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Abstract. Lidar systems installed on the nacelle of wind turbines can provide a preview of incoming turbulent
wind. Lidar-assisted control (LAC) allows the turbine controller to react to changes in the wind before they affect
the wind turbine. Currently, the most proven LAC technique is the collective pitch feedforward control, which
has been found to be beneficial for load reduction. In literature, the benefits were mainly investigated using
standard turbulence parameters suggested by the IEC 61400-1 standard and assuming Taylor’s frozen hypothesis
(the turbulence measured by the lidar propagates unchanged to the rotor). In reality, the turbulence spectrum and
the spatial coherence change by the atmospheric stability conditions. Also, Taylor’s frozen hypothesis does not
take into account the coherence decay of turbulence in the longitudinal direction. In this work, we consider three
atmospheric stability classes, unstable, neutral, and stable, and generate four-dimensional stochastic turbulence
fields based on two models: the Mann model and the Kaimal model. The generated four-dimensional stochastic
turbulence fields include realistic longitudinal coherence, thus avoiding assuming Taylor’s frozen hypothesis.
The Reference Open-Source Controller (ROSCO) by NREL is used as the baseline feedback-only controller. A
reference lidar-assisted controller is developed and used to evaluate the benefit of LAC. Considering the NREL
5.0 MW reference wind turbine and a typical four-beam pulsed lidar system, it is found that the filter design of
the LAC is not sensitive to the turbulence characteristics representative of the investigated atmospheric stability
classes. The benefits of LAC are analyzed using the aeroelastic tool OpenFAST. According to the simulations,
LAC’s benefits are mainly the reductions in rotor speed variation (up to 40 %), tower fore–aft bending moment
(up to 16.7 %), and power variation (up to 20 %). This work reveals that the benefits of LAC can depend on the
turbulence models, the turbulence parameters, and the mean wind speed.

1 Introduction

Traditionally, wind turbine control only relies on the feed-
back (FB) control strategy. For the above-rated wind opera-
tions, the generator speed change caused by the turbulence
wind is measured, and the blade pitch is adjusted to main-
tain the rated rotor/generator speed. This means that the tur-
bine reacts to the wind disturbance only after it has been af-
fected. A nacelle lidar scanning in front of the turbine can
provide a preview of the incoming turbulence. Based on the
preview, a rotor-effective wind speed (REWS) can be de-

rived and used to provide a feedforward pitch signal. The
feedforward pitch signal can be simply added to the conven-
tional feedback controller (Schlipf, 2015), which is often re-
ferred to as lidar-assisted collective pitch feedforward con-
trol (CPFF). Apart from CPFF, there are other lidar-assisted
control (LAC) concepts that have been presented in the lit-
erature, e.g., the works by Schlipf et al. (2013b), Schlipf
(2015), Schlipf et al. (2020). However, CPFF is so far the
most promising technology, and it has been deployed in com-
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mercial projects (Schlipf et al., 2018b). Thus, we focus on
assessing the benefits of CPFF in this work.

To utilize the lidar measurement for LAC, a correlation
study is necessary to determine how much the lidar-estimated
REWS is correlated with the actual REWS that acts on the
turbine rotor. Some facts that could have an impact on the
measurement correlation are listed below:

a. Lidar measurement positions. A typical lidar system has
fewer measurement points within the rotor-swept area
compared to the rotational sampling rotor. Thus, the
lidar-estimated REWS is less spatially filtered.

b. Line-of-sight (LOS) wind speed vlos measurement. This
is the cumulative projection of longitudinal (u), lateral
(v), and vertical (w) components in the lidar beam direc-
tion. The turbine’s aerodynamic performance is mainly
driven by the u component, and lidar is expected to mea-
sure the u component for control purposes. In reality,
the lidar measurements can be contaminated by lateral
and vertical wind speed components (Held and Mann,
2019), because of the beam opening angles, the nacelle
movement, or the turbine yaw misalignment.

c. Lidar probe volume. The lidar measurement is the
weighted average of the LOS along the lidar beam (Peña
et al., 2013; Peña et al., 2017).

d. Turbulence spectrum and coherence. The lidar mea-
surement coherence is mathematically derived based on
the spectrum and coherence (Schlipf, 2015; Held and
Mann, 2019; Guo et al., 2022a), which will be further
discussed in Sect. 3.

e. Atmospheric stability. The turbulence spectrum and co-
herence have been shown to vary by atmospheric stabil-
ity conditions (Peña, 2019; Guo et al., 2022a).

According to the IEC standard, two turbulence models are
commonly used for wind turbine design as provided by the
IEC 61400-1:2019 (2019) standard; one is the Mann (1994)
uniform shear model, and another one is the Kaimal et al.
(1972) spectra combined with exponential coherence model
(hereafter referred to as the Mann model and the Kaimal
model, respectively). The derivation of lidar measurement
coherence based on a specific turbulence model has been
studied in the literature. For example, Schlipf et al. (2013a)
and Schlipf (2015) show the derivation by the Kaimal model.
Mirzaei and Mann (2016), Held and Mann (2019), and Guo
et al. (2022a) demonstrate the solution for the Mann model.
Based on the two turbulence models, several authors inves-
tigated the lidar measurement coherence considering differ-
ent lidar measurement trajectories and turbine sizes, e.g.,
the works by Simley et al. (2018), Held and Mann (2019),
and Dong et al. (2021). Specifically, in work by Dong et al.

(2021), the lidar measurement coherence by the two turbu-
lence models is compared, assuming Taylor’s frozen hypoth-
esis. In this paper, we also consider two turbulence models
and include turbulence evolution in our analysis.

Once the lidar measurement coherence is analyzed, a filter
needs to be designed to filter out uncorrelated information
in the lidar-estimated REWS. Because the filter introduces
a certain time delay (Schlipf, 2015), a timing algorithm is
necessary to ensure the turbine feedforward pitch acts at the
correct time. Usually, the time that turbulence requires to
propagate from upstream to downstream, the time delay in
the pitch actuator, the time delay by averaging sequential li-
dar measurements of a full scan, and the time delay caused
by filtering should all be considered. In this work, we will
contribute by providing a reference lidar-assisted controller.
It includes (1) a lidar data processing module that provides
the lidar-estimated REWS, (2) a feedforward blade pitch rate
provider, and (3) a modified Reference Open-Source Con-
troller (ROSCO) with the capability to accept feedforward
pitch rate signal. ROSCO (Abbas et al., 2022) is an open,
modular, and fully adaptable baseline wind turbine controller
with industry-standard functionality.

When evaluating the benefits of LAC, Schlipf (2015) uses
the Kaimal model with the turbulence spectral parameters
provided by the IEC standard through FAST (Jonkman and
Buhl, 2005) (the previous version of OpenFAST NREL,
2022) aeroelastic simulation. With a circular scanning lidar,
LAC is found to bring a noticeable reduction in the lifetime
damage equivalent load (DEL) in the tower base fore–aft
bending moment, the low-speed shaft torque, and the blade
root out-of-plane moment. However, the variations of turbu-
lence parameters have not been considered.

The recent developments in turbulence simulation tools,
evoTurb by Chen et al. (2022) and the 4D Mann Turbulence
Generator by Guo et al. (2022a), have made it possible to in-
tegrate turbulence evolution into aeroelastic simulation. With
the updated OpenFAST lidar simulator (Guo et al., 2022b),
the 4D turbulence field can be imported into OpenFAST, and
the upstream lidar measurement can be simulated using the
upstream turbulence fields.

The variation of turbulence parameters from the standard
values given by IEC 61400-1:2019 (2019) can be interesting
for wind energy. Turbulence parameters under different at-
mospheric stability classes are investigated and summarized
by, e.g., Cheynet et al. (2017), Peña (2019), and Nybø et al.
(2020). For example, Fig. 1 shows how the turbulence struc-
ture changes by the turbulence length scale L. A larger co-
herent eddy structure is observed in the unstable stability,
and the eddy structure is much smaller in size under the sta-
ble stability. In the neutral case, the eddy structure is some-
where between the two cases. The length scale can have an
impact on the power spectrum and turbulence spatial coher-
ence (as later discussed in Sect. 2.4). Further, the spectrum
and coherence can have potential impacts not only on the li-
dar measurement coherence but also on the turbine loads be-
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cause the turbulence spectrum peaks can distribute at differ-
ent frequency ranges, and different frequencies can produce
different excitations for the turbine structure motions.

In this work, we summarize how the turbulence spectrum
and spatial coherence can vary by atmospheric stability from
literature. Three atmospheric stability classes, unstable, neu-
tral, and stable, are considered. For each atmospheric sta-
bility class, the Mann model parameters are collected, and
then the Kaimal model parameters are fitted to have similar
spectra and coherence compared to the Mann model. Then
the four-dimensional stochastic turbulence fields are gener-
ated using the 4D Mann Turbulence Generator (Guo et al.,
2022a) and evoTurb (Chen et al., 2022). The benefits of LAC
are then assessed using a typical four-beam commercial lidar
configuration and the 5 MW reference wind turbine by NREL
(Jonkman et al., 2009) through the lidar simulator-integrated
aeroelastic simulation tool: OpenFAST. To compare CPFF
with the traditional feedback-only controller, ROSCO is con-
sidered to be the baseline feedback controller.

This paper is organized as follows: Sect. 2 gives the back-
ground about turbulence modeling, Sect. 3 discusses the cor-
relation between the REWS and the lidar-estimated REWS,
Sect. 4 introduces the design of lidar-assisted controller,
Sect. 5 presents and discusses the simulation results, and
Sect. 6 draws conclusions for this research.

2 Turbulence modeling

In this section, we first introduce the Mann (1994) model
and the Kaimal et al. (1972) spectrum and exponential co-
herence model (Davenport, 1961) used in this work. Then,
the methods to include turbulence evolution in the two turbu-
lence models are discussed. Lastly, we show the turbulence
spectra and coherence under different atmospheric stability
classes.

2.1 The Mann turbulence model

The Mann (1994) model is a spectral tensor model recom-
mended by the IEC 61400-1:2019 (2019) standard for wind
turbine load calculations. It applies the rapid distortion the-
ory (Hunt and Carruthers, 1990) to an isotropic spectral ten-
sor based on the von Kármán (1948) energy spectrum, to
model the shear stretched eddy structures.

At a certain moment, the velocity field can be described by
ũ(x), with x= (x,y,z) the position vector in space (Carte-
sian coordinate). After applying Taylor’s frozen hypothesis
(Taylor, 1938) and Reynolds’ decomposition, the fluctua-
tion part of the turbulence u(x)= ũ−U about the mean flow
U= (U,0,0) is assumed homogeneous in space, and it can
be computed from the Fourier transform

u(x, t0)=
∫

û(k, t0)exp(ik · x)dk, (1)

where û(k, t0) is the Fourier coefficient of the velocity field,
i is the imaginary unit, and

∫
dk≡

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞
dk1dk2dk3

means the integration over all the wavenumber vectors k=
(k1,k2,k3). Conversely,

û(k, t0)=
1

(2π )3

∫
u(x, t0)exp(−ik · x)dx, (2)

with
∫

dx≡
∫
∞

−∞

∫
∞

−∞

∫
∞

−∞
dxdydz. The Fourier coefficients

are connected to the elements in the spectral tensor (denoted
as 8) by

8ij (k)δ(k−k′)= 〈ûi∗(k, t0)ûj (k′, t0)〉, (3)

where 〈 〉 means the ensemble average, ∗ denotes the com-
plex conjugate, and δ() is the Dirac delta function. k′ is also
the wavenumber vectors, and it is used to differentiate with
k. Equation (3) implies that the ensemble averages of the
Fourier coefficients of non-identical wavenumber vectors are
all zero. i,j = 1,2,3 are indexes that stand for u, v, and
w components, i.e., u= (u1,u2,u3)= (u,v,w). The detailed
expression of 8ij (k) can be found from the work by Mann
(1994). Note that the spectral tensor 8 is a 3 by 3 matrix for
any wavenumber vector k, and 8ij (k) denotes an element in
the matrix. Except for the wavenumber vector, there are three
other parameters in the model. They are as follows:

– αε2/3 [m4/3 s−2] is an energy level constant valid in
the inertial subrange, composed by the spectral Kol-
mogorov constant α and the rate of viscous dissipation
of specific turbulent kinetic energy ε (Mann, 1998). This
constant actually acts as a proportional gain to the spec-
tral tensor and it is often adjusted to obtain a specific
turbulence intensity (TI).

– L [m] is a length scale related to the size of the eddies
containing the most energy (Held and Mann, 2019).

– 0 [–] is a non-dimensional anisotropy due to shear ef-
fect in near-surface boundary layer. When 0 = 0, the
turbulence is isotropic (Mann, 1994, 1998).

Mann (1994) uses 0 to calculate the eddy lifetime by

τ (k)= 0
(

dU
dz

)−1

(|k|L)−
2
3

[
2F1

(
1
3
,

17
6
;

4
3
;−(|k|L)−2

)]− 1
2
, (4)

where 2F1() is a hypergeometric function and dU
dz is the mean

vertical shear profile. The eddy lifetime τ actually distorts
the wavenumber k3 (corresponds to the z direction) from the
initial shearless state k30 by k3 = k30−βk1. Here, β = dU

dz τ is
a non-dimensional distortion factor (Mann, 1994). The effect
of the hypergeometric function 2F1() is to have

τ (k)

{
∝ |k|b1 , for |k| → ∞,
∝ |k|b2 , for |k| → 0,

(5)
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Figure 1. Top view of a turbulence field showing the eddy structures under different atmospheric stability, simulated using the 4D Mann
Turbulence Generator with parameters listed in Table 1. The lidar measured positions are plotted based on a typical four-beam pulsed lidar.
The rotor-swept area is drawn based on the NREL 5.0 MW reference wind turbine which has a rotor diameter of 126 m. The length scales L
are chosen based on studies by Peña (2019) and Guo et al. (2022a).

where b1 and b2 are two constants standing for the slopes of
τ in logarithmic scale. Instead of using the hypergeometric
function, Guo et al. (2022a) proposed another equation for
the eddy lifetime

τ (k)= 0
(

dU
dz

)−1
[
a(|k|L)b1

(
(|k|L)10

+ 1
) b2−b1

10

]
, (6)

with a =
[

2F1

(
1
3
,

17
6
;

4
3
;−1

)]− 1
2
, (7)

which is straightforward to adjust the slopes of the eddy life-
time. They found that adjusting the slope constant b1 for sta-
ble atmospheric stability tends to give better agreements of
spectra and coherence between the model and the measure-
ments from a lidar and a meteorological mast. We will use
Eq. (6) for the rest of this paper.

The one-dimensional (along the longitudinal wavenum-
ber) cross-spectra of all velocity components with separa-
tions 1y and 1z can be obtained by

Fij (k1,1y,1z)=
∫

8ij (k)exp(i(k21y+ k31z))dk⊥, (8)

where
∫

dk⊥ ≡
∫
∞

−∞

∫
∞

−∞
dk2dk3. Specifically, when i = j

and 1y =1z= 0, it becomes the auto-spectrum of one ve-
locity component at one point, usually written as Fii(k1).
The magnitude-squared coherence between two points in the
same yz plane is often interesting, which can be calculated
by (Mann, 1994)

coh2
ij (k1,1y,1z)=

|Fij (k1,1y,1z)|2

Fii(k1)Fjj (k1)
. (9)

And the yz plane co-coherence and quad-coherence are de-
fined by

cocohij (k1,1y,1z)=
<(Fij (k1,1y,1z))√
Fii(k1)Fjj (k1)

, (10)

and

quadcohij (k1,1y,1z)=
=(Fij (k1,1y,1z))√
Fii(k1)Fjj (k1)

, (11)

where < and = are the real and imaginary number operators,
respectively.

2.2 Kaimal spectra and exponential coherence model

The Kaimal model given by IEC 61400-1:2019 (2019) uses
the following formula to determine the auto-spectra of veloc-
ity components:

Si(f )=
4σ 2
i
Li
Uref

(1+ 6f Li
Uref

)5/3
, (12)

where f is the frequency, Li is the integral length scale, σi is
the standard deviation, and Uref is the reference wind speed
equivalent to hub-height mean wind speed. The coherence
(with square) of the u components of two points in the yz
plane is described as

γ 2
yz(1yz,f )= exp

−2ayz1yz

√(
f

Vhub

)2

+

(
0.12
Lc

)2
 , (13)

with 1yz=
√
1y2+1z2 the separation distance, ayz the

coherence decay constant, and Lc the coherence scale pa-
rameter. Note that the coherence without square is used in
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IEC 61400-1:2019 (2019). The yz plane coherence for the
v and w components is not given by the IEC 61400-1:2019
(2019), and they are ignored in this work.

2.3 Modeling of turbulence evolution

The turbulence evolution refers to the phenomenon that the
eddy structure changes when the turbulence propagates from
upstream to downstream. It is often represented using longi-
tudinal coherence.

2.3.1 Extending the Mann model to include evolution

A space–time tensor that extends the three-dimensional
Mann spectral tensor 8 to count for the temporal evolution of
the turbulence field has been proposed by Guo et al. (2022a).
The space–time tensor is evaluated to provide good agree-
ments on the turbulence spectra and coherence including the
spectra of all velocity components and the coherence with
longitudinal, vertical–lateral, and all combined spatial sep-
arations. The validation has been made using measurement
from a pulsed lidar and a meteorological mast. Details of
the model validation can be found in the work by Guo et al.
(2022a). The space–time tensor is written as

2ij (k,1t)= exp
(
−
1t

τe(k)

)
8ij (k), (14)

which defines the ensemble average

2ij (k,1t)δ(k−k′)= 〈ûi∗(k, t0)ûj (k′, t0+1t)〉, (15)

where ûj (k′, t0+1t) denotes the Fourier coefficients of the
turbulence field at time t0+1t . τe is another eddy lifetime
(different from τ ) that defines the temporal evolution of the
turbulence field. The expression

τe(k)= γ
[
a(|k|L)−1

(
(|k|L)10

+ 1
)− 2

15
]

(16)

was found to predicts the longitudinal coherence well as in-
vestigated by Guo et al. (2022a). Here, γ is a parameter that
determines the strength of turbulence evolution.

In the space–time tensor, the turbulence field is assumed to
travel with a mean reference wind speed Uref. After time 1t ,
the field moves downstream in the positive x direction by
Uref1t . Thus, for two points with a longitudinal separation
of 1x, the longitudinal coherence (magnitude-squared) of u
component can be calculated from

coh2
11(k1,1x)=

|
∫
211(k,1x/Uref)dk⊥|2

F11(k1)F11(k1)
, (17)

where

F11(k1)=
∫
811(k)dk⊥ (18)

is the auto-spectrum of u component. In practice, the
wavenumber-based spectra or coherence is converted to the
frequency-based ones using conversion k1 = 2πf/Uref, as-
suming Taylor (1938)’s frozen hypothesis.

2.3.2 Exponential longitudinal coherence model

On the other hand, Simley and Pao (2015) adjusted the ex-
ponential coherence model listed in the IEC 61400-1:2019
(2019) by replacing the transverse and vertical separations
with longitudinal separations, which gives the following ex-
pression for the longitudinal coherence

γ 2
x (1x,f )= exp

−ax1x
√(

f

Uref

)2

+ b2
x

 , (19)

where ax and bx are two parameters, and f is the frequency.
Specifically, ax determines the decay effect of the coherence,
and bx determines the intercept (value at 0 frequency) (Chen
et al., 2021). Simley and Pao (2015) validated Eq. (19) us-
ing large eddy simulations (LESs) of different atmospheric
stability classes. Besides, Davoust and von Terzi (2016) and
Chen et al. (2021) verified the exponential evolution model
using lidar measurement, showing that the expression by
Simley and Pao (2015) agrees well with the measurement.
In their study, they found possible ax and bx by fitting the
coherence calculated from measurement data to the model.
As a result, 0< ax < 6 was observed, and bx was found in
the order of magnitude ≤ 10−3.

To include the exponential longitudinal coherence model
into the analysis of lidar measurement correlation, a general
“direct product” approach is used to combine the lateral-
vertical coherence and the longitudinal coherence (Laks
et al., 2013; Simley, 2015; Bossanyi et al., 2014; Schlipf
et al., 2013a), which means the overall coherence

γxyz(f )= γyz(f ) · γx(f ). (20)

As shown by Chen et al. (2022), the direct product approach
allows an efficient algorithm to generate the Kaimal-model-
based 4D stochastic turbulence field using statically indepen-
dent 3D turbulence fields using evoTurb.

2.4 Turbulence under different atmospheric stability
classes

Atmospheric stability indicates the buoyancy effect on the
turbulence generation, and it is usually related to the tem-
perature gradient by height. It is interesting to investigate
its impact on the filter design of LAC since the turbine will
experience different atmospheric stability conditions during
operation. The filter is necessary to filter out the uncorrelated
frequencies in the REWS estimated by lidar, as will be dis-
cussed later in Sect. 3. In the rest of this paper, we use the
Mann turbulence parameter sets representative of unstable,
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neutral, and stable conditions based on the study by Peña
(2019) and Guo et al. (2022a), as listed in Table 1. It is worth
mentioning that the αε2/3 parameter is scaled such that the TI
corresponds to the IEC 61400-1:2019 (2019) class 1A defini-
tion. Actually, the turbulence intensity is related to the atmo-
spheric conditions. Usually, TI is generally high in unstable
stability, moderate in neutral stability, and low in stable sta-
bility (Peña et al., 2017). In this work, we emphasize analyz-
ing the impact of turbulence length scale and anisotropy on
turbine loads and LAC benefits. Therefore, the same TI level
is assumed for the three stability classes. This assumption
tends to be not realistic, but it helps to identify the impact of
length scale on turbine load, as later analyzed in Sect. 5.2.

As for the Kaimal model, we chose the parameters listed
by the IEC 61400-1:2019 (2019) for the neutral stability be-
cause these parameters were already found to give similar
spectra and coherence compared to the Mann model with
neutral stability parameters. Also, keeping these parameters
allows readers to compare the results with those from exist-
ing literature, e.g., Schlipf (2015), Simley et al. (2018), and
Dong et al. (2021). For unstable and stable stability classes,
we fit the Kaimal spectra by the Mann-model-based spectra
using the following optimization process:

min
Li ,σi

∑N

n=1

[
1
k1,n

(
Si(fn) · fn− 2Fii(k1,n) · k1,n

)2]
,

s.t. k1,n =
2πfn
Uref

and i = 1,2,3. (21)

Here, n is the index of the discrete frequency vector fn and
wavenumber vector k1,n, N is the size of the discrete vector,
and s.t. denotes “subject to”. Note that the Mann model spec-
tra Fii(k1,n) are multiplied by 2 since they are the two-sided
spectra, while the Kaimal spectra are single-sided. Similarly,
we fit the yz plane exponential coherence for the Kaimal
model by the Mann model using

min
ayz,Lc

∑N

n=1

[
1
k1,n

(
γyz(1yz,fn)− cocoh11(k1,n,1y,1z)

)2]
,

s.t. k1,n =
2πfn
Uref

and 1y =1z= 20m, (22)

where the fitting uses the co-coherence and ignores the
quad-coherence. We fit the co-coherence instead of the
magnitude-squared coherence, because the exponential co-
herence model (Eqs. 13 and 19) only includes the real co-
coherence, whereas the coherence of the Mann model in-
cludes both co-coherence and quad-coherence. The medium
separation 1y =1z= 20 m has been chosen for the op-
timization problem. For both optimization equations, the
squared error in each discrete vector is divided by k1,n to
ensure equivalent weighting of the optimization function at a
different frequency or wavenumber ranges. The fitted spectra
and yz plane coherence are shown by Fig. 2a and b, and the
turbulence parameters are summarized in Table 1.

Except for the spectra and yz plane coherence, Guo et al.
(2022a) showed that the longitudinal coherence is related

Figure 2. (a) The auto-spectra of the longitudinal velocity compo-
nent under different stability classes. (b) Lateral–vertical coherence
of the longitudinal velocity component calculated using the Mann
spectral tensor and fitted by the exponential coherence model. Note
the co-coherence is shown for the Mann spectral tensor. (c) Lon-
gitudinal coherence of the longitudinal velocity component calcu-
lated using the space–time tensor and fitted by the exponential co-
herence model. The results are calculated with a mean wind speed
of 16 ms−1.
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Table 1. The Mann model parameters under different atmospheric stability classes (based on the work of Peña, 2019) and the fitted Kaimal
model parameters, calculated using a mean wind speed of 16 ms−1. αε2/3 is scaled such that the TI corresponds to the IEC 61400-1:2019
(2019) class 1A definition.

Mann Kaimal

αε2/3 L 0 L1 L2 L3 σ1 σ2 σ3 ayz [–] Lc
[m4/3s−2] [m] [–] [m] [m] [m] [ms−1] [ms−1] [ms−1] [–] [m]

Unstable 0.184 140 2.6 744.8 181.9 126.4 2.82 2.34 1.98 6.5 1502.0
Neutral 0.311 49 3.1 340.2 113.4 27.72 2.82 2.25 1.41 12.0 340.2
Stable 0.652 30 2.4 101.1 33.3 27.0 2.82 2.26 1.83 13.1 101.1

to the atmospheric stability based on measurement. In their
study, a smaller intercept was found for a more stable class.
Also, Simley and Pao (2015) studied the turbulence evo-
lution under different stability classes using LES, and the
smaller intercept was also observed in stable atmospheric (as
shown in Fig. 2). In order to compare the longitudinal co-
herence under different atmospheric stability, we use three
sets of γ = 200,400, and 600 s to calculate the longitudi-
nal coherence based on the space–time tensor 2. The reason
for choosing these values for γ is that they result in coher-
ence close to observations in existing literature, as will be
discussed later at the end of this section. Afterward, we fit
the exponential coherence (Eq. 19) using the following opti-
mization process:

min
ax ,bx

∑N

n=1

[
1
fn

(
γx(1x,fn)− coh11(k1,n,1x)

)2]
,

s.t. 1x = 100m. (23)

Here we chose to fit the separation at 1x = 100m, which is
the medium separation for a commercial lidar measuring in
front of the turbine (Simley et al., 2018; Guo et al., 2022b).
The fitted coherence is shown in Fig. 2c. The fitted expo-
nential coherence parameters ax and bx are summarized in
Table 2, and they show similar trend as the observation by
Simley and Pao (2015) using LES. For an unstable atmo-
sphere, ax is generally larger, and bx is in a very small order
close to zero. In the neutral condition, ax lies in a medium
value, and bx is also a small order close to zero. As for the
stable case, ax is the smallest, meaning a weaker coherence
decay, while bx is larger, resulting in a smaller intercept.

Based on the study by Guo et al. (2022a), γ was found to
be 430 and 207 s for neutral and stable stability classes, re-
spectively, while the value of γ in the unstable scenario has
not been derived due to a lack of samples from measurement.
Chen et al. (2021) performed a probability study of the co-
herence parameter ax based on lidar measurement, and it is
found to appear between one and two with a higher proba-
bility. According to the analysis by Simley and Pao (2015),
ax tends to be the largest in an unstable condition compared
to that in a neutral or stable condition. Based on the pre-
vious observations by these authors, and since γ = 200 or

Table 2. The fitted parameters for the exponential longitudinal co-
herence model.

Stability γ = 200 s γ = 400 s γ = 600 s

Unstable
ax 8.2 5.1 4.1
bx 8.52 ×10−5 8.02 ×10−5 7.67 ×10−5

Neutral
ax 2.9 1.8 1.4
bx 1.59× 10−4 1.49× 10−4 1.42× 10−4

Stable
ax 1.6 1.0 0.8
bx 9.18 ×10−4 8.59× 10−4 8.27× 10−4

400 s gives unrealistically large values of ax in the unsta-
ble atmosphere that are less likely to happen, we decided to
choose γ = 600 s for the unstable condition, which results in
ax = 4.1. And γ = 400 and γ = 200 are used for neutral and
stable stability classes, respectively. In addition, it is worth
mentioning that we do not consider the dependence of the
turbulence evolution parameters on TI level. The selection
of turbulence evolution parameters is based on relevant stud-
ies, and typical values are chosen. As studied by Simley and
Pao (2015), the TI values can be different for the same at-
mospheric stability, and the evolution parameters show some
dependence on the TI values. In the future, a joint probabilis-
tic study on the turbulence spectral parameters, TI levels, and
evolution parameters is necessary for defining more realistic
simulation scenarios for LAC.

3 Correlation between lidars and turbines

In this section, the definitions of REWS and the REWS esti-
mated by lidar will first be discussed. Then the auto-spectra
of these two signals and the cross-spectrum between them
will be presented. In the end, we summarize the wind preview
quality of the investigated four-beam lidar for the NREL
5.0 MW reference turbine under different atmospheric sta-
bility classes.
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3.1 Rotor-effective wind speed

As discussed by Schlipf (2015), one way of defining the
rotor-effective wind speed for control purpose is the mean
longitudinal component u over the turbine rotor-swept area:

uRR(x)=
1
πR2

∫
D

u(x)dydz, (24)

where D denotes the integration over the rotor area defined
by rotor radius R.

For the Mann model, as derived by Held and Mann (2019),
the auto-spectrum of the REWS uRR can be calculated using
the spectral tensor by

SRR(k1)=

∞∫
−∞

811(k)
4J 2

1 (κR)
κ2R2 dk⊥, (25)

with κ =
√
k2

2 + k
2
3 and J1 the Bessel function of the first

kind. The detailed derivation of the auto-spectrum can be
found in the works by Held and Mann (2019) and Mirzaei
and Mann (2016).

As for the Kaimal model, the spectrum is derived by
Schlipf et al. (2013a) and Schlipf (2015), i.e.,

SRR(f )=
S1(f )
n2

R

nR∑
i=1

nR∑
j=1

γyz(1yzij ,f ), (26)

where1yzij is the separation distance between point i and j
in the same yz plane, and nR is the total number of points in
the rotor area. The detailed derivation of the auto-spectrum
can be found in Schlipf (2015).

3.2 Lidar-estimated rotor-effective wind speed

Lidar utilizes the Doppler spectrum contributed by the
aerosol backscatters within the probe volume to determine
wind measurement. It is necessary to include the probe vol-
ume averaging effect. Mann et al. (2009) show that the lidar
LOS measurements at a focus position x= (x,y,z) can be
approximated by

vlos(x)=

∞∫
−∞

ϕ(r)n ·u(rn+ x)dr, (27)

where n= (n1,n2,n3)= (cosβ cosφ,cosβ sinφ,sinβ) is a
unit vector aligned in the direction of a lidar beam that can be
simply calculated after knowing the azimuth angle φ and ele-
vation angle β (see Fig. 3 for the definition). r is the displace-
ment along the lidar beam direction from the focused posi-
tion x. ϕ(r) is the weighting function due to the lidar volume
averaging. In this work, a typical pulsed lidar is considered
whose weighting function is modeled by a Gaussian-shape

Figure 3. The front view of the NREL 5.0 MW turbine and the
optimized four-beam trajectory. A reference coordinate system for
the lidar system is also shown, where the positive x direction is the
mean wind flow direction.

function (Schlipf, 2015)

ϕ(r)=
1

σL
√

2π
exp

(
−
r2

2σ 2
L

)
with σL =

WL

2
√

2ln2
, (28)

where the full width at half maximum WL is about 30 m.
Since lidar only provides the wind speed in the LOS di-

rection, the u component is needed to be reconstructed from
LOS speed. A simple algorithm is used to assume zero v
andw components because they usually contribute much less
than the u component to the LOS speed. In fact, this is true
if lidar beam misalignment to the longitudinal direction is
small. Based on this assumption, the lidar-estimated rotor-
effective wind speed is often obtained by (see Schlipf, 2015)

uLL(t)=
nL∑
i=1

1
nL cosβi cosφi

vlos,i(t), (29)

where nL is the total number of lidar measurement positions,
vlos,i(x) denotes the ith lidar measurement position, φi is the
azimuth angle of the ith measured position, and βi is the el-
evation angle of the ith measured position.

Guo et al. (2022a) suggested calculating the auto-spectrum
of the lidar-estimated REWS (uLL) from the Mann-model-
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based space–time tensor by

SLL(k1)=
nL∑
i,j=1

3∑
l,m=1

1
n2

L cosβi cosφi cosβj cosφj∫
nilnjm2lm(k,1tij )

exp(ik · (xi − xj ))ϕ̂(k ·ni)ϕ̂(k ·nj )dk⊥, (30)

where xi and ni denote the focus position vector and the unit
vector of the ith lidar measurement, respectively, nil is the
lth element in the unit vector ni ,

ϕ̂(ν)=

∞∫
−∞

ϕ(r)exp(−iνr)dr = exp

(
−ν2 σ

2
L
2

)
(31)

is the Fourier transform (non-unitary convention) of the
weighting function of lidar, and 1tij = (xi − xj )/Uref is the
time required for turbulence to propagate from position xi to
xj . A more detailed derivation of Eq. (30) can be found in the
works by Mirzaei and Mann (2016), Held and Mann (2019),
and Guo et al. (2022a). In practical lidar data processing for
wind turbine control, as discussed in Sect. 4.2, the lidar mea-
surement data from different measurement gates are phase
shifted to the nearest used measurement range gate using
Taylor (1938)’s frozen hypothesis. This means that vlos,i(t)
in Eq.( 29) should be shifted in time according to the mean
wind speed and the longitudinal separation, i.e.,

uLL(t)=
nL∑
i=1

1
nL cosβi cosφi

vlos,i(t −
xnrg− xi

Uref
), (32)

where xnrg is the longitudinal position of the used mea-
surement range gate nearest to the rotor plane. As a conse-
quence, the phase shifts contributed by longitudinal separa-
tions (xi − xj ) in Eq. (30) are always zero.

For the Kaimal model, the auto-spectrum can be derived
based on the Fourier transform:

SLL(f )= F{uLL}F∗{uLL}

=

nL∑
i,j=1

1
n2

L cosβi cosφi cosβj cosφj

F{vlos,i}F∗{vlos,j }, (33)

where F{ } denotes the Fourier transform. The Fourier trans-
form of the ith LOS speed vlos,i is quite lengthy and thus is
not extended here. The detailed expression can be found in
the work by Chen et al. (2022).

3.3 Cross-spectrum between rotor and lidar

When turbulence evolution is considered with the Mann
model, Guo et al. (2022a) show that the cross-spectrum be-
tween REWS uRR and the lidar-estimated one uLL can be

calculated using the space–time tensor by

SRL(k1)=
nL∑
i=1

3∑
j=1

1
nL cosβi cosφi

∫
nij2j1(k,1ti)

ϕ̂(k ·ni)exp(ik · xi − ik1xi)
2J1(κR)
κR

dk⊥, (34)

where 1ti is the time required for the turbulence field to
move from the ith lidar measurement position to the ro-
tor plane, which can be approximated by 1ti = |1xi |/Uref.
Here, 1xi is the longitudinal separation between the rotor
plane and the ith lidar measurement position and 1xi =

xi − xR, with xR being the rotor plane position on the x axis.
For LAC, the lidar measurement data from different range
gates are phase shifted to the rotor plane using Taylor (1938)
frozen hypothesis; therefore, this assumption is also made
when deriving Eq. (34).

Similarly, following Schlipf (2015), the cross-spectrum for
the Kaimal model is

SRL(f )= F{uRR}F∗{uLL}

=

nR∑
i=1

nL∑
j=1

1
nLnR cosβi cosφi

F{ui}F∗{vlos,j }, (35)

with ui the ith longitudinal wind component in the rotor
swept area. See Chen et al. (2022) for detailed derivation of
the Fourier transform of vlos,j , where the main algorithm is
to loop over the Fourier transform of all velocity components
included in ui and vlos,j .

3.4 Lidar wind preview and filter design: case analysis

To evaluate the preview quality of lidar measurement, one
can calculate the lidar–rotor coherence by

γRL(f )=
|SRL(f )|2

SRR(f )SLL(f )
. (36)

Then, a measurement coherence bandwidth (the wavenum-
ber at which the coherence drops to 0.5, noted as k0.5) can
be found. Note that k0.5 = 2πf0.5/Uref, where f0.5 is the fre-
quency at which the coherence drops to 0.5. k0.5 and is usu-
ally used as the optimization criteria for the LAC-oriented
lidar measurement trajectory (Schlipf et al., 2018a).

In this work, we chose the medium-size NREL 5.0 MW
reference wind turbine with a rotor diameter of 126 m
(Jonkman et al., 2009) and a typical four-beam pulsed lidar
trajectory (e.g., WindCube Nacelle and Molas NL). The lidar
trajectory is firstly optimized following the method proposed
by Schlipf et al. (2018a) using the space–time tensor-based
lidar–rotor coherence γRL. The turbulence parameters corre-
sponding to the neutral stability in Table 1 are considered in
the optimization process. The optimized trajectory parame-
ters of the used lidar are given in Table 3. A front view of the
lidar and turbine geometry is shown in Fig. 3.
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Table 3. Parameters of the optimal four-beam pulsed lidar system.
Optimized according to the measurement coherence bandwidth us-
ing the space–time tensor model. The definitions of the angles are
shown in Fig. 3.

Parameters Values Units

Number of beams 4 [–]
Beam azimuth angles φ 165.6, 165.6, −165.6, −165.6 [◦]
Beam elevation angles β 14.0, −14.0, −14.0, 14.0 [◦]
Range gates in x −50 to −170 [m]
Range gates step in x 13.3 [m]
Sampling frequency 1.0 (each beam) [Hz]
Full width at half maximum 30 [m]

With the optimized lidar trajectory, we show the coherence
γRL under different stability classes in Fig. 4a. It can be seen
that the coherence using the Mann-model-based space–time
tensor is generally better than that using the Kaimal model.
For both models, the coherence in neutral and stable stabil-
ity classes is higher than that in the unstable stability, which
can be caused by stronger turbulence evolution in the unsta-
ble situation. The coherence in the unstable case is especially
lower using the Kaimal model, which can be caused by the
direct product method. Based on the investigation by Sim-
ley (2015) using LES, combining coherence using the direct
product can underestimate the overall coherence.

Except for the coherence, another indicator of how well
the lidar predicts the REWS can be the following transfer
function (Schlipf, 2015; Simley and Pao, 2013):

|GRL(f )| =
|SRL(f )|
SLL(f )

. (37)

If a filter is designed to have a gain ofGRL(f ), it turns out to
be an optimal Wiener filter (Simley and Pao, 2013; Wiener,
1964), which produces an estimate of a desired or target sig-
nal (here the uRL). The Wiener filter minimizes the mean
square error between the target signal and the estimate of
the signal. When used for LAC, if the system is modeled as
a system with two inputs, REWS and lidar-estimated REWS,
and one output, rotor speed, the Wiener filter leads to min-
imal rotor speed variance as formulated by Simley and Pao
(2013). At a certain frequency, the larger gain means that less
information needs to be filtered out before the signal is used.
So, it indicates how much information measured by the lidar
is usable for feedforward control.

The transfer functions under the three investigated stability
classes are shown in Fig. 4b. The transfer function gains are
similar in the three stability classes for the space–time tensor-
derived results. As for the results by the Kaimal model, the
transfer function gain is lower in unstable stability but similar
in neutral and stable stability classes.

By the turbulence spectral model, which represents the
mean spectral properties, we can obtain the expected Wiener
transfer function gain. However, in real operation, the Wiener
filter design is more complicated and requires a higher-order

Figure 4. (a) Coherence between lidar-estimated REWS and the
turbine based REWS. (b) The optimal transfer function gain. The
black dot line corresponds to the −3 dB magnitude. The results are
calculated with a mean wind speed of 16 ms−1.

filter. In contrast, a linear filter that has similar damping as
the Wiener filter can also provide a similar filtering effect
as the Wiener filter. The linear filter is usually designed to
have a cutoff frequency at −3 dB of the Wiener filter (see
Schlipf, 2015, and Simley et al., 2018). The cutoff frequen-
cies as a function of mean wind speed are calculated by fit-
ting the GRL and are shown in Fig. 5. Note that the TI value
is also adjusted using the mean wind speed according to the
IEC 61400-1:2019 (2019) standard. Firstly, both turbulence
models indicate that the cutoff frequencies depend on the
mean wind speed linearly. Therefore, the cutoff frequency
of the filter can be scheduled based on this linearity. Gener-
ally, the cutoff frequencies by the Mann-model-based space–
time tensor are generally larger than those by the Kaimal
model. For the same turbulence model, the resulting cutoff
frequency does not change significantly by the analyzed tur-
bulence stability conditions. The largest difference appears at
the highest mean wind speed 24 ms−1, where the difference
of cutoff frequency between unstable and stable conditions is
about 0.02 Hz. As for lower mean wind speed (≤ 18 ms−1), it
can be seen that the turbulence parameters of different atmo-
spheric stability classes do not influence the cutoff frequency
very much, and the difference is smaller than 0.01 Hz. This
also indicates that, for mean wind speed≤ 18 ms−1, the filter
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Figure 5. The dependency of cutoff frequencies in hertz on the
mean wind speed. The cutoff frequency corresponds to−3 dB at the
GRL magnitude. In “all gates” the lidar measurement gates from 1
to 10 are considered. In “gates 2 to 10” the lidar measurement gates
from 2 to 10 are considered.

design is not very sensitive to the change in turbulence pa-
rameters related to atmospheric stability, and a constant filter
design is robust. In the rest of this work, we will use the con-
stant cutoff frequency derived from neutral stability for both
the Mann-model-based and the Kaimal-model-based simu-
lations. For example, 0.0490 and 0.0449 Hz will be used,
respectively, for the Mann model and the Kaimal-model-
based simulations with a mean wind speed of 16 ms−1. How-
ever, for a mean wind speed above 20 ms−1, using the cutoff
frequency derived from neutral stability is relatively biased
from the cutoff frequency derived for unstable conditions.
The impact of this non-ideal filtering should be analyzed fur-
ther in future works.

Apart from the case that all measurement gates (see the
caption of Fig. 5) are considered, another case, where nine
lidar measurement gates are considered, is also shown in
Fig. 5. It can be clearly seen that the cutoff frequencies are
only slightly reduced when the first measurement gate is ig-
nored. The reason for considering nine measurement gates is
that the leading time of the lidar-estimated REWS needs to
be larger than the time delays caused by filtering, by time-
averaging over the full lidar scan, and by the pitch actuator.
The leading time of the first measurement gate can be in-
sufficient for very high wind speed, and it must be ignored.
A more detailed discussion about the leading time and time
delay will be discussed in Sect. 4.4.

4 Lidar-assisted controller design

In this section, we introduce the lidar-assisted turbine con-
troller theory and its integration into OpenFAST aeroelastic
simulation.

Figure 6. The overall OpenFAST and LAC interface. LDP: lidar
data processing. FFP: feedforward pitch. ROSCO: the reference FB
controller.

4.1 Data exchange framework

To configure LAC in the OpenFAST aeroelastic simulation,
we chose to use the Bladed-style interface (DNV-GL, 2016).
The interface is responsible for exchanging variables be-
tween the OpenFAST executable and the external controllers
compiled as a dynamic link library (DLL). To make each
controller as modular as possible, we programmed an open-
source main DLL (written in FORTRAN), namely the “wrap-
per DLL”. The main function of the wrapper DLL is to call
the sub-DLLs by a specified sequence. Note that all the sub-
DLLs work based on the same variable exchange pattern
specified by the Bladed-style interface. This means each sub-
DLL can also be called by OpenFAST independently and di-
rectly. Or, several sub-DLLs can be called by the wrapper
DLL together. An overview of the LAC and OpenFAST in-
terface is shown in Fig. 6. Three sub-DLLs will be called by
the wrapper DLL following the sequence from up to below
in the figure. The source code of a baseline version of these
DLLs has been made openly available (see “Code availabil-
ity”).

4.2 Lidar data processing

As mentioned before, the lidar measurement data need to be
processed before they can be used for control. The first sub-
DLL is the lidar data processing (LDP) which calculates the
lidar-estimated REWS from the lidar LOS speed.

In reality, the lidar usually does not measure all beam
directions simultaneously. Instead, it sequentially measures
from one direction to the next direction. This sequential mea-
surement property is later simulated using the lidar module
in the aeroelastic simulation (see Sect. 5.1.1). Therefore, a
time-averaging window needs to be applied to estimate the
REWS from a full LOS scan. For the four-beam lidar used in
this work, the averaging window is chosen to be 1 s, which is
the time required to finish a full scan by four beams. To apply
the averaging window, the LDP module also needs to record
the leading time of the successful measurement. The leading
time can be approximated by1xi/Uref. When estimating the
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REWS, only the LOS measurements whose leading times are
within the time-averaging window will be chosen, and then
Eq. (32) is applied to estimate the REWS. Besides, the blade
blockage effect is considered in the simulation, and this phe-
nomenon is included in the updated OpenFAST lidar module
(Guo et al., 2022b). Due to the blade blockage, the LOS mea-
surements for a certain lidar beam are not always available.
Therefore, the LDP module estimates the REWS only using
all the available LOS measurements.

4.3 Feedback-only controller

A typical variable-speed wind turbine is controlled by a blade
pitch and generator torque controller. A baseline collective
feedback blade pitch control is achieved by a proportional-
integral (PI) controller (Jonkman et al., 2009):

θFB = kp(�gf−�g,ref)+
kp

TIs
(�gf−�g,ref), (38)

where θFB is the feedback pitch reference value, �g,ref is
the generator speed control reference, �gf is the measured
and low-pass-filtered generator speed, kp is the proportional
gain, TI is the integrator time constant, and s is the complex
frequency. The pitch controller is only active in the above-
rated wind speed, and kp and TI are scheduled to have a con-
stant closed-loop behavior through gain scheduling (Abbas
et al., 2022). For the NREL 5.0 MW wind turbine, the de-
sired damping and angular frequency are tuned to be 0.7 and
0.5 rads−1, respectively.

For better code accessibility, the recently developed open-
source reference controller, ROSCO (v2.6.0) by Abbas et al.
(2022), is used as the reference FB-only controller. ROSCO
uses a PI controller for the pitch control in the above-rated
wind speed operation. In terms of generator torque control
in the above-rated operation, we have chosen the option of
constant power mode in our simulations, with which the gen-
erator torque is set according to the filtered generator speed
to keep the electrical power close to its rated value. The gen-
erator torque (Mg) is set according to the low-pass-filtered
generator speed, the rated electrical power (Prated), and the
generator efficiency (η) byMg = Prated/(η�gf). See the work
by Abbas et al. (2022) for a more detailed description of the
reference controller. We have modified the ROSCO source
code to allow it to accept the feedforward pitch rate signal.
The feedforward pitch rate (see next section) is added before
the integrator of the PI controller.

4.4 Combined feedforward and feedback controller

The collective feedforward pitch control proposed by Schlipf
(2015) is used in this work where the feedforward pitch ref-
erence value is obtained by

θFF = θss(uLLf), (39)

Figure 7. The overall control diagram. FFC: feedforward pitch con-
troller; FBC: collective feedback pitch controller; GTC: generator
torque controller. Note that the real-time pitch angle (θ ) signal is
also used in the FBC and GTC for controller scheduling.

with uLLf the filtered REWS estimated by lidar and θss the
steady-state pitch angle as a function of the steady-state wind
speed uss. The steady-state pitch curve can usually be ob-
tained by running aeroelastic simulations using uniform and
constant wind speed. Figure 7 shows the general control dia-
gram with the lidar-assisted pitch feedforward signal θFF. In
practice, the pitch time derivative of the pitch feedforward
signal is fed into the integral block of the feedback PI con-
troller. This gives the overall collective pitch control refer-
ence as

θref = θFB+
1
s
θ̇FF. (40)

A feedforward pitch (FFP) sub-DLL is programmed to be
responsible for filtering the lidar-estimated REWS and pro-
vide feedforward pitch rate at correct time. A first-order low-
pass filter with the following transfer function:

GLPF(s)=
2πfc

s+ 2πfc
, (41)

where fc is the cutoff frequency, as discussed in Sect. 3.4,
that is applied to filter the uLL signal. Based on the filter
cutoff frequency, the time delay introduced by the low-pass
filtering of lidar-estimated REWS (Tfilter) can be estimated
(see Schlipf, 2015, for detailed calculation). The pitch feed-
forward signal is then sent to ROSCO after accounting for
the pitch actuator delay (Tpitch), the filter delay, and the half
of the time-averaging window (Twindow). That is, the signal
recorded in the timing buffer that has a time close to the
buffer time is activated. The buffer time is defined as

Tbuffer = Tlead− Tfilter− Tpitch−
1
2
Twindow. (42)

Here, Twindow = 1 s is the time-averaging window equivalent
to one full scan time of the lidar. It is multiplied by 1/2 in
Eq. (42), because of the phase delay property of the time-
averaging filter (Lee et al., 2018). The actuator delay is cho-
sen to be Tpitch = 0.22 s based on the phase delay of the pitch
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Figure 8. The leading time and required leading time for pitch feed-
forward signal.

actuator. The actuator is modeled as a second-order system
with a natural frequency of 1 Hz and a damping ratio of 0.7
(Dunne et al., 2012). Figure 8 shows the leading time (Tlead)
by the first two measurement gates and the required lead-
ing time (Tfilter+Tpitch+

1
2Twindow). For the mean wind speed

range where the leading time of gate 1 is lower than the re-
quired leading time, we only use the lidar measurement gates
from 2 to 10 for estimating the REWS. The leading time of
gate 2 is sufficient to provide enough leading time for all the
considered mean wind speeds.

Another point for the feedforward pitch command is that
it is only activated when the REWS is above 14 ms−1. The
reason for setting this threshold value is that the pitch curve
has much higher gradients with respect to wind speed in the
range between 12 and 14 ms−1 (Schlipf, 2015), where the
turbine thrust is the highest. If the feedforward pitch is acti-
vated only depending on the lidar-estimated REWS, a short
interval of wind rise or drop in this range can cause a rela-
tively large pitch rate and change in thrust force. Then the
benefits of LAC are offset by the additional load caused by
these pitch actions.

5 Simulation, results, and discussion

In this section, we use the open-source aeroelastic simulation
tool OpenFAST to further evaluate the benefits of LAC. The
simulation results will be presented and discussed.

5.1 Simulation environment

5.1.1 Lidar simulation

Previously, OpenFAST (v3.0) was modified to integrate a li-
dar simulation module (Guo et al., 2022b). The lidar simula-
tion module includes several main characteristics of nacelle
lidar measurement: (a) lidar probe volume, (b) turbulence
evolution (lidar measures at the upstream wind field), (c) the
LOS wind speed affected by the nacelle motion, (d) lidar

beam blockage by turbine blade, and (e) adjustable measure-
ment availability. Based on the study by Guo et al. (2022b)
the blade blockage does not have an impact on the lidar mea-
surement coherence for above-rated wind speed operation,
but special treatment needs to be made to process the invalid
measurement caused by the blade blockage effect. In this
work, a similar algorithm discussed by Guo et al. (2022b) is
used to process the invalid measurement data. Also, the data
unavailability caused by low back scatters is not considered.
Therefore, the unavailable data are only caused by the blade
blockage.

5.1.2 Stochastic turbulence generation

To include the turbulence evolution for the aeroelastic sim-
ulation, four-dimensional stochastic turbulence fields are
required. We use the newly developed 4D Mann Turbu-
lence Generator (Guo et al., 2022a) and evoTurb (Chen
et al., 2022) to generate the Mann-model- and Kaimal-
model-based 4D turbulence fields, respectively. The turbu-
lence parameters representative for three atmospheric stabil-
ity classes are used (see Table 1 in Sect. 2).

For the turbulence field generated by the 4D Mann tur-
bulence generator, since it only contains the fluctuation part
of the turbulence, we add the mean field (only for u com-
ponent) considering a power law shear profile with a shear
exponent of 0.2. Each 4D turbulence field has a size of
4096× 11× 64× 64 grid points, corresponding to the time
and the x, y, and z directions. The lengths in the y and z di-
rections are both 310 m, which is much larger than the rotor
size. The reason for choosing this size is to avoid the peri-
odicity of the turbulence field in y and z directions (Mann,
1998).

For the Kaimal-model-based 4D wind fields, evoTurb is
used, which calls on Turbsim (Jonkman, 2009) to generate
statistically independent 3D turbulence field and then com-
posite 4D turbulence with the exponential longitudinal co-
herence discussed in Sect. 2. Only the coherence of the u
component is considered, and the rest of the velocity compo-
nents are not correlated. Similarly, the mean field (only for
u component) is considered to be a power law shear profile
with a shear exponent of 0.2. Each turbulence field has a size
of 4096×11×31×31 grid points, corresponding to the time
and the x, y, and z directions. The lengths in the y and z
directions are both 150 m, which are enough to simulate the
aerodynamic of the 126 m rotor of the NREL 5.0 MW tur-
bine. Note that the Kaimal-model-based wind fields do not
have the issue of periodicity so that the field size is not as
large as that of the Mann-model-based fields.

For both types of 4D turbulence fields, the time step is
chosen to be 0.5 s, and the hub height mean wind speed from
12 to 24 ms−1 with a step of 2 ms−1 is considered. The tur-
bulence parameters are chosen based on Table 1. However,
αε2/3, σ1, σ2, and σ3 are adjusted according to the mean wind
to reach the TI corresponding to class 1A, as specified in IEC
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61400-1:2019 (2019). The positions in the x direction both
contain the rotor plane position and the lidar range gate posi-
tions (see Table 3). Taylor (1938)’s frozen theory is applied
within the probe volume, which has been shown not to influ-
ence the lidar measurement spectral properties by Chen et al.
(2022). For example, the lidar measurement gate at x = 50m
is calculated using the yz plane wind field at x = 50m, which
is then shifted with Taylor’s frozen theory to count for the li-
dar probe volume averaging. The time length of each field is
2048 s.

5.1.3 Simulation setup

For each stability class, we generate 4D turbulence fields
with 12 different random seed numbers. For each turbulent
wind field, the OpenFAST simulation is executed with the
following configurations: (a) FB control using ROSCO only
and (b) feedforward+feedback (FFFB) control using lidar
measurements. All the degrees of freedom for a fixed-bottom
turbine except for the yawing are activated. Each simulation
is executed for 31 min. For each simulation, we remove the
initial 60 s time series, which contains the initialization.

5.2 Results and discussion

5.2.1 Time series

In Fig. 9, we take the one simulation (with a mean wind speed
of 16 ms−1) using the 4D Mann turbulence generator with
the neutral stability condition as an example to show the time
series.

Panel (a) compares the REWS estimated by the lidar data
processing algorithm and that estimated by the extended
Kalman filter (EKF) (Julier and Uhlmann, 2004) imple-
mented in ROSCO. The lidar-estimated REWS is shifted ac-
cording to the time buffer by the FFP module so that it does
not show any time lag in the plot. The lidar-estimated REWS
shows good agreement with that estimated by the Kalman
filter. It can be seen that some additional fluctuations with
higher frequency appear in the time series of ROSCO-based
REWS. This can be caused by the fact that ROSCO only uses
a model with 1 degree of freedom containing the rotor rota-
tional motion and all the other structural motions affecting
the rotor speed can be “mistakenly” estimated as wind speed.

Panel (b) shows that the rotor speed obviously fluctuates
less using FFFB control compared to that using FB control
only. Also, the peak values with FFFB control are smaller.

The tower fore–aft bending moment MyT is compared in
panel (c), where it is generally less fluctuating with the help
of LAC. Further, the blade root out-of-plane bending moment
(My,root) is shown by panel (d), in which FFFB slightly re-
duces the fluctuation compared to FB-only control. The low-
speed shaft torques (MLSS) are compared in panel (e). Again
it is clear that the fluctuation with FFFB control is a bit lower
than that with FB-only control.

In panel (f), we show the pitch action between the two
control strategies. The pitch angles in the FFFB control gen-
erally lead that by the FB-only control in time, as expected.
The pitch angle trajectories are overall similar between the
FFFB and FB-only controls.

Lastly, the generator power is shown in panel (g). Here, we
can see that the generator power fluctuates even though the
constant power torque control mode is activated. The reason
is that ROSCO uses low-pass-filtered generator speed to cal-
culate the generator torque command byMg = Prated/(η�gf),
as mentioned previously in Sect. 4.3. If we do not consider
the fact that the turbine might have a short interval to reach
below-rated operation during a wind speed drop, the for-
mula above ensures that the electrical power is constant if
the electrical power is calculated using the filtered generator
speed. However, the actual electrical power is determined by
the non-filtered generator speed, and the difference between
the filtered and non-filtered generator speeds determines the
power fluctuation. Because the difference is mainly the gen-
erator speed fluctuations of high frequencies, we can see that
the electrical power contains fluctuations of high frequencies.
By comparing FFFB and FB-only controls, it can be seen that
reduced low-frequency rotor speed fluctuations are observed
in FFFB control. Because the low-frequency power fluctu-
ation is highly coupled with the rotor speed fluctuation (see
panel b), less fluctuating power can be expected from the less
low-frequency rotor speed fluctuation in FFFB control.

5.2.2 Spectral analysis

We estimate the spectra from the collected time series us-
ing the Welch (1967) method. The spectra are averaged by
different samples. Each sample is the aeroelastic simulation
result produced by a turbulence field generated by a specific
random seed number.

Before comparing the OpenFAST outputs spectra, the
spectra of the REWS by the input turbulent wind fields are
first compared in Fig. 10. Here, the simulated REWS is cal-
culated by averaging the u components within the rotor-
swept area from the discrete turbulent wind field. We show
that the simulated spectra follow the theoretical ones well,
which validates the turbulence simulation. In Sect. 2, the
single-point u component spectrum by the two models is
fitted. Also, the yz plane coherence is fitted using a single
separation. Here, it can be seen that the REWS spectra by
the two models show a similar trend in different atmospheric
stability classes. In the unstable case, the REWS spectrum
does not reduce a lot compared to a single-point u spec-
trum, and the spectrum peak appears at a lower frequency.
This is because the turbulence field has more large-scale co-
herent structures in the unstable atmosphere, as depicted in
Fig. 1. In the stable case, everything is opposite to the un-
stable case where the REWS spectrum is much lower com-
pared to the single-point u spectrum because of the low-level
coherence and the spatial filtering effect of the rotor. In ad-
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Figure 9. The time series collected from OpenFAST simulation. The case with the Mann model and neutral stability parameters is shown.
Note the same 3D wind field (y,z, t) is applied to the rotor when performing simulations with the FFFB control and the FB-only control.
Simulated with a mean wind speed of 16 ms−1. EKF: extended Kalman filter.

dition, the neutral stability shows a medium spatial filtering
effect, and the spectrum peak is between that of unstable and
stable conditions. For each stability class, it can be seen that
the Kaimal-derived REWS generally has a higher spectrum
compared to that derived by the Mann model. This can be
caused by the fact that the yz plane coherence by the Mann
model is more complicated than the exponential coherence
model used in the Kaimal model. Fitting the coherence using
one separation is insufficient to represent all possible separa-
tions. By comparing the spectra by mean wind speeds of 16
and 18 ms−1, we observe that the spectral peaks are shifted
to a higher-frequency side in all stability classes.

In Figs. 11 and 12, the auto-spectra of some of the most
interesting output variables by FB-only control and FFFB
control are compared. Figure 11 shows the results using the

Mann model, and Fig. 12 shows the results using the Kaimal
model.

Panels (a), (b), and (c) compare the rotor speed spectra
between FFFB and FB controls under three stability classes.
The FFFB control generally reduces the rotor speed spectrum
in the frequency range from 0.01 to 0.1 Hz. It can also be
seen that the spectra using the Mann model and the Kaimal
model show some differences, which can be summarized as
higher spectra of the rotor motion by the Kaimal model than
that by the Mann model. However, the spectra estimated from
simulated time series using the two models generally have
similar shapes.

The comparison of the tower fore–aft bending moment
is shown in panels (d), (e), and (f). In neutral and stable
cases, the main benefits bought by FFFB control are the re-
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Figure 10. The auto-spectra of REWS. “theo.”: theoretical spectra by the models discussed in Sect. 3, i.e., Eqs. (25) and (26). “sim.”:
the spectra estimated from the time series of the turbulent wind fields in OpenFAST simulations, using the Welch (1967) method. S1: the
auto-spectra of a single-point u component. Panels (a)–(c) have a mean wind speed of 16 ms−1. Panels (d)–(f) have a mean wind speed of
18 ms−1.

Figure 11. The auto-spectra estimated from OpenFAST output time series. The simulation results are obtained using the Mann model. The
mean wind speed is 16 ms−1. Note that the y axis of the blade root bending moment is set to logarithmic for better readability.
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Figure 12. The auto-spectra estimated from OpenFAST output time series. The simulation results are obtained using the Kaimal model. The
mean wind speed is 16 ms−1. Note that the y axis of the blade root bending moment is set to logarithmic for better readability.

ductions in the frequency range from 0.01–0.2 Hz, which is
as expected since the lidar–rotor transfer function (Eq. 37)
becomes zero close to 0.2 Hz. Below 0.01 Hz, there are not
many differences between FB-only and FFFB controls, be-
cause the tower fore–aft mode is naturally damped well in
this frequency range.

Panels (g), (h), and (i) show the blade root out-of-plane
moment of blade one. There are slight reductions in the blade
root out-of-plane moment in the frequency range from 0.02
to 0.1 Hz contributed by LAC. It can also be seen that the
spectrum is mainly composited by the excitation at the 1 p
(once per rotation) frequency.

The comparison of low-speed shaft torque is shown by the
panels (j), (k), and (l). Using FFFB control brings some ben-
efits in the frequency range from 0.01 to 0.1 Hz, which is
similar to the reduction range of the rotor speed.

Overall, the relative reductions in the spectra bought by
adding FF control mainly lie in the frequency range where
the lidar–rotor transfer function is above zero. For very low-
frequency ranges, the turbine motions are naturally damped;
thus, no obvious benefits are brought by adding the pitch
feedforward signal. Based on the spectral analysis, we found
reductions significantly in rotor speed, some in tower fore–
aft moment, and slightly in low-speed shaft torque. Also, the
reductions are observed by both turbulence models in three
different atmospheric stability classes.

5.2.3 Simulation statistic

To further evaluate the benefits of LAC, we calculate the
DEL using the rainflow counting method (Matsuishi and
Endo, 1968) with 2× 106 as a reference number of cycles
and a lifetime of 20 years. The Wöhler exponent of 4 is
used for the tower fore–aft bending moment and the low-
speed shaft torque, and the Wöhler exponent of 10 is used
for the blade root out-of-plane bending moment. The aver-
aged DEL is calculated from the results by different random
seed numbers. The overall statistics are compared and shown
in Figs. 13 and 14. For rotor speed, pitch rate, and electri-
cal power (Pel) signals, the standard deviation of time series
of each simulation sample is calculated, and then the mean
value is calculated from all samples. We use the standard de-
viation of pitch rate (speed) to assess the impact of different
control methods on the pitch actuator (also used by Chen and
Stol, 2014; Jones et al., 2018), because pitch speed causes
damping torque in the pitch gear and is related to the fric-
tion torque of the pitch bearing (Shan, 2017; Stammler et al.,
2018).

Mann-model-based results

Figure 13 compares the DEL, standard deviation (SD), and
energy production (EP) results by the Mann model. The rela-
tive reductions (see the figure caption) between FB-only and
FFFB controls are plotted by the grey lines.
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Figure 13. Comparison of DEL (MyT,MLSS,My,root), SD (�r, θ̇ , Pel), and EP, simulated using the Mann model. Note that the value of the
relative reduction are reflected by the right-side y axis. Relative reduction: (FB-only–FFFB)/(FB-only).

Figure 14. Comparison of DEL (MyT, MLSS, My,root), SD (�r, θ̇ , Pel), and EP, simulated using the Kaimal model. Note that the value of
the relative reduction are reflected by the right-side y axis. Relative reduction: (FB-only–FFFB)/(FB-only).
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There are overall obvious reductions of the tower fore–aft
bending moment DEL in all the investigated atmospheric sta-
bility classes. The largest reduction is found to be 16.7 % by
a mean wind speed of 22 ms−1 and under an unstable atmo-
sphere. In the unstable case, it can be seen that the reduction
is more clear with a higher wind speed. On the opposite, for
the stable stability, the reduction is larger at 16 and 18 ms−1,
and it reduces as wind speed increases. As for the neutral
case, the benefits are the greatest close to 18 ms−1. However,
with the mean wind speeds below 14 ms−1 and in the unsta-
ble and neutral cases, the FFFB benefits become marginal.
This can be caused by a higher possibility to pass the wind
speed range where the feedforward pitch is inactivated, as
discussed in Sect. 4.4.

As for the low-speed shaft torque, the DEL is reduced
by more than 4.0 % under the unstable case for wind speed
above 18 ms−1. In addition, the reduction is about 1.5 %–
3.3 % and 1.4 %– 2.3 % under neutral and stable cases, re-
spectively.

The DEL of the blade out-of-plane moment is reduced
by introducing LAC. More benefits (about 2.7 %–6.0 %) are
found under the unstable case. In the neutral stability, the
reduction is better at 20 ms−1, where the value is close to
4.3 %, and it drops to 2.5 % by higher wind speeds and to
1.3 % by lower wind speeds. As for stable atmosphere, the
reduction is more obvious (around 3.0 %) at wind speeds be-
tween 16 and 20 m s−1.

The SD of rotor speed is found to be reduced significantly
using FFFB control. The reductions are more than 20 % and
up to 40 %. Also, it can be seen that the reductions are more
significant under higher mean wind speeds, which is similar
in all the three atmosphere stability classes.

Introduction of the FF pitch also generally helps to reduce
the standard deviation of pitch rate (speed) θ̇ . Among the
three stability classes, the standard deviations of pitch rate
are reduced clearly (varying from 2.0 % to 6.1 %) from 14
to 20 ms−1. However, the reduction stops at the mean wind
of 24 ms−1 for unstable and neutral conditions. In the stable
atmosphere, the pitch rate SD only reduces with mean wind
speeds smaller than 20 ms−1.

As for the electrical power SD, it is reduced obviously
by about 16 % in the unstable case for wind speed above
18 ms−1, by about 17 % in the neutral case for wind speed
above 16 ms−1, and by 13 % in the stable case for wind speed
above 14 ms−1.

With the same mean wind speed but under different sta-
bility cases, the electricity productions are similar either us-
ing LAC or not. For all the stability conditions, the electricity
productions are lower at wind speeds below 14 ms−1 because
there is a higher probability that the REWS goes below the
rated value, and the electrical power does not reach the rated
power.

Kaimal-model-based results

The results using the Kaimal model are shown in Fig. 14.
Generally, under different stability classes and mean wind
speeds, the statistics show a similar trend to the results ob-
tained by the Mann model. However, the values show some
differences.

In terms of tower fore–aft bending moment, the reductions
of DEL are from 10.4 % to 13.4 % with a mean wind speed
from 18 to 20 ms−1 under unstable and neutral conditions.
In the stable case, the reduction is close to 11.5 %, with the
mean wind speed of 16 ms−1, and it drops with the higher
mean wind speeds.

The results of low-speed shaft DEL show a similar trend
to that using the Mann model. On average, for wind speed
above 16 ms−1, the shaft load is reduced by around 2.3 %,
1.9 %, and 1.7 %, respectively, under the three investigated
stability classes.

Generally, the reduction of the blade root load simulated
using the Kaimal model is similar to that based on the Mann
model. On average, for wind speed above 16 ms−1, the blade
root DEL is reduced by around 4.1 %, 3.0 %, and 3.0 %, re-
spectively, under the three investigated stability classes.

The SD of rotor speed is found to be reduced obviously
using FFFB control. The reductions are more than 15 % and
are up to 30 %. The result shows a similar trend to that of
the Mann-model-based result. However, we can also see the
reduction is less than that shown by the Mann model.

The pitch actions show high similarity with that simulated
using the Mann model. At mean wind speeds from 16 to
20 ms−1, the reductions in pitch rate SD are about 3.0 % to
3.5 % under unstable and neutral stability classes, and they
become less in other mean wind speeds. For the stable case,
the reduction is higher at 16 ms−1, reaching 6.2 %, but de-
creases rapidly as the mean wind speed increases. For very
high mean wind speeds above 22 ms−1, the pitch rate SD is
increased using LAC.

Since the variation in electrical power is highly linked with
the rotor speed, the reductions in the SD of power lie around
10 %, 13 %, and 11 %, respectively, under the three investi-
gated stability classes. These values are smaller than those
observed using the Mann model.

The electricity production shows very similar results to
those simulated by the Mann model. Using LAC has a
marginal impact on electricity production.

In general, the benefits of LAC in load reduction by a
four-beam lidar are clear. However, we also show that there
are some uncertainties and differences when assessing LAC
by different IEC turbulence models. Among the compared
turbine loads, LAC has the most significant load reduction
effect in the tower base fore–aft bending moment. There
are also considerable reductions in speed and power varia-
tions. The electrical power generation is not significantly af-
fected by introducing LAC. The load reductions also show
differently under different turbulence parameters represented
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by different atmosphere stability classes. For different sta-
bility conditions but the same mean wind speed, it can be
seen that the LAC benefits for the load reduction are over-
all highest in the unstable, medium in neutral, and lowest
in stable atmospheric classes. The reason could be the dif-
ference in turbulence length scales. The turbulence length
scale is lower under a stable condition, which means the peak
of the turbulence spectrum appears at a higher wavenum-
ber/frequency (based on the conversion f = k1Uref/2π ). The
turbine’s structural loads are mainly excited by frequency
above 0.1 Hz, e.g., the tower natural frequency, the shaft nat-
ural frequency (above 1 Hz), the 1 p frequency, and the 3 p
(three times per rotation) frequency. If the spectrum has a
higher peak frequency, the load will be more dominated by
the higher-frequency parts due to the higher excitation of the
natural modes. Then the LAC benefits become less signifi-
cant because it mainly reduces the loads below 0.1 Hz (for the
lidar and turbine we used). When considering different mean
wind speeds, the discussions above indicate that a higher
mean wind speed shifts the spectral peak frequency to be a
higher value; therefore, the LAC benefits become less. For
the stable condition, the spectral peak frequency is naturally
high due to the smaller turbulence length scale, so it is more
sensitive to the changes in the mean wind speed. For unstable
and neutral cases, the spectrum peak frequency is naturally
lower than that in the stable condition; thus the LAC benefits
do not decrease as fast as that in the stable condition.

6 Conclusions

This paper evaluates lidar-assisted wind turbine control un-
der various turbulence characteristics using a four-beam liar
and the NREL 5.0 MW reference turbine. The main contri-
butions of this work include (a) summarizing the turbulence
spectra and the coherence under various atmosphere stability
conditions, (b) analyzing the requirement of filter design for
lidar-assisted wind turbine control under various turbulence
characteristics, (c) developing a reference lidar-assisted con-
trol package, and (d) evaluating the benefits of lidar-assisted
wind turbine control using two turbulence models through
aeroelastic simulations.

Currently, two turbulence models (the Mann model and
the Kaimal model) are provided by the IEC standard for tur-
bine aeroelastic simulation. The recent research has made
it possible to generate 4D stochastic turbulence fields in
aeroelastic simulation for both the Mann model and the
Kaimal model, which allows for simulating lidar measure-
ments more realistically and assessing the potential benefits
by lidar-assisted control more reasonably. When evaluating
the benefits of lidar-assisted control, previous research uses
the Kaimal model with fixed-turbulence spectral parameters
provided by the IEC standard (Schlipf, 2015). Thus, the vari-
ations of turbulence characteristics by atmospheric stability
have not been considered. In this study, we defined three

turbulence cases whose characteristics are summarized from
unstable, neutral, and stable atmospheric stability conditions.
The turbulence spectrum and spatial coherence with separa-
tions in all directions are derived.

Based on the defined three turbulence cases, we analyzed
the coherence between the rotor-effective wind speed and the
one estimated by lidar. The NREL 5.0 MW reference wind
turbine and a four-beam pulsed lidar system are taken into
consideration. It is found that some differences appear be-
tween the results of the Mann model and that of the Kaimal
model. The coherence using the Mann model is generally
higher in all atmospheric stability classes than the coherence
using the Kaimal model. We further analyzed the optimal
transfer function, which is important to design a filter that
removes the uncorrelated content in the lidar-estimated rotor-
effective wind speed signal for lidar-assisted control. For
most of the above-rated wind speeds, the analysis revealed
that the difference for the transfer function between using
different turbulence models or different stability classes is
not very significant. This also means a simple linear filter de-
sign for lidar-assisted control is sufficient for various atmo-
spheric stability conditions. However, for wind speed above
20 ms−1, the cutoff frequency of unstable condition is about
0.02 Hz higher than that in the neutral stability. The non-ideal
filtering should be further analyzed, which is caused by using
the cutoff frequency derived from neutral stability for unsta-
ble stability. Also, the conclusions in this paragraph may not
be applied to turbines of other sizes and lidars with other
trajectories. The analysis of coherence and transfer function
study can be extended for larger rotor turbines and other li-
dars with different trajectories.

To further analyze the impact of atmospheric stability for
lidar-assisted control, a reference lidar-assisted control pack-
age is developed and used in this work. The lidar-assisted
control package includes several DLL modules written in
FORTRAN: (1) a wrapper DLL that calls all sub-DLLs se-
quentially, (2) the lidar data processing DLL that estimates
the REWS and records the leading time of the REWS, (3) a
feedforward pitch module that filters the REWS and activates
the feedforward rate at the correct time, and (4) a modified
reference FB controller (ROSCO) which can receive a feed-
forward command.

The benefits of lidar-assisted control are evaluated using
both the Mann model and the Kaimal-model-based 4D tur-
bulence. The simulations are performed for the mean wind
speed level from 12 to 24 ms−1, using the NREL 5.0 MW
reference wind turbine and a four-beam lidar system. For
the results with the Mann model, using lidar-assisted control
reduces the variations in rotor speed, blade pitch rate, and
electrical power significantly. Among the three investigated
stability classes and above the mean wind speed of 16 ms−1,
the load reductions for the tower bending moment, blade root
bending moment, and low-speed shaft torque are observed to
be approximately 3.0 % to 16.7 %, 1.5 % to 6.0 %, and 1.7 %
to 5.0 %, respectively. The greatest potential of lidar-assisted

Wind Energ. Sci., 8, 149–171, 2023 https://doi.org/10.5194/wes-8-149-2023



F. Guo et al.: Evaluation of lidar-assisted wind turbine control under various turbulence characteristics 169

control in load reduction is found in the tower base loads, and
the benefits are found to vary by turbulence spectral prop-
erties and mean wind speeds. For the results of the Kaimal
model, using lidar-assisted control also clearly reduces the
variation in rotor speed, blade pitch rate, and electrical power.
The load reduction of the tower bending moment is found
in all stability classes for wind speed above 16 ms−1, and it
varies from 3.6 % to 13.4 %. The load reduction for the blade
root bending moment is between 1.6 % to 4.5 % and for the
low-speed shaft torque between 1.6 % to 2.5 %. Besides, with
the help of lidar-assisted control, for both turbulence models,
the standard deviation of pitch rate (speed) can be reduced
(up to 6 %,) for most of the mean wind speed range (below
20 ms−1) and for all stability classes. The pitch rate standard
deviation reduction can bring potential load alleviation for
the pitch bearings and gears. Overall, we found the benefits
of lidar-assisted control by the Kaimal model are slightly dif-
ferent from the results obtained using the Mann model. The
benefits of lidar-assisted control simulated using the Mann
model are slightly better than those using the Kaimal model,
which can be caused by differences in the turbulence spatial
coherence between the two models. The lidar preview quality
modeled using the Mann model is generally superior to that
modeled using the Kaimal model. For both turbulence mod-
els, there are clear trends that the benefits of lidar-assisted
control in load reduction are the highest in unstable stabil-
ity, medium in neutral stability, and lowest in a stable atmo-
sphere.

With this work, we show that the mean wind speed, the tur-
bulence spectrum, coherence, and the used turbulence mod-
els all have certain impacts on the results of evaluating lidar-
assisted control. In this paper, the same turbulence intensity
level is assumed for different atmospheric conditions. How-
ever, in reality, the turbulence intensity depends on the sta-
bility conditions of the atmosphere. In the future, we recom-
mend assessing the benefits of lidar-assisted control depend-
ing on site-specific turbulence characteristics and statistics.
Also, it is necessary to consider the uncertainties in turbu-
lence models when performing load analysis using aeroelas-
tic simulations.
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