it becomes essential that insight gained when leveraging the
ROM is validated against additional sampling. As such, de-
rived ROMs must be viewed by design engineers as useful
tools for informing future sampling of the domain rather than
taken as final predictions.

5 Conclusions

In this study, a POD ROM was applied to three demon-
stration cases for distributed-pressure-load predictions of a
single-blade model rotor. Namely, these cases were high-
thrust hovering rotor, low-thrust hovering rotor, and rotor in
forward flight. For each of these cases, the blade twist and
taper ratio were varied such that 16 blade geometries were
used. All three POD-based surrogate ROMs were shown
to produce highly accurate predictions for surface pressure
distributions. For both high-thrust-rotor and forward-flight
ROMs, the maximum integrated load coefficient prediction
error was below 1%. The error was increased for the low-
thrust-rotor ROM but still limited to below 4.3 %. When the
POD ROM was implemented, the computational expense

Wind Energ. Sci., 8, 1201-1223, 2023




1220 N. Peters et al.: A data-driven reduced-order model of an isolated rotor

was significantly decreased. For the hovering rotor, the ex-
pense was reduced from 12 h on 440 cores for CFD simula-
tion to just a fraction of a second on a single core for ROM
predictions. For the forward-flight rotor, the expense was re-
duced from 20 h on 440 cores to less than a second on a sin-
gle core when the POD ROM was implemented. The expense
was reduced to the extent that a design optimization became
feasible for both hovering and forward-flight demonstration
cases. Results demonstrated how a POD ROM could be ef-
ficiently derived and deployed to model a complex design
space to a high degree of fidelity. Additionally, it was demon-
strated how this surrogate model could be both leveraged to
quickly find potential optimal design points within the space
and used to gain an enhanced understanding of the domain
of interest.

While the present work provides strong evidence for the
feasible application of POD ROMs to wind turbines and ro-
torcraft, there are still several future steps remaining for un-
derstanding POD ROM difficulties in rotor modeling. POD
ROM modeling of multiblade rotors with realistic geome-
tries and control surface coupling could be attempted. Future
steps should also be taken to include wind farms operating
with multiple rotor configurations. Additionally, CFD simu-
lations should be completed using more complex operating
conditions, such as turbulent inflows. By including these two
modeling choices, a broader range of length scales will be
introduced into the training dataset, thus testing POD-based
surrogate ROMs’ capability for efficiently extracting mean-
ingful information in increasingly complex domains.
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