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Abstract. Accurate wind farm flow predictions based on analytical wake models are crucial for wind farm de-
sign and layout optimization. In this regard, wake superposition methods play a key role and remain a substantial
source of uncertainty. Recently, new models based on mass and momentum conservation have been proposed
in the literature. In the present work, such methods are extended to the superposition of super-Gaussian-type
velocity deficit models, allowing the full wake velocity deficit estimation and design of closely packed wind
farms.

1 Introduction

Wind farm design and layout optimization rely on analytical
flow models due to a large number of configurations to be
evaluated and the computational efficiency of such numer-
ical methods. A typical wind farm flow solver consists of a
combination of several sub-models, including a minima a ve-
locity deficit model; a wake-added-turbulence (WAT) model;
and possibly a wake deflection model, a blockage model, and
a coupled wake–atmospheric-boundary-layer model. The ve-
locity deficit and WAT models usually apply to a single wind
turbine: wake superposition methods accumulate the wakes
and estimate a wind farm power production for given envi-
ronmental conditions. Concerning the superposition of ve-
locity deficits, the available methods lacked theoretical justi-
fication, until the recent work of Zong and Porté-Agel (2020)
and Bastankhah et al. (2021). In these studies, analytical so-
lutions for the velocity deficit superposition are proposed
based on the mass and momentum conservation principle.
These superposition methods assume Gaussian-shaped ve-
locity deficit profiles. In the present article, the approach
of Bastankhah et al. (2021) is extended to super-Gaussian
wake velocity deficit profiles. Such models, proposed in
Shapiro et al. (2019) and later refined in Blondel and Cathe-
lain (2020), allow for the evaluation of the velocity deficit

over the full wake. On the contrary, the Gaussian-based ap-
proaches are limited to the far wake. Apart from preventing
the appearance of unrepresentable numbers, this allows the
study of closely packed wind farm layouts. Indeed, some
offshore wind farms such as Lillgrund exhibit small wind
turbine inter-distances, down to 3.3 wind turbine diameters.
Considering such super-Gaussian velocity profiles together
with the Bastankhah et al. (2021) superposition method, an
integral has no analytical solution, and an approximation is
proposed and compared with the numerical solution. It is
also shown in Sect. 3 that the method proposed in Bay et al.
(2022) leads to similar results in terms of centerline veloc-
ity deficit and is suited for wind farm power predictions. The
new superposition method has more robust theoretical foun-
dations than the traditionally used local-linear-sum (LLS) su-
perposition technique (method C in Zong and Porté-Agel,
2020), and its applicability is demonstrated based on the
large Horns Rev wind farm.
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2 Extension of the Bastankhah et al. (2021) model

2.1 Model derivation

In Bastankhah et al. (2021), the conservation of momentum
deficit for multiple wakes takes the form∫
Ã

(
u0cnfn− (cnfn)2

− 2cnfn
n−1∑
i=1

cifi

)
dÃ≈

T̃n

ρ
, (1)

with cn the maximum velocity deficit of turbine n, i the in-
dex of the turbines upwind of turbine n, fn the self-similar
function, Ã= πr̃2 the rotor surface with r̃ = r/d0 and d0 the
wind turbine diameter, T̃n the thrust force of the unit diameter
rotor, u0 the undisturbed wind velocity, and ρ the fluid den-
sity. Based on comparisons to numerical results from a large-
eddy-simulation (LES) solver, a modified form was proposed
in Bastankhah et al. (2021): the factor “2” in the left-hand
side of Eq. (1) is dropped.

Let us consider the original form, Eq. (1). Given a super-
Gaussian shape function fn, a solution for cn is sought.
Following Blondel and Cathelain (2020), the shape func-
tion reads fi = exp(−r̃i k/2σ̃i2), with k = k(x̃) the super-
Gaussian order and i or n the index of a wind turbine. In the
following, we assume that the turbines are sorted from the
most upwind to the most downwind, and for two turbines i
and n, we have i < n.

Here, as indicated by the tilde, the radius and the
super-Gaussian characteristic width are both normal-
ized by the wind turbine diameter d0, such as r̃i =√

(y− yi)2+ (z− zi)2/d0 and σ̃i = σi/d0. The following in-
tegrals are defined in terms of the gamma function 0:∫
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∫
Ã

fnfidÃ= I. (2)

No analytical solution could be found for the last integral,
denoted I. Inserting Eq. (2) into Eq. (1) leads to
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Using the thrust coefficient CTn = 8T̃n/(πρd̃0
2 <

un−1>
2
(n,xn)), the operator 〈 〉(n,xn) denoting the spatial

averaging over the frontal projected area of rotor n at x = xn,
and u the streamwise velocity component as in Bastankhah
et al. (2021), one obtains
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Let us introduce a modified integral J =
kI/

(
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. After straightforward manipu-

lations, and assuming u0 = uh, i.e., a constant, shear-free
inflow, the solution for cn reads
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The modified form is obtained by using a modified J to-
gether with Eq. (5) and Imod

= I/2:

J mod
=

kImod
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. (6)

2.2 Approximate solutions of the integral I

In a first approach, hereafter referred to as the Gauss ap-
proach, one may assume a Gaussian behavior of the model
to evaluate J , as done in Bay et al. (2022). One obtains (see
Bastankhah et al., 2021)
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Alternatively, in a second approach hereafter referred to as
the kEquiv approach, one may first consider aligned turbines
(ỹi− ỹn = 0, z̃i− z̃n = 0) and later correct the integral for the
lateral distance between the rotors using a function δ(ỹ, z̃).
This function is identified from the Gaussian solution. A
second approximation consists in considering an equivalent
super-Gaussian order, keq = 1/2(ki + kn). Under these hy-
potheses, the integral I takes the form
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Figure 1. Mean (a) and maximal (b) relative error of the analytical integrals compared with the numerical evaluation of J as a function of
the maximal considered super-Gaussian order.
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and Eq. (6) is used to calculate J mod
kEquiv. Another straight-

forward approach consists in tabulating the integral values
(excluding the δ(ỹ, z̃) function) and linearly interpolating be-
tween the data, which is the one retained in practice. For
a quantitative comparison, the proposed analytical approx-
imations of the integral J are compared to the numeri-
cal integration. An interval of 0.2≤ σ̃i , σ̃n ≤ 2.5 is consid-
ered for the characteristic width, and several intervals 2≤ ki ,
kn <maxk are considered for the super-Gaussian order, with
2<maxk ≤ 8. The bounding values are representative of the
very near wake of a wind turbine under laminar flow con-
ditions and the very far wake (x̃ > 15d0) under highly tur-
bulent conditions: the typical operating range of a turbine
in a wind farm is covered. Among the characteristic width
and super-Gaussian order intervals, 15 values are sampled.
Regarding the maximum super-Gaussian order, six equally
spaced values are sampled. For each set of four inputs, and
for a given maximum super-Gaussian order, the analytical
approximations are evaluated, and the error is computed
(error=

(∣∣JAnalytical
∣∣− |JNumerical|

)
/ |JNumerical|). The nu-

merical evaluation is based on the SciPy (Virtanen et al.,
2020) “integrate.quad” integration routine and extends from
0 to 6 ·max(σi,σn). Then, for each maxk , the average and
maximal error are computed and reported in Fig. 1. From
these results, the so-called kEquiv method seemingly outper-
forms the Gauss method and should be preferred. However,
it will be shown in Sect. 3 that the impact on the velocity
deficit is limited.

3 Results

In a recent study, Lanzilao and Meyers (2022) showed that
the super-Gaussian model performed poorly compared with
other models: for both Horns Rev and the London Array
wind farms, the predicted power production is far below the
measured power from supervisory control and data acquisi-
tion (SCADA) data. Due to these observations, the model is
re-calibrated for the present study. The calibration procedure
and the notations used hereafter follow the work of Cathe-
lain et al. (2020). The main difference here lies in the use of
a Gaussian profile in the far wake, i.e., limx̃→∞k(x̃)= 2. The
wake characteristic width is assumed to evolve linearly with
axial distance:

σ̃ = (asTI+ bs) x̃+ cs

√(
1
2

1+
√

1−CT
√

1−CT

)
. (9)

The three parameters, as, bs, and cs, are used for both the
super-Gaussian and the Gaussian model. The super-Gaussian
order follows an exponential decay function:

k = afe
bfx̃ + cf. (10)

A Gaussian profile is assumed in the far wake; thus, cf = 2.
The parameter bf controls the decay of the super-Gaussian
order and is taken as a function of the turbulence intensity.
af is chosen in such a way that the model fulfills the actuator-
disk theory (see Cathelain et al., 2020). This can be enforced
numerically using a Newton fixed-point algorithm. To fa-
cilitate the implementation, this inversion is performed in a
pre-processing stage, and a third-order polynomial fit is pro-
posed:

af =−8.2635C3
T+ 8.5939C2

T− 8.9691CT+ 10.7286. (11)

The proposed calibration is not meant to be universal but ded-
icated to the present study. Future work will be dedicated to a
calibration that is reliable in both near- and far-wake regions.
Table 1 provides the list of the model coefficients used in this
study, obtained using a differential evolution algorithm and a
set of nine LES simulations.
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Figure 2. Schematic view of the simulated wind farm.

Table 1. Coefficients of the super-Gaussian wake model.

as bs cs af bf cf

0.28 0.01 0.1×CT+ 0.1 Eq. (11) 1.68exp(−25.98TI)− 1.06 2

3.1 Comparison against large-eddy simulations from
Bastankhah et al. (2021)

For the model comparison, the numerical setup based on the
aligned wind farm introduced in Bastankhah et al. (2021)
is reproduced. A schematic view of the wind farm is given
in Fig. 2. It consist of five columns of three wind turbines,
which are all included in the simulation. The velocity deficit
studied later is extracted over a line passing through the hub
of the wind turbines of the central line, as shown in the
schema. The first column in our simulations is located at
x̃ = 0.

The wind farm flow model builds upon the super-Gaussian
model as described in Blondel and Cathelain (2020), using
the calibration introduced in Sect. 3. The WAT model pro-
posed in Ishihara and Qian (2018) is employed, together with
a so-called maximum-value WAT superposition; see Niay-
ifar and Porté-Agel (2016). A correction factor of 1.25 is
applied on the maximum of added turbulence to match the
results presented in Bastankhah et al. (2021). Following a
convergence study, the rotor disks are discretized based on
12× 12 polar grids. Velocity deficit and WAT due to up-
wind rotor wakes are evaluated at every point on the disk.
Then, mean velocity and turbulence intensity are computed
and used as an input for the wake models and rotor perfor-
mance evaluation; i.e., the power and thrust coefficients are
given as a function of wind speed. Using a polar discretiza-
tion, the mesh cells are not uniform in size: the ones located
near the edge of the disk are significantly larger than the ones
near the hub. Thus, when computing the mean quantities, we
use a weighted average whose weighting factors are based
on the mesh cell surface. In practice, in the case of aligned
rotors, this tends to lower the wake effect since the higher
velocity deficit is located at the rotor center where the mesh
cell’s relative areas are the smallest. A blockage correction
based on the vortex cylinder flow model is used; see Branlard
and Meyer Forsting (2020). The LLS method is compared to
the present method, denoted MC (momentum conserving),
with the two approximations for J mod, as well as a direct
numerical evaluation of the integral, denoted J mod

Num.

Figure 3a shows that, compared with the LLS superposi-
tion method, the MC model predicts a lower velocity deficit
in both near- and far-wake regions, which is more consistent
with LES data. Moreover, the proposed analytical approxi-
mations of the integral J mod are very close to the numer-
ical approximation in the presented test case. At the rotor
planes, discontinuities are observed. This can be partially at-
tributed to the use of the modified momentum-conservation
method which improves the results in the far wake as shown
in Fig. 3b but does not fully respect the conservation laws, as
detailed in Bastankhah et al. (2021). Using the unmodified
formulation leads to very high near-wake velocity deficits
or even unrepresentable numbers in the presented test case.
More than three diameters behind the wind turbine, the re-
sults based on the J mod

kEquiv and J mod
Gauss approximations are

superimposed since the super-Gaussian order is close to 2.
These observations validate the approach employed in Bay
et al. (2022), despite the higher errors noticed in Fig. 1. In
practice, using a tabulated version of the integral is a fast and
convenient approach. However, it does not circumvent the
approximation based on the rotor distance function, δ(ỹ, z̃),
since tabulating the complete integral results in large data
files that are time-consuming to load. The global agreement
against the LES dataset is satisfying. In the first turbine wake,
the hub effect prevents a proper analysis of the results. For
the second turbine, a good agreement is obtained with the
LLS method, while the MC method underpredicts the ve-
locity deficit. This behavior, as noted in Bastankhah et al.
(2021), is a consequence of the application of the modified
momentum conservation law. For the following three tur-
bines, a good agreement is obtained.

For a more quantitative analysis, the root-mean-square er-
ror (RMSE) between the different analytical models from
x̃ = 0 to x̃ = 30 and the LES results are given in Table 2.
First, the use of Gaussian wake models leads to a rather high
error, due to the inaccuracy in the near wake. This behavior is
expected, and we are here using the model outside of its def-
inition domain, i.e., the Gaussian model is a far-wake model.
Using the super-Gaussian model, the RMSEs fall below 8 %.
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Figure 3. Centerline velocity deficit in the middle column of the farm; LES data scanned from Bastankhah et al. (2021). (a) Comparison
between LES, the LLS method together with the super-Gaussian model (LLS-SG), and the momentum-conserving method together with
the super-Gaussian formulations (MC-SG). (b) Comparison between LES and the momentum-conserving method and the Gaussian model,
using the original (MC-GOriginal) and modified (MC-G) formulations, and a super-Gaussian formulation (MC-SG).

Table 2. Root-mean-square error of the analytical models against the LES results from Bastankhah et al. (2021).

MC-GOriginal MC-G LLS-SG MC-SG, J mod
Gauss MC-SG, J mod

kEquiv MC-SG, J mod
Num

0.160 0.145 0.078 0.059 0.055 0.056

Whatever the approximation performed on the J integral,
the momentum-conserving approach outperforms the LLS
method: the RMSEs fall again from approximately 8 % to
less than 6 %. Using the J mod

Gauss approximation, the error is
slightly higher compared with J mod

kEquiv and J mod
Num. One should

thus prefer one of these two formulations over the so-called
J mod

Gauss approximation.

3.2 Comparison against large-eddy simulations of the
Horns Rev wind farm from Portéé-Agel et al. (2013)

The model predictions are also compared with large-eddy
simulations of the Horns Rev wind farm, as presented in
Porté-Agel et al. (2013). With a minimal inter-turbine dis-
tance of seven diameters, this wind farm can not be consid-
ered as closely packed. However, the availability of a large
set of large-eddy-simulation results makes it a good candi-
date for validation purposes. The inflow conditions are based
on inflow velocity and turbulence intensity profiles scanned
from Porté-Agel et al. (2013). Figure 4 compares the wind
farm efficiency η (predicted power divided by theoretical
power without wake effect) over a wide range of wind di-
rections θ . We use the LES as a reference to avoid the uncer-
tainties of SCADA measurements, mainly due to the wind

direction changes during the 10 min averaging in the avail-
able data.

The agreement between the analytical model and the LES
dataset is overall good. Differences between the momentum-
conserving superposition method and the LLS approach are
noticed for wind directions where the wake effects are strong,
typically at θ ≈ {222, 270, 312◦}. Around such directions,
the lower velocity deficits predicted by the MC approach lead
to lower wake losses and better efficiency of the wind farm,
which is more consistent with the LES data. Both the Gaus-
sian and the super-Gaussian models predict the same wind
farm efficiency whatever the wind direction: this is due to the
large inter-turbine distances in the Horns Rev wind farm. It
confirms that the poor results obtained in Lanzilao and Mey-
ers (2022) for the same wind farm are mostly due to inaccu-
racies in the model calibration introduced in Cathelain et al.
(2020).

For a more quantitative comparison, the RMSEs of the
different analytical models against the LES results are pro-
vided in Table 3. The LLS method together with the super-
Gaussian model has the highest level of error, around 3.7 %,
while using the momentum-conserving approach, both with
a Gaussian or a super-Gaussian model, causes the RMSEs
to fall below 2.5 %. Differences between the two aforemen-
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Figure 4. Comparison of the normalized Horns Rev wind farm power output based on LES simulations from Porté-Agel et al. (2013),
the LLS method together with the super-Gaussian model (LLS-SG), the momentum-conserving method together with the super-Gaussian
model (MC-SG), and the momentum-conserving method together with the Gaussian model (MC-G).

Table 3. Root-mean-square error of the analytical models against
the LES results from Porté-Agel et al. (2013).

MC-G LLS-SG MC-SG, J mod
kEquiv

0.024 0.037 0.024

tioned models appear in the RMSEs only at the fourth deci-
mal. Considering the large inter-turbine spacing in the Horns
Rev wind farm, this was expected, since both models use
the same characteristic width, and the inter-turbine distances
are large enough to have super-Gaussian orders very close to
k = 2 at the rotor planes.

4 Conclusions

In this work, the momentum-conserving wake superposition
method proposed in Bastankhah et al. (2021) was extended
to super-Gaussian-type velocity deficit models. An integral
could not be resolved analytically, and an approximation has
been proposed. This approximation is closer to numerical
evaluations of the integral that the Gaussian assumption used
in Bay et al. (2022). Comparisons against large-eddy simula-
tions of wind farms show a satisfactory agreement, allowing
the simulation of large wind farms using the super-Gaussian
wake model. Further studies will include an extensive valida-
tion of the resulting wind farm flow model, including closely
packed wind farms.

Code and data availability. The numerical results based on the
analytical models can be made available on demand.
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