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Abstract. We assess the performance of two control strategies on the IEA 15 MW reference floating wind
turbine through OpenFAST simulations. The multivariable feedback (MVFB) control tuned by the toolbox of the
Reference OpenSource Controller (ROSCO) is considered to be a benchmark for comparison. We then tune the
feedback gains for the multivariable control, considering two cases: with and without lidar-assisted feedforward
control. The tuning process is performed using OpenFAST simulations, considering realistic offshore turbulence
spectral parameters. We reveal that optimally tuned controls are robust to changes in turbulence parameters
caused by atmospheric stability variations. The two optimally tuned control strategies are then assessed using
the design load case 1.2 specified by the IEC 61400 standard. Compared with the baseline multivariable feedback
control, the one with optimal tuning significantly reduced the tower damage equivalent load, leading to a lifetime
extension of 19.7 years with the assumption that the lifetime fatigue is only caused by the design load case 1.2.
With the assistance of feedforward control realized using a typical four-beam lidar, compared with the optimally
tuned MVFB control, the lifetime of the tower can be further extended by 4.6 years.

1 Introduction

In recent years, more and more floating wind projects have
been emerging, such as Hywind Scotland, WindFloat At-
lantic (Portugal), Kincardine (Scotland), Hywind Tampen
(Norway), Sanxia Yinling Hao (China), and Fuyao (China).
One thing these projects have in common is that all of them
use floating offshore wind turbines (FOWTs) with rotor di-
ameters above 150 m. Similar to the bottom-fixed wind tur-
bine, using large wind turbines with a higher capacity is the
key driver in reducing the levelized cost of energy for floating
wind projects (Catapult, 2021).

Floating wind turbines have extra degrees of freedom
(DOFs) compared with bottom-fixed turbines. Both the aero-
dynamic forces from the wind and the hydrodynamic forces
from the wave can excite the structural motions of the FOWT,
resulting in fatigue loads. At the same wind speed, the rotor-
swept area of the turbine increases quadratically when the ro-
tor radius increases, and the aerodynamic thrust on the rotor
increases accordingly. As the rotor becomes larger, the iner-

tia of the FOWT system also increases, leading to a smaller
natural frequency of most structural motions (Wu and Kim,
2021). Typically, the platform of an FOWT is designed to
have a natural frequency in the platform pitch motion lower
than the range where the variation in wave height has most
of the energy. However, there are more large-scale coher-
ent variations in turbulent wind at lower-frequency ranges
(Knight and Obhrai, 2019; Bachynski and Eliassen, 2019;
Nybøet al., 2020; Guo et al., 2023; Rivera-Arreba et al.,
2022); therefore, the most important motions such as plat-
form surge and pitch are dominated by the turbulent wind
for large FOWTs. The platform pitch fore–aft motion causes
changes in the relative wind speed and imposes the tower bot-
tom bending moment. In addition, the platform surge causes
tension changes in the mooring system (Somoano et al.,
2021). Thus, the aerodynamic-driven pitch and surge mo-
tions of FOWTs are significant for mechanical loads, and
they lead to a challenging control system design (Lemmer,
2018; Lemmer et al., 2020).
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The lidar system can measure the line-of-sight (LOS) wind
speed remotely, which is the wind velocity vector projected
onto the laser beam direction. A lidar-assisted control (LAC)
system processes the LOS speed measurements and provides
a preview of the incoming turbulent wind, namely the lidar-
estimated rotor-effective wind speed (REWS), for feedfor-
ward control of wind turbines. Currently, lidar-assisted col-
lective pitch feedforward (LACPF) control has been applied
commercially for bottom-fixed turbines, and it has been re-
vealed by several authors to be able to improve rotor speed
regulation and reduce structural loads (e.g., (Bossanyi et al.,
2014; Schlipf, 2015; Lio et al., 2022; Meng et al., 2022;
Guo et al., 2023)). In terms of applying LACPF to floating
turbines, Schlipf et al. (2015) found better rotor speed reg-
ulations and lower structural loads for a floating spar-type
5.0 MW turbine. In the above-mentioned studies, the LAC
system is designed to compensate for aerodynamic torque
changes caused by wind and therefore aims to improve ro-
tor speed regulation. On the other hand, Schlipf et al. (2020)
designed a lidar-assisted pitch control algorithm that offsets
the aerodynamic thrust force variation owing to the turbu-
lent wind and that utilizes the generator torque to compensate
for the aerodynamic torque change resulting from blade pitch
actions. This algorithm improves rotor speed regulation and
reduces tower and blade fatigue loads for the DTU 10 MW
Triple Spar floating turbine (Bredmose et al., 2017), but it
requires a high level of variability in the generator torque. A
more detailed review of lidar-assisted control applications for
offshore wind turbines has been conducted by Russell et al.
(2022).

In addition, the multivariable feedback (MVFB) control is
also considered beneficial for stabilizing the fore–aft pitch
motion and reducing structural loads on FOWTs. Compared
with the conventional single-variable (generator speed) feed-
back control, variables associated with fore–aft motion, such
as tower top position (van der Veen et al., 2012), veloc-
ity (Abbas et al., 2022), or platform pitch angle (Fleming
et al., 2019), are also fed back into a multivariable feedback
control. These signals provide additional blade pitch signals
through a feedback loop that, if properly adjusted, can in-
crease the damping of the floating platform.

Currently, there is a lot of literature available on optimiz-
ing the parameters of floating wind turbine controls. Many
of these optimizations aim for control parameters that min-
imize turbine fatigue loads while staying within safe op-
erating boundaries. For example, in the studies by Sand-
ner et al. (2014), Lemmer et al. (2017), and Lemmer et al.
(2020), the reduced-order model is applied to find optimized
gains for the conventional proportional–integral (PI) control.
There are also studies that use nonlinear aeroelastic simula-
tions to find optimized parameters for a multivariable feed-
back control. For example, Zalkind et al. (2022) use the op-
timization solvers provided by the Wind Energy with Inte-
grated Servo-control (WEIS) software (https://github.com/
WISDEM/WEIS, last access: 8 August 2023) to find the

optimal control parameters for a floating wind turbine. In
terms of re-tuning and optimizing feedback gains with LAC,
Schlipf et al. (2018) used a sequential approach to improve
the benefits of LAC for onshore turbines, considering a
reduced-order nonlinear turbine model.

In this work, we perform optimizations of feedback gains
for an MVFB control and an LACPF+MVFB control using
nonlinear OpenFAST simulations. Instead of using optimiza-
tion solvers as Zalkind et al. (2022) did, our optimizations
rely on the simple brute-force algorithm. After optimizing
control parameters, the control performances are assessed
using realistic offshore turbulence characteristics and con-
sidering the variability in turbulence parameters related to
atmospheric stability conditions. The main contributions of
this work include (a) providing guidance towards the base-
line design of lidar-assisted feedforward controls for float-
ing turbines, (b) making comparisons between the MVFB
and LACPF+MVFB controls of the optimal control tun-
ing parameters, and (c) assessing the performance of the two
controls using realistic offshore turbulence characteristics. A
nomenclature of symbols used in this paper is provided in
Table 1.

The rest of this paper is structured as follows: Sect. 2 pro-
vides some background on the floating turbine model, envi-
ronment conditions, and lidar system; Sect. 3 illustrates the
design of the MVFB and LACPF+MVFB controls; Sect. 4
presents the tuning of the feedback gains; Sect. 5 assesses
the optimally tuned controls; and lastly, Sect. 6 concludes
this paper and proposes further work.

2 Background

This section provides background on the FOWT, wind and
wave conditions, and the lidar system.

2.1 Floating wind turbine model

The IEA 15 MW semi-submersible floating wind turbine,
developed collaboratively by NREL, DTU, and UMaine
(Gaertner et al., 2020), is considered in this work. This
reference floating turbine has a rotor diameter of 240 m and
a hub height of 150 m. It uses a steel semi-submersible float-
ing structure designed by UMaine (Allen et al., 2020). The
turbine model has been made openly available on the IEA
Wind Task 37 GitHub repository. The latest FOWT model
built for OpenFAST version 3.0 is used in this research
(https://github.com/IEAWindTask37/IEA-15-240-RWT/
tree/ed7e726062a1355fd0355cdb4fba739fb682ff9e last
access: 8 August 2023). A diagram of the reference turbine
and the inertial coordinate system is shown in Fig. 1. The
longitudinal direction (along the x axis) is considered the
mean wind direction. The directions of platform motions in
this work follow the right-hand rule according to the inertial
coordinate system.
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Table 1. Nomenclature.

Symbols Definitions Units

U10 min Mean wind speed at 10 m above sea level ms−1

Uhub Turbine hub-height mean wind speed ms−1

URef Mean wind speed for turbulence convection ms−1

Tp Peak wave spectral period s
Hs Spectral significant wave height m
PUhub Probability distribution of hub-height mean wind and wave conditions –
L Turbulence length scale m
0 Turbulence anisotropy –
αε2/3 Energy level constant m4/3 s−2

ζ Atmosphere stability parameter –
f Frequency Hz
γ Eddy lifetime parameter s
Psta Probability distributions of atmospheric stability –
�g Generator speed rads−1

β̇p Platform pitch rate (angular speed) rads−1

kp,float Floating feedback gain s
θfloat Blade pitch command by the floating feedback loop rad
θc,RFB Blade pitch command by the reference PI control rad
kp Proportional gain s
TI Integral time constant s
vlos,mc Motion-compensated lidar LOS speed measurement ms−1

vlos Raw lidar LOS speed measurement ms−1

vlidar Lidar translational velocity ms−1

n Unit vector aligns with the lidar beam direction -
uLL,est Lidar-estimated REWS ms−1

θ̇FF Feedforward blade pitch rate rads−1

GRL Transfer function gain –
SRL Cross-spectrum between lidar-estimated and rotor-based REWSs m2 s−2 Hz−1

SLL Auto-spectrum of lidar-estimated REWS m2 s−2 Hz−1

fcutoff Filter cutoff frequency Hz
Tbuffer Buffer time of the feedforward control s
Tlead Leading preview time or time required for turbulence convection s
Tfilter Time lag caused by filtering s
Tpitch Time lag of the blade pitch actuator s
Tlidar Lidar full-scan time s
1x Distance between the lidar-measured plane and the rotor position m
URef Mean wind speed of turbulence convection ms−1

βoa Lidar beam opening angle deg
Aeq Equivalent load amplitude Load specific
m Wöhler exponent –

2.2 Wind and wave

To assess the control performances using realistic offshore
environmental conditions, we consider the wind and wave
joint distribution, according to the study by Bachynski and
Eliassen (2019). The data were selected by Bachynski and
Eliassen (2019) according to the analysis of hindcast data by
Li et al. (2013). The selected site corresponds to site no. 14,
which is located in the North Sea and is 30 km away from
the western Norwegian coast. The water depth of this site
is 202 m, which is close to the design depth (200 m) of the
FOWT model (Allen et al., 2020). This site data are also

used by Bachynski and Eliassen (2019) to analyze the fa-
tigue loads of FOWTs. According to Li et al. (2013), the
probability distribution of the 1 h mean wind speed at 10 m
above sea level (U10 m) follows a Weibull distribution with
shape and scale parameters equivalent to 2.02 and 9.41, re-
spectively. We use these Weibull parameters and assume a
power log shear exponent of 0.14, as specified by the IEC
61400-1 (2019) standard, to obtain the probability distribu-
tion (PUhub) of turbine hub-height mean wind speed (Uhub),
which is summarized in Table 2. The second and third rows
correspond to the peak wave spectral period Tp and the spec-

https://doi.org/10.5194/wes-8-1299-2023 Wind Energ. Sci., 8, 1299–1317, 2023



1302 F. Guo and D. Schlipf: Assessing LACPF and MVFB controls

Figure 1. A diagram of the investigated IEA 15 MW reference tur-
bine equipped with a four-beam nacelle lidar system and a UMaine
semi-submersible floating platform, made using the computer-aided
design (CAD) data provided by the IEA Wind Task 37 GitHub
repository (https://github.com/IEAWindTask37, 8 August 2023).
The coordinate system follows the right-hand rule (with a unit in m)
and is applicable to the full paper. Note that the positions of the an-
chors are not true values due to the limitations of the figure frame.

tral significant wave height Hs, respectively. For a specific
mean wind speed, these are the most representative condi-
tions (Bachynski and Eliassen, 2019). The stochastic irreg-
ular waves are generated using these two wave parameters,
according to the JONSWAP spectra (IEC 61400-3, 2009).

The extended four-dimensional (4D) Mann turbulence
model (Guo et al., 2022a) is considered to model turbulent
wind fields, which considers turbulence evolution. The 4D
Mann model assumes stationary stochastic turbulence fields,
meaning that the statistics of both upstream and downstream
turbulence fields follow the statistics described by the Mann
spectral tensor (Mann, 1994). The main reason for using the
extended Mann model for the assessment in this work is that
the lidar system needs to measure at a far distance in front of
the rotor for LAC (as discussed in Sect. 3.2.2); therefore, it
is not realistic to assume Taylor’s frozen hypothesis (Taylor,
1938) with which the turbulence structures are assumed to be
unchanged when propagating from upstream to downstream
positions. More details about the 4D Mann turbulence model
can be found in the work of Guo et al. (2022a).

As studied by several authors (de Maré and Mann, 2014;
Cheynet et al., 2017; Peña, 2019; Putri et al., 2022), the tur-
bulence spectral parameters can vary from the values spec-
ified in the IEC 61400-1 (2019) standard, and they change

with atmospheric stability. Thus, we fit the Mann turbulence
parameters, length scale L and anisotropy parameter 0, ac-
cording to the spectral analysis results of offshore FINO1
site1 data provided by Cheynet et al. (2018). The fitting pro-
cess relies on minimizing the root mean square error be-
tween the FINO1 data- and the Mann-model-based spectra
(see Guo et al., 2023, for the detailed fitting process). An-
other concern with considering the offshore turbulence spec-
tral parameter is that these parameters are related to the lidar
wind preview for turbine control (Guo et al., 2023), and the
platform motion is primarily linked to the turbulence length
scale for a certain turbulence intensity (TI) level. With a
larger length scale, there are larger coherent turbulent eddies,
and they have greater potential to excite the low-frequency
platform modes more severely, resulting in higher structural
loads (Bachynski and Eliassen, 2019). The three most fre-
quent stability classes from the study by Cheynet et al. (2018)
are considered in this paper. These stability classes are char-
acterized by a stability parameter ζ related to the reference
height and Obukhov length (Obukhov, 1971). Table 3 sum-
marizes the fitted Mann parameters and the probability dis-
tribution (Cheynet et al., 2018) of the three stability classes
in each mean wind speed range. In terms of the energy level
constant αε2/3, it is scaled to follow a TI level correspond-
ing to the Class-C turbine specified by IEC 61400-1 (2019).
The equations provided by the offshore standard IEC 61400-
3 (2009) are used to calculate the standard deviations of the
wind velocity components. Figure 2 shows the fitted spectra
of longitudinal velocity components, where the fitted spectra
generally agree with the estimated spectra from the FINO1
measurement site. Note that we only consider the frequency
range with 0.001<f < 2 Hz in the fitting process and ignore
the turbulence fluctuations of lower frequencies because they
are less significant for the turbine motions and loads.

In the 4D Mann turbulence model, there is an additional
parameter that defines the severity of turbulence evolution,
namely, the eddy lifetime γ . Thus far, there has been lim-
ited literature that has studied the distribution of this param-
eter under different atmospheric stability classes in an off-
shore environment. We chose this parameter according to the
study by Guo et al. (2023), which is a summary of several
works that studied turbulence evolution by onshore measure-
ments (coastal, flat terrain). In this work, the eddy lifetimes
of unstable, neutral, and stable atmospheric conditions used
by Guo et al. (2023) are used for Stabilities 1, 2, and 3, re-
spectively, because of the high similarity of the stability pa-
rameter ζ .

To perform aeroelastic simulations using OpenFAST, we
generate turbulence boxes using the 4D Mann turbulence

1FINO1 is an offshore research platform located in the North
Sea at a water depth close to 30 m: https://www.fino1.de/de/
standort.html (last access: 8 August 2023).
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Table 2. Distributions of mean wind and wave characteristics used for aeroelastic simulations.

Uhub [ms−1] 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0

U10 m [ms−1] 2.7 4.1 5.5 6.8 8.2 9.6 11.0 12.3 13.7 15.1 16.4
Hs [m] 1.5 1.7 1.8 2.0 2.3 2.6 3.0 3.4 3.8 4.2 4.7
Tp [s] 9.3 9.5 9.6 9.8 10.0 10.3 10.5 10.7 11.0 11.3 11.6
PUhub [–] 0.056 0.076 0.088 0.092 0.087 0.077 0.064 0.050 0.037 0.026 0.017

Table 3. The Mann model parameters under different atmospheric
stability conditions fitted using the spectral analysis of FINO1 data
by Cheynet et al. (2018) and their probability distributions Psta [−]
at different mean wind speeds. The atmospheric stability is classi-
fied by the stability parameter ζ . The energy level constant αε2/3

[m4/3 s−2] is scaled to follow a TI level corresponding to the Class-
C turbine specified by IEC 61400-1 (2019).

Stability 1 Stability 2 Stability 3
ζ ∈ [−0.3, −0.1) [−0.1, 0.1) [0.1, 0.3)

L [m] 139 73 26
0 [−] 2.3 2.6 2.8
γ [s] 600 400 200

Uhub Psta αε2/3 Psta αε2/3 Psta αε2/3

4.0 0.75 0.02 0.125 0.03 0.125 0.05
6.0 0.70 0.03 0.20 0.04 0.10 0.07
8.0 0.55 0.04 0.20 0.05 0.25 0.09
10.0 0.30 0.05 0.50 0.06 0.20 0.12
12.0 0.20 0.06 0.625 0.08 0.175 0.15
14.0 0.10 0.07 0.75 0.10 0.15 0.19
16.0 0.05 0.09 0.80 0.12 0.15 0.23
18.0 0.03 0.11 0.87 0.15 0.10 0.28
20.0 0.02 0.13 0.93 0.18 0.05 0.33
22.0 0.00 0.16 1.00 0.21 0.00 0.39
24.0 0.00 0.18 1.00 0.25 0.00 0.46

generator.2 Each 4D turbulence box has dimensions of
2048×2×64×64 grid points, corresponding to the time and
the x, y, and z directions. The lengths in the y and z direc-
tions are both 288 m. Note that the original turbulence boxes
have a dimension of 128 grid points in both the y and the z
directions, but they are cropped to avoid the periodicity in-
herited from the 3D inverse Fourier transform (Mann, 1998).
The two y–z planes in the x direction are used for simulating
lidar measurements and turbine aerodynamics, respectively.
Since the total number of time steps is 2048, we chose a time
step of 0.293 s for the turbulence field, which leads to a to-
tal time length of 600 s. Note that the simulation time length
of 600 s is selected according to the IEC 61400-3-2 (2019)
standard. Similarly, the irregular waves are generated using

2The 4D Mann turbulence generator is accessible from https:
//github.com/MSCA-LIKE/4D-Mann-Turbulence-Generator (last
access: 8 August 2023).

Figure 2. The estimated spectra using FINO1 measurement data by
Cheynet et al. (2018) and the fitted Mann-model-based spectra (in-
dicated as MM fit in the legend). The spectra shown here are calcu-
lated assuming a mean wind speed of 16 ms−1. The spectra are nor-
malized to have the standard deviations correspond to TI= 12 %.

the same time step and length as the turbulent wind. Both
wind fields and waves are assumed to be periodic in time.

2.3 Lidar system

We consider a typical, commercially available four-beam
pulsed lidar configuration for this study. In practice, the
pulsed lidar system is able to provide measurements from
different range gates along the laser direction. We only con-
sider one measurement range gate in this work. As a result,
this lidar system only relies on a simple lidar data-processing
algorithm for feedforward control. Before implementing the
LAC system, the lidar measurement trajectory optimization
is presented in Sect. 3.2.2, which aims to find optimal open-
ing angles of laser beams and upstream-focused distance.

To simulate a realistic lidar system in the OpenFAST envi-
ronment, we use the lidar module-integrated OpenFAST ver-
sion 3.0, in which a realistic lidar simulation module is up-
dated by Guo et al. (2022b). The updated lidar module con-
siders realistic lidar measurement properties, including the
probe volume-averaging effect along the LOS direction, the
contribution of the nacelle movement to the LOS measure-
ment, laser beam blockage caused by turbine blade passing,
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the turbulence evolution, and the adjustable measurement
availability. Under some special weather conditions, such as
extreme fog, heavy rain, and an extremely clear sky, the lidar
system does not always provide reliable measurements due
to a low carrier-to-noise ratio caused by low backscattering.
However, in this work, we ignore the low availability caused
by special weather conditions and only consider the remain-
ing three characteristics in the simulations.

3 Control design

In this section, we first describe the MVFB control and then
discuss the design of the lidar-assisted control.

3.1 Multivariable feedback control

Apart from the generator speed �g, the MVFB control addi-
tionally feeds back the fore–aft-motion-related signals. Cur-
rently, ROSCO, developed by NREL, supports the MVFB
control for floating turbines. A detailed description and the
source code of NREL’s ROSCO can be found in the work
of Abbas et al. (2022) and NREL (2021). As suggested by
Fleming et al. (2019), the MVFB control shows a better per-
formance if the platform pitch angle is used in the floating
feedback loop. Thus, in this work, we modified the lidar-
integrated OpenFAST 3.0 and ROSCO 2.6.0 (NREL, 2021)
to be able to use the platform pitch rate β̇p for the floating
feedback loop, as shown in Fig. 3. In the floating feedback
loop, the blade pitch angle θfloat is simply determined by

θfloat = kp,floatβ̇p,BPF, (1)

where β̇p,BPF is the band-pass-filtered platform pitch rate,
and kp,float is a constant gain. Depending on the sign of the
floating feedback gain kp,float, the floating feedback loop can
compensate for the relative wind speed change caused by
platform motion or provide damping effects to the platform
pitch motion. Based on the coordinate system used in this
work, a positive gain that aims for platform damping is se-
lected. For example, a positive platform pitch motion means
that the rotor is pushed backwards, which leads to an in-
crease in blade pitch and eventually a decrease in aerody-
namic thrust on the rotor.

As for the regular collective blade pitch feedback loop, we
use the PI control already developed in ROSCO; i.e.,

θc,RFB = kp1�+
1
s

(
kp

TI
1�), (2)

where 1�=�g,LPF−�g,ref. Here, θc,RFB is the pitch com-
mand of the reference feedback-only control (without LAC),
kp is the proportional gain, TI is the integral time constant,
�g,ref is the generator speed control reference, �g,LPF is the
low-pass-filtered generator speed, and s is the complex fre-
quency.

Figure 4 shows the response of the IEA 15 MW floating
turbine to an extreme operating gust (EOG) defined by the
IEC 61400-1 (2019) standard. Here, no wave disturbance is
considered in order to emphasize the response to wind distur-
bance. The open-loop results mean that both the blade pitch
angles and the generator torque are kept constant (steady-
state value). It can be observed that the open-loop system
is stable after the EOG. However, with the baseline single-
variable (generator speed) feedback control, the system is
not stable due to the well-known “negative damping” prob-
lem of floating turbines (Jonkman, 2008; Ward et al., 2019).
The system becomes stable again by introducing the floating
feedback loop into the MVFB control.

3.2 Lidar-assisted control

3.2.1 Control implementation

The LAC system in this work is designed for feedforward
rotor speed regulation, mainly based on the work of Schlipf
(2015). An open-source LAC implementation for onshore
turbines has been developed by Guo et al. (2023). In this
open-source LAC framework, a wrapper dynamic link library
(DLL) first calls a lidar data-processing (LDP) module, then
a feedforward pitch (FFP) module, and lastly the ROSCO
module. All these modules are written following the Bladed-
style DLL data exchange interface (DNV-GL, 2016). Com-
pared with the onshore version of LAC, only two updates
have been made for the LAC of floating turbines; therefore,
we only point out the differences in this work. For a more de-
tailed description of LAC, see the work by Guo et al. (2023)
and Schlipf (2015).

First, the lidar LOS measurements are deteriorated by the
nacelle motion, and the motion is much more significant in
the coupled-frequency ranges close to the natural frequency
of the platform fore–aft pitch mode. Therefore, the LOS mea-
surement needs to be motion-compensated for floating tur-
bines (Schlipf et al., 2020). For onshore turbines, the nacelle
motion is mainly caused by excitation of the tower’s natu-
ral frequency, which lies in the frequency range above the
cutoff frequency of the low-pass filter implemented in LAC.
The amplitudes of tower top motions in the onshore cases are
smaller than those of the floating cases; therefore, it may not
be necessary to have a compensation algorithm. Oppositely,
the natural frequencies of platform modes of floating turbines
are in the low-frequency range, and they are not necessarily
or completely filtered out by a standard filter design of LAC.
If not compensated for, the contribution of nacelle motions
becomes unnecessary pitch actuation in LAC and can result
in undesired control behavior. Thus, we implement a com-
pensation algorithm assuming a perfect inertial measurement
unit (IMU); i.e.,

vlos,mc = vlos+ vlidar ·n. (3)
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Figure 3. The overall control diagram for a floating wind turbine. Note that the measured blade pitch angle (θ ) signal is also used in the
generator torque control and collective blade pitch feedback control modules (Abbas et al., 2022; NREL, 2021), but the lines are omitted.

Here, vlos is the LOS measurement at the lidar system, vlidar
is the lidar translational velocity vector provided by the IMU,
n= (cosβ cosφ,cosβ sinφ,sinβ) is a unit vector aligned
with the lidar beam direction, and vlos,mc is the LOS speed
after motion compensation. The unit vector n can simply be
calculated after knowing the azimuth angle φ and elevation
angle β of the lidar beam. We assume the positive x axis has
zero azimuth, and the positive z axis has 90◦ elevation. After
motion compensation, the identical wind field reconstruction
algorithm used by Guo et al. (2023) is applied in this work to
obtain the lidar-estimated REWS uLL,est.

Second, in the previous FFP module by Guo et al. (2023),
only a low-pass filter was applied to the lidar-estimated
REWS. In this work, a notch filter is additionally introduced
into the FFP module for the LAC of floating turbines. The
main reason for the notch filter is to avoid conflict with the
floater damping control in the MVFB control. The floater
damping is tuned to add a damping effect to the floater’s
fore–aft pitch motion by changing the rotor thrust force, but
the LAC aims to compensate for the change in aerodynamic
torque. In the above-rated operation of typical turbine rotors,
when the blade pitch is adjusted, both aerodynamic torque
and rotor thrust increase or decrease together so that only one
control objective can be achieved. Therefore, the notch filter
is designed to have a cutoff frequency of 0.029 Hz, which is

the natural frequency of the floating pitch motion. After low-
pass and notch filtering the lidar-estimated REWS, the FFP
module sends a blade pitch rate signal to the integrator of the
collective pitch control, as shown in Fig. 3. Thus, the overall
pitch command of the lidar-assisted feedforward multivari-
able feedback control becomes

θc = kp1�+
1
s

(
kp

TI
1�+ θ̇FF)+ kp,floatβ̇p,BPF. (4)

3.2.2 Lidar trajectory optimization

Due to several inherent characteristics, such as the mis-
alignment to the longitudinal direction, turbulence evolu-
tion, and non-continuously available measurements, the lidar
system does not provide a perfect estimation of the REWS
(Guo et al., 2022a). However, with a reasonable lidar data-
processing algorithm, it is able to provide a REWS that es-
timates the low-frequency variation in the actual effective
wind speed acting on the rotor well. The quality of lidar
preview can be defined by the following transfer function
(Schlipf, 2015; Simley and Pao, 2013; Guo et al., 2023):

|GRL(f )| =
|SRL(f )|
SLL(f )

, (5)

where SLL is the auto-spectrum of lidar-estimated REWS,
and SRL is the cross-spectrum between lidar-estimated and
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Figure 4. Time series of the OpenFAST simulation responses to an
extreme operating gust defined by the IEC 61400-1 (2019) standard.
The baseline FB is the single-variable (generator speed) feedback
control.

rotor-based REWSs. An analytical solution of SRL and SLL
for specific Mann turbulence parameters, turbine rotor size,
and lidar trajectory configuration has been derived by, e.g.,
Mirzaei and Mann (2016), Held and Mann (2019), and Guo
et al. (2022a, 2023). In practice, a first-order linear low-pass
filter is designed to have a cutoff frequency fcutoff, which
corresponds to the frequency where the transfer function
|GRL(f )| reaches−3 dB (Schlipf, 2015; Simley et al., 2018).
A higher value of fcutoff indicates that more frequency com-
ponents in the lidar-estimated REWS can be used for feed-
forward pitch control.

Once the cutoff frequency of the low-pass filter is deter-
mined, a buffer time Tbuffer can further be determined, which
ensures the feedforward pitch command is activated at the
proper time. Tbuffer can be calculated by (Schlipf, 2015; Guo
et al., 2023)

Tbuffer = Tlead− Tfilter− Tpitch−
1
2
Tlidar, (6)

where Tlead is the time required by turbulence fields to propa-
gate the lidar-focused position to the rotor plane (also called
leading time), Tpitch is the time delay of the pitch actuator,
Tlidar is the lidar full-scan time, and Tfilter is the time delay
caused by low-pass and notch filtering. For the four-beam
lidar considered here, Tlidar equals 1 s because each beam di-
rection takes 0.25 s to finish measurement. Tlead can be ap-
proximated by 1x/URef, where 1x is the distance between
the lidar-measured plane and the rotor position, and URef is
the mean wind speed of turbulence convection (usually as-
sumed to be Uhub). The time delays of the pitch actuator and
filter can both be calculated using the frequency responses of
their transfer functions as

Tfilter(f )=
θfilter(f )

360f
and Tpitch(f )=

θactuator(f )
360f

, (7)

where θfilter and θactuator are the lagging-phase responses of
the filters and pitch actuator transfer functions in degrees,
respectively. They are both functions of frequency, and the
values at 0.025 Hz are chosen for the IEA 15 MW turbine
because this is the critical frequency near where the rotor has
higher fluctuations. In the used ROSCO (version 2.6.0), the
pitch actuator of the 15 MW turbine is modeled as a second-
order system with a natural frequency of 0.25 Hz and a damp-
ing ratio of 0.7 (Abbas et al., 2022).

Because Stability 2 in Table 3 has a dominant probability
of occurrence, we choose its turbulence parameters and con-
sider the IEA 15 MW turbine rotor with a four-beam pulsed
lidar to calculate fcutoff under different lidar trajectory con-
figurations. The four lidar beam directions are assumed to
have an identical opening angle βoa with the negative x-axis
direction, and their projections on the y–z plane have angles
of 45, 135, 225, and 315◦ to the positive y axis. The opti-
mization variables are the opening angle of the four beams
and the focused upstream distance 1x. With the discussion
above, the lidar trajectory optimization problem can be for-
mulated as

maxβoa,1xfcutoff,s.t.|GRL(fcutoff)|

= −3,dB and Tbuffer > 0. (8)

To find an optimal trajectory defined by the opening angle
βoa and the focused distance 1x, several discrete configura-
tions are considered. For each above-rated wind speed from
12 to 24 m, we calculate fcutoff and Tbuffer, considering βoa
varying from 16 to 24◦ with a step of 2◦ and 1x varying
from 120 to 300 m with a step of 10 m. Figure 5 shows the
cutoff frequencies of low-pass filters under various lidar mea-
surement trajectories for a mean wind speed of 16 ms−1. It
can be seen that the maximum cutoff frequency for a smaller
opening angle βoa appears at a farther focused distance 1x.
The maximum cutoff frequency of different opening angles
is generally similar.

In Fig. 6, we show the cutoff frequency and buffer time as
a function of the mean wind speeds to further help us select
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Figure 5. The cutoff frequencies of low-pass filters for lidar-
assisted control under various lidar measurement trajectories, cal-
culated with a mean wind speed of 16 ms−1.

the optimal trajectory. Here, we only select the lidar trajecto-
ries that have a peak cutoff frequency in Fig. 5. In Fig. 6a, it
can be seen that the cutoff frequencies vary linearly with the
mean wind speed, and there are no observable differences in
the compared lidar trajectories. However, in Fig. 6b, there are
obvious differences in the buffer time. When the buffer time
is negative, it means that the lidar-estimated REWS is too late
in time after data processing and filtering such that it contra-
dicts the feedforward control concept; therefore, trajectories
with a negative buffer time at the above-rated wind speeds
should be avoided in principle. In the end, the trajectory with
βoa = 16◦ and 1x = 280 m is chosen as the optimal for our
analysis later in this paper.

4 Tuning of control feedback gains

In this section, we perform aeroelastic simulations with vari-
ous feedback gains to find the optimized values. The optimal
gains bring a lower tower base fore–aft bending load, do not
lead to rotor overspeed under extreme turbulence conditions,
and do not lead to a significant increase in the load on other
turbine components.

4.1 Rotor speed feedback gains

To find the optimized gains for the PI control in the above-
rated conditions, we consider the Stability 2 condition with
Uhub values varying from 10 to 24 ms−1 listed in Table 3
and perform simulations with different kp and TI values.
Although the rated wind speed of the IEA 15 MW turbine
(Gaertner et al., 2020) is 10.59 ms−1, the Uhub= 10 ms−1

condition is considered to find the initial gains for gain
scheduling. For each mean wind speed condition, the value of
kp is varied from 0.2 to 1.4 s with a step of 0.2 s, and the value
of TI is varied from 5 to 20 s with a step of 5 s. We selected
the variation ranges of these gains following the studies by
Lemmer et al. (2020) and Zalkind et al. (2022). As for the

Figure 6. The cutoff frequencies and buffer times as a function
of the mean wind speeds for several lidar measurement trajectories
whose cutoff frequencies are the highest (in Fig. 5).

step size selection, we consider the time consumption of the
simulation and make some compromises. The overall num-
ber of simulation cases and, hence, the time required, will
increase dramatically if a smaller step size is chosen. How-
ever, Fig. 7 shows that the step size we chose clearly indicates
trends in tower loads. The floating feedback loop gain kp,float
is considered to be 10 s in these simulations, which is further
optimized in the next section. Also, the feedback gains only
depend on the mean wind speed in these simulations.

For each mean wind speed with specific kp and TI values,
six independent simulations are performed that have different
random seed numbers for generating turbulence and waves.
Also, we perform simulations for design load cases (DLCs)
1.2 and 1.3 (IEC 61400-1, 2019). For each DLC with the
variations discussed above, there are 1344 simulation cases
in total. Each simulation case is executed for 700 s using the
periodic turbulence fields and waves, and the initial 100 s re-
sults are ignored.

For the results of DLC 1.2, we collect the time series and
apply the rainflow-counting method (Matsuishi and Endo,
1968) to get load amplitudes (Ai) and the numbers of cycles
(ni). After that, the equivalent load amplitude is calculated
by
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Figure 7. Comparisons of equivalent tower base fore–aft bending moment amplitudes and maximum generator speeds under different gains
of the PI control, simulated using turbulence spectral parameters from Stability 2. The dashed, dark line indicates an overspeed threshold.
Only four representative mean wind speed conditions are shown.

Aeq = (
∑

Ami ni)
1
m , (9)

according to the Palmgren–Miner linear damage hypothesis,
where m is the Wöhler exponent. In this work, m= 4 is con-
sidered for the tower and shaft loads, m= 10 is considered
for the blade loads, and m= 3 is considered for the mooring
chain loads (Barrera et al., 2020). The average value of Aeq
by six random seeds is eventually calculated and used as an
indication for selecting the optimized gains. The definition
of Aeq is that if a stress with an amplitude of Aeq is applied
to the material once, the resulting damage is equivalent to
that caused by the stochastic load. As for the results of DLC
1.3, we collect the maximum values of the results of different
seeds.

Figure 7 shows the equivalent load amplitudes of tower
base fore–aft bending moments (TwrBsMyts) and maximum
generator speeds by different PI gains under three mean wind
speeds as examples. Here, the dashed, dark line indicates an
overspeed threshold, which should be avoided during turbine
operation and is chosen to be 125 % of the rated generator
speed (Zalkind et al., 2022). In general, a higher kp results in
higher tower load amplitudes because the proportional con-
trol is more aggressive in regulating the rotor speed by ad-
justing blade pitch angles; therefore, the rotor thrust force
varies more. For a lower mean wind speed, a larger kp is re-
quired to avoid rotor speed exceeding the 125 % threshold,
which is similar to the observations by Zalkind et al. (2022).
A smaller integral time constant also results in higher loads

since the integral control is more sensitive under the same
proportional gain. It would be preferred to use a larger TI for
load reduction.

Comparing the solid and dashed lines, using LACPF con-
trol leads to lower load amplitudes and smaller maximum
values of generator speed than using the MVFB control. With
the MVFB control, it is observed that none of the gains satis-
fies the rotor speed maximum limit for a very high mean wind
speed of 24 ms−1. However, when kp = 0.4 s and TI = 15 s,
introducing the LACPF control limits the maximum genera-
tor speed within the selected threshold.

Overall, we select the gains according to the following cri-
teria: (a) the maximum rotor speed is smaller than the thresh-
old, and (b) the gains result in the smallest load amplitude,
and they satisfy (a). In the case of the MVFB control, where
(a) can not be satisfied, the gains that result in the small-
est maximum rotor speed are selected. Figure 8 shows the
selected optimal gains, the corresponding scheduled gains
by interpolation, and the baseline gain scheduling provided
by the ROSCO toolbox (https://github.com/NREL/ROSCO,
last access: 8 August 2023) (Abbas et al., 2022) developed
by NREL. Note that the blade pitch angle is used for gain
scheduling in the baseline ROSCO MVFB control, and the
mean wind speed is used for the optimally tuned MVFB and
LACPF+MVFB controls. The baseline gain scheduling is
compared with the optimal gain scheduling in Sect. 5. With
the LACPF control, it is clear that the PI control can be less
aggressive, especially in the range slightly above the rated
wind speed.
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Figure 8. The selected optimal gains and the gain scheduling curve
for the PI control are shown. The baseline tuning is provided by
the ROSCO toolbox. In the baseline ROSCO tuning, the gains are
scheduled according to the measured and low-pass-filtered blade
pitch angle. In the optimally tuned MVFB and LACPF+MVFB
controls, the gains are scheduled by the hub-height mean wind
speed.

4.2 Platform feedback gain

In this section, the floating platform pitch feedback gain is
further optimized.

We perform simulations for DLC 1.2 using the PI gains
obtained from Sect. 4.1, with kp,float ranging from 0 to 30 s
or 20 s with a step of 2 s. The kp,float values above 20 s are
not considered for very high mean wind speeds because they
result in a significantly high blade pitch rate. Here, only the
DLC cases with a mean wind speed above 10 ms−1 are con-
sidered. The Aeq, standard deviation (SD), and energy pro-
duction (EP) are calculated and then compared. Similarly to
the calculation of Aeq, the average value of standard devia-
tions and energy productions by six random seeds is com-
puted.

To clearly show the control performances of different
kp,float values, we calculate the relative change from the case
kp,float = 0 s, which means no floating feedback is consid-
ered. The considered variables are some of the most impor-

tant ones for a floating turbine, i.e., the tower base fore–aft
bending moment, the low-speed shaft torque (LSShftTq), the
blade 1 root out-of-plane bending moment (RootMyb1), the
collective blade pitch velocity (BldPitchRate), and the plat-
form fore–aft pitch motion (PtfmPitch). The blade pitch rate
is considered because it is related to the damage to the blade
pitch gear and bearing (Guo et al., 2023).

Figure 9a–d show the results simulated using the MVFB
control with optimal PI control tuning. In general, the SDs
of blade pitch rates show parabolic patterns. At the bottom
of the parabolic, the blade pitch rate is minimal, meaning the
reduction in the blade pitch activities is the best. As kp,float
increases, the tower load and platform motion generally tend
to be lower, except for the case with a mean wind speed
of 14ms−1. However, their gradients become very small for
high values of kp,float. As for the blade and shaft loads, there
are also valley points at which the kp,float values are close to
the kp,float at the trough of the blade pitch rate. Except in the
case with a mean wind speed of 14 ms−1, there is negligible
dependence of EP on different floating feedback gains.

Figure 9e–h show the results simulated using the
LACPF+MVFB control with optimal PI control tuning. In
general, the relative changes show a similar trend to that
simulated using the MVFB control. For a mean wind speed
equal to 10 ms−1, the main difference is that the trough of
the blade pitch rate appears at a smaller kp,float value in the
LACPF+MVFB control than in the MVFB control.

For both MVFB and LACPF+MVFB controls, at a mean
wind speed of 14 ms−1, it can be observed that the reduc-
tions in all variables are especially significant if the floating
feedback gain is considered. The floating feedback loop, in
particular, increases the EP in the MVFB control scenario.
The above phenomena are caused by the fact that at this
mean wind speed, instability occurs if kp,float= 0 s. For this
special case, some examples of time series from one of the
six random simulations are provided in Appendix A. In this
mean wind speed condition, the control performances of both
MVFB and LACPF+MVFB controls are better with kp,float
between 10 and 20 s. When the floating feedback gain is too
aggressive (> 25 s), the control performance reduces, which
might be caused by the fact that the fore–aft motion is more
sensitive to the blade pitch changes at this operating point.

Therefore, based on the discussions above, it is preferable
to select kp,float where all the structural loads and blade pitch
rates are small. The corresponding kp,float values fulfilling the
criteria above are those close to the trough of the blade pitch
rate. Although a very high kp,float helps to reduce the plat-
form pitch further, this is undesirable because the structure
loads can be higher or marginally reduced, while the blade
pitch rate becomes much higher. Table 4 summarizes the op-
timally selected floating gains that are scheduled as a func-
tion of the mean wind speed. In addition, the value provided
by the ROSCO toolbox (Abbas et al., 2022) is used for the
baseline control configuration.
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Figure 9. Relative changes in equivalent load amplitudes, standard deviations, and energy production under different gains of the platform
feedback loop, simulated using turbulence spectral parameters from Stability 2 on the basis of DLC 1.2. Only four representative mean wind
speed conditions are shown. (a–d) The MVFB control using optimal PI control tuning. The results are relative to the case kp,float = 0 s. (e–h)
The LACPF+MVFB control using optimal PI control tuning. The results are relative to the case kp,float = 0 s.

Table 4. The baseline and optimal (MVFB and LACPF+MVFB) floating platform feedback gains kp,float for three control configurations.

Uhub [ms−1] 4 6 8 10 12 14 16 18 20 22 24

Baseline 0 0 0 9.25 9.25 9.25 9.25 9.25 9.25 9.25 9.25
MVFB 0 0 0 24 20 12 12 10 10 10 10
LACPF+MVFB 0 0 0 10 10 10 10 10 10 10 10

5 Control assessment

In this section, we assess the performances of the three
controls: (a) the baseline MVFB control with ROSCO tun-
ing, (b) the MVFB control with optimal tuning, and (c) the
LACPF+MVFB control with optimal tuning. Three differ-
ent groups of turbulence spectral parameters representing re-
alistic offshore turbulence characteristics are considered in
the fatigue assessment of DLC 1.2, as listed in Table 3. The
spectral parameters for Stability 2 with a higher probability
are considered for maximum value evaluations of DLC 1.3.

5.1 Performance under different environmental
conditions

The maximum generator speed, platform pitch, platform
surge, and blade tip out-of-plane deflection simulated by the
three control configurations are shown in Fig. 10. These re-
sults are obtained from the DLC 1.3 simulations. Compared
with the baseline tuning of the MVFB control, the optimally
tuned MVFB control generally has a lower maximum gener-
ator speed overshoot. However, the maximum values at very

high wind speeds (> 20 ms−1) are above the defined thresh-
old (dashed, dark line). The observations here agree with the
optimizations in Fig. 7. It is also observed that the optimal
PI gains chosen to limit the generator speed generally have
lower values of the maximum platform pitch and blade de-
flection than the results of the baseline gains. As for the maxi-
mum surge, the values obtained by optimal tuning are similar
to those obtained by baseline tuning. The maximum values
obtained by introducing the LACPF control into the MVFB
control are overall similar to that resulting from the optimally
tuned MVFB control. Especially for very high wind speeds,
the maximum generator speed, platform pitch, and blade tip
out-of-plane deflection simulated using the optimally tuned
LACPF+MVFB control are slightly lower than those simu-
lated using the optimally tuned MVFB control. The generator
speed threshold is not surpassed with the assistance of lidar
systems.

Figure 11 shows the relative changes in some important
variables by optimally tuned MVFB and LACPF+MVFB
controls relative to the baseline-tuned MVFB control. As for
stability classes 1 and 3, the simulations are executed exclud-
ing the cases with mean wind seeds higher than 20 ms−1 due
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Figure 10. The maximum values of some key variables for secure operation collected from DLC 1.3, simulated using the turbulence spectra
parameters of Stability 2.

to their very low probability of occurrence. Note that the first
fairlead tension (FAIRTEN1) is selected for comparison.

Considerable load reductions are achieved in the tower,
shaft, and mooring fairlead using the optimally tuned con-
trols. However, a small increment in fairlead tension load
is observed for the optimally tuned MVFB control. Decre-
ments in platform pitch and rotor speed are also significant
with optimal tuning. On the contrary, the EPs are slightly
increased, and the increments are more observable closer to
the rated wind speed. In terms of the blade pitch activities,
the optimally tuned MVFB control gives higher blade pitch
rates, which are even doubled for very high mean wind speed
ranges.

Comparing the performances between the optimally tuned
LACPF+MVFB and MVFB controls, LACPF+MVFB
generally surpasses MVFB controls. More load reductions,
higher EP increments, and lower blade pitch consumption
are observed in the LACPF+MVFB control. Although the
LACPF control module is designed using the turbulence
spectra parameters from Stability 2, these benefits are gener-
ally observed in other stability conditions as well. In particu-
lar, the tower load at the LACPF+MVFB control is slightly
higher than at the MVFB control in Stability 3 but only at
very high wind speeds, where the probability of Stability
3 is much lower than that of Stability 2. Also, using the
LACPF+MVFB control clearly reduces the blade pitch rate
SD close to the rated mean wind speed. In addition, the in-
crement in blade pitch rate by the LACPF+MVFB control
is much lower than that by the MVFB-only control.

5.2 Evaluating lifetime performance

For a clearer indication of the control performances, we cal-
culate the lifetime damage equivalent load (DEL) and annual
energy production (AEP) as

DEL= (
∑
i

∑
j

Ameq,ij ·
N10 min

Nref
·PUhub,i ·Psta,j )

1
m , (10)

and

AEP=
∑
i

∑
j

EPij ·
N10 min

20
·PUhub,i ·Psta,j . (11)

Here, i and j are index numbers for mean wind speeds and
stability classes. The numberN10 min = 8765.8·6 is the num-
ber of 10 min durations per year, and Nref is a reference cy-
cle number chosen to be 26 (Schlipf, 2015). The designed
turbine lifetime is considered to be 20 years.

When comparing different DELs, it is convenient to use
the extended lifetime (EL),

EL= 20

((
DELi
DELj

)−m
− 1

)
, (12)

where i and j are the indexes of different controls. Here, we
use a definition that is slightly different from the existing lit-
erature, e.g., the study by Simley et al. (2020). In the work by

Simley et al. (2020), the term
(

DELi
DELj

)−m
, which is the ratio

of lifetimes between two controls, is considered to quantify
the benefits of the LAC system.

Table 5 summarizes the DEL, EL, and AEP of the three
controls. Here, it is assumed that the lifetime fatigue loads
only result from DLC 1.2. Note that the EL and the rela-
tive change are both calculated relative to the baseline MVFB
control. In comparison with the baseline control, with the op-
timally tuned MVFB control, the DEL of the tower is obvi-
ously reduced, leading to an extended lifetime of 19.7 years.
In addition, the loads on the shaft and fairlead are slightly
reduced. However, the blade root load is clearly increased;
therefore, the lifetime is reduced by 3.3 years. In terms of the
AEP, there is a slight increment of about 0.28 %. Introduc-
ing feedforward control supported by lidar further improves
the overall control performance. With the LACPF+MVFB
control, the further reduction in the tower base load corre-
sponds to a lifetime extension of 4.6 years. Also, the shaft
and blade root loads are reduced slightly. As a consequence,
the negative impact of the optimally tuned MVFB control on
the blade root load is avoided. The AEP increment under the
LACPF+MVFB control is also slightly higher than that un-
der the MVFB-only control. Furthermore, using the LACPF
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Figure 11. Relative changes in equivalent load amplitudes, standard deviations, and energy productions under different mean wind speeds ob-
tained from the DLC 1.2 simulations. The relative changes are calculated using the results of the optimally tuned MVFB and LACPF+MVFB
controls relative to those of the MVFB control with baseline tuning.

Table 5. The DEL (in MNm unless specified), EL (in years), and AEP (in MWh) in the three control configurations.

Controls TwrBsMyt LSShftTq RootMyb1 FAIRTEN1 AEP Relative
DEL EL DEL EL DEL EL DEL [MN] EL MWh change [%]

MVFB baseline 409.17 3.79 53.80 1.14 63 708.09
MVFB opt. tuned 344.70 19.71 3.77 0.55 54.79 −3.34 1.12 0.69 63 885.69 0.28
LACPF+MVFB opt. tuned 335.32 24.34 3.70 2.02 52.88 3.75 1.06 4.40 63 936.13 0.36

control results in a clear load reduction in the fairlead of the
mooring system.

6 Conclusions

This paper assesses lidar-assisted collective pitch feedfor-
ward (LACPF) and multivariable feedback (MVFB) controls
for the IEA 15.0 MW reference turbine. The main contribu-
tions of this work include the following: (a) optimizing a
four-beam pulsed lidar for controlling a large floating tur-
bine, (b) optimal tuning of speed regulation gains and plat-
form feedback gains for the MVFB and LACPF+MVFB
controls; and (c) assessing the benefits of the two control
strategies using realistic offshore turbulence spectral charac-
teristics.

The IEC 61400-3 (2009) standard for offshore turbine de-
sign does not specify turbulence spectral parameters for off-
shore conditions. The typical parameter listed in IEC 61400-
1 (2019) tends to underestimate the occurrence of large-scale
coherent turbulent eddies. In the time domain, these eddies
are reflected as low-frequency and spatially correlated tur-

bulence. We define realistic turbulence parameters represen-
tative of an offshore site based on the literature, which are
further used for load and extreme-value assessments.

A four-beam, single-range pulsed lidar is optimized for
control. For the large-rotor floating turbine, it is found that
a lidar focusing on a further distance can estimate the rotor-
effective wind speed better. A notch filter is necessary for
floating turbines to avoid conflict between the LACPF con-
trol and the MVFB control. Because of the notch filter, ad-
ditional time delays are introduced by the filtering. A fur-
ther focusing distance for the lidar system helps to avoid the
LACPF command reacting too late.

The speed-regulating proportional–integral controls are
re-tuned, aiming to minimize the tower loads and to avoid
overspeed. When tuning with LACPF, the optimal values for
the proportional gains are found to be lower than those tuned
without LACPF. In very high wind speed ranges, the tuning
results with or without LACPF are similar. The optimal inte-
gral time constants are found to be generally similar, whether
considering LACPF or not. The floating feedback gains are
also optimized. The optimal values are found to be close to
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the valley where the blade pitch rates are the lowest. After the
valley, increasing the floating feedback gains has marginal
reductions in tower load but amplifies the blade pitch actions
significantly.

The control performances of the optimally tuned controls
are assessed and compared with those of a baseline control
provided by NREL’s Reference OpenSource Controller tool-
box. It is observed that the re-tuning of the gains clearly
reduces the maximum generator speed, while with the opti-
mally tuned MVFB control, there are still some overshoots of
the generator speed that are higher than the selected thresh-
old (125 % of the rated speed) when the mean wind speed
is higher than 20 m s−1. The overspeed is not present in the
simulation results using the LACPF+MVFB control. Sig-
nificant reductions in the maximum values of the blade tip
deflection and platform pitch are observed using the opti-
mally tuned MVFB and LACPF+MVFB controls as well.
In terms of the fatigue load resulting from DLC 1.2, the most
significant improvement from re-tuning the feedback loops
with the MVFB control is the extension of the tower life-
times by 19.7 years. If a lidar-assisted control system is de-
ployed, the tower lifetime can be extended by 24.3 years, and
the fairlead lifetime can be 4.4 years longer. There are also
extensions of shaft and blade lifetimes of 2.0 and 3.8 years,
respectively.

For both MVFB and LACPF+MVFB controls, there is
clearly an increase in blade pitch activities at very high wind
speeds, which can potentially cause more damage to the gear
and bearing of the pitch actuator. For the LACPF+MVFB
control, there are decrements in the pitch activities close
to the rated wind speed. Because the mean wind speed
has a higher probability here, it could be possible that the
LACPF+MVFB control overall does not cause more dam-
age to the pitch actuator. However, a more detailed assess-
ment can be made by more complete modeling of the pitch
actuator damage. In addition, the fatigue analysis of the
mooring system can be further extended. The potential of
LACPF to reduce the load in mooring systems can further
be explored by other feedforward control strategies.

Appendix A

An example time series of the OpenFAST simulations is
shown in Fig. A1. For the three control configurations, the
results are simulated using the turbulence fields generated by
the identical random seed. Figure A1a shows the raw line-
of-sight measurement provided by the LidarSim module.
The measurements are performed at different beam direc-
tions; therefore, there are considerable high-frequency fluc-
tuations caused by the uncorrelated high-frequency compo-
nents in the turbulence field. The missing and unconnected
points are unavailable line-of-sight measurements due to
blade blockage. Figure A1b shows the lidar-estimated and
filtered REWS, which is the coherent low-frequency compo-
nent in the turbulence.
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Figure A1. Example time series of the OpenFAST simulations, simulated with a mean wind speed of 12 ms−1.

Code availability. OpenFAST version 3.0 with
an integrated lidar simulator can be accessed via
https://doi.org/10.5281/zenodo.7594971 (fengguoFUAS,
2023a). The 4D Mann turbulence generator can be found at
https://doi.org/10.5281/zenodo.7594951 (fengguoFUAS, 2023b).
The source codes of the wrapper DLL, baseline lidar data pro-
cessing DLL, pitch feedforward DLL, and modified ROSCO DLL
are all available from https://doi.org/10.5281/zenodo.7594961
(fengguoFUAS, 2023c).

Data availability. The turbine data used for this research are avail-
able from https://doi.org/10.5281/zenodo.8070464 (Barter et al.,
2023). Simulation data of this paper are available upon request from
the corresponding author.
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