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Abstract. It is important to optimize wind turbine positions to mitigate potential wake losses. To perform this
optimization, atmospheric conditions, such as the inflow speed and direction, are assigned probability distribu-
tions according to measured data, which are propagated through engineering wake models to estimate the annual
energy production (AEP). This study presents stochastic gradient descent (SGD) for wind farm optimization,
which is an approach that estimates the gradient of the AEP using Monte Carlo simulation, allowing for the con-
sideration of an arbitrarily large number of atmospheric conditions. SGD is demonstrated using wind farms with
square and circular boundaries, considering cases with 100, 144, 225, and 325 turbines, and the results are com-
pared to a deterministic optimization approach. It is shown that SGD finds a larger optimal AEP in substantially
less time than the deterministic counterpart as the number of wind turbines is increased.

1 Introduction

Wind farms are groups of wind turbines that harness the
power in the atmospheric boundary layer to provide renew-
able energy. When a wind turbine absorbs energy from the
air, the air downstream of the wind turbine has reduced
power, which often reduces the power production of down-
stream turbines. This is known as the wake effect (Sanderse,
2009; Hasager et al., 2013). When a new wind power plant
is to be constructed, optimal turbine locations are determined
using engineering wind farm models (Samorani, 2013; Ning.
et al., 2020; Annoni et al., 2018). Turbine positions are opti-
mized to exploit the benefits of the local wind resource while
avoiding energy losses from turbine wakes. In the wind tur-
bine placement problem, atmospheric conditions, such as the
inflow speed and direction, are assigned probability distribu-
tions according to measured data. By propagating these prob-
ability distributions through the engineering wake model, the
annual energy production (AEP) can be estimated. The AEP
is often computed using rectangular quadrature, dividing the
relevant speeds and directions into equal-sized bins, then
computing the expected AEP as the product of the power
and probability of each bin, added together, then multiplied

by the number of hours per year. The cost of wind farm
optimization generally increases with the number of atmo-
spheric conditions considered during AEP computation, and
this expense becomes more extreme as more complex wake
models (e.g., Reynolds-averaged Navier—Stokes models) are
considered. For example, there are some memory limitations
when computing AEP gradients using automatic differentia-
tion with very large wind farms. This has given rise to stud-
ies seeking convergence of the AEP, proposing methods such
as polynomial chaos expansion (Padrén et al., 2019; Murcia
et al., 2015) or Bayesian quadrature (King et al., 2020) to
avoid discretizing the input distributions into evenly spaced
intervals. In this study, we present an approach for wind farm
optimization that estimates the gradient of the AEP using
Monte Carlo simulation. This does not require the input to
be discretized at all and allows for the consideration of an
arbitrarily large number of atmospheric conditions.
Stochastic gradient descent (SGD) is an optimization al-
gorithm commonly used in machine learning when selecting
neural network weights (Ketkar, 2017). The algorithm sam-
ples the gradient of a stochastic objective, following the mean
gradient by a specified distance, then repeating the process,
which amounts to optimizing the expected value of the objec-
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tive. The SGD algorithm is often enhanced to avoid oscilla-
tions caused by large changes in the gradient of the objective
(Ruder, 2016). This includes methods to reuse previous gra-
dient information (Qian, 1999), dampen oscillations (Ried-
miller and Braun, 1993), or incorporate an estimate of the
Hessian matrix (Moritz et al., 2016; Byrd et al., 2016; Liu
et al., 2018; Najafabadi et al., 2017). Kingma and Ba (2014)
introduced the Adam SGD algorithm, which reuses gradient
evaluations and dampens oscillations, and which is the basis
of the SGD method we propose in this study.

Interestingly, SGD is not often applied to problems with
nonlinear constraints, although it can be fruitful to include
nonlinear constraints in the context of training a machine
learning algorithm. For example, when recognizing three-
dimensional pictures of people, it can be useful to impose
a constraint that any person’s left arm should be close to the
same length as their right arm (Marquez-Neila et al., 2017).
Many frameworks have been proposed for constrained SGD,
including the log-barrier function (Kervadec et al., 2019),
penalty functions (Médrquez-Neila et al., 2017), blending bar-
rier and penalty functions (Kervadec et al., 2019), and Rie-
mannian geometry (Roy and Harandi, 2017). In this study,
we use a penalty term to transform the constrained problem
into an unconstrained optimization.

The wind farm layout optimization problem presents a set-
ting where the objective (AEP) can be formulated as being
stochastic (e.g., the AEP is derived from a probability density
function), while the constraints (e.g., boundaries and min-
imum turbine spacing) are firmly deterministic. This paper
explores the potential benefits of formulating the wind farm
layout optimization problem in this way. As part of this, the
Adam algorithm is extended to optimize a stochastic objec-
tive with deterministic constraints. To the best of the authors’
knowledge, this exact algorithm has not been published be-
fore.

This study benchmarks the performance of the proposed
SGD approach when compared to conventional gradient-
based optimization within the TOPFARM framework (DTU
Wind Energy Systems, 2023b), considering wind farms with
different shapes and sizes. We examine the open-source
SLSQP algorithm (Kraft, 1988), which is employed in many
engineering frameworks (King et al., 2017; Allen et al., 2020;
Wau et al., 2020; Zhang et al., 2022; Zilong and Wei, 2022;
Kolle et al., 2022; Clark et al., 2022; Simley et al., 2023)
and has been used in previous comparisons of optimization
algorithms (Lam et al., 2018; Li and Zhang, 2021; Fleming
et al., 2022). The TOPFARM framework has been used with
SLSQP in several wind farm optimization studies (Riva et al.,
2020; Ciavarra et al., 2022; Criado Risco et al., 2023; Ro-
drigues et al., 2023). In future work, this approach can be ex-
tended to co-optimize layout and control strategy — the SGD
framework can naturally incorporate uncertainty quantifica-
tion when modeling the potential control strategies for po-
tential layouts (similar to the work in Gebraad et al., 2017;
Quick et al., 2020; Howland et al., 2022).
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While there are some wind plant optimization studies that
resemble our approach, we are not aware of any studies that
have applied SGD to the wind farm optimization problem
(although SGD has been applied to other problems in en-
gineering optimization, e.g., De et al., 2020; Sivanantham
and Gopalakrishnan, 2022). Several wind farm optimization
studies have made use of gradient-based optimization tech-
niques (Herbert-Acero et al., 2014; Guirguis et al., 2016;
Graf et al., 2016; Gebraad et al., 2017; Baker et al., 2019;
Riva et al., 2020; Stanley et al., 2021; Croonenbroeck and
Hennecke, 2021). Feng and Shen (2015) present a random
search approach, moving the wind turbines one by one us-
ing a greedy algorithm. Some studies have employed neural
networks to forecast power production (Godinho and Castro,
2021), estimate local atmospheric conditions (Stengel et al.,
2020), suggest control strategies (Najd et al., 2020), or op-
timize engineering wake models (Zhang et al., 2021; Zhang
and Zhao, 2022; Hussain et al., 2022), which all use SGD
algorithms to train the parameters of the neural networks.

The remainder of the paper is the following. Section 2
outlines the SGD and deterministic optimization approaches
used in this study. Section 3 details the wind farm optimiza-
tion application cases examined. Section 4 discusses the re-
sults of these optimization comparisons. Section 5 provides
conclusions and future research directions.

2 Methods

When deciding where to put wind turbines, a typical strat-
egy is to maximize wind farm AEP while ensuring turbines
are within the prospective site and are not spaced too closely
together. In this study, we examine square and circular wind
farms, where the corresponding optimization problems are
posed as

maximize AEP(x, y)
X
subjectto  (x; — xj)2 + (i — yj)2 > (NpD)%,
Vi M
X <X <Xy
YE=Yi = Yu
and
maximize AEP(x, y)
x.y
. 2 2
subjectto  (x; —x;)" + (yi —y;)” = (NpD)?, )
Vi#j

VA Y <R,

respectively, where x and y are the turbine horizontal and
vertical locations, x; and x,, are the lower and upper horizon-
tal square wind farm boundaries, y; and y, are the lower and
upper square wind farm vertical boundaries, R is the radius
of the circular wind farm, D is the rotor diameter, and Np is
the minimum allowable spacing between turbines measured
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in rotor diameters. From this point forward, we will use a
single variable to represent the x and y locations, s = {x, y}.
When optimizing square wind farms, x;, x,, y;, and y, are
constant.

The AEP is defined as

2w 00
AEP(s):8760//P(s,uoo,é)rr(uoo,@)duoode, 3)
00

where P is power, 7 is probability, u is the freestream ve-
locity, and 6 is the freestream direction. The 8760 factor re-
flects the number of hours per year, converting from units of
power to units of energy.

The AEP is typically estimated through rectangular
quadrature, where the freestream velocity and direction are
discretized using evenly spaced intervals,

D U
AEP(s) ~ 8760y > " P (s, Uy, 0a) p Ua, 6a), “)
d=1lu=1

where U is a vector of evenly spaced wind speeds, 0 is a
vector of evenly spaced wind directions, and p(Uy, 6g) is a
probability mass function.

The AEP can also be estimated through Monte Carlo inte-
gration,

1 K
AEP(s) ~ 8760— (s,ug’g),e(")), )
Kk:l

where ug@ and 0® represent draw k of the probability distri-
bution 77 (1o, 0).

The associated AEP gradient can also be approximated
through Monte Carlo simulation:

d 1 & d
—AEP~8760— Y —P (s,u®, 0®). 6
ds K ;ds (s oo ) ©)

2.1 Stochastic gradient descent

SGD is built upon the steepest descent algorithm. Early
SGD algorithms added a moving average term (sometimes
referred to as “momentum”) to avoid spurious oscillations
(Tian et al., 2023). The conventional Adam SGD algorithm
uses two moving averages: one of the gradient and one of
the squared gradient. The ratio of these moving averages is
used to determine the search direction. SGD algorithms are
often combined with a learning rate scheduler, where the step
size of the gradient descent is gradually decreased, allowing
the optimization algorithm to hone in on the best solution.
While the Adam algorithm is already designed to dynami-
cally change the step size, including a learning rate sched-
uler can further improve the performance. The conventional
Adam algorithm is designed for unconstrained optimization
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Algorithm 1 TOPFARM stochastic gradient descent imple-
mentation.

m<0,v<0,5s < s
foriin[0,1,2,...,7 —1]

do

if early_stopping and n; /ng < threshold:
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break

else:
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algorithms. In the following, we extend the algorithm to al-
low for deterministic constraints, which is a case that is com-
mon in mechanical engineering and unusual in the context
of training neural networks. The basic idea is to aggregate
the constraints to a penalty term with units that are con-
sistent with the objective. The penalty term is designed so
that, initially, the penalty gradients are of similar magnitude
to the AEP gradients and so that the penalty gradients over-
whelm the AEP gradients as the optimization continues. The
SGD algorithm is shown in Algorithm 1, where s is the ini-
tial turbine position; i is the iteration number; ¢; is referred
to as the constraint multiplier; y(s) is a penalty function;
P(s, ug;), 9(")) is the wind farm power associated with the
inflow speed and direction, ué’? and 6% K is the number
of samples employed in each SGD iteration; 81 and B, are
constants; T is the number of SGD iterations; S is the learn-
ing rate scheduler; and #; is the learning rate. By default, the
early stopping option is false.

The spacing between turbines is enforced using a penalty
term,

Similarly, the distance outside of boundaries is enforced
using a penalty term. When considering square wind farms
this penalty term is defined as

Ny
W=y [max(xi — Xub, 0)* 4 max(xi, — x;, 0)?

i=1

+ max(y; — yub, 0)> + max(yp — yi, 0)2] ,

and, in the case of circular boundaries, it is defined as
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N[ 2
yb:Zmax(,/xiz—{—yiz—R,O) , 8
i=1

where N; is the number of wind turbines.
The total penalty, y, is defined as the sum of these two
penalty terms,

Y (8) = ¥s(8) + 1 (s). ©))

The gradient of the penalty term, y, is scaled before being
added to the negative gradient of the AEP using the scaling
factor, «;.

In Algorithm 1, the learning rate (1;), constraint multiplier
(¢j), number of SGD iterations (7'), and the samples per SGD
iteration (K) are all free parameters. These parameters can be
optimized to perform well for individual wind farm optimiza-
tion problems. But there is no guarantee that these particular
parameters will perform well for other wind farm problems
— and this meta-optimization can be expensive. In the ma-
chine learning community, these parameters are sometimes
optimized using evolutionary, grid search, or Bayesian opti-
mization approaches (Alibrahim and Ludwig, 2021). In ad-
dition, it is common to schedule the learning rate to decay as
the optimization proceeds (You et al., 2019; Denkowski and
Neubig, 2017).

We propose a method for setting free parameters to en-
sure that all units are consistent. The only free parameters we
manually set are the number of optimization iterations and
the number of power samples per iteration. The optimiza-
tion generally becomes more accurate and more expensive as
these parameters increase, and users are free to balance this
trade-off as they see fit. Our formulation does not guarantee
that all intermediate solutions satisfy the constraints, espe-
cially in the beginning of the optimization. The constraint
multiplier begins on a comparable scale to the AEP and is
scheduled to increase so that the constraint gradients over-
whelm the AEP gradients as the optimization progresses. The
number of iterations, T, can be based on a prescribed com-
putational budget.

We initially attempted this approach using the widely used
default parameter values in the original Adam algorithm,
B1 =0.9 and By = 0.999. The parameters can be thought of
as adding momentum to the moving averages of the gradient
and squared gradient, m and v. We found that these default
values gave too much emphasis to gradients from the penalty
function, launching the turbines away from the boundaries
in a dramatic fashion. Instead, we suggest the parameters
B1=0.1 and B = 0.2, which encode a shorter memory of
the presence of the penalty. With these new default param-
eters, and the learning rate defined below, we observed suc-
cessful convergence for a wide variety of test cases.

The learning rate, n;, can be interpreted as converting
m/ NG (with unity units) to distance (units of m). In this
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study, the learning rate is scheduled to decay according to

St =0)=no
St=T-1)=nr, (10)

where T is the number of optimization iterations, ng is the
initial learning rate, and nr is the scheduled final learning
rate. This final learning rate can be thought of as a solution
tolerance for the design variables. In this study, we set ny =
0.1 m.

The initial learning rate, 19, is based on a length scale pa-
rameter, L, which corresponds to a reasonable initial step
size for the optimization. By setting the initial learning rate
according to

no=~L=D/5, Y

where D is the turbine rotor diameter, we encourage the tur-
bines to move at most L distance every optimization itera-
tion.

The learning rate is scheduled to decay as

t
1
So.8.=mno[ | (12)
i=0

- L+is’
where ¢ is a parameter that controls the learning rate length,
such that the final learning rate is nr. The parameter § is
numerically set as

5(770,777,T)=arg§nin|nT—S(no,3,T)|- 13)

The constraint multiplier, ¢;, can be interpreted as convert-
ing the gradient of constrained square distances (in units of
m) to AEP gradients. The initial constraint multiplier, o, is
set as the mean absolute AEP gradient divided by the length
scale, L, so that the separation constraint has a similar scale
to AEP gradients,

__mean [IVAEP (sg)|]
o L

where mean[|VAEP(sqg)] is the mean of the absolute AEP
gradient of the initial guess with respect to each component
of the gradient. During each iteration, the constraint multi-
plier, «;, is scheduled to increase based on the inverse of the
learning rate,

oo , (14)

o =ap. (15)
ni

The wind rose samples, (ugg,e(i)) ~ (U, b)), are ran-
domly selected based on the direction frequency and
direction-specific Weibull shape and scale parameters. Note
that the tilde (~) denotes a shared probability distribution.
After a direction is sampled, the wind speed is sampled as a
continuous Weibull-distributed random variable,

Uoo(0) ~ Wlitoo, A(0), k(6)], (16)
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where the probability density of the Weibull distribution, W,
is given by

W (ttoo, A, k) = %(%")k—lexp [-('L"’)k} (17)

2.2 Deterministic approach

The SLSQP algorithm (Kraft, 1988) is selected to be the de-
terministic optimization algorithm to act as a benchmark to
the SGD approach. SLSQP is a conventional deterministic
optimization approach. It is employed in many open-source
engineering design codes (Allen et al., 2020; Wu et al., 2020;
Ciavarra et al., 2022) and has been used in previous compar-
isons of optimization algorithms (Lam et al., 2018; Li and
Zhang, 2021; Fleming et al., 2022).

The spacing and boundary constraints are passed to the
optimizer as individual inequality constraints. The spacing
constraints are defined as

Cij=(xi —xj) >+ (i — ;)" —(NpD)* Vi, j>i, (I8)

where C is an upper triangular matrix of nonlinear inequality
constraints.

Square wind farm boundaries are represented using four
inequality constraints per turbine,

Dip = x; — xy

Diz =x; — x;
Di3 = y; — yu
Dig = y1 — yi, (19)

and the circular wind farm boundaries are represented with
one inequality constraint per turbine,

D; =[x} +y} - R, (20)

where D is a matrix of boundary constraints that must be less
than or equal to 0.

3 Application

We apply the optimization approaches discussed above to op-
timize wind power plants of various sizes using the TOP-
FARM framework (DTU Wind Energy Systems, 2023b).
Each farm consists of turbines with 70 m hub heights, 80 m
rotor diameters, and 2 MW rated powers. Power is computed
using PyWake (Pedersen et al., 2019), which is an open-
source wake modeling tool that has been used in several
related studies (Riva et al., 2020; Rodrigues et al., 2022;
Ciavarra et al., 2022; van der Laan et al., 2023; Fischereit
et al., 2022). Power gradients are computed directly from
PyWake using automatic differentiation. The power of each
turbine is estimated by a combination of velocity deficits pre-
dicted by the Bastankhah Gaussian wake model (Bastankhah
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and Porté-Agel, 2014) using the default parameters in the
PyWake tool and the squared sum superposition (Pedersen
et al.,, 2019; DTU Wind Energy Systems, 2023a). We re-
quire each turbine to be spaced at minimum two rotor di-
ameters apart (Np = 2). This is imposed as an optimization
constraint. We considered wind farms with square and circu-
lar boundaries. The square wind farm boundaries are deter-
mined as

x=0
=0

xuzD(\/ﬁt—l)A
yu:D(\/ﬁt_1>Aa @1)

and, in cases with circular wind farm boundaries, the radius
is determined as

R=D(\/ﬁ[—1)A, (22)

where the A parameter controls the average spacing of the
turbines. In this study, A = 5.

We use the pyOptSparseDriver (Wu et al., 2020) SLSQP
(Kraft, 1988) implementation (Virtanen et al., 2020) in TOP-
FARM. The optimizer was set to run for 300 maximum
iterations with a tolerance of 10~'. The TOPFARM “ex-
pected_cost” parameter is set to 10. The turbine coordinates
are normalized from O to 1. In each optimization iteration, the
AEP, and the corresponding gradient, is computed using rect-
angular quadrature as described in Eq. (4), using 360 wind di-
rection bins and 23 wind speed bins, resulting in 8280 power
evaluations.

The wind rose, visualized in Fig. 1, is based on PyWake’s
Lillgrund example site. A probability mass function is as-
signed to different direction bins. Each direction bin is as-
sociated with Weibull scale and shape parameters describ-
ing the distributions of wind speeds within the sector. This
probability mass is derived from 7 months of measured data
used in a previous study (Go¢men and Giebel, 2016). Each
direction bin is 30° wide. The reasoning behind this is simi-
lar to that behind the IEC 614 400 power curve standard (In-
ternational Electrotechnical Commission, 2005) — it is cru-
cial that the reference data consider a statistically signifi-
cant number of data in each bin. This coarse direction dis-
cretization results in a faster convergence of the estimated
probability mass function than a finer discretization would.
The continuous probability density function 7 (¢, €) is ap-
proximated as p(0)r (10|0), where p is the previously men-
tioned probability mass function, linearly interpolated across
1° bins, and 7 (1 |0) is parameterized by direction-specific
Weibull shape and scale parameters that are also linearly in-
terpolated from the provided data. With this formulation, the
likelihood of different wind directions is provided as a prob-
ability mass function, p(#). This probability mass is used as
weights passed to the Numpy “choice” function (Harris et al.,
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s 0.25-2.75m/s
0° mmm 2.75-5.75 m/s
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45°

90°

180°

Figure 1. Lillgrund wind speed and direction probability mass
function with 360 direction bins and five wind speed bins, where
the probability mass function is a linear interpolation of coarser
measurements.

2020), allowing the wind direction to be sampled as a discrete
random variable. We note that this formulation could be ex-
tended to a fully continuous formulation by drawing the di-
rection samples from the inverse of an empirical cumulative
direction density function.

In all wind farm optimization problems considered, con-
straint gradients, and the associated penalty function gradi-
ents, are computed analytically. The AEP gradient is com-
puted via automatic differentiation. The directions are dis-
cretized from 0 to 360°, with 1° increments. In the deter-
ministic formulation, the discretized wind speed ranges from
3-25ms~! and is divided using increments of 1 ms~!.

While each Monte Carlo estimate of AEP has significant
error, the average error will be close to O throughout the
course of the SGD optimization. We compare the accuracy
of the Monte Carlo approach (Eq. 5) and the quadrature ap-
proach (Eq. 4) to estimate the AEP and the L-2 norm of
the AEP gradient. The true values are estimated with a very
fine discretization of speed and direction, 0.2 m s~land0.2°.
These are used as reference values to assess the accuracy of
the Monte Carlo and quadrature approaches by comparing
the errors associated with both approaches as functions of the
number of samples and the discretization level, respectively,
when analyzing a 100-turbine farm with square boundaries.
This convergence analysis is shown in Fig. 2. While some
realizations of the Monte Carlo approach yield more accu-
rate results than the quadrature approach, the quadrature ap-
proach is generally more accurate than Monte Carlo sam-
pling. The Monte Carlo approach requires on average around
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10 times as many power evaluations to obtain the same accu-
racy as the deterministic approach.

In this study, we select 50 samples for every SGD iteration.
Figure 3 shows the measured computational cost of comput-
ing AEP gradients using the circular wind farm described
in this study, with different wind farm sizes. The minimum
measured time is reported as the minimum of 30 identical
runs on the DTU Sophia supercomputer (Technical Univer-
sity of Denmark, 2019). The computational time generally
scales logarithmically with the number of turbines. This is
to be expected, as there are more interaction terms in the
wake model as more turbines are considered. The compu-
tational time does not scale logarithmically with the number
of wind rose samples. For small numbers of turbines, evalu-
ating 10 wind rose samples is about as expensive as evaluat-
ing 50 samples. This scaling changes as the wind farm grows
in size, and it gradually becomes more expensive to sample
the wind rose. The evaluation time appears to converge to a
logarithmic scaling for large numbers of wind rose samples.
These scaling results are likely influenced by memory limi-
tations.

The optimization algorithms are timed based on the time
elapsed between the first and final optimization gradient eval-
uations. Each optimization case is run on first-generation
AMD EPYC 7351 processors.

4 Results and discussion

In the following subsections, the performance of SGD and
SLSQP is compared for wind farms with square and circu-
lar boundaries, and the sensitivity of the SGD algorithm is
assessed.

4.1 Square wind farm

The performance of SGD is compared to the determinis-
tic counterpart, considering wind farms with 100, 144, 225,
and 324 turbines, with square boundary constraints, using
20 different initial starting conditions to obtain statistically
significant results. The AEP, constraint violation (y), and
time elapsed associated with each optimization solution are
plotted in Fig. 4. The SGD approach consistently yields
higher AEPs than the SLSQP approach when the number
of scheduled SGD iterations, T, is 2000. There is a large
range of computational times associated with the SLSQP ap-
proach, though the computational expense of SLSQP gener-
ally grows much larger than SGD as the number of turbines
is increased. This is largely due to the nature of the turbine
spacing constraint, the size of which grows as the number of
turbines squared. SLSQP takes about as much computational
time as the SGD approach with 500 scheduled iterations
when there are 100 turbines in the square farm. As the num-
ber of turbines grows, the average time required by SLSQP
becomes more costly than SGD with 2000 scheduled itera-
tions. The computational cost of SLSQP is a strong function
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The dashed black line shows the average error associated with the Monte Carlo approach. The solid black line shows the error associated
with the deterministic approach.

—— K=10 K =500 R — N¢=25 —— Ni=64  —— N=144
= —— K=50 K=1000 g —— N¢=36 —— N;=81 Ne=225
E 100 | =—e— K=100 —— Deterministic”/’ o — Ny=49 e Ny =100 Ny=324
£ —— K=200

° ”

£

=

s

S 1071 A

©

3

©

>

w

€

2 1072 4

el

o

a

(a)

T T T T T
50 100 200 10t 102 10°
Number of Wind Turbines, N Number of Wind Rose Samples, K
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of the initial layout, and the variance of the SLSQP optimiza- turbines into the edges of the farm, although not as many
tion time also increases with the wind farm size. This is due turbines were packed into the east and west boundaries as in
to the complex interaction between the linear boundary con- the SGD results. The layouts found using the SGD approach
straints and nonlinear spacing constraints. As the proposed tend to have interior turbines that generally appear to be more
SGD formulation does not offer an automatic way to set the aligned in the north—south direction than in the deterministic
number of SGD iterations, T, results are shown for differ- solutions.

ent values of 7. When T is increased, the optimizer finds The results of the 100-, 144-, 225-, and 324-turbine wind
solutions with larger AEPs, with a computational cost that farm optimization cases are summarized in Table 1. The
is approximately proportional to 7. The SGD solution con- mean time, mean constraint violation, and mean and stan-
sistently improves as more optimization iterations are sched- dard deviation of the AEP are reported with respect to the
uled (larger values of T'). Results associated with 1000 SGD 20 random initial starting conditions. Constraint violation is

iterations tend to yield similar AEPs to the SLSQP approach, reported as /y /N to quantify the mean length of the con-
and results with 2000 SGD iterations tend to yield higher straint violations of each turbine. The final constraint viola-

AEPs than the SLSQP designs. tions can be reduced by lowering the nr parameter. In all

The final layouts associated with one of the random initial of these cases, the SLSQP optimization resulted in solutions
conditions used in the 324-turbine analysis, when 7" = 2000 with zero constraint violations. This is likely because of the
iterations, are shown in Fig. 5. The SGD approach generally linear formulation of the boundary constraints — when a solu-
identifies solutions with the majority of turbines packed into tion satisfies the spacing constraint, any solutions that satisfy

the side boundaries. The deterministic algorithm also packed the boundary constraints can quickly be found. SGD with

https://doi.org/10.5194/wes-8-1235-2023 Wind Energ. Sci., 8, 1235-1250, 2023
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Figure 4. Optimization results associated with SGD and SLSQP for square wind farms with 100, 144, 225, and 324 turbines, using 20 random
initial starting conditions. The AEP (top panels), constraint penalty (middle panels), and computational time (bottom panels) are plotted as

boxplots. The SGD results are plotted for 7 = 500, 1000, and 2000 iterations.
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Figure 5. The final layouts found using SLSQP (a) and SGD (b) using one of the random initial layouts examined in a 324-turbine wind
farm with square boundaries for 7 = 2000 iterations. Each circle has a radius of one rotor diameter.

2000 iterations generally yields solutions with AEP that are
0.3 %—0.5 % higher than the solutions found using SLSQP.
This is likely because the SGD algorithm is able to better ex-
plore the design space by initially relaxing the constraints,
allowing for some initial constraint violations.

4.2 Circular wind farms

To ensure that the previously presented results are not spe-
cific to square wind farms, we performed a similar set of
analyses examining circular wind farms. The results yield
similar trends to the analysis using square wind farms — SGD
becomes significantly less time-consuming than SLSQP as

Wind Energ. Sci., 8, 1235-1250, 2023

the number of turbines increases and generally yields solu-
tions with slightly larger AEPs.

Circular winds farms were optimized using 20 random ini-
tial layouts, examining different farm sizes, using the SGD
and SLSQP optimization algorithms. The results are summa-
rized in Fig. 6. The circular wind farm optimization gener-
ally took longer than the square wind farm when using the
SLSQP optimizer. This is likely due to the more complicated
nature of the circular boundary when using Cartesian coordi-
nates. These results are similar to the results in Sect. 4.1 — as
the number of wind turbines and scheduled SGD iterations
increases, SGD tends to find solutions with larger AEPs in
less computational time.
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Table 1. Results of SGD and deterministic optimizations for various square wind farm sizes. Each optimization case is run using 20 random
initial starting conditions, and the mean and standard deviation are reported with respect to these 20 initial points. The SGD results are
associated with 7' = 2000 iterations.

Nt Case Mean Mean AEP Mean
time AEP standard VY /Nt
(hours) (kWh) deviation (m)
(kWh)
1o  Deterministic 034 5.667x 103 6.223x10° 0.000 x 10°
SGD 1.00  5.691 x 108 5.347x 105 1.919x 103
\44 Deterministic 1.18  8.059x 103  9.188 x 10°  0.000e x 10°
SGD 200 8.089x 108 7.727x105 1.642x1073
5ys  Deterministic 479 1.241x10° 1.004 x 10  0.000 x 10°
SGD 507 1.246x10° 1.110x10° 1.250x 103
3pq Deterministic  18.69 1768 x 109 2.556 x 10°  0.000 x 10°
SGD 1220 1776 x 10°  1.810 x 106  9.484 x 104
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Figure 6. Optimization results associated with SGD and SLSQP for circular wind farms with 100, 144, and 225 turbines, using 20 random
initial starting conditions. The AEP (top panels), constraint penalty (middle panels), and computational time (bottom panels) are plotted as
box and whisker plots. The SGD results are plotted for 7 = 500, 1000, and 2000 iterations.

The results of the circular wind farm optimization are 4.3 Sensitivity analysis
compared between the SGD and SLSQP optimizers in Ta-
ble 2, where SGD is scheduled to run for 2000 optimization
iterations. SGD generally results in about 0.5 % more AEPs
in significantly less time than SLSQP as the number of tur-
bines is increased. The result area is also compared in Fig. 7.
The SGD optimizer generally results in more turbines on the
boundary edge than the SLSQP optimizer.

There are several parameters in the SGD algorithm that were
tuned to perform reasonably well. In this section, we inves-
tigate the sensitivity of the SGD optimization results with
respect to the early stopping option in Algorithm 1, the num-
ber of Monte Carlo samples per optimization iteration, the
learning rate schedule, and the initial and final learning rates.
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Table 2. Results of SGD and deterministic optimizations for various circular wind farm sizes. Each optimization case is run using 20 random
initial starting conditions, and the mean and standard deviation are reported with respect to these 20 initial points. The SGD results are
associated with 7' = 2000 iterations.

Nt Case Mean Mean AEP Mean
time AEP standard VY /Nt
(hours) (kWh) deviation (m)
(kWh)

1o  Deterministic 192 5383x 108 1.193x10% 2.742 x 102
SGD 0.98 5407 x 108  7.844 x 10> 2203 x 1073
144 Deterministic 725 7.638x 108  1.512x 10° 8.648 x 102
SGD 196 7.676x108 8777x10° 1.726x 1073
5ps Deterministic 3831 1174 x 102 1573x10° 2.359x 107!
SGD 498 1.180x 10° 1.306 x 10  1.280 x 1073

(a) SLSQP, AEP=1.172e+03 GWh

(b) SGD, AEP=1.180e+03 GWh
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Figure 7. The final layouts found using SLSQP (a) and SGD (b) using one of the random initial layouts examined in the 225-turbine wind
farm with circular boundaries using 7' = 2000 iterations. The final turbine layouts are shown as filled circles. Each circle has a radius of one

rotor diameter.

As the optimization progresses, the constraint multiplier,
o, becomes large (approaching 10 as the learning rate ap-
proaches 0.1), and the gradients of the AEP are overwhelmed
by the gradients of the penalty, which take very little time to
compute. This situation can be addressed by using the early
stopping option in Algorithm 1. The solution tends to ter-
minate quickly when the optimizer only follows the deter-
ministic gradient (the optimization engine terminates when
the constraint gradients are 0). Figure 8 shows the AEP, con-
straint violation, and computational time associated with five
random initial layouts, using threshold parameters of 0.01,
0.05, and 0.1, as well as the SGD algorithm as applied in
the previous sections, without the early stopping option acti-
vated. The use of each early stopping option results in layouts
without constraint violations. As the threshold parameter is
increased, the AEP is slightly reduced, and the total compu-
tational time decreases. A threshold parameter of 0.1 results

Wind Energ. Sci., 8, 1235-1250, 2023

in approximately 0.3 % reduction in AEP and 44 % reduction
in computation time.

The optimization results presented in this study used
50 power samples per iteration (K = 50). We found this to
produce high-quality results without incurring unacceptable
computational expense. Figure 9 shows the behavior of the
SGD approach associated with different values of K, consid-
ering 100 turbines with 2000 scheduled optimization itera-
tions. As K increases, the optimization finds solutions with
larger AEPs. There is a small increase in time elapsed and
a large increase in the final AEP between the K =5 and
K =50 cases, while there is a large increase in time elapsed
and a small increase in the final AEP between K = 50 and
K =200. As K increases, we expect the maximum AEP to
reach a plateau and the time and memory required to increase
indefinitely. In future work, we plan to explore scheduling K
to change as the optimization progresses.
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stopping, considering the circular wind farm with 225 turbines, with 7' = 2000, using five random initial layouts.
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Figure 9. Optimization results associated with SGD for a square
100-turbine wind farm using 20 random initial starting conditions
and T = 2000. The upper and lower bounds of the results are plotted
as a function of the optimization iteration number. The SGD results
associated with K =5, 50, and 200 iterations are shown in purple,
blue, and yellow, respectively.

This study used an exotic learning rate scheduler. We tried
several schedulers and observed this one to be the best at
finding sufficiently large AEP solutions that reasonably sat-
isfied the imposed constraints. Figure 10 shows the behavior
of the SGD algorithm associated with the presented learn-
ing rate scheduler, referred to here as the product scheduler,
as well as an exponential and a linear decay scheduler. The
exponential scheduler quickly diminishes the learning rate,
causing the SGD algorithm to become stuck in local min-
ima. The linear transition from large to lower learning rates
prevents the SGD algorithm from having sufficient time to
follow enlarged constraint gradients. It is possible that the
algorithm could be improved by using separate schedulers
for the learning rate and constraint multiplier. For instance, it
might be more effective to use a linear scheduler to decrease

https://doi.org/10.5194/wes-8-1235-2023

the learning rate and an exponential scheduler to increase the
constraint multiplier. We leave this question for future work.

The initial and final learning rates, 19 and n7, have units
of distance and correspond to the initial and final step size
of the optimization algorithm. The final learning rate can be
interpreted as the degree to which the constraints are to be
satisfied, since this will be the step size the optimization al-
gorithm uses when «; is large and the constraint gradients
overwhelm the AEP gradients. This is illustrated in the left
panel of Fig. 11, which shows the results of several SGD op-
timizations using different initial and final learning rates. On
average, there is a linear relationship between the constraint
violation of the solution and 5, where the average final con-
straint violation is approximately 2 times n7. The maximum
observed constraint violation is approximately 4 times 7. In
addition, there is a trade-off between the AEP and constraint
violation of the final solution. This trade-off is influenced by
the initial and final learning rates. It is important to tune the
initial learning rate. An initial learning rate that is too low
will result in very little exploration. Initial learning rates that
are too high will result in a rapid influx of penalty violations
that overwhelm AEP gradients throughout the optimization.
From our experiments, we found a step size of one-fifth of
the rotor diameter to produce satisfactory results, as shown
in the right panel of Fig. 11.

5 Conclusions

SGD is a promising optimization tool for wind farm design.
Instead of evaluating all anticipated atmospheric conditions
during every optimization iteration, SGD randomly samples
the defined distributions of atmospheric conditions, result-
ing in substantially reduced computational time required for
each optimization iteration. The total optimization time can
be scheduled according to a prescribed computational bud-
get. The presented formulation allows for continuous resolu-
tion of uncertain variables, eliminating the need to choose a

Wind Energ. Sci., 8, 1235-1250, 2023
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average results of the 20 initial starting conditions are connected as lines. These data are associated with 100-turbine wind farms with square
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discretization resolution of atmospheric conditions, such as
the wind speed and direction. This technique does not be-
come exponentially more expensive as a greater number of
uncertain parameters is included, allowing for consideration
of other atmospheric conditions, such as turbulence intensity,
air density, veer, and shear (Saint-Drenan et al., 2020; Duc
et al., 2019).

The presented SGD approach was shown to become more
effective than a deterministic counterpart as the number

Wind Energ. Sci., 8, 1235-1250, 2023

of wind turbines increased. SGD yielded slightly higher
AEPs than the deterministic approach in substantially re-
duced computational time. The time required to optimize
wind farm layouts can be a major bottleneck in corporate
workflows, and the time savings associated with the SGD ap-
proach allows engineers to access optimization results sooner
than a conventional approach. If the inflow conditions were
discretized using extremely small bins, or if several atmo-
spheric conditions were to be considered, we expect that the
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SGD approach would perform the optimization even faster
and more effectively than the deterministic approach.

The SGD approach is a simple framework that is well
suited to large-scale stochastic wind power plant design opti-
mization challenges. This framework is available in the open-
source TOPFARM package. Future work includes exploring
separate schedulers for the constraint multiplier and learning
rate and scheduling the number of Monte Carlo samples, K,
to change as the optimization proceeds.
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