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Abstract. Layout design and wake steering through wind plant control are important and complex components
in the design and operation of modern wind power plants. They are currently optimized separately, but with
more and more computational and experimental studies demonstrating the gains possible through wake steering,
there is a growing need from industry and regulating bodies to combine the layout and control optimization
in a co-design process. However, combining these two optimization problems is currently infeasible due to
the excessive number of design variables and large solution space. In this article, we present a method that
enables the coupled optimization of wind power plant layout and wake steering with no additional computational
expense than a traditional layout optimization. We developed a geometric relationship between wind turbines to
find an approximate optimal yaw angle, bypassing the need for either a nested or coupled wind plant control
optimization. It also provides a significant and immediate improvement to wind power plant design by enabling
the co-design of turbine layout and yaw control for wake steering. A small co-designed plant shown in this article
produces 0.8 % more energy than its sequentially designed counterpart. This additional energy production comes
with no additional infrastructure, turbine hardware, or control software; it is simply the outcome of optimizing
the turbine layout and yaw control together, resulting in millions of dollars of additional revenue for the wind
power plants of the future.
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1 Introduction

Optimizing the layout of wind turbines within a wind power
plant is a highly complex problem wherein the wind plant

developer must weigh numerous competing goals and con-
straints against each other. One common objective is max-
imizing the expected energy production of the plant while
minimizing the cost to build. The problem also includes con-
straints on layouts, which could include specified bound-
aries, wind turbine spacing requirements, grids or other lay-
out regularity, setback from shipping lanes or structures, and
seafloor- or terrain-based constraints.

Predicting the impact of wind turbine wakes on total wind
plant production plays a key role in wind plant design. Within
a wind plant, wind turbines interact with each other through
the wakes that they produce while extracting energy from
the passing flow (Sanderse et al., 2011). These wakes have
reduced wind speed, which limits the energy that is avail-
able to downstream turbines in the plant; additionally, these
wakes have higher turbulence than the ambient flow, which
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increases loads and is detrimental to structural reliability.
Negative wake impacts can be mitigated in a wind plant’s
design phase as well as during plant operation.

The primary way to minimize wake interactions during
the plant design stage is through wind turbine layout opti-
mization, often referred to as micrositing, which is an impor-
tant step for both offshore and land-based wind power plants
(Hou et al., 2019; Balasubramanian et al., 2020). Through
layout optimization, wake interactions can be minimized for
the wind resource, atmospheric conditions, turbine design,
and constraints unique to a specific site. As mentioned ear-
lier, wind plant layout optimization is notoriously challeng-
ing because of the large number of interacting variables as
well as the complexity of the required models and design
space.

During operation, wind power plant control can be used
to reduce wake interactions. One plant-level control strat-
egy is yaw misalignment for wake steering. A wind turbine
whose yaw angle is misaligned with the incoming wind will
produce a wake that is deflected compared to an unyawed
turbine. This phenomenon can be exploited to intentionally
steer wakes away from downstream turbines in the wind
plant. Although a wind turbine with some yaw misalign-
ment to the incoming wind will suffer reduced power pro-
duction and increased loading, wake steering can result in a
net improvement for the entire plant. This improvement has
been demonstrated with several different fidelities of wind
plant simulations (Jiménez et al., 2010; Gebraad et al., 2017;
Martínez-Tossas et al., 2021) as well as with wind tunnel
experiments (Campagnolo et al., 2020). Because of these
promising simulations and experiments, wake steering is be-
ing adopted more frequently at existing sites. For example,
there have now been several demonstrations of wake steer-
ing implemented at commercial wind power plants (Fleming
et al., 2017, 2019, 2020; Simley et al., 2021; Howland et al.,
2022). There have also been several announcements of com-
mercial implementations of wind plant control, provided by
either the wind turbine original equipment manufacturers or
consultants.

An enormous opportunity for improved wind plant per-
formance presents itself by simultaneously optimizing wind
plant layout and turbine yaw angles. Generally, this process
is called control co-design, which means accounting for as-
pects of system control throughout the entire design process
(Garcia-Sanz, 2019). Specifically, control co-design can be
leveraged to maximize the capture of spatially varying wind
resources, such as offshore sites with wind speed correlated
to the distance from shore or complex terrain where higher
wind speeds can exist on higher-elevation topologies. Con-
trol co-design would allow for operational wake loss mitiga-
tion to be considered during the layout optimization. Con-
trol co-design can also make better use of the available space
in lease areas where lease fees are significant, or reduce in-
stallation costs by condensing wind turbines into shallower
offshore regions. Coupled with other design parameters and

constraints, the possible benefits of control co-design are nu-
merous.

Currently, the possibility of control co-design is severely
limited in wind plants by the large number of design vari-
ables required to fully couple wind plant layout and yaw con-
trol optimization. In its most basic form, optimizing wind
plant layout and yaw angles requires two design variables
for every wind turbine (one for both the x and y coordi-
nate) and one design variable per turbine per wind speed and
wind direction combination for the yaw angles. This rela-
tionship means that the computational expense required to
run the fully coupled optimization scales very poorly as the
number of turbines increases, a challenge often called the
“curse of dimensionality.” For an average-sized wind plant
(∼ tens of turbines), the fully coupled problem can easily
reach thousands or tens of thousands of coupled design vari-
ables. Figure 1 shows the wall time required to run a fully
coupled layout and yaw control optimization versus the num-
ber of wind turbines. These optimizations were run with
the gradient-based Sparse Nonlinear OPTimizer (SNOPT)
(Gill et al., 2005, 2018) within the pyOptSparse optimization
framework (Wu et al., 2020) with finite-difference gradients.
The objective was maximizing plant energy production mod-
eled with FLOw Redirection and Induction in Steady State
(FLORIS) (National Renewable Energy Laboratory, 2022), a
control-focused wind plant simulation piece of software in-
corporating steady-state engineering wake models with wake
deflection modeling capabilities. These optimizations were
run on a single core with no parallelization on the high-
performance computer at the National Renewable Energy
Laboratory. The CPU used was a Dual Intel Xeon Gold Sky-
lake 6154 (3.0 GHz, 18-core) processor. This figure high-
lights two characteristics of this problem. First, the time to
optimize scales nonlinearly with the number of turbines. Sec-
ond, even with the small wind plants optimized in the cre-
ation of this figure, the wall time for the fully coupled prob-
lem is far too long for most applications. While the absolute
value of this metric could be reduced through advanced com-
puting capabilities and finely tuned optimizer settings, the
principle remains that the fully coupled optimization prob-
lem is computationally expensive, especially for large wind
plants.

In practice, this description of the scaling issue of the
fully coupled optimization understates the problem, as real-
world wind plant design must include many design con-
straints, some of which were already mentioned. Addition-
ally, in practice, wind plant layout optimization is often per-
formed over an already-existing developer-specific software
tool set, making co-design of the layout and yaw control even
more prohibitive because practical implementation requires
a control optimization nested within the existing plant opti-
mization.

In this article, we present a novel method to determine yaw
angles for wake steering that enables layout and yaw control
co-design with no increase in computational expense com-
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Figure 1. The time to solve the coupled wind turbine layout
and yaw control optimization problem as a function of the num-
ber of wind turbines. These optimizations were performed with
the gradient-based Sparse Nonlinear OPTimizer (SNOPT), using
24 wind direction bins and 1 wind speed bin for each wind direc-
tion. The three points represent the fully coupled optimizations that
we ran (with 4, 9, and 16 wind turbines), while the line shows an
exponential fit to the three points. The 4-turbine optimization fully
converged, but the 9- and 16-turbine optimizations finished with nu-
merical difficulties due to the complexity of the optimization prob-
lem.

pared to the layout-only optimization. This new method is
to define wind turbine yaw angles deterministically from the
layout of a wind plant, meaning that yaw control can be con-
sidered during layout optimization with no additional design
variables. This coupled, efficient optimization is frequently
being requested by industry and is extremely relevant for
the next generation of offshore and land-based wind power
plants that are looking to maximize the wind generation in a
limited space. Expensive and limited lease areas (Friedman,
2022), increasingly strict siting regulations (Mai et al., 2021),
and improved technology enabling larger turbines (Enevold-
sen and Xydis, 2019) will drive the wind plants of the future
to have turbines packed close together relative to the rotor di-
ameter, a situation where wake steering is particularly effec-
tive. A small example plant with 16 turbines presented in this
article produced 0.8 % more energy when the layout and yaw
angles were optimized together than when the layout and
yaw angles were optimized sequentially. To put this in per-
spective, 1 MW of wind capacity generates annual revenue
on the order of USD 100 000. Therefore, a 0.8 % increase in
performance equates to an additional USD 800 per MW or
USD 800 000 per gigawatt each year.

2 Geometric yaw relationship

When optimizing the yaw offset angles in a wind plant, there
are many different combinations of turbine yaw angles that
result in almost identical plant performance. We determined
that a sufficiently optimal yaw angle for any individual wind
turbine can be calculated as a function of the streamwise and
cross-stream distance to its nearest downstream waked tur-

bine, as shown in Fig. 2a and b. Figure 2a shows a group
of five turbines with the wind coming from the left. To deter-
mine the yaw angle of the yellow turbine using our geometric
yaw relationship, it is necessary to calculate the streamwise
distance (dx) and the cross-stream distance (dy) to the near-
est waked turbine shown in purple. The black circles repre-
sent the other wind turbines in this cluster. Notice that there
are two turbines closer to the yellow turbine, but these are not
waked and therefore do not affect the yaw angle of the yellow
turbine. To determine if a turbine was waked, we assumed a
wake radius of rwake = 0.1x+ rturbine, where rwake is the ra-
dius of the wake, x is the streamwise distance downstream
of the waking turbine, and rturbine is the radius of the waking
turbine (Jensen, 1983). As is demonstrated in the following
paragraphs, this definition of the wake radius is sufficiently
wide to explain the development of our geometric yaw re-
lationship. Figure 2b shows the same group of five turbines
but with the wind coming from the upper left corner. For this
wind direction, the nearest waked turbine is different than in
Fig. 2a.

To understand the relationship between optimal wind tur-
bine yaw angles and their position relative to the nearest
downstream waked turbine, we optimized the yaw for many
different wind plants, including randomly generated layouts
with different numbers of turbines, average turbine spacings,
and wind speeds, as well as regular grid layouts with dif-
ferent numbers of rows and columns, turbine spacings, grid
rotations, and wind speeds. As with the fully coupled opti-
mizations discussed previously, these yaw angles were opti-
mized with the gradient-based Sparse Nonlinear OPTimizer
(SNOPT) within the pyOptSparse optimization framework
(Wu et al., 2020). The objective was maximizing plant power
modeled with FLORIS. For these yaw optimizations, we
again used finite-difference gradients, bounds between −30
and 30◦ for turbine yaw angles, and default convergence set-
tings. For additional information regarding these optimiza-
tions, please see the run scripts in the code referenced at
the end of this paper. The result was over 100 000 optimized
wind turbine yaw angles.

Figure 2c shows the yaw angles we optimized as a func-
tion of the position of the yawed turbine relative to its nearest
downstream waked turbine, normalized by the turbine rotor
diameter. A single point in this figure represents the yaw an-
gle of a single turbine, represented by the color, as a func-
tion of the distance to the nearest downstream waked turbine,
which is indicated by the point’s position on the plot. A clear
pattern emerges from Fig. 2c. There is a divide between posi-
tive and negative yaw angles depending on whether the cross-
stream distance to the nearest waked wind turbine is positive
or negative. Additionally, we can see that the turbine is only
yawed if the cross-stream distance to the nearest downstream
waked turbine is around 1 rotor diameter or less. Outside of
that range, the upstream turbine has an optimized yaw angle
near zero. As can be seen by the handful of orange and pur-
ple points beyond the 1-rotor-diameter threshold, there are a
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few exceptions to this observation. However, the rule seems
to apply most of the time. Observing this pattern, we cre-
ated the geometric yaw relationship shown in Fig. 2d, which
can be used to instantly determine a near-optimal yaw an-
gle for a wind turbine as a function of its location relative
to the turbines around it. The specific relationship is a one-
dimensional gradient starting at the upstream turbine with a
value of 30◦ and linearly decreasing to 0◦ at 25 rotor diame-
ters downstream. The sign of the yaw angle is determined by
the lateral placement of the downstream turbine, as shown in
Fig. 2d.

As explained, the relationship shown in Fig. 2d was man-
ually constructed simply by observing the pattern appar-
ent from the continuously optimized yaw angles shown in
Fig. 2c. This is an intentionally simple approach to define
a relationship between relative turbine locations and quasi-
optimal turbine yaw angles. This paper is intended to demon-
strate the concept that yaw angles can be implicitly defined
from the turbine layout such that wake steering can be con-
sidered during layout optimization and not to claim that this
specific geometric yaw relationship is the best relationship
possible. We expect and hope that this concept will be ex-
panded to include additional dimensions and more sophis-
ticated methods to determine the turbine yaw angles. Addi-
tionally we expect future work to expand upon this geometric
yaw relationship to include other operational scenarios, such
as other forms of control, or scenarios where a wind plant op-
erates with advanced control strategies for only a portion of
the time. The important message is that even with the simple
relationship that we introduce, significant gains are already
achieved compared to optimizing layout and yaw control se-
quentially, as explained in the following section.

Please also note that in this paper, we optimized wind
plants solely for the benefit of power production objectives
and have ignored any impacts layout optimization and active
wake steering may have on turbine loads. There is increas-
ing interest in including loading impacts in the optimization
(Navalkar et al., 2023). We expect that a similar geometric
yaw relationship to the one we present here could be used in
such an optimization that also considers turbine loading. Fig-
ure 2c shows the data points used to manually create the ge-
ometric yaw relationship used in this paper. The yaw angles
shown in this plot were all optimized to maximize power.
In order to include turbine loads or any other consideration,
these data used to intuit or train the geometric relationship
would just need to be optimized for the desired objective in-
stead of maximizing power as we have done.

3 Results

In this section, we present two examples of implementations
of geometric yaw in the wind plant layout optimization prob-
lem. Like many other scenarios, the scenarios presented in
this article perform better and look significantly different

when the layout and yaw control are optimized together. Ad-
ditionally, the use of our geometric yaw relationship during
turbine layout optimization allowed these examples to be run
on a laptop on a single processor, which is infeasible with
existing methods.

For each example in this section we used the SciPy (Virta-
nen et al., 2020) SLSQP gradient-based optimizer within the
pyOptSparse optimization framework with finite-difference
gradients and default optimizer settings. All optimizations
converged within the default convergence tolerance of 1×
10−6. Please refer to our code referenced at the end of this
paper to see the exact implementation and objective func-
tions, including scaling. To model the plant performance, we
used the Gauss–curl hybrid model in FLORIS version 3.1.

For both of the examples, we compare two different wind
plant layouts and how they perform. The first is a layout
that was optimized assuming no yaw control. After the lay-
out was optimized, the wind turbine locations were fixed and
the yaw angles were optimized continuously to determine the
final plant performance. The second layout was optimized
using our geometric yaw relationship to define the yaw an-
gles during the layout optimization. After the layout was
optimized and fixed, one final continuous yaw optimization
was performed to determine the final yaw angles and plant
performance. With the geometric yaw relationship shown in
Fig. 2d, the purpose is to sufficiently account for yaw control
during the layout optimization to affect the optimal turbine
locations. Continuously optimizing the yaw angles for wake
steering outperforms those predicted by the geometric yaw
model, so at least with this specific relationship the final con-
tinuous yaw optimization was necessary after the layout was
fixed. Perhaps an improved geometric yaw relationship could
remove the necessity of this last yaw angle optimization.

3.1 One-dimensional plant

The first example we present is a simple one-dimensional
wind plant. Although this problem would not occur in the
real world, it is valuable to demonstrate the power of cou-
pled layout and yaw optimization. In this example, 16 tur-
bines were arranged in a straight line with constant wind in
line with the row of turbines. The objective was to maxi-
mize the power density of the array, which was defined as
the total power divided by the length of the row of turbines.
The spacing between each adjacent turbine was assumed to
be equal, meaning there was one design variable in the op-
timization. To avoid convergence to local minima and lend
confidence that our solution was close to the global opti-
mum, we repeated the layout optimization 50 times with a
randomly initialized starting spacing between 3 and 8 rotor
diameters. We performed these 50 optimizations both for the
layout-only optimization and layout optimization using the
geometric yaw relationship. Figure 3 shows the results of this
optimization. Figure 3a.i and a.ii show the layout that was
optimized assuming no yaw control, whereas Fig. 3b.i and
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Figure 2. A description of the geometric yaw relationship presented in this article. Panels (a) and (b) show how the streamwise (dx) and
cross-stream (dy) distances to the nearest downstream waked wind turbine are defined for two different wind directions. Panel (c) shows
the optimized yaw angles for over 100 000 individual turbines optimized continuously in a variety of wind plants with different numbers of
turbines, layouts, turbine spacing, and wind speeds. These yaw angles are shown as a function of the streamwise and cross-stream distance
to the nearest downstream waked turbine of the yawed turbine. Panel (d) shows the geometric yaw relationship that we defined by observing
the pattern that emerges in (c), which can be used to immediately determine a near-optimal yaw angle of any turbine in a wind power plant.

b.ii show the layout that was optimized using the geomet-
ric yaw relationship. Figure 3a.i and b.i show the plant and
performance for each optimized layout without yaw control.
Figure 3a.ii and b.ii show these same layouts but with the
final optimized yaw angles.

This example clearly demonstrates two important prin-
ciples. First, the layout optimized without wake steering,
which has the wind turbines spaced relatively far apart
(Fig. 3a.i and a.ii), is very different than the layout optimized
with wake steering, which has the turbines much closer to-
gether (Fig. 3b.i and b.ii). It is evident that the difference
between the layouts is significant, indicating that including
wake steering during the layout optimization can lead to a
different solution. Second, the layout optimized with geo-
metric yaw outperforms the layout optimized without geo-
metric yaw by 6.5 % when the plant is operated with wake
steering (Fig. 3b.ii compared to Fig. 3a.ii). However, when
the plant is operated without yaw control, the layout op-
timized without geometric yaw outperforms the one opti-
mized with geometric yaw by 3.7 % (Fig. 3a.i compared to
Fig. 3b.i). From this observation, we can conclude that the
layout should be optimized with the yaw control scheme that

will be used during plant operation. Plants that will be oper-
ated with wake steering will benefit greatly from optimizing
the wind turbine layout with geometric yaw.

Figure 4 shows the computational expense to run each of
the 50 randomly initialized optimizations with and without
geometric yaw. As seen in this figure, all of these optimiza-
tions required comparable function calls and wall times, re-
gardless of whether geometric yaw was used or not. In to-
tal, all 50 optimizations without geometric yaw converged
in 937 function calls and 189 s, while those with geometric
yaw converged in 949 function calls and 187 s, demonstrating
that our geometric yaw method does not introduce additional
computational expense.

3.2 Gaussian hill spatially varying inflow

The second example is a more realistic two-dimensional lay-
out optimization with a full distribution of wind directions
and spatially varying free-stream wind speeds across the do-
main. In this example, we optimized the layout of a wind
plant with 16 turbines, with the objective to maximize the an-
nual energy production of the plant. The turbines were con-
strained within a 2-by-2 km square and had a minimum spac-
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Figure 3. A simple one-dimensional optimization of a 16-turbine wind power plant comparing the performance of the layout optimized
without yaw control and the layout optimized with geometric yaw. Panels (a.i) and (a.ii) show the layout that was optimized assuming no
yaw control. Panels (b.i) and (b.ii) show the layout that was optimized using the geometric yaw relationship. Panels (a.i) and (b.i) show the
plant and performance for each optimized layout without yaw control. Panels (a.ii) and (b.ii) show these same layouts but with the final
optimized yaw angles.

Figure 4. Histograms showing two computational expense metrics associated with running the one-dimensional layout optimizations shown
in Fig. 3. Panel (a) shows the number of function calls to convergence, while panel (b) shows the wall time. The purple histograms represent
the layout-only optimizations, while the orange ones represent those with geometric yaw.

ing constraint of 2 wind turbine rotor diameters. We used a
bimodal wind rose shown in Fig. 5a divided into 72 discrete
bins. From each wind direction we assumed a constant wind
speed (indicated by the color bar in Fig. 5a). In addition to
the full wind rose, we assumed there was a spatially varying
wind speed throughout the domain for each wind direction.
This spatial wind speed variation was modeled by applying
a Gaussian wind speed multiplier to the domain with a stan-
dard deviation of 600 m in each direction, which provided a
maximum wind speed increase in the wind speed multiplier
of 0.4 at the origin. This wind speed variation was meant to
approximately simulate the spatial variation in wind speeds
caused by a hill, including the speedup and wind shadow re-
gions, so we also applied a penalty behind the hill to capture
the wind shadow. For the penalty, we applied a second Gaus-
sian distribution 400 m directly behind the origin in line with
the wind direction. This negative Gaussian distribution again
had a standard deviation of 600 m and provided a maximum
decrease in the wind speed multiplier of 0.2. The interaction

of these two Gaussian distributions is a maximum wind speed
multiplier of about 1.25 and a minimum that is slightly less
than 1.0. The resulting wind speed multiplier distribution for
wind coming directly from the left is shown in Fig. 5b (note
that this figure only shows the speedup/slowdown for one di-
rection; the location of the highest speedup and wind shadow
change with the wind direction).

With the scenario fully defined, we optimized the plant
layout both while assuming no yaw control and while using
the geometric yaw relationship. Because of the large number
of local minima known to exist in the wind plant layout opti-
mization problem, and because gradient-based optimizers are
known to converge to local minima without full exploration
of the design space, we repeated each optimization 50 times
with randomly initialized design variables. This process was
as follows:

1. Randomly initialize a starting turbine layout.
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Figure 5. A wind turbine layout optimization of a 16-turbine wind power plant comparing the performance of the layout optimized without
yaw control and with geometric yaw. In this figure, there is a spatially varying wind speed multiplier applied over the domain. Panel (a)
shows the wind probability rose used in this optimization. The wind directions were divided into 72 5◦ bins, with directionally averaged
wind speeds indicated by the color bar. Panel (b) shows the Gaussian wind speed multiplier applied to the domain for one wind direction
(from the left). In our simulation, the wind shadow is rotated behind the Gaussian peak for each wind direction. Panels (c) and (d) show the
optimal wind turbine layouts and optimal turbine yaw angles and flow fields for the dominant wind direction. Panel (c) shows the layout
optimized without yaw, and panel (d) shows the layout optimized with geometric yaw.

2. Perform the layout optimization twice from the starting
layout in step 1, once with no yaw control and once with
yaw control using the geometric yaw relationship.

3. Repeat steps 1 and 2 for a total of 50 different starting
layouts.

Optimizing each of the starting layouts with and without
yaw control removed the possibility that differences in the
optimized layouts and performances were due to different
starting conditions. The best-performing layout from each
method was selected as the final plant layout, to which we
performed one final yaw control optimization to evaluate the
final plant performance. With existing methods, this coupled
wind turbine layout and yaw angle optimization problem
would have needed 1184 fully coupled design variables, in-
cluding 2 for each wind turbine to define the locations and 1
for each of the 72 wind directions to define the yaw angles.
With our geometric yaw relationship we reduced that down
to just 32 variables, the N×2 required for each turbine to de-
fine the layout, which allowed us to perform the optimization
on our local machine with finite-difference gradients.

The layout optimized with geometric yaw produced 0.8 %
higher annual energy production than the layout optimized
without yaw. As previously discussed, because wind power
plants are enormous investments, a performance gain of
around 0.8 % can easily equate to hundreds of thousands or
millions of dollars annually depending on the plant capacity.
This particular performance improvement is even more im-
pressive in that it does not require any additional components
or technology: it simply involves placing the wind turbines
in better locations that were not found before this geomet-
ric yaw relationship. The optimized turbine locations and the
associated yaw angles and flow field for the dominant wind
direction are shown in Fig. 5c and d. Figure 5c shows the
layout that was optimized without turbine yaw, and Fig. 5d
shows the layout that was optimized with the geometric yaw
relationship. In these figures, the wind plant boundary is rep-
resented by the orange squares, which appear rotated because
the dominant wind direction is from 260◦, and the wind in
this image is coming from the left. Notice the extremely dif-
ferent layouts obtained with the two different optimization
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Figure 6. Histograms showing two computational expense metrics associated with running the layout optimizations with the Gaussian wind
speed multiplier shown in Fig. 3. Panel (a) shows the number of function calls to convergence, while panel (b) shows the wall time. The
purple histograms represent the layout-only optimizations, while the orange ones represent those with geometric yaw.

methods. Because the layout in Fig. 5d was optimized with
geometric yaw, the optimizer was able to place wind turbines
closer together near the peak in the Gaussian wind speed
multiplier, taking advantage of wake steering to reduce wake
interactions between nearby turbines. On the other hand, the
layout in Fig. 5c was optimized without yaw. In this case, the
optimizer did not take as much advantage of the wind speed
multiplier and instead opted to spread turbines perpendicu-
lar to the dominant wind direction as displayed in the figure.
This more complex example reiterates the conclusions found
in the one-dimensional example – that optimizing the layout
concurrently with wake steering leads to different optimal
layouts and significant performance improvements.

Figure 6 shows the computational expense to run each of
the 50 randomly initialized optimizations with and without
geometric yaw for this two-dimensional optimization with
spatially varying inflow. As with the simple one-dimensional
example in the previous section, Fig. 6 also demonstrates the
similar computational expense in running the wind plant lay-
out optimization with and without geometric yaw. The his-
tograms for the layout-only optimizations in the figure actu-
ally have longer tails to the right, meaning that, for our setup
to solve this layout optimization problem, using geometric
yaw actually had a lower computational expense. Although
we do not expect a reduction in computation expense to be
typical, these results along with those shown in Fig. 3 to-
gether demonstrate that the geometric yaw relationship that
we present enables coupled wind plant layout and yaw con-
trol optimization with no increase in computational expense
compared to the traditional layout-only optimization prob-
lem.

3.3 Potential impact at different sites

In the examples shown in Sect. 3.1 and 3.2, optimizing the
turbine layouts and yaw angles concurrently with our geo-
metric yaw relationship resulted in a 6.5 % and a 0.8 % im-
provement in the design objective, respectively, compared to
the sequential method of optimizing layout and then yaw an-
gles. These examples are simplified for this paper. For exam-

ple, the scenario shown in Sect. 3.2 with the spatially vary-
ing inflow has a dense wind plant (20 MW km−2) and a mini-
mum spacing constraint of 2 turbine rotor diameters, whereas
real wind plants are often much less dense and have larger
minimum spacing constraints. While a full understanding of
the gains possible through coupled layout and yaw angle op-
timization would require work well beyond the scope of this
paper, we can provide intuition about which conditions could
benefit the most from a control co-design approach.

Wind plants that would benefit the most from control co-
design share one overarching trait: they have the compet-
ing priorities of trying to minimize wake interference while
also decreasing the spacing between the turbines. These com-
peting priorities could arise from spatially varying wind re-
sources, spatially varying costs (e.g., soil conditions, wa-
ter depth for offshore turbines), objectives benefiting from
tightly packed turbines (e.g., relatively expensive array ca-
bles, maximizing capacity while maintaining some desired
efficiency), etc. Situations that would not benefit as much
from control co-design are those that would trend towards
similar layouts regardless of if the layout optimization is per-
formed with or without coupled yaw control. These attributes
are the opposites of those previously listed. Additionally, this
could include wind plants that are highly constrained spa-
tially, such that there is not much freedom in the layout op-
timization. In this case, the layout-and-yaw coupled solution
would be similar to or the same as the sequential one.

In terms of the magnitude of potential upsides available
from layout and yaw control co-design, we expect this to be
highly variable from site to site. We expect that the 0.8 %
gain reported in Sect. 3.2 is on the high end of potential ben-
efits because of the high power density and small minimum
spacing constraint. However, we do expect non-negligible
improvements on the same order as our example for many
real wind plants, namely those with many or all of the traits
listed above being likely to benefit greatly from layout and
yaw control co-design.
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4 Conclusions

In this article, we presented a geometric yaw relationship
that can be used to determine sufficiently optimal wind tur-
bine yaw angles for wake steering as a function of the lay-
out of wind power plants. This method, or any improvement
on the specific relationship presented in this article, can be
used to solve the coupled wind plant layout and yaw control
optimization problem in a computationally efficient manner,
and it can find layouts that perform significantly better than
layouts that are optimized without yaw. In Sect. 3.2, we de-
scribe how we used geometric yaw to obtain a plant layout
that performed 0.8 % better than a layout optimized assuming
no yaw, with no difference in the number of function calls or
computation time required to optimize. At the scale that wind
farms are being designed and to meet ambitious renewable
energy goals worldwide, 0.8 % is a significant improvement
in plant performance. We expect that many wind plants of the
future will benefit similarly through the control co-design ap-
proach enabled by our method. The geometric yaw relation-
ship presented in this article enables fully coupled wind plant
layout and yaw control optimization with no added expense
compared to the regular wind plant layout optimization prob-
lem, and it can greatly improve how wind plant layout opti-
mization is approached by researchers and wind power plant
developers alike.

Code and data availability. The code written for this paper and
the results from the layout and yaw optimizations that we ran
to create Figs. 2–6 are publicly available and can be found at
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