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Abstract. Two models and a heuristic algorithm to address the wind farm layout optimization problem are
presented. The models are linear integer programming formulations where candidate locations of wind turbines
are described by binary variables. One formulation considers an approximation of the power curve by means
of a stepwise constant function. The other model is based on a power-curve-free model where minimization
of a measure closely related to total wind speed deficit is optimized. A special-purpose neighborhood search
heuristic wraps these formulations with increasing tractability and effectiveness compared to the full model that
is not contained in the heuristic. The heuristic iteratively searches for neighborhoods around the incumbent using
a branch-and-cut algorithm. The number of candidate locations and neighborhood sizes are adjusted adaptively.
Numerical results on a set of publicly available benchmark problems indicate that a proxy for total wind speed
deficit as an objective is a functional approach, since high-quality solutions of the metric of annual energy
production are obtained when using the latter function as an substitute objective. Furthermore, the proposed
heuristic is able to provide good results compared to a large set of distinctive approaches that consider the
turbine positions as continuous variables.

1 Introduction

1.1 Motivation and problem definition

Cost reductions for renewable energy generation are on the
top of political agendas, with the objective of supporting
the worldwide proliferation of clean energy production sys-
tems. Subsidy-free tendering processes are becoming more
frequent, as has been the case for offshore wind auctions
in Germany since 2017 and in Netherlands since 2018 or
in China for onshore wind since 2021 (GWEC, 2020a). The
fast evolution of offshore wind in the last decade, with sharp
growth in global installed capacity (GWEC, 2020b), is yet
another clear indicator of the growth trend of wind energy.
For wind energy to become the cornerstone of a successful
green-energy transition, a further reduction in costs – partly
achievable by economically optimized wind farm designs –
will play an important role.

The basic wind farm layout optimization (WFLO) prob-
lem aims at deciding the positioning of wind turbines (WTs)
within a given project area to maximize the annual energy
production (AEP), while respecting a minimum separation
distance. The classic problem definition aims at placing a
fixed number nT of typically homogeneous (single type)
WTs. This problem has been studied broadly and intensively
for at least 3 decades (Herbert-Acero et al., 2014). The first
effort in the topic was the pioneering work of Mosetti et al.
(1994), where the Katic–Jensen wake decay model (Katic
et al., 1986), implemented to compute wake losses, is cou-
pled with a genetic algorithm as an optimizer to iteratively
improve the layout.

1.2 Optimization workflow for WFLO

The main components when building an optimization work-
flow for the WFLO problem are the wake models (deficit
and superposition), the program formulation, and the associ-
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ated numerical algorithms. For formulating tractable frame-
works, the designer needs to rely on the so-called engineering
wake models. These are essentially mathematical represen-
tations which can be expressed in terms of analytical equa-
tions after significantly simplifying complex physics model-
ing, while still capturing the underlying nature of the phe-
nomenon under analysis to a good extent. Scientific arti-
cles in this field have proposed and validated engineering
wake models with a smooth and differentiable velocity deficit
shape; two examples are Bastankhah’s Gaussian model (Bas-
tankhah and Porté-Agel, 2016) or its simplified version (IEA
Wind Task 37, 2019) and the Jensen cosine model (Jensen,
1983). Likewise, the aggregation of individual wake velocity
deficits can be done through linear superposition (Lissaman,
1979) or root sum squares (Voutsinas et al., 1990), with local
or freestream velocity conditions (Porté-Agel et al., 2020).

1.3 Continuous optimization for WFLO

Optimization techniques for the WFLO problem formula-
tion can be classified, depending on the choice of vari-
ables, into continuous and discrete optimization. In the field
of continuous optimization, the location pi of a WT i, in
terms of the abscissa (xi) and ordinate variables (yi) in
the Cartesian plane (pi = (xi,yi)) can take any real values,
while ensuring that the point is within the project area F
and simultaneously satisfying the minimum distance con-
straints. Several gradient-free algorithms have been applied
to this problem, including metaheuristics, as a genetic al-
gorithm (Réthoré et al., 2014) or particle swarm optimiza-
tion (Wan et al., 2010). Likewise, gradient-based methods
can be used, as for example the Sparse Nonlinear OPTi-
mizer (SNOPT), which uses a sequential quadratic program-
ming (SQP) approach (Thomas et al., 2022), or interior-
point solvers (Pérez et al., 2013). In general, metaheuristic
algorithms, although highly flexible for modeling aspects,
have considerably poorer scalability for larger problem sizes
than gradient-based approaches (Stanley and Ning, 2019).
Re-parameterization approaches aiming to reduce the num-
ber of variables through simplified geometrical represen-
tations of the problem, such as row and column spacing
or inclination angle, are also emerging (Stanley and Ning,
2019). Additionally, multi-start strategies are frequently im-
plemented as a workaround for the intrinsic multi-modal na-
ture of the WFLO problem. Finally, hybrid methods combin-
ing gradient-free and gradient-based algorithms have been
proposed with good results (Mittal and Mitra, 2017).

The utilization of simplified objective functions closely re-
lated to more sophisticated AEP models is also an emerg-
ing research field for continuous gradient-based optimiza-
tion. In the recent work of LoCascio et al. (2022), a novel
formulation for time-averaged wake velocity incorporating
an analytical integral of wake deficits across wind direction
is proposed. This article shows the application of this analyti-
cal formulation for WFLO using the sequential least-squares

quadratic programming (SLSQP) as a numerical algorithm.
Computational results indicate the ability of this approach to
find WT layouts with energy production comparable to the
alternative of directly optimizing more accurate AEP objec-
tives.

1.4 Discrete optimization for WFLO

Discrete optimization models can be formulated for this
problem by means of sampling the available project area in
the form ofN candidate location points. Thus, only a set of fi-
nite options from the continuous search space are considered,
where the nT WTs to be installed are in principle nT �N .
In contrast to continuous optimization, a candidate point i is
then represented by a binary variable ξi , which gets a value
of 1 if a WT is installed at that location or 0 otherwise. The
vast majority of articles in the literature implement gradient-
free algorithms for this technique, as in the works of Mosetti
et al. (1994) and Grady et al. (2005), which both use genetic
algorithms. Algorithms utilizing explicit gradients are also
a valid approach in this field (Pollini, 2022). This modeling
technique fits very well in the well-studied general frame-
work of integer programming. The main advantage of this ap-
proach is the possibility to utilize exact solvers based on the
branch-and-cut method, which is theoretically able to solve a
problem to optimality while supporting common engineering
constraints (Wolsey, 2020). Nevertheless, the low tractability
and poor scalability of this method as a function of the size
of N and the number of state variables are well-known.

A large number of benefits are implicit in the discrete
modeling technique over the continuous counterpart, includ-
ing, among others, (i) the capacity to include the number of
WTs as a variable and to model overall economic metrics
as net present value (NPV) (Pollini, 2022); (ii) the ease of
modeling any shape of a project area or forbidden zones, ei-
ther convex or non-convex; (iii) the capacity to model exten-
sive integrated models to support electrical-system optimiza-
tion (Pérez-Rúa and Cutululis, 2022; Cazzaro et al., 2023);
(iv) the ease of modeling terrain-based constraints or cost
functions (Cazzaro and Pisinger, 2022); and (v) the ease of
incorporating multiple WT types. These functionalities are
the main motivation for focusing on proposing new methods
for the WFLO problem in the area of discrete optimization.
Moreover, in broader terms, since even the basic definition of
the WFLO problem translates into a non-convex formulation,
new methods are required to efficiently obtain high-quality
solutions.

1.5 Literature review for integer programming within
WFLO

Probably the first work within the context of integer program-
ming for the WFLO problem was the thesis of Fagerfjäll in
2010 (Fagerfjäll, 2010), where a mixed-integer linear pro-
gram (MILP) is proposed, modeling the objective AEP func-
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tion as a superposition of deficits defined in terms of power.
Although physically inaccurate, as the deficit superposition
should be computed for velocities, an important reduction in
the number of variables is achieved that ultimately allows for
solving relatively small problem instances to optimality. A
similar approximation is carried out by Archer et al. (2011),
Fischetti et al. (2016), and Quan and Kim (2019) but by in-
troducing important modifications to the model and reduc-
ing the number of constraints. The objective function may
also be formulated for the aggregated velocity deficit (Turner
et al., 2014; Kuo et al., 2016), but the imperfect correspon-
dence with the AEP will result in not solving to optimality,
possibly resulting in low-quality final solutions. Another ad-
vantage of integer programming formulations is the chance
to incorporate heuristic routines into the top of such mod-
els, as for instance a proximity search (Fischetti et al., 2016;
Shaw, 1998), to quickly improve a feasible given starting
point.

1.6 Contributions

Several contributions to the field of discrete optimization for
WFLO are proposed in the paper. The first contribution is
the proposition of new integer linear formulations which are
able to capture the underlying physics of the problem to a
good extent. The main obstacles for a MILP representation
of WFLO problem are the non-linearity of the power curves
and the choice of a wake velocity deficit superposition ap-
proach. Currently, the scientific literature has fundamental
knowledge gaps. For example, as discussed before, previ-
ous works have considered aggregation of power deficits in-
stead of velocities, gaining a simplification of the mathemati-
cal formulation in detriment to the physics modeling fidelity.
This paper presents new strategies for modeling both facets
of the class of MILP problems, one with an explicit power
curve and wake superposition modeling and another with
a proxy objective function based on total wind speed, thus
simplifying the original formulation. In contrast to LoCascio
et al. (2022), this proxy objective is developed for MILP op-
timization, meaning that the aim is to get a linear expression
that does not need to be friendly to explicit gradient-based
optimization.

The second main contribution is the proposition of a
new special-purpose neighborhood search heuristic in order
to speed up the generation of high-quality solutions. This
heuristic, wrapping both formulations, has a twofold func-
tionality: first to increase tractability and second to redirect
the optimization search in terms of a specified objective func-
tion with higher fidelity. Similar neighborhood search meth-
ods have been proposed in the literature, such as the dis-
crete exploration-based optimization (DEBO) (Thomas et al.,
2023), which is a two-step process composed by a greedy
initialization and a local search block. While the method pro-
posed in this paper shares most of the advantages of the men-
tioned approach (no gradients are required, it can handle un-

connected and non-convex boundary constraints, and so on),
it actually goes beyond the DEBO algorithm as, among other
reasons, (i) significantly less AEP function evaluations are
required and (ii) it is based on well-establish integer pro-
gramming theory, relying in efficient implementations of the
branch-and-cut algorithm. The main numerical results indi-
cate good computational performance for a set of publicly
available benchmark case studies compared to state-of-the-
art gradient-free and gradient-based approaches (Baker et al.,
2019).

The rest of the paper is structured as follows. Section 2
introduces the engineering models of the physical aspects
of interest. Section 3 presents the two mathematical pro-
grams developed, and Sect. 4 describes the proposed heuris-
tic framework wrapping both programs. Computational ex-
periments are shown in Sect. 5, followed up by a discussion
in Sect. 6, and lastly the paper is finalized with the conclu-
sions in Sect. 7.

2 Physics modeling

The proposed MILP models and general optimization frame-
work in this paper can be easily applied to many wake deficit
models. No particular properties on smoothness or differen-
tiability are required from these models for optimization pur-
poses. Additionally, no specific demands on mathematical
structure in connection with the controlling wake diameter
and deficit (Thomas et al., 2022) stem from the optimization
programs proposed in this article. Since the computational
results in the article are obtained after solving open-access
case studies from International Energy Agency (IEA) Wind
Task 37 (Baker et al., 2019), the wake model implemented
there is presented in Sect. 2.1, along with the superposition
techniques in Sect. 2.2, the WT power curve in Sect. 2.3,
and the AEP calculation procedure in Sect. 2.4. Variations
on ways of computing the absolute velocity deficits and lin-
ear wake superposition under the framework of MILP are
also introduced.

2.1 Wake deficit model

A simplified version of Bastankhah’s Gaussian model is con-
sidered (IEA Wind Task 37, 2019). The relative velocity
deficit δi` =1i`/u∞ = (u∞−u(xi,yi))/u∞ behind a single
WT located at ` and evaluated at point i is described using the
model and notation from Case Study I (IEA Wind Task 37,
2019).

δi` =


(

1−
√

1− CT
8σ2
y /D

2

)
exp

(
−0.5

(
yi−y`
σy

)2
)
, xi − x` > 0,

0, otherwise
(1)

σy = ky (xi − x`)+D/
√

8, (2)

where u∞ is the inflow wind speed, CT is the thrust co-
efficient, xi − x` is the streamwise distance from the hub-
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generating wake (x`) to the hub of interest (xi) along the
freestream (let this difference be d‖i`), yi−y` is the spanwise
distance from the hub-generating wake to the hub of interest
perpendicular to the freestream (let this difference be d⊥i`), σy
is the standard deviation of the wake deficit, ky is a variable
based on a turbulence intensity, and D is the WT diameter.

2.2 Wake velocity deficit superposition model

The absolute velocity deficit 1i`(θ j ,k) at wind direction θ j

and wind speed index k can be estimated in two ways. Either
based on the inflow wind speed (Lissaman, 1979; Katic et al.,
1986) as

1i`

(
θ j ,k

)
= δi`

(
θ j ,k

)
uk∞ (3)

or based on the wind speed u j̀ k at WT `, creating the wake
at point i for wind direction θ j and speed k (Voutsinas et al.,
1990; Niayifar and Porté-Agel, 2015), as

1i`

(
θ j ,k

)
= δi`

(
θ j ,k

)
u j̀ k, (4)

where δi`(θ j ,k) is the relative velocity deficit of ` over i at
operation condition {j,k} after Eqs. (1) and (2). Note that
Eq. (3) leads to a greater value and therefore is considered
a conservative approach compared to (the potentially more
realistic) Eq. (4). Nonetheless, implementing Eq. (3) greatly
simplifies the resultant system of equations and allows for
preprocessing calculations.

Let the set Uθ
j

i collect the WTs creating a wake over WT
at point i for wind direction θ j as per

Uθ
j

i ={` | position `is upwind compared to

position i for wind direction j}. (5)

The wake velocity deficit superposition 1i(θ j ,k), to cal-
culate the total velocity deficit at WT i, can be obtained
through two mechanisms. Either it is based on a linear super-
position model (Lissaman, 1979; Niayifar and Porté-Agel,
2015) as

1i

(
θ j ,k

)
=

∑
`∈Uθji

1i`

(
θ j ,k

)
(6)

or it is based on the root sum squares superposition model
(Katic et al., 1986; Voutsinas et al., 1990) of

1i

(
θ j ,k

)
=

√√√√ ∑
`∈Uθji

12
i`

(
θ j ,k

)
. (7)

2.3 WT power curve

Suitable power curves are required for computing the AEP.
Often, power curves are not perfectly suitable for optimiza-
tion, due to the usual non-differentiability in several points

throughout the function. Generally, a power curve is 0 be-
low cut-in wind speed, 0 above the cut-out wind speed, and
constant between the rated wind speed and the cut-out wind
speed. In this particular study, between the cut-in and rated
wind speeds the curve is assumed to be smooth, convex, and
monotonically increasing. The simplified power curve for a
generic turbine as a function of wind speed u is modeled as

p(u)=


0, u < ucut-in

prated
(

u−ucut-in

urated−ucut-in

)3
, ucut-in

≤ u < urated

prated, urated
≤ u < ucut-out

0, u≥ ucut-out,

(8)

where prated is the nominal power at (and above) rated wind
speed urated. The other turbine characteristics are the cut-in
wind speed ucut-in and the cut-out wind speed ucut-out. Using
this definition, the WT power curve is not differentiable at
ucut-in, urated, and ucut-out, since at these points the left- and
right-hand side derivatives are different. Be aware that the
optimization programs proposed in this paper are not depen-
dent on WT power curve differentiability.

2.4 Annual energy production, AEP

The AEP is calculated as

AEP= 8760
nT∑
i=1

∑
j,k

wjkp(uijk), (9)

where wjk is the joint probability of wind direction j and
wind speed k and 8760 is the number of hours in a standard
year.

3 Optimization models

The MILP program with explicit modeling of the WT power
curve, wake deficit, and wake superposition is introduced
in Sect. 3.1. Then, the power-curve-free formulation is de-
scribed in Sect. 3.2.

The main type of variables ξi ∈ {0,1} represent the pres-
ence or absence of turbines at the candidate locations, for
both models. Given N points, i.e., candidate locations for
turbine positions, with positions pi inside the domain F
(i.e., pi ∈ F for all i WT candidate locations), binary vari-
ables ξi ∈ {0,1} are associated with the following interpreta-
tion:

ξi =

 1 if a turbine is located at point i with
position pi and

0 otherwise.
(10)

Let the index sets Ni storing the candidate locations violat-
ing the minimum distance constraints for a WT i be defined
as

Ni = {q ∈ {1, . . .,N},q 6= i | diq (pi,pq )< dmin
}, (11)
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where dmin > 0 is the minimum required distance between
two turbines. If ξi = 1 then all binary variables in set Ni
should be forced to 0, whereas if ξi = 0 these variables
should be free to take any value in {0,1}.

All relevant distances can be preprocessed for all combi-
nations of points i and q. These parameters are then defined
as a function of the Cartesian plane positions p and wind di-
rection θ j , the Euclidean distances diq (p)= ‖pi −pq‖2, the
streamwise distances d‖iq (p;θ j ), and the spanwise distances
d⊥iq (p;θ j ), extending the concept introduced in Sect. 2.1.

3.1 Power-curve-based model

Continuous state variables uijk are used for wake modeling
and power computation. A variable uijk represents the wind
speed at WT location i, for wind direction j , and for wind
speed k.

The power curve is approximated with a stepwise func-
tion. The cubic part of the power curve is first partitioned into
m intervals plus one interval from a negative point (−uini)
to the cut-in speed and a final one to cover the range from
the rated to cut-out speed. Each isometric interval within the
cubic domain of length 1u= (urated

−ucut-in)/m is approxi-
mated with a constant power value (see Fig. 1).

An interval l of the whole domain is characterized by the
three parameters of uls , u

l
m, and ulh with the properties

u1
s =−u

ini,u1
h = u

cut-in,um+2
s = urated,um+2

h = ucut-out,

(12)

u2
s = u

cut-in,um+1
h = urated, (13)

ua+1
s = ucut-in

+ (a− 1)1u for a = 1, . . .,m, (14)

ua+1
h = ucut-in

+ a1u for a = 1, . . .,m, (15)

ulm = 0.5(uls + u
l
h). (16)

Equation (12) defines the lower and upper limits for the ex-
treme intervals l = 1 and l =m+ 2, and Eq. (13) formalizes
the lower and upper limits for the first interval in the cu-
bic part, a = 1, and the last one, a =m, respectively. Equa-
tion (14) expresses the lower limits for intervals in the cubic
part (a = 1, . . .,m), while Eq. (15) does it for the upper limits.
Equation (16) presents how to determine the extracted wind
speed associated with the interval l of within whole domain,
which is the average value of uls and ulh.

Let binary state variables ηlijk ∈ {0,1} for l = 1, . . .,m+ 2
be defined with the interpretation

ηlijk =

{
1 if uls ≤ uijk ≤ u

l
h and

0 otherwise;
(17)

i.e., these variables indicate which of the wind speed intervals
l of the power curve approximation for WT i operates at wind
direction j and wind speed k.

With all the variables of the model – activation variables
ξ , continuous state variables u, and binary state variables η –
introduced, the formulation in Eq. (18) is as follows:

Figure 1. Piecewise constant approximation of a wind turbine
power curve through sampling with m= 10 intervals between the
cut-in and rated wind speeds.

maximize
ξ,η,u

8760
N∑
i=1

∑
j,k

m+2∑
l=1

wjkη
l
ijkp

(
ulm

)
, (18a)

subject to ξi + ξq ≤ 1 i,q ∈ Ni, (18b)

nmin
≤

N∑
i=1

ξj ≤ n
max, (18c)

m+2∑
l=1

ηlijku
l
s ≤ uijk ≤

m+2∑
l=1

ηlijku
l
h (i,j,k), (18d)

m+2∑
l=1

ηlijk = 1 (i,j,k), (18e)

uijk = u
k
∞

ξi − ∑
`∈Uθji

ξ`δi`

(
θ j ,uk∞

) (i,j,k), (18f)

ξ,η ∈ {0,1} u ∈ R. (18g)

This program collects the AEP objective function, the con-
straints of a generalized version of the WFLO problem, and
the variables’ domain definition. The objective function in
Eq. (18a) is an approximation of the AEP computation pre-
sented in Eq. (9). Equation (18b) models the minimum dis-
tance constraints as explained in the introduction of Sect. 3.
If binary variable ξi is active, then all candidate points closer
than dmin should be excluded, i.e., set to 0. If binary variable
ξi is inactive, then the other candidates are still eligible. The
definition of set Ni is provided in Eq. (11). Equation (18c)
models the situation in which the designer requires at least
nmin and at most nmax WTs to be located in the domain.
Note that for the classic problem definition nmin

= nmax=nT,
Eq. (18d) connects state variables u and η as explained in
Eq. (17), while Eq. (18e) forces one operation case to be ac-
tive for each WT candidate at each wind direction and speed.
The last constraint in Eq. (18f) is for the wake velocity deficit
and wake superposition modeling to calculate wind speed
for each candidate location at each wind direction and in-

https://doi.org/10.5194/wes-8-1453-2023 Wind Energ. Sci., 8, 1453–1473, 2023



1458 J.-A. Pérez-Rúa et al.: WFLO with integer programming

flow speed uk∞. The presented model supports a conserva-
tive velocity deficit approach (Eq. 3) with a linear superposi-
tion (Eq. 6). The definition of set Uθ

j

i is provided in Eq. (5).
Note that an extension, consisting in creating extra continu-
ous state variables and associated constraints, could allow for
considering the more realistic approach in Eq. (4). It is still
unknown if the root sum squares model of Eq. (7) could be
implemented in the framework of MILP. Finally, Eq. (18g)
defines the domain of the required variables. A value for uini

of ucut-out is set up.

3.2 Power-curve-free model

Although the formulation of Sect. 3.1 represents the physics
ruling the problem to a very large extent, it has a consider-
able number of variables and constraints that may hinder the
capacity to tackle larger problems. The model presented in
this section neglects the power curve and AEP calculation
and aims at simplifying the power-curve-based version.

The power-curve-free model introduces a strategy to ac-
count for the combination of Eqs. (3) and (7) to calculate ve-
locities, since the case studies from IEA Wind Task 37 follow
this methodology for AEP computation. It would be possible
though to consider the linear superposition model if neces-
sary. However, the power-curve-free model does not support
the application of Eq. (4).

Combining Eqs. (3) and (7) and extending the summation
range in Eq. (7) to all candidate locations, the sum of wind
speeds in the farm U can be modeled as

U =

N∑
i=1

∑
j,k

wjku
k
∞ξi −

N∑
i=1

∑
j,k

wjku
k
∞

√√√√ N∑
`=1

(δi`(θ j ,uk∞))2zi`, (19)

where new binary variables zi` are introduced. Variable zi` is
equal to 1 if both WTs i and ` are active (i.e., if ξi = ξ` = 1)
and 0 otherwise. Nevertheless, the previous expression is not
linear for variable zi` due to the presence of the square root
in each total relative velocity deficit term. By removing the
square roots, the following expression is obtained:

Ũ =

total inflow wind speed︷ ︸︸ ︷
N∑
i=1

∑
j,k

wjku
k
∞ξi

−

total wind speed deficit proxy︷ ︸︸ ︷
N∑
i=1

N∑
`=1

∑
j,k

wjku
k
∞(δi`(θ j ,uk∞))2zi`, (20)

where the arguments of the square roots in Eq. (19) define a
function closely related to the full root-squared expression.
This linearization approach is similar to the one proposed by
Turner et al. (2014). Let the preprocessed coefficient in front
of zi` be

bi` =
∑
j,k

wjku
k
∞(δi`(θ j ,uk∞))2, (21)

and combining Eq. (20) and Eq. (21) results in

Ũ =

total inflow wind speed︷ ︸︸ ︷
N∑
i=1

∑
j,k

wjku
k
∞ξi −

total wind speed deficit proxy︷ ︸︸ ︷
N∑
i=1

N∑
`>i

(bi`+ b`i)zi` , (22)

which defines the objective function of the power-curve-free
model. In comparison to the objective function in Eq. (18a),
no power curve or continuous state variables are required.

Nonetheless, the presence of variables zi` can be trouble-
some. For the complete model, in addition to having these
variables of a combinatorial nature, constraints of the same
kind must be incorporated: zij ≥ ξi + ξj − 1, zij ≤ ξi , zij ≤
ξj ,zij ≥ 0. Experimental results show the heavy computa-
tional burden incurred when solving this formulation, im-
pacting the ability of solving large-scale problems (Fischetti
et al., 2016). To circumvent this, a big-M trick is incorporated
(Wolsey, 2020), resulting in an exactly equivalent model, as
reflected in the formulation of Eq. (23).

The new objective function in Eq. (23a) modifies the com-
ponent linked to the total wind speed deficit proxy by cre-
ating variables τi ; this variable means the total wind speed
deficit proxy for WT in candidate location i. Equation (23b)
defines τi as follows: if a WT candidate location is in-
active as ξi = 0, then there is no deficit at this location;
therefore τi = 0 because Mi =

∑N
`=1:i 6=`bi` and because of

the minimization nature of the problem for wind speed
deficits. Oppositely, if ξi = 1, then τi is forced to be equal
to
∑N
`=1:i 6=`ξ`bi`. The next two equations are the same as

those already presented in Sect. 3.1 for the number of active
WTs and minimum distance constraints. Finally, Eq. (23e)
defines the domain of the required variables as follows:
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maximize
ξ,τ

total inflow wind speed︷ ︸︸ ︷
N∑
i=1

∑
j,k

wjku
k
∞ξi −

total wind speed deficit proxy︷ ︸︸ ︷
N∑
i=1

τi, (23a)

subject to τi ≥
N∑

`=1:i 6=`
ξ`bi`+ (ξi − 1)Mi i, (23b)

nmin
≤

N∑
i=1

ξi ≤ n
max, (23c)

ξi + ξq ≤ 1 i,q ∈ Ni, (23d)
ξ ∈ {0,1} τ ∈ R : τ ≥ 0. (23e)

Note that for the classic problem definition nmin
= nmax=nT,

the first part of the objective function becomes

N∑
i=1

∑
j,k

wjku
k
∞ξi =

∑
j,k

wjku
k
∞

N∑
i=1

ξi

=

∑
j,k

wjku
k
∞nT = constant.

For this situation, the objective function is thus equivalent to

minimize
ξ,τ

N∑
i=1

τi . (24)

This proxy objective function is very useful for formulating
the program in the MILP category. The work by LoCascio
et al. (2022) focuses on a different formulation (likely more
accurate analytically than the one presented here) that is non-
linear but gradient friendly and is hence useful for continuous
gradient-based optimization.

Compared to Turner et al. (2014), the MILP program
(Eq. 23) with an objective replaced by Eq. (24) linearizes
the complexity of its largest set of constraints and variables
from N2 to N in Eqs. (23b) and (23e). Furthermore, the con-
straints in Eq. (23d), which can lead to infeasible points, are
not neglected as by Turner et al. (2014).

4 Neighborhood search heuristic

For addressing large-scale problems, a heuristic wrapping the
MILP formulations given in Sect. 3 is introduced. It is based
on the neighborhood search and local-branching theory (Fis-
chetti and Lodi, 2003). The algorithm solves a sequence of
MILPs, with different candidate numbersN and/or neighbor-
hood search sizesK , taking advantage of robust and efficient
implementations of branch-and-cut methods for MILP. The
heuristic relies on the observation that for a fixed layout de-
scribed by ξ ∈ {0,1}N , the other state variables are straight-
forward to determine. This observation is valid for all prob-
lem formulations presented in Sect. 3. Given ξ ∈ {0,1}N , for

the power-curve-based model, the value of continuous state
variables u can be found through classical wake analysis, and
the binary state variables η are directly determined by in-
spection of the velocities. Similarly, for the power-curve-free
model, the τ variables are trivially computed. The pseudo-
code of the neighborhood search heuristic (NSH) is described
in detail in Algorithm 1.

The first three lines are the main inputs of the algorithm:
the candidate set C, the time set T, and the neighborhood
size set V. The first set contains the sizes N of the meshes
to be considered, the second one is the maximum comput-
ing time T for the MILP solver for each size N , and the last
one is for the search size defined as the maximum number
of changes K allowed for the incumbent. If the incumbent is
improved, then the candidate set C and neighborhood sizeK
are kept; otherwise at least one of them is increased. The first
step (line 5) is to obtain an initial incumbent binary variables,
with the set ξ storing the acquired value (0 or 1) for each vari-
able ξi : i ≤N . The incumbent has an objective value of ob
calculated after the true objective function. The true objec-
tive function refers to the real equation that represents the
ultimate aim to be optimized. For example, if this is the AEP,
then it is the product of the power calculation process, apply-
ing the considered wake and superposition models and the
original power curve, and not the objective function of the
implemented formulation, as in Eq. (18a), which is always
an approximation.

The next step is to start the iterative process in line 6. Val-
ues for N , T , and K are fetched in line 7, followed by the
formulation of the MILP model for candidates N account-
ing for the active locations in ξ . The Hamming distance (see,
e.g., Fischetti and Lodi, 2003), centered around incumbent
point ξ , is added to the optimization model in line 9; this con-
straint reduces the search space as the number of changes in
ξ are limited to K . The complete model is sent to the MILP
solver with ξ as a warm starter, which is stopped when it
reaches either optimality or assigned maximum computing
time T .

After solver termination, solution pool S is retrieved in
line 11. The solution pool contains all the feasible layouts
obtained in iteration κ from the MILP solver. These points
are a result of a linear programming relaxation or from ap-
plying heuristics in a given node, such as relaxation-induced
search, polishing, and a feasibility pump (IBM, 2022). It is
very important to emphasize the aim of getting the whole
pool instead of the best point. This is done because of the
imperfect correspondence between the true objective func-
tion and the objective function of the applied MILP model.
For example, a solution which has a worse objective value
may actually have a better AEP based on the real model. One
of the advantages of the NSH compared to the DEBO al-
gorithm by Thomas et al. (2023) is the reduced number of
AEP evaluations. In iteration κ , only |S| evaluations are re-
quired. Likewise, many of the other expensive calculations
are done in a preprocessing stage. The whole pool of solu-
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Algorithm 1 Neighborhood search heuristic (NSH) algorithm. Optimization: op.

1: C← {N1, · · ·,NC} ,N ∈ C {Input candidate set}
2: T← {T1, · · ·,TC} ,T ∈ T {Input time set}
3: V← {K1, · · ·,KV } ,K ∈ V {Input neighborhood size set}
4: countern← 1 counterv← 1
5: Obtain initial incumbent of activation binary variables for WTs ξ with objective value ob
6: for (κ = 1 : 1 : κmax) do
7: N← C[countern] T ← T[countern] K← V[counterv]
8: Formulate optimization model with N candidates (including the incumbent), from either Sect. 3.1 or Sect. 3.2
9: Add Hamming distance constraint centered around the incumbent ξ ,

∑
i:ξi=0ξi +

∑
i:ξi=1(1− ξi )≤K

10: Solve op. model from algorithm lines 8 to 9 until optimality or computing time T with ξ as a warm starter
11: Get the solution pool S, where ξ̂ ∈ S represents the activation binary variables for WTs of an individual point
12: Apply true objective function over each point ξ̂ ∈ S and obtain objective value set O
13: Compute ot ←maxO and it ← argmaxO
14: if ot > ob then
15: ob← ot
16: ξ ← S[it ]
17: else
18: counterv← counterv+ 1
19: end if
20: if counterv= |V| + 1 then
21: counterv← 1 countern← countern+ 1
22: end if
23: if countern= |C| + 1 then
24: Break
25: end if
26: end for

tions is examined, and the best solution indexed by it with
an AEP of ot is obtained in line 13. If ot is actually greater
than ob, then the whole algorithm is re-centered around the
new ξ (lines 14 to 16), and in the next iteration κ , the same
values of N andK are maintained. Otherwise, the next value
of K is taken (line 18), unless the set has been exhausted. In
this case, the next candidate size N is considered given by
countern, restarting the neighborhood set counter counterv
to 1 (lines 20 to 22). The NSH algorithm is terminated when
all candidate sets C have been processed (line 23 to 25). An-
other difference between the NSH and the DEBO algorithm
is that the latter only changes the position of a single WT
in a given iteration, while the former considers simultaneous
modifications of several WT positions.

5 Computational experiments

For a transparent benchmark of the proposed methods, the
open-access case studies from IEA Wind Task 37 in Baker
et al. (2019) are used for comparison. IEA Wind Task 37
cases consider circular project areas with three different radii
(1300, 2000, and 3000 m) and numbers of WTs (16, 36,
and 64) (nT). Thus, Case I has a radius of 1300 m and
nT = 16 WTs, whereas Case II has a radius of 2000 m and
nT = 36, and Case III has a radius of 3000 m and nT = 64,
correspondingly.

The results of the statistical correlation between the proxy
function given by the argument in Eq. (24) and AEP of the
problem definition of Baker et al. (2019) are presented in
Sect. 5.1 for each case. The performance of the proposed
models in the case studies is shown in Sect. 5.2 (Case I), 5.3
(Case II), and 5.4 (Case III). The power-curve-free model of
Eq. (23) is implemented with Eq. (24) as an objective func-
tion in these three sections. The true objective function in the
NSH of Algorithm 1 for these cases is the AEP of the prob-
lem definition. Finally, to prove the capabilities of power-
curve-based model of Eq. (18), Sect. 5.5 displays results after
applying this formulation with a modified objective function
to express a metric similar to the NPV.

The main parameters of the wake model in Sect. 2.1 are
fixed to CT = 8/9 and ky = 0.0324555, according to Baker
et al. (2019). The wind resource is modeled using a wind
rose approach, where the wind resource is binned in J di-
rections, and for a specific direction j (θ j ), wind speeds
are discretized in ϒ sectors. For the case studies, the wind
rose is composed of 16 directions and a single wind speed
k of 9.8 ms−1, shown in Fig. 2. The power curve from
Eq. (8) modeling the IEA Wind Task 37 3.35 MW refer-
ence turbine (with diameter of D = 130 m) is used in the
case studies, ensuring replicability of results (IEA Wind
Task 37, 2019; Baker et al., 2019). The main parameters are
prated

= 3.35 MW, urated
= 9.8 ms−1, ucut-in

= 4 ms−1, and
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Figure 2. Wind rose used in the computational experiments. Taken
from an open-access source (IEA Wind Task 37, 2019).

ucut-out
= 25 ms−1 and are plotted in Fig. 1. The parameter

dmin is set to 2 D.
The experiments in Sect. 5.2, 5.3, and 5.4 have been car-

ried out on an Intel Core i7-6600U CPU running at 2.80 GHz
with four logical processors and 16 GB of RAM. For the ex-
periment in Sect. 5.5, more powerful equipment is used: an
Intel Xeon Gold 6226R CPU running at 2.90 GHz with 32
virtual cores and 640 GB of RAM (DTU Computing Center,
2022).

The selected MILP solver is the commercial branch-and-
cut algorithm implemented in IBM ILOG CPLEX Optimiza-
tion Studio V20.1 (IBM, 2022). Apart from the number of
threads and time limit settings, a few other parameters are
also changed from their default values. One is the parame-
ter returning high-quality feasible solutions early in the pro-
cess, for which CPX_MIPEMPHASIS_HEURISTIC is ac-
tivated. The intention is to generate more feasible layouts,
which is important for the neighborhood search algorithm.
Additionally, strong branching is used for variable selection
given the large size of the models (CPX_VARSEL_STRONG
is selected). The intention is to reduce the size of the search
tree and thus the memory requirements compared to default
settings.

The number N and positions pi for i ≤N of the candidate
locations are of course very important parameters for the dis-
crete modeling techniques. A customized automatic strategy
based on independently sampling the boundary and interior
area of the circular domain F has been employed. An exam-
ple of the sampling strategy for these particular case studies
giving N = 467 is illustrated in Fig. 3.

In Fig. 3, the boundary of the circular shape is densely
sampled, as a candidate point is defined every natural an-
gle from 0 to 359◦; i.e., 360 candidate points are provided,
since it is intuitively expected that a good portion of the WTs
will be placed in the boundaries to decrease wake losses. For
the interior, a set of finite parallel line segments are gener-
ated, and the candidates points are then taken along those
segments. In the example of Fig. 3, the slope of the line seg-
ments is 0, and the distance between points and lines is equal
to 1.7 D.

Figure 3. Example of generation of WT candidate locations N .

5.1 Correlations

To validate the approach modeled by the MILP formulation
of Eq. (23) (i.e., the power-curve-free model), 5000 random
feasible WT layouts are created. For each of them, the AEP
of Baker et al. (2019), the total theoretical wind speed U ,
given by Eq. (19); the total wind speed proxy Ũ , defined
by Eq. (22); and total wind speed deficit proxy

∑N
i=1τi , an

argument of Eq. (24), are calculated. Although the random
way of generating the layouts is biased against high-quality
points, the general trend is the point of interest for assessing
whether it makes sense to implement the linear proxy objec-
tive

∑N
i=1τi when optimizing the AEP.

In all cases Pearson product-moment linear correlation co-
efficients from Pearson (1895) are used to extract informa-
tion from the data and collected in Table 1 for all pairs. This
coefficient illustrates the degree to which the movement of
pairs of variables is associated in a linear fashion. The corre-
lation plots of Fig. 4 present the graphical representation of
the relations for Case I.

The correlation between the AEP and the total theoretical
wind speed is shown in Fig. 4a for Case I. The main obser-
vation is the very strong linear relation between these two
variables as illustrated by the correlation coefficient of 0.97.
Interestingly, this reflects the rather low influence of the WT
power curve in obtaining high-quality feasible points. The
relation between U and Ũ is represented in Fig. 4b, result-
ing in an almost identical linear connection between them,
as in the previous graph. When one compares the AEP vs.∑N
i=1τi , however, it is noticeable that the Pearson coefficient

decreases to −0.88. There is a wider area in the body of
points that causes this behavior. Note that in contrast to the
previous two figures, there is a negative correlation because
the comparison is done in terms of the wind speed deficit in-
stead of the total wind speed. In spite of this deterioration,
the linear correlation is still considered quite strong. These
results motivate the approach where the minimization of a
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proxy total wind speed deficit can lead to high-quality AEP
solutions. The NSH of Algorithm 1 helps in correcting the
imperfect correspondence between these two variables dur-
ing the optimization routine as reflected in Sect. 4.

The general trends of the correlation plots for Case II are
very similar. Correlations between the AEP and the total
theoretical wind speed (0.97) and the total theoretical wind
speed and the total wind speed proxy (0.95) are still very
strong. Nonetheless, there is a slight decrease between the
AEP and the total wind speed proxy (down to −0.85 from
−0.88 previously), as the spread for middle-velocity values
is larger. The linear relation is deemed satisfactory enough to
carry on with the application of the model of Eq. (23) with
the objective function in Eq. (24).

The very strong linear relation between the AEP and the
total theoretical wind speed (0.96) is also observed for Case
III, prompting a very interesting conclusion. Although al-
most all research in the WFLO space focuses strictly on
power modeling (which brings a great deal of complexity
due to the non-linear and non-differentiable properties of the
WT power curve), using an exact model for determining the
total wind speed as an objective function alleviates the com-
putational complexity while finding high-quality solutions in
terms of the AEP. However, one should note that deteriora-
tion in the correlation still exists, potentially leading to lower-
quality results.

Likewise, correlations stemming from the proxy to calcu-
late the total wind speed deficit are lower in Case III. This is
the case for both with the total theoretical wind speed (0.88)
and the AEP (−0.72). Keep in mind that the reason to formu-
late such an approximation is to fit it into the context of in-
teger programming to leverage theory and state-of-the-art al-
gorithms from this mature field. However, the price one pays
to do so is losing fidelity in representing the real (true) target
to optimize. The deterioration in the correlation of these pairs
of variables may also suggest the need to resort to the power-
curve-based model for some applications. Whether the price
is too high or not is reflected in the reachable solution quality.
Section 5.2, 5.3, and 5.4 present the optimization results for
the cases of a fixed number of WTs that will ultimately help
to elucidate a final evaluation regarding the adopted model-
ing technique.

5.2 Case I: 16 WTs

This case has a round shape with a radius of 1300 m and
nT = 16 WTs. The evolution of two of the proposed opti-
mization frameworks is given in Fig. 5 (clock time given in
the abscissa). The green line of the full model is obtained
after solving the model of Eq. (23) with an objective func-
tion as in Eq. (24) for N = 1014 without implementing the
NSH. It represents the incumbent solution in terms of the
AEP (not the total wind speed deficit proxy) obtained by
postprocessing the CPLEX’s log. The blue line results from
applying the NSH with the model of Eq. (23) plus the objec-

tive of Eq. (24) and the AEP as the true objective function
of Algorithm 1. The main inputs are C= {467,590,1014}
(set of candidate locations), T= {1,1.5,2} h (set of maxi-
mum computing times for each candidate location), and V=
{2,4,6,16} (set of neighborhood search sizes) (see Sect. 4).
These inputs are tuned after evaluating the performance of
the method using different values. In general, the first two el-
ements of C consist of moderately big values, relatively close
to each other, while the last element is sizably greater in the
search of the best possible solution. Each element N ∈ C has
an associated computing time T . Finally, the first elements
of V are relatively low values that favor termination of the
solver due to optimality, and then they start increasing to re-
fine the search. The red line is for establishing a reference of
the AEP value; this comes from the best performing method
in the survey of IEA Wind Task 37 of Baker et al. (2019), the
SNOPT plus the wake expansion continuity (WEC) (Thomas
and Ning, 2018; Thomas et al., 2022). Time evolution for the
SNOPT+WEC is not reflected in this graph, as this infor-
mation is unavailable. Results for the benchmark against a
test bed of different algorithms are available in Table 2.

The results of the NSH computing time in Fig. 5 do not
reflect the instant where the incumbent is found but rather
the time progress of this algorithm, which is dependent on
the execution of the MILP solver at each iteration. Table A1
contains information about the values of N , K , and T and
the termination criterion of the solver after each iteration κ
of the NSH of Algorithm 1 (beginning from point 2, where
κ = 1). This means that, in iterations where the termination
criterion is time (and not optimality), one could fine-tune T
for an earlier stop, shortening the total time. This is particu-
larly more relevant in cases where internal heuristics of the
solver are activated at the root node of the search tree, coming
up with the largest portion of solutions very early in the pro-
cess. Consequently, the total computing time, for all cases, is
conservative and should be taken as an approximated refer-
ence.

The initial layout (point 1), labeled in Fig. 6a, is set up by
arbitrarily by picking up candidate locations around the cir-
cular boundary; this layout has an AEP of 387 GWh. From
now on, the presented percentages are calculated with respect
to the last-commented AEP improvement. Between points 2
and 7, where N = 467 and K = 2, the models are solved
to optimality (gap of 0 %), and the solution is improved by
2.92 % in only 56 s. After a short plateau, the solution is
markedly refined by 2.96 % from point 10 to 13 by perform-
ing a search of the domain with K = 16 and restarting the
model every 1 h with a new warm start.

The next considerable jump happens for N = 590 and 2≤
K ≤ 6 after around 20 min, elevating the AEP by 1.94 %. Af-
ter, again, a plateau without improvements, when N reaches
its maximum value of 1014, the solution is maximized to the
final value of 418 GWh during the lowest values of K . For
this particular instance, the greatest value of K = 16 is ex-
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Table 1. Pearson product-moment linear correlation coefficients for all case studies.

Case AEP vs. theoretical Theoretical vs. proxy AEP vs. proxy wind
wind speed wind speed speed deficit

Case I 0.97 0.96 −0.88
Case II 0.97 0.95 −0.85
Case III 0.96 0.88 −0.72

Figure 4. Correlation plots for 5000 randomly generated wind turbine layouts for Case I.

ploited for the lowest number of candidate points N , where
the largest improvement comes up.

The benefit of the proposed neighborhood search strategy
is shown in Fig. 5. Solving the full model is significantly
slower, actually leading to a worse solution (3.31 % lower).
The capacity of the NSH to iterate over different values of
candidate pointsN and search sizesK brings along improve-
ments in terms of not only the solution time and solution
quality but also the use of fewer computational resources as
the RAM memory generally scales faster when solving the
single model.

The initial and final solution layouts for this case study are
illustrated in Fig. 6. The importance of finely sampling the
boundaries of the available area is evident in Fig. 6b because
7 out of the 16 WTs are placed in that subdomain.

Finally, Table 2 compares the proposed method to a large
number of different approaches from the IEA Wind Task 37
reference study (Baker et al., 2019). The results for all case

studies are presented, where I, II, and III make reference to
cases from this section, Sect. 5.3, and Sect. 5.4, respectively.

The third column of Table 2 reports the difference in the
AEP with respect to the proposed method for the smallest
case study. The resulting AEP is better than almost all the
other alternatives, except the SNOPT+WEC, where a nearly
identical objective value is achieved. When directly com-
paring to typical metaheuristics (genetic algorithms, parti-
cle swarm optimization, etc.), which do not use explicit gra-
dients information, the presented method seems to perform
well, being capable of determining a similar layout quality in
less than 2 h, which is usually a competitive amount of time
compared to these kinds of population-based algorithms. In
a broader context, beyond the presented numerical compar-
isons, discrete optimization approaches, such as the MILP
ones presented in this paper, could be formulated to cope
with problem definitions with required functionalities that in
theory continuous optimization methods can not support (or
at least for which the implementation becomes strenuous).
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Figure 5. Performance of two different optimization approaches for Case I and comparison with existing best benchmark results. See
Table A1 for detailed information about each numbered point in the blue curve.

Figure 6. Generated wind farm layouts for benchmark Case I with 16 turbines.

The power-curve-based model of Eq. (18) within the NSH
using the same AEP formulation as true objective func-
tion provides a solution 1.18% lower in objective value af-
ter around 36 h using the computer system with 32 virtual
cores. Although the quality of the layout is very close to
the one schematized in Fig. 6b, the use of more computa-
tionally powerful resources favors implementing the power-
curve-free model for problems with a fixed number of WTs.
Therefore, Sect. 5.3 and 5.4 present only the results reached
after the application of the power-curve-free model embed-
ded into the NSH.

5.3 Case II: 36 WTs

This case has a round shape with a radius of 2000 m and
nT = 36 WTs. The evolution of the proposed methods and
the initial and final WT layouts are plotted in Figs. 7 and 8,
respectively. Table B1 displays the data linked to each point

of Fig. 7. The main inputs are C= {477,684,1907}, T=
{1,1.5,2} h, and V= {2,4,8,16,36}. The blue line (model
of Eq. 23 with an objective function of Eq. 24 plus the NSH
of Algorithm 1) clearly has three sectors stemming from each
value of N ∈ C. The initial WT layout (Fig. 8a) – also deter-
mined by choosing roughly equidistant candidate locations
in the boundary – has an AEP of 796 GWh. As for Case
I, improvement percentages are calculated using the last-
commented step as the baseline. After seven NSH iterations
(point 8) in 41 s, the incumbent is improved by 1.84%, when
N = 477 and 2≤K ≤ 4, being able to solve each model in-
stantiation to optimality.

After a 3 h plateau linked to 8≤K ≤ 36 (four iterations),
N is raised to 684, resulting in the largest AEP enhance-
ment, as shown in Fig. 7. The energy production increases
by 4.51 % after only 23 min at point 27. This noticeable
improvement comes after solving models with rather small
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Table 2. Results for all three benchmark cases from other algorithms (G, gradient-based; GF, gradient-free) obtained while allowing for WT
locations to vary continuously. Values reproduced from Baker et al. (2019). The difference (Diff.) column shows how the proposed heuristic
with the power-curve-free model performs in comparison. Negative percentages mean that the proposed method performs better than the
corresponding algorithm.

Method
AEP I Diff. I AEP II Diff. II AEP III Diff. III
[GWh] [%] [GWh] [%] [GWh] [%]

SNOPT+WEC (G) 418.92 0.09 863.68 −0.19 1513.31 0.85
fmincon (G) 414.14 −1.06 820.39 −5.19 1336.16 −10.95
SNOPT (G) 412.25 −1.51 846.36 −2.19 1476.69 −1.59
SNOPT (G) 411.18 −1.76 844.28 −2.43 1445.97 −3.64
Preconditioned SQP (G) 409.69 −2.12 849.37 −1.84 1506.39 0.39
Multi-start interior point (G) 408.36 −2.44 851.63 −1.58 1480.85 −1.31
Full pseudo-gradient (GF) 402.32 −3.88 828.75 −4.23 1455.08 −3.03
Basic genetic algorithm (GF) 392.59 −6.20 777.48 −10.15 1332.88 −11.17
Simple particle swarm (GF) 388.76 −7.12 776 −10.32 1364.94 −9.04
Simple pseudo-gradient (GF) 388.34 −7.22 813.54 −5.98 1422.27 −5.22

Figure 7. Performance of two different optimization approaches for Case II and comparison with existing best benchmark results. See
Table B1 for detailed information about each numbered point in the blue curve.

neighborhood search sizes of 2≤K ≤ 4 to optimality. The
convenience of allowing for large neighborhood search sizes
such as K = 16 or K = 36 is reflected at this moment. From
point 30 to 33 (6 h) with K = 16 the incumbent is slowly
boosted by nearly 1 %. Again, after a 3 h plateau,N becomes
equal to 1907, and after around 32 min for 2≤K ≤ 4, the
AEP is augmented by 0.41 %. Then, the large neighborhood
search starts for K = 16 and K = 36, and after a total of
16 h, the final solution of 865 GWh (increment of 0.61 %)
is achieved (Fig. 8b).

The full model (i.e., without implementing the NSH al-
gorithm) initially provides better solutions within the first
3 h but then lags behind in solution quality compared to the
NSH algorithm in the long run (lower by 3.05 %), as shown
in Fig. 7.

For this case, the proposed method reaches the best
solution, as shown in the fifth column of Table 2. The
SNOPT+WEC is again the closest contender. When
uniquely compared to GF methods, the proposed method
matches the best solution from those algorithms after around
3 h, which is generally a reasonable amount of computing
time compared to methods where gradients are not explic-
itly utilized in the optimization process, especially for meta-
heuristics such as genetic algorithms or swarm optimization.

5.4 Case III: 64 WTs

This case has a round shape with a radius of 3000 m and
nT = 64 WTs. The evolution of the proposed methods and
the initial and final WT layouts are displayed in Figs. 9 and
10, respectively. Table C1 displays the data linked to each
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Figure 8. Generated wind farm layouts for benchmark Case II with 36 wind turbines.

point of Fig. 9. The main inputs are C= {625, 1017, 2741},
T= {1, 1.5, 2} h, and V= {2, 4, 8, 16, 32, 64}. Note that in
comparison the number of elements of V has been increased
by one after each study case. This has been done while tak-
ing into account the number of WTs. Likewise, the values of
N ∈ C are larger to cover for the wider project areas.

Comparing the blue lines of Figs. 5, 7, and 9, it becomes
evident that for the last case the curve shows less sudden in-
creases. The largest change occurs after 27 s, where the initial
solution (Fig. 10a) with an AEP of 1395 GWh is improved
by 3.18 % for N = 625 and K = 2 up to point 9, reaching
optimality in a few seconds. With 4≤K ≤ 8 the model in-
stantiations are solved to optimality in minutes, obtaining a
solution improved by 0.18 %.

After point 13 in Fig. 9, one notes a plateau without im-
provement for N = 625 and K ≥ 16; i.e., a large neighbor-
hood search does not lead to further enhancements. Due
to this, N is enlarged to 1017, where the second largest
boost (increase of 2.12 %) comes, with the largest search size
(K = 64) resulting in the best improvement. This enhance-
ment occurs 13 h after starting the NSH (point 26). From
point 28,N = 2741 and for 2≤K ≤ 4 the solver reaches op-
timality, slowly converging to the final solution of 1500 GWh
(Fig. 10b).

The seventh column of Table 2 shows that the
SNOPT+WEC and the preconditioned SQP provide slightly
better layouts than the proposed method. However, the al-
gorithm provides feasible layouts that improve the objective
compared to all the gradient-free approaches.

5.5 Case IV: 10–50 WTs

Although in most projects today the total capacity for grid
connection is already decided in the early planning phases,
in the future one can envisage situations where flexibility in
optimizing the number of wind turbines in a project would
yield benefits.

Even if the power-curve-free model (Sect. 3.2) exhibits
quite good performance in terms of the AEP and comput-
ing time for a fixed number of WTs (when the AEP and
NPV are basically the same metric), it is not very applica-
ble for when a variable number of wind turbines are consid-
ered. Based on computational experiments not included in
the paper, the power-curve-free model embedded in the NSH
terminates too early in the search process, resulting in a so-
lution worse than the alternative discussed below.

For such an optimization, the power-curve-based mathe-
matical program of Sect. 3.1 may be handy as the number
of generators is allowed to vary between a lower and upper
bound of nmin and nmax, respectively. For illustrative pur-
poses, a domain defined by a circle with a radius of 1300 m
and a variable number of WTs of between 10 and 50 are uti-
lized. These parameters are set relatively arbitrarily but with
a sufficient distance so as to reasonably expect that the lim-
its are not reached. The aim is to illustrate the ability of the
method in reaching non-trivial solutions, resulting in an opti-
mized design with an intermediate number of wind turbines.

Keeping that in mind for this case, a linear superposition
model for the AEP component in the NPV calculation is con-
sidered. In this sense, the original WT power curve as de-
picted in Fig. 1 is used. The NPV is the true objective func-
tion when applying the NSH of Algorithm 1. The modified
objective function of MILP model of Eq. (18) for this case
has the form (Cogency, 2014)

maximize
ξ,η,u

−

N∑
i=1

cwtξi + 8760
Y∑
y=1

N∑
i=1

∑
j,k

m+2∑
l=1

cewjkη
l
ijkp(ulm)

(1+ r)y
, (25)

where cwt is the cost per WT (mEUR), ce is the energy
price (mEURMWh−1), r is the discount rate (%), and Y
is the number of years of lifetime of the project. For this
case study, values of cwt = 6.7 mEUR (Mishnaevsky and
Thomsen, 2020), ce = 0.00015 m EUR MW h−1 (Nord Pool,
2022), r = 5%, and Y = 20 are assumed. The general form
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Figure 9. Performance of two different optimization approaches for Case III and comparison with existing best benchmark results. See
Table C1 for detailed information about each numbered point in the blue curve.

Figure 10. Generated wind farm layouts for benchmark Case III with 64 wind turbines.

of the NPV equation as per Cogency (2014) is defined by the
sum of the present value of cash flows (discounted cash flow,
DCF) of a project under analysis. In Eq. (25), the first sum
is a negative cash flow representing the purchase of the WTs
at the construction stage of the project, while the next term
represents positive cash flows coming from trading the elec-
tricity in the market. Because of the additive nature of the
NPV metric and since the focus is on evaluating investment
vs. revenues, by maximizing Eq. (25), a fully comprehensive
NPV metric is equivalently improved.

The model of Eq. (18) with the modified objective func-
tion of Eq. (25) embedded in the NSH algorithm 1 with
the NPV as the target function is executed in three runs.
For the first run the number of turbines is fixed to nmin

=

nmax
= 10, while for the second the number of turbines re-

mains fixed but is increased to nmin
= nmax

= 50. For the
third run the number of wind turbines is allowed to vary

between nmin
= 10 and nmax

= 50. The Algorithm 1 input
parameters are C= {467, 590, 1014}, T= {1, 1.5, 2} h, and
V= {2, 4, 6, 8, 24}. The results are plotted in Fig. 11.

When the number of turbines is fixed to 10, the NPV evo-
lution (green line in Fig. 11b) is driven by the AEP (green
line in Fig. 11a). Both curves are monotonically increasing,
reaching a final value of the NPV of = 456.40 m EUR. The
same behavior is visible for nT = 50, although the final NPV
is greater (683.53 mEUR) (see the blue line in Fig. 11b). In
the second study, the positive difference in DCF from the rev-
enues surpasses the associated extra investment costs from
the additional 40 wind turbines considered. The significant
increase in the number of WTs doubles the computing time,
due to the large increase in the number of variables; selecting
50 WTs entails significantly more possible combinations of
valid points.
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Figure 11. Evolution of the AEP, NPV, and number of WTs for the three simulations. The green lines are results for the optimization program
with a fixed number of WTs equal to 10, and the blue lines are equal to 50; the black lines are for the optimization program with a variable
number of WTs between 10 and 50.

An interesting question is whether there is a larger NPV in
between the bounds of the WT number. For the optimization
program with a variable number of WTs, the evolution of the
WT number in Fig. 11c and the AEP in Fig. 11a (see black
lines in these figures) exhibits a perfect correspondence. The
more WTs, the larger AEP, in spite of the increased wake
losses. The curves increase with time, up to a point where
the model estimates that a further increase in WTs would not
lead to a better NPV. The final number of WTs is 34. The
NPV evolution in Fig. 11b (black line) naturally only im-
proves with time, resulting in a final value of 795.86 mEUR.
Note that the NPV in this case is greater than when a larger
number of WTs (i.e., 50) was considered and of course when
only 10 were considered. Interestingly, the optimization pro-
gram with a fixed number of 50 WTs finds a final solution
with an AEP very close to that from the variable number
program, which is the solution of the former, 0.50% lower
than the latter but requiring more WTs and hence more in-
vestment (47% more). The final NPV value of the variable
number model is 16.43% greater than the one with a fixed
number of 50 WTs. These figures could be expected to be
similar even in situations where lower AEPs are obtained
if that compensates by augmenting overall financial metrics
such as the NPV.

This result shows the benefit of having optimization mod-
els that support a variable number of WTs and accounting for

metrics beyond the AEP. The advantages may become even
more pronounced for more complex situations, such as, for
instance, if the WT investment costs are dependent on the
exact installation area or different WT sizes are considered.

6 Discussions

The two models proposed in this paper have many of the
characteristics of mixed-integer linear programming models.
They require significant computational time and memory and
exhibit rather low tractability and scalability for global opti-
mization algorithms.

The power-curve-based model, although requiring more
computational resources, manages to provide reasonably
good solutions for a small-sized problem, being only 1.18 %
lower than its power-curve-free counterpart for the case with
16 WTs and 4.41 % for the case with 36 WTs. This dimin-
ishing efficiency is to be expected, given the large number
of variables and constraints. The power-curve-free model on
the other hand, along with the heuristic, is much faster due to
its more compact formulation. This translates into the ability
to be highly competitive compared to a large set of bench-
mark algorithms. In situations where there is an interest in
optimizing metrics beyond the AEP, such as the NPV, the
power-curve-based model becomes very useful given its in-
trinsic capacity to support this kind of objective functions.
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It should be mentioned that there are limitations for the
wake models used compared to recent ones (Thomas et al.,
2022). For example, the wake model used in this paper does
not consider the changes in the turbulence intensity or thrust
coefficient variations from wind speed variations inside the
wind farm. It is uncertain if using wake models like the ones
in Thomas et al. (2022) would still allow for an integer linear
programming formulation or approximation of the WFLO
problem. The impact on the final solution quality these de-
tailed modeling aspects imply is also uncertain. These ques-
tions are left for future work.

Notwithstanding the listed shortcomings, it is enthralling
that these models, in combination with the neighborhood
search heuristic, are able to match and in some cases improve
upon the results obtained when considering the turbine posi-
tions as continuous variables (see Table 2). This opens the
door to experimental case studies with functionalities easily
adaptable to discrete parameterization techniques, which can
be very challenging for approaches of continuous-variable
modeling.

7 Conclusions

This paper contributes both methodologically and empir-
ically to address the WFLO problem. A neighborhood-
search-heuristic-embedding integer programming formula-
tion is proposed. For both presented formulations presented
in the paper, the stepwise power curve and power-curve-free
model, the heuristic notably improves a single execution of
full models when calling a state-of-the-art branch-and-cut
solver in terms of solution quality. An improvement of up
to 3.42 % in the AEP is achieved by applying the neighbor-
hood search strategy for cases where the WT number is fixed
compared to solving the full model.

Another important takeaway is the satisfactory perfor-
mance of the power-curve-free model, which uses an ap-
proximation of the total wind speed deficit, when (implic-
itly) optimizing for the AEP. This is due to the good cor-
relation between the two measures and the correction capa-
bility of the heuristic. For the classic WFLO problem defi-
nition, the proposed model is able to considerably improve
(from 1 % to around 10 %) the AEP compared to bench-
mark results by multiple gradient-based and gradient-free
algorithms. Even when directly compared to methods im-
plementing a continuous-variable technique, the proposed
heuristic provides similar or even better results. These are
very promising results that would enable getting high-quality
solutions for problem instances where continuous-variable
modeling approaches may not be able to run or provide with
good incumbents.

Finally, the model with an explicit representation of the
power curve embedded within the neighborhood search
heuristic is able to propose non-trivial solutions when im-
plementing objective functions beyond the AEP, such as the
NPV. For these cases, the trade-off between energy revenues
and investment costs is studied. For example, the model sug-
gests that installing a lower number of wind turbines than al-
lowed would result in a better NPV value, with a comparable
AEP.
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Appendix A: Case I

Table A1. Information about the values of N , K , and T and the termination criterion of the solver after each point in Fig. 5.

Point K , N Termination criterion Point K , N Termination criterion

1 Initial point – 17 K = 4 N = 590 opt. [0.24 min]
2 K = 2 N = 467 opt. [0.05 min] 18 K = 4 N = 590 opt. [0.46 min]
3 K = 2 N = 467 opt. [0.06 min] 19 K = 6 N = 590 opt. [9.79 min]
4 K = 2 N = 467 opt. [0.04 min] 20 K = 6 N = 590 opt. [1.10 min]
5 K = 2 N = 467 opt. [0.06 min] 21 K = 6 N = 590 opt. [1.29 min]
6 K = 2 N = 467 opt. [0.05 min] 22 K = 6 N = 590 opt. [6.64 min]
7 K = 2 N = 467 opt. [0.07 min] 23 K = 6 N = 590 opt. [6 min]
8 K = 4 N = 467 opt. [0.49 min] 24 K = 16 N = 590 1.5 h
9 K = 6 N = 467 opt. [12.69 min] 25 K = 2 N = 1014 opt. [0.53 min]
10 K = 16 N = 467 1 h 26 K = 2 N = 1014 opt. [0.20 min]
11 K = 16 N = 467 1 h 27 K = 2 N = 1014 opt. [0.20 min]
12 K = 16 N = 467 1 h 28 K = 4 N = 1014 opt. [0.95 min]
13 K = 16 N = 467 1 h 29 K = 4 N = 1014 opt. [1.10 min]
14 K = 16 N = 467 1 h 30 K = 6 N = 1014 opt. [24.37 min]
15 K = 2 N = 590 opt. [0.06 min] 31 K = 16 N = 1014 2 h
16 K = 4 N = 590 opt. [0.43 min]

Appendix B: Case II

Table B1. Information about the values of N , K , and T and the termination criterion of the solver after each point in Fig. 7.

Point K , N Termination criterion Point K , N Termination criterion

1 Initial point – 25 K = 4 N = 684 opt. [1.15 min]
2 K = 2 N = 477 opt. [0.03 min] 26 K = 4 N = 684 opt. [1.90 min]
3 K = 2 N = 477 opt. [0.03 min] 27 K = 4 N = 684 opt. [1.38 min]
4 K = 2 N = 477 opt. [0.04 min] 28 K = 4 N = 684 opt. [8.31 min]
5 K = 2 N = 477 opt. [0.05 min] 29 K = 8 N = 684 1.5 h
6 K = 2 N = 477 opt. [0.05 min] 30 K = 16 N = 684 1.5 h
7 K = 2 N = 477 opt. [0.04 min] 31 K = 16 N = 684 1.5 h
8 K = 4 N = 477 opt. [0.37 min] 32 K = 16 N = 684 1.5 h
9 K = 4 N = 477 opt. [0.49 min] 33 K = 16 N = 684 1.5 h
10 K = 8 N = 477 1 h 34 K = 16 N = 684 1.5 h
11 K = 16 N = 477 1 h 35 K = 36 N = 684 1.5 h
12 K = 36 N = 477 1 h 36 K = 2 N=1907 opt. [1.65 min]
13 K = 2 N = 684 opt. [0.07 min] 37 K = 2 N = 1907 opt. [1.12 min]
14 K = 2 N = 684 opt. [0.07 min] 38 K = 4 N = 1907 opt. [28.40 min]
15 K = 2 N = 684 opt. [0.07 min] 39 K = 4 N = 1907 opt. [5.97 min]
16 K = 2 N = 684 opt. [0.08 min] 40 K = 8 N = 1907 2 h
17 K = 2 N = 684 opt. [0.09 min] 41 K = 16 N = 1907 2 h
18 K = 4 N = 684 opt. [1 min] 42 K = 16 N = 1907 2 h
19 K = 4 N = 684 opt. [1 min] 43 K = 36 N = 1907 2 h
20 K = 4 N = 684 opt. [1.33 min] 44 K = 36 N = 1907 2 h
21 K = 4 N = 684 opt. [0.98 min] 45 K = 36 N = 1907 2 h
22 K = 4 N = 684 opt. [4.05 min] 46 K = 36 N = 1907 2 h
23 K = 4 N = 684 opt. [1.47 min] 47 K = 36 N = 1907 2 h
24 K = 4 N = 684 opt. [7.65 min]
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Appendix C: Case III

Table C1. Information about the values of N , K , and T and the termination criterion of the solver after each point in Fig. 9.

Point K , N Termination criterion Point K , N Termination criterion

1 Initial point 26 K = 64 N = 1017 1.5 h
2 K = 2 N = 625 opt. [0.03 min] 27 K = 64 N = 1017 1.5 h
3 K = 2 N = 625 opt. [0.03 min] 28 K = 2 N = 2741 opt. [3.22 min]
4 K = 2 N = 625 opt. [0.03 min] 29 K = 2 N = 2741 opt. [2.93 min]
5 K = 2 N = 625 opt. [0.04 min] 30 K = 4 N = 2741 opt. [40.82 min]
6 K = 2 N = 625 opt. [0.05 min] 31 K = 4 N = 2741 opt. [47.99 min]
7 K = 2 N = 625 opt. [0.04 min] 32 K = 4 N = 2741 opt. [55.95 min]
8 K = 2 N = 625 opt. [0.04 min] 33 K = 4 N = 2741 opt. [54.74 min]
9 K = 2 N = 625 opt. [0.05 min] 34 K = 4 N = 2741 opt. [72.46 min]
10 K = 2 N = 625 opt. [0.04 min] 35 K = 4 N = 2741 opt. [69.85 min]
11 K = 4 N = 625 opt. [0.33 min] 36 K = 8 N = 2741 2 h
12 K = 8 N = 625 opt. [7.92 min] 37 K = 16 N = 2741 2 h
13 K = 8 N = 625 opt. [8.31 min] 38 K = 16 N = 2741 2 h
14 K = 8 N = 625 1 h 39 K = 16 N = 2741 2 h
15 K = 16 N = 625 1 h 40 K = 16 N = 2741 2 h
16 K = 32 N = 625 1 h 41 K = 16 N = 2741 2 h
17 K = 64 N = 625 1 h 42 K = 16 N = 2741 2 h
18 K = 2 N = 1017 opt. [0.17 min] 43 K = 16 N = 2741 2 h
19 K = 2 N = 1017 opt. [0.26 min] 44 K = 16 N = 2741 2 h
20 K = 4 N = 1017 opt. [1.35 min] 45 K = 32 N = 2741 2 h
21 K = 8 N = 1017 1.5 h 46 K = 32 N = 2741 2 h
22 K = 16 N = 1017 1.5 h 47 K = 32 N = 2741 2 h
23 K = 32 N = 1017 1.5 h 48 K = 32 N = 2741 2 h
24 K = 64 N = 1017 1.5 h 49 K = 64 N = 2741 2 h
25 K = 64 N = 1017 1.5 h
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