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Abstract. Peak wind gust (Wp) is a crucial meteorological variable for wind farm planning and operations.
However, for many wind farm sites, there is a dearth of on-site measurements of Wp. In this paper, we propose
a machine-learning approach (called INTRIGUE, decIsioN-TRee-based wInd GUst Estimation) that utilizes nu-
merous inputs from a public-domain reanalysis dataset and, in turn, generates multi-year, site-specificWp series.
Through a systematic feature importance study, we also identify the most relevant meteorological variables for
Wp estimation. The INTRIGUE approach outperforms the baseline predictions for all wind gust conditions. How-
ever, the performance of this proposed approach and the baselines for extreme conditions (i.e., Wp > 20 m s−1)
is less satisfactory.

1 Introduction

Wind gust or gusty wind is a common household term. How-
ever, there has yet to be a consensus on its exact scientific
definition. For example, according to the Glossary of Meteo-
rology (AMS, 2023), a wind gust can be defined as follows:

A sudden, brief increase in the speed of the wind.
It is of a more transient character than a squall
and is followed by a lull or slackening in the wind
speed. . . . According to U.S. weather observing
practice, gusts are reported when the peak wind
speed reaches at least 16 knots and the variation in
wind speed between the peaks and lulls is at least
9 knots. The duration of a gust is usually less than
20 s.

A somewhat different definition has been suggested by
the US National Oceanic and Atmospheric Administration
(NOAA, 2023):

A rapid fluctuation in wind speed with variation of
10 knots or more between peaks and lulls.

As opposed to these quantitative definitions, the World Me-
teorological Organization (WMO, 2021, p. 227) describes
wind gusts in a very generic way:

The extent to which wind is characterized by rapid
fluctuations is referred to as gustiness, and single
fluctuations are called gusts.

Despite these vast differences in the definition of wind
gusts, most sources seem to agree on the meaning of “peak”
wind gusts (Wp):

The maximum observed wind speed over a specific
time interval. (WMO, 2021, p. 227)

On the basis of this definition, it is appropriate to assert
that “peak gust need not be a true gust of wind” (AMS, 2023).
For quiescent atmospheric settings, within certain time peri-
ods, peak wind gusts may very well be close to near-calm
conditions. While in the presence of certain meteorological
phenomena (e.g., downbursts, tornadoes), they may attain se-
vere, hazardous intensities. The focus of the current study is
on the estimation of a wide range of peak wind gusts using a
decision-tree-based (DT) machine-learning (ML) approach.
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Measurements ofWp require high-frequency observations.
Typically, cup, propeller, and sonic anemometers record
wind speeds with sampling rates of O(1–10) Hz. First, block
averaging is performed on these measured time series with a
window length of τ (in seconds). Subsequently, for a specific
time period T , the maximum (or peak) of the τ -averaged val-
ues (in seconds) is estimated, which is known as the τ (in sec-
onds) peak wind gust (Panofsky and Dutton, 1984; Holmes,
2001; Solari, 2019). The magnitude of Wp strongly depends
on the selected values of τ and T (Brook and Spillane, 1968;
Beljaars, 1987). Most commonly, τ is chosen to be equal to
a few seconds. Depending on the application, the value of
T can be as small as a few minutes to as large as several
hours. For example, the Automated Surface Observing Sys-
tem (ASOS) employed by the US National Weather Service
measures 5 s peak wind gusts and considers a time period of
1 min. In contrast, in the wind energy literature (Rohatgi and
Nelson, 1994), the combination of τ = 3 s and T = 10 min is
more prevalent. From a wind engineering perspective, a his-
torical account of 3 s for Wp has recently been documented
by Lombardo (2021).

If the mean and peak gust wind speeds during T are
denoted by W and Wp, respectively, then one can write
(Holmes, 2001)

Wp =W + cσW. (1)

Here σW is the standard deviation of wind speed. If the
high-frequency wind speed data follow a Gaussian distri-
bution during T , then c can be approximately equal to 3.5
(≈ 99.98th percentile). Equation (1) can be re-written as

Wp =W
(

1+ c
σW

W

)
(2a)

or

G=
Wp

W
=

(
1+ c

σW

W

)
. (2b)

The ratio G is the so-called gust factor, whereas the ratio σW
W

is known as the turbulence intensity (TI).
In the wind energy literature, several studies (Sumner and

Masson, 2006; Wharton and Lundquist, 2012; Hedevang,
2014; Siddiqui et al., 2015; St. Martin et al., 2016; Lee et al.,
2020) have reported on the (negative) impacts of high TI on
power production. Given the linear relationship between G
and TI, it is expected that high-value gust factors may also be
responsible for sub-optimal wind power production. Highly
fluctuating power production due to wind gusts may also
cause problems for electrical grid balancing (Milan et al.,
2013). In addition to power production, high TI (or G) also
induces significant fatigue loading on wind turbines (Kelley
et al., 2000; Hansen and Larsen, 2005; Dimitrov et al., 2017;
Ebrahimi and Sekandari, 2018; Ren et al., 2018; Asadi and
Pourhossein, 2021).

Contemporary wind turbine design standards (e.g., IEC,
2019) include provisions for extreme weather conditions.

Some of them are related to extreme wind gusts (e.g., ex-
treme coherent gust with direction change, extreme operat-
ing gust). Severe meteorological phenomena, such as thun-
derstorm downbursts, tornadoes, and hurricanes, can gener-
ate extreme wind gusts. We document a few historical events
of relevance. One of the highest-ever recorded gusts was
recorded at Andrews Air Force Base on 1 August 1983 (Fu-
jita, 1985). Due to the passage of a microburst, near-surface
gust speed reached approximately 130 knots (≈ 67 m s−1).
The airplane of US President Ronald Reagan landed just
6 min before this extreme gust event. This extreme event pro-
vided the necessary stimulus to mobilize extensive research
on microburst phenomena in the 1980s. Petersen et al. (1998)
documented an even stronger gust event in a review paper on
wind power meteorology. They analyzed wind data during a
storm event on the Faroe Islands. There, prior to collapsing,
one of the instrumented met towers registered a gust value of
76.7 m s−1. It is entirely possible that these types of severe
gust events might hamper the structural integrity of modern-
day wind turbines. About 20 years ago, one such event took
place on Miyako-jima in Japan. The recorded maximum gust
speed was 74.1 m s−1. Out of six turbines, three turbines en-
tirely collapsed, and the other ones sustained significant dam-
age (Ishihara et al., 2005). A more recent event was docu-
mented by Hawbecker et al. (2017). A thunderstorm produc-
ing multiple downbursts and tornadoes passed through the
Buffalo Ridge Wind Farm, Minnesota (USA), in 2011. The
resulting wind gusts caused damage to turbine blades and
also caused buckling of a turbine tower.

Based on the aforementioned published studies and other
anecdotal evidence, we can conclude that both nominal and
extreme wind gusts are critical for wind energy. Therefore,
during the wind farm planning and operation stages, the
(detrimental) effects of wind gusts should be adequately ac-
counted for. However, it is widely known in the literature
that wind gusts are spatially and temporally highly intermit-
tent. Thus, the long-term statistical characterization of such
events utilizing on-site wind sensors is rather challenging and
expensive. As an alternative, mesoscale meteorological mod-
els (MMMs) can be used to predict and forecast peak wind
gusts (Goyette et al., 2003; Ágústsson and Ólafsson, 2009;
Stucki et al., 2016; Kurbatova et al., 2018). Typically, differ-
ent physical parameterizations are used for convective and
non-convective gusts (refer to Sheridan, 2011, and the ref-
erences therein). Although these physical parameterizations
have improved over the years, considerable improvements
can still be made. It is also important to note that MMMs are
computationally expensive, especially when sub-kilometer
grids and gray-zone physical parameterizations (Boutle et al.,
2014; Shin and Hong, 2015) are used. In this paper, we
propose a data-based alternative approach that leverages a
decision-tree-based technique for peak wind gust estimation
from a global reanalysis dataset. We name the proposed ap-
proach INTRIGUE (decIsioN-TRee-based wInd GUst Esti-
mation). It requires limited (say 1 year) on-site Wp data for
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training and can generate a multi-yearWp time series for that
specific site. It also performs reasonably well for generating
Wp data for neighboring sites. Most importantly, separate pa-
rameterizations for convective and non-convective events are
not required.

The structure of this paper is as follows. Since the pro-
posed INTRIGUE approach uses various meteorological in-
put features (e.g., friction velocity; CAPE, convective avail-
able potential energy), we briefly summarize a few relevant
physical parameterizations in Sect. 2. In Sect. 3, we include
a concise literature review on various applications of ML
in wind-gust-related research. Descriptions of the study area
and relevant datasets are provided in Sects. 4 and 5, respec-
tively. Various technical details pertaining to the INTRIGUE
approach (e.g., data splitting, hyperparameter turning) are
elaborated in Sect. 6. In Sect. 7, we report all the results in-
cluding a discussion on feature importance. The limitations
of the INTRIGUE approach for extreme wind gusts are men-
tioned in Sect. 8. Concluding remarks and future perspectives
are provided in Sect. 9.

2 Physical parameterizations of peak wind gusts

In a technical report, Sheridan (2011) provided a comprehen-
sive review of various physical parameterizations for peak
wind gusts. A few years later, Kurbatova et al. (2018) in-
vestigated the capabilities of seven of these parameteriza-
tions in forecasting gusts in Russia. Here, we briefly men-
tion a few well-known (and simple) parameterizations. Un-
less stated explicitly, we assumeW andWp are defined at the
height of 10 m a.g.l. (above ground level).

It is well known in the literature that the gust factor (G)
depends on τ , T , measurement height, wind direction, sur-
face roughness, and other factors (Wieringa, 1973; Ashcroft,
1994; Weggel, 1999; Choi and Hidayat, 2002; Harris and
Kahl, 2017). However, for simplicity, in a constant gust fac-
tor parameterization, G is assumed to be equal to a constant
cGF:

G=
Wp

W
= cGF. (3)

A few climatological studies have found that even though
G varies significantly with respect to underlying topogra-
phy, the spatially averaged value ofG is not site-specific. For
example, Harris and Kahl (2017) analyzed multi-year, high-
resolution ASOS data from Milwaukee, Wisconsin (USA),
and reported an average value of cGF = 1.74. While analyz-
ing Santa Ana winds in southern California (USA), Fovell
and Cao (2017) found cGF = 1.6–1.7 to be representative of
two locations. Based on multi-year observational data from
more than 30 stations in Switzerland, Stucki et al. (2016) es-
timated cGF to be equal to 1.67.

The following surface layer similarity-based formulation
is also often used for non-convective conditions (Sheridan,
2011; Stucki et al., 2016):

Wp =W + cu∗u∗. (4)

Here u∗ is the so-called surface friction velocity. The coef-
ficient cu∗ is on the order of 7.5. Sometimes, in Eq. (4), a
non-linear function of the stability parameter is used in con-
junction with the cu∗u∗ term (e.g., ECMWF, 2020).

Certain non-convective formulations make use of bound-
ary layer height (H , in m) and/or wind speed at the boundary
layer height (WH) in a semi-empirical manner. Stucki et al.
(2016) reported one such formulation:

Wp =W + (WH−W )
(

1−
H

2000

)
. (5)

Brasseur (2001) proposed an interesting physically based
approach for gust estimation. It assumes that the gusts at the
surface originate from the upper part of the boundary layer.
Since the formulation is somewhat involved, we do not in-
clude it here. However, we do point out that it includes verti-
cally averaged turbulent kinetic energy (e) as a key variable.

In the proposed INTRIGUE approach, we use W , u∗, H ,
and several other relevant meteorological variables (e.g., sur-
face sensible heat flux, CAPE). If a relevant variable is not
available as an input feature, we use our domain knowledge
to include a surrogate variable. For example, e is not avail-
able in the global reanalysis dataset that we used. Hence, as
a substitute, we make use of the average energy dissipation
rate (ε) in the boundary layer. The relationship between e and
ε has been studied in the literature (e.g., Basu et al., 2021). In
Sect. 7 of this paper, we perform a systematic feature impor-
tance study and show that most of the variables included in
well-known physical parameterizations (e.g., Eqs. 3–5) also
turn out to be very important from a purely data-based ML
standpoint.

3 Applications of ML in wind gust research

To the best of our knowledge, only a handful of studies (Mer-
cer et al., 2008; Sallis et al., 2011; Chaudhuri and Middey,
2011; Carcangiu et al., 2014; Patlakas et al., 2017; Wang
et al., 2020; Spassiani and Mason, 2021; Schulz and Lerch,
2022; Wang et al., 2022) have incorporated machine-learning
approaches for wind-gust-related research. Several of these
studies focused on extreme wind gusts. For example, Mer-
cer et al. (2008) studied downslope windstorms in Colorado
(USA). They compared the performance of stepwise linear
regression, support vector regression, and multilayer per-
ceptrons in short-term forecasting of extreme wind gusts.
They utilized various meteorological variables (e.g., 700 hPa
wind speed, mountaintop relative humidity) and parameters
derived from radiosondes (e.g., integrated Scorer parame-
ter, Sangster parameter) as input features. In another study,
Chaudhuri and Middey (2011) used ML approaches for pre-
dicting peak wind gusts associated with pre-monsoon thun-
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derstorms near Kolkata (India). Their newly developed adap-
tive neuro-fuzzy inference system outperformed multiple lin-
ear regression, a radial basis function network, and multi-
layer perceptrons.

Various ML approaches (e.g., Kalman filtering, Gaussian
process regression) were also utilized for short-term forecast-
ing of wind gusts. Some of these studies post-processed nu-
merical weather prediction data (e.g., Patlakas et al., 2017;
Schulz and Lerch, 2022; Wang et al., 2022). In contrast,
Wang et al. (2020) only used observed time-series data
from Jiangsu Province (China) for forecasting. They used
an ensemble-learning method comprising of random forest,
long short-term memory, and Gaussian process regression. In
order to mitigate wind turbine loads, Carcangiu et al. (2014)
proposed a multilayer perceptron for gust detection followed
by an innovative turbine control strategy.

Numerous studies (e.g., Enloe et al., 2004; Azorin-Molina
et al., 2016; Brázdil et al., 2017; Lombardo and Zickar, 2019)
have reported climatologies and in-depth statistical analy-
sis of wind gusts in various countries. However, they do
not leverage any ML approaches. An exception is the study
by Spassiani and Mason (2021). They used self-organizing
maps (Kohonen, 1990, 2013) to perform automated classi-
fication of wind gusts in Australia in order to identify their
dynamical origins.

It is important to stress that the scope of the present study
is different from these past ML-based investigations. We are
interested in generating long-term, site-specific peak wind
gust (Wp) series based on a global reanalysis dataset. Our
proposed INTRIGUE approach, described in Sect. 7, can be
described as an advanced measure–correlate–predict (MCP)
approach for peak wind gusts. MCP is well established in
wind resource estimation (e.g., Rogers et al., 2005; Carta
et al., 2013). However, its usage in peak wind gust estima-
tion is not known to us.

4 Study area

This study focuses on the Texas Panhandle region, one of the
largest semi-arid regions in the world. This region’s major
distinguishing topographical feature is the Caprock Escarp-
ment (see the top-left panel of Fig. 1), a precipitous cliff with
an average height of ∼ 90 m. Otherwise, this region is very
flat, homogeneous, and sparsely vegetated. Owing to the fre-
quent occurrence of strong nocturnal low-level jets, the wind
resource of this region is very good (wind class 3–5). This
fact has led to the construction of numerous wind farms in
this region, some of which (e.g., Roscoe, Horse Hollow, Buf-
falo Gap, Sweetwater) are among the largest operating wind
farms in the US.

The West Texas Mesonet (henceforth WTM) is a high-
density network of automated surface meteorological sta-
tions which spans the Texas Panhandle region and extends
to some parts of New Mexico and Colorado. This network

(https://www.mesonet.ttu.edu/, last access: 14 October 2023)
was established in 1999 by the Atmospheric Science Group
at Texas Tech University (Schroeder et al., 2005).

For the purpose of this study, we have selected three WTM
stations (called REESE, MACY, and FLUVANNA) which
are located in areas of varying topographical complexities.
Their locations are demarcated by various symbols in the
digital elevation map of Fig. 1. The station at the Reese
Technology Center (REESE) is located at 33◦36′26′′ N,
102◦02′55′′W, at an elevation of 1021 m, about 19 km west
of the city of Lubbock, Texas. The topography is very flat
surrounding this station (see the photograph in the top-right
panel of Fig. 1). The MACY station is located at the edge of
the Caprock Escarpment (bottom-left panel of Fig. 1). Given
the complex topographical surroundings, more gusty wind
conditions are prevalent at this site. The latitude, longitude,
and elevation of this station are 33◦4′53′′ N, 101◦30′58′′W,
and 874 m, respectively. The FLUVANNA station is situated
on a relatively flat area off the Caprock Escarpment (refer to
the bottom-right panel of Fig. 1). However, a few kilometers
away from the station, the ruggedness of the topography in-
creases substantially. This station is located at 32◦53′57′′ N,
101◦12′7′′W, at an elevation of 826 m, about 105 km south-
east of Lubbock, Texas.

5 Description of observed and reanalysis datasets

Each station in the WTM network measures a multitude
of meteorological variables. However, in this study, we
only utilize the 3 s peak wind gust (Wp) data from the
REESE, MACY, and FLUVANNA stations. The associ-
ated anemometers (R. M. Young propeller type) are located
at 10 m a.g.l. Technical details about the measuring instru-
ments, data quality control, sensor calibration, and other as-
pects can be found in Schroeder et al. (2005).

In conjunction with these observed Wp data, we make
use of several meteorological variables (including simulated
wind gusts) from a global reanalysis dataset known as ERA5
(Hersbach et al., 2020). ERA5 is the fifth-generation re-
analysis product of the European Centre for Medium-Range
Weather Forecasts. Soon after its introduction, the ERA5
dataset became the preferred reanalysis dataset in the wind
power meteorology community. Olauson (2018), Ramon
et al. (2019), and Gualtieri (2022), among others, discuss its
superior accuracy, lower uncertainty, and higher reliability
compared to other global reanalysis datasets.

The horizontal resolution of the ERA5 reanalysis dataset
is approximately 32 km. For each of the three WTM stations
(i.e., REESE, MACY, and FLUVANNA), we have extracted
ERA5 data from the corresponding nearest grid points. The
distances between the REESE, MACY, FLUVANNA stations
and their corresponding ERA5 grid points are 14, 9, and
12 km, respectively. In Table 1, we list some of the extracted
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Figure 1. Top-left panel: digital elevation map of the study area. The symbols denote the locations of three West Texas Mesonet stations.
Photographs of the REESE (Reese Technology Center, Lubbock County), MACY (Garza County), and FLUVANNA (Borden County)
stations are shown in the top-right, bottom-left, and bottom-right panels, respectively. These photographs were downloaded from https:
//www.mesonet.ttu.edu/ (last access: 14 October 2023).

ERA5 variables as well as a few derived ones. In total, 265 in-
put features are used in the INTRIGUE approach.

In the ERA5 dataset, snapshots of most of the meteoro-
logical variables are output every hour, whereas, in the case
of the WTM, the variables are temporally averaged with a
sampling rate of 5 min. Direct comparison of point measure-
ments against atmospheric-model-generated gridded data is
an ill-posed problem. We do not attempt to resolve this is-
sue in this paper. However, to avoid the sampling-rate mis-
match between the WTM and the ERA5 datasets, we pre-
process the WTM data with a moving-maxima filter with a
non-overlapping window of 1 h. For example, we compute
the maximum of contiguous 12 Wp samples measured dur-
ing 13:30–14:30 CST to estimate the corresponding “hourly”
value of Wp at 14:00 CST.

In Fig. 2, we plot several bivariate histograms. On the
x axes, we have the predictor variables – i.e., the meteo-
rological variables from the ERA5 dataset. On the y axes,
the peak wind gusts (i.e., Wp) from the WTM stations are
shown as predictands. It is evident that both instantaneous
wind gusts (W i

p10) and friction velocity (u∗) from ERA5 are
strongly correlated with the measured Wp data (r2 is on the
order of 0.8). In contrast, the correlations between bound-

ary layer heights (H ) from ERA5 and Wp values are much
weaker (r2

≈ 0.5). The proposed INTRIGUE approach, de-
scribed in Sect. 7, exploits not only the strong correlations
but also the weaker ones in a systematic manner to provide a
more accurate prediction of Wp.

6 Proposed INTRIGUE approach

In the following sub-sections, we describe various technical
details associated with the proposed INTRIGUE approach.

6.1 Strategy for the splitting of available data

In this study, we have 11 years (2003 to 2013) of WTM
and ERA5 datasets at our disposal. Instead of training var-
ious ML models with lots of data, for practical reasons, we
have opted for a not-so-abundant training-data scenario. In
typical wind resource assessment projects, one has access to
merely 1 or 2 years of on-site data. The wind data analysts are
then tasked with building MCP models with such a limited
amount of data. To mimic this situation, we train ML mod-
els with only 1 year of training data and, subsequently, make
predictions for 10 years. We repeat this process in a round-
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Table 1. A partial list of ERA5 and derived variables utilized as input features for the INTRIGUE approach. The most important variables,
identified via permutation feature importance analysis, are printed in bold.

Type Variable Equation Description Units

Raw Wi
p10 Instantaneous wind gust at 10 m a.g.l. (called i10fg in ERA5) m s−1

Raw Wm
p10 Mean wind gust at 10 m a.g.l. since previous post-processing (called 10fg in ERA5) m s−1

Derived W10

√
U2

10+V
2
10 Wind speed at 10 m a.g.l. computed from zonal and meridional components m s−1

Derived W100

√
U2

100+V
2
100 Wind speed at 100 m a.g.l. computed from zonal and meridional components m s−1

Derived α log(W100/W10)/ log(100/10) Power-law exponent of wind profile within 10–100 m a.g.l. –
Derived β Change in wind direction between 10 m and 100 m a.g.l. ◦

Raw T2 Air temperature at 2 m a.g.l. (called t2m in ERA5) K
Raw T0 Skin temperature (called skt in ERA5) K
Raw Ts Upper-level soil temperature (called stl1 in ERA5) K
Raw Td2 Dew point temperature at 2 m a.g.l. (d2m) K
Derived 1T1 T2–T0 Difference in air and skin temperatures K
Derived 1T2 T0–Ts Difference in skin and soil temperatures K
Derived 1T3 T2–Td2 Temperature dew point spread K
Raw u∗ Surface friction velocity (called zust in ERA5) m s−1

Raw τew Instantaneous x surface stress (called iews in ERA5) N m−2

Raw τns Instantaneous y surface stress (called inss in ERA5) N m−2

Raw ε Energy dissipation rate in boundary layer (called bld in ERA5) J m−2

Raw εm Mean energy dissipation rate in boundary layer (called mbld in ERA5) W m−2

Raw HS Instantaneous surface sensible heat flux (called ishf in ERA5) W m−2

Raw HL Instantaneous moisture flux (called ie in ERA5) Kg m−2 s−1

Raw H Boundary layer height (called blh in ERA5) m
Raw P0 Mean sea level pressure (called msl in ERA5) Pa
Raw TCC Total cloud cover (called tcc in ERA5) –
Raw LCC Low-level cloud cover (called lcc in ERA5) –
Raw CAPE Convective available potential energy (called cape in ERA5) J kg−1

Raw CIN Convective inhibition (called cin in ERA5) J kg−1

Derived HRSin sin(2πHour/24) Sine encoding of hours –
Derived HRCos cos(2πHour/24) Cosine encoding of hours –
Derived DYSin sin(2πDay/365) Sine encoding of Julian days –
Derived DYCos cos(2πDay/365) Cosine encoding of Julian days –
Derived MOSin sin(2πMonth/12) Sine encoding of months –
Derived MOCos cos(2πMonth/12) Cosine encoding of months –

robin manner by changing the training and testing years. For
example, in the schematic shown in Fig. 3, we use data from
the year 2003 for training and make predictions for the years
2004–2013.

In ML training, it is customary to hold out a portion of
the training data, called a validation set, for hyperparameter
tuning. Often an 80 %–20 % randomly shuffled split is made
between training and validation sets. However, meteorolog-
ical data are temporally correlated. Thus, random shuffling
causes information leakage into the validation set. To mini-
mize this undesirable leakage problem, we use the first 24 d
of each month (i.e., ∼ 80 %) for training and the rest for val-
idation as depicted in Fig. 3.

6.2 ML models

In this study, we have used four different decision-tree-based
ML models. Two of them, random forest (Breiman, 2001)
and extremely randomized trees (Geurts et al., 2006), use
the so-called bagging approach. The other two approaches,
XGBoost (Chen and Guestrin, 2016; Wade, 2020) and Light-

GBM (Machado et al., 2019), are built on the gradient-
boosting technique (Freund and Schapire, 1999; Friedman,
2002). Henceforth, the XGBoost and LightGBM models are
referred to as XGB and LGBM, respectively. For a com-
prehensive treatise on decision trees, bagging, and boosting,
the following references are suggested: Rokach and Mai-
mon (2008), Hastie et al. (2009), Géron (2022), and Murphy
(2022). We also encourage the readers to peruse the concise
tutorial on decision trees by Spiliotis (2022).

It is important to point out that we are interested in com-
paring the relative performance of various ML approaches
for wind gust prediction and identifying if there is a clear
winner. It is entirely possible that by combining some of
these techniques (e.g., via a stacking regressor), one can get
enhanced performance. However, we do not investigate this
strategy in this paper.

6.3 Hyperparameter tuning

Each DT-based model contains several hyperparameters
(e.g., number of trees, number of tree levels). We include
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Figure 2. Bivariate histograms of several meteorological variables. On the x axis, the predictor variables from the ERA5 dataset are plotted.
The predictor variables are W i

p10 (a, d, g), u∗ (b, e, h), and H (c, f, i). The predictand variable Wp is plotted on the y axis. The top, middle,
and bottom panels correspond to the REESE, MACY, and FLUVANNA stations, respectively. To enhance the clarity of these plots, we do
not show the data points where Wp > 25 m s−1. In the bottom-right corner of each plot, we report the square of the Pearson’s correlation
coefficient (r). The dashed black lines in these plots represent the linear regression fits.

Figure 3. Our strategy of splitting the entire dataset into training,
validation, and testing sets.

the most relevant ones in Table 2. Technical descriptions of
these hyperparameters are beyond the scope of this paper.
The readers are encouraged to peruse the original publica-
tions and associated code repositories for more information.

In order to achieve high-level predictive performance, all
the hyperparameters should be highly optimized. Quite often,
random search or grid search approaches are used (Géron,
2022). These strategies are very time-consuming and may
require sophisticated hardware support. As an alternative, in
this study, we have used FLAML (A Fast Library for Auto-
mated Machine Learning & Tuning), developed by Microsoft
(https://microsoft.github.io/FLAML/, last access: 14 Octo-
ber 2023). Instead of performing the grid search, the FLAML
library takes the available computing time as a parameter and
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Table 2. Hyperparameter search spaces of the bagging and boosting ML models. For each WTM station, different optimized models are
constructed. In the last three columns, the best configurations of the models are reported when data from the year 2003 are used for training.

Algorithm Hyperparameter Range REESE MACY FLUVANNA

Random forest (RF) tree num [4, min(2048, no. of instances)]] 276 827 45
max_features [0.1, 1] 0.260 0.280 0.730
leaf num [4, 32 768] 3454 3259 321

Extremely randomized trees (ERT) tree num [4, min(2048, no. of instances)]] 28 146 25
max_features [0.1, 1] 0.780 0.330 0.990
leaf num [4, 32 768] 597 2721 3454

Extreme gradient-boosting (XGB) tree num [4, min(32768, no. of instances)]] 393 712 73
leaf num [4, min(32768, no. of instances)]] 44 17 480
min child weight [0.001, 128] 5.540 0.009 54.000
learning rate [0.001, 0.1] 0.022 0.017 0.084
subsample [0.1, 1.0] 0.950 0.540 1.000
reg alpha [0.001, 1024] 0.410 0.001 0.400
reg lambda [0.001, 1024] 16.430 11.220 0.001
colsample by level [0.01, 1.0] 0.840 0.270 0.210
colsample by tree [0.01, 1.0] 0.850 0.800 0.640

Light gradient-boosting machine (LGBM) tree num [4, min(32768, no. of instances)]] 6909 473 439
leaf num [4, min(32768, no. of instances)]] 24 29 162
min child samples [2, 129] 2.000 13.000 3.000
learning rate [0.001, 0.1] 0.002 0.017 0.020
reg alpha [0.001, 1024] 3.350 0.001 0.001
reg lambda [0.001, 1024] 0.002 0.096 0.011
max bin [3, 11] 5 7 6
colsample by tree [0.01, 1.0] 0.610 0.920 0.510

tries to find the optimal hyperparameters within the allotted
time.

FLAML optimizes hyperparameters using effective search
strategies. During the search process, the learner decides on
the hyperparameter, sample size, and resampling strategy
while taking advantage of the combined effects on both cost
and error. The design of FLAML is presented in Fig. 3 of
Wang et al. (2021). It consists of two layers, an ML layer,
and an AutoML (automated machine learning) layer. In the
present study, since each ML model (i.e., RF, XGB) is opti-
mized individually; the ML layer contains only the relevant
model. The AutoML contains a learner proposer, a hyperpa-
rameter and sample size proposer, a resampling strategy pro-
poser, and a controller. While the proposers are used to de-
cide the variables, the controller is used to initiate the exper-
iment using the learner selected in the ML layer. These steps
are repeated during the allotted time. The algorithm uses the
random direct search method to decide hyperparameters (Wu
et al., 2021).

In this study, we focus on three different WTM stations
(REESE, MACY, and FLUVANNA). For each station, we
have 11 distinct training sets (one for each year). For each
training set, we have four DT-based candidate models. In
summary, we have a total of 3× 11× 4= 132 cases of dis-
tinct hyperparameter optimizations. To limit the overall com-
puting time, each case is optimized for 1 h on a Windows

workstation equipped with an Intel Core i7 3.5 GHz CPU and
NVIDIA GeForce GTX 1070 (8 GB) GPU. The total com-
puting time was 132 h. As an example, we provide the best
configuration values for the year 2003 in Table 2. In addition,
we also provide the search range of each hyperparameter in
this table.

6.4 Performance evaluation metrics

For model evaluations, we have used bias, the mean absolute
error (MAE), the mean squared error (MSE), and the coef-
ficient of determination (R2) as performance metrics. They
are defined as follows:

bias=
1
N

N∑
i=1

(
ŷi − yi

)
, (6a)

MAE=
1
N

N∑
i=1

∣∣yi − ŷi∣∣ , (6b)

MSE=
1
N

N∑
i=1

(
yi − ŷi

)2
, (6c)
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R2
= 1−

N∑
i=1

(yi − ŷi)2

N∑
i=1

(yi − y)2
, (6d)

where yi and ŷi are the ith measured and the corresponding
predicted values ofWp. The average of the measuredWp val-
ues is denoted by y. The total sample size in the test set is N .
Since the overall test set consists of 10 years of hourly data,
N is approximately equal to 8760 for each year.

7 Results

In this section, the predictive performances of four DT-
based algorithms are evaluated for the three WTM stations
(REESE, MACY, and FLUVANNA). In addition to these ML
models, we use two ERA5 wind gust variables (W i

p10, Wm
p10)

as baseline predictors for Wp. Intuitively, we expect the ML
models to outperform the ERA5 predictions as they use more
input features.

We first report the results for self-prediction cases where
training and testing are performed using the WTM and ERA5
data from the same location. In the following sub-section, we
discuss a cross-prediction scenario. Specifically, data from
one of the WTM stations are used for training, and the fitted
model is used to make predictions for the other two locations.
In the last sub-section, we discuss the importance of various
input features.

7.1 Self-prediction

As mentioned earlier, 1 year of training data for each WTM
station is used to build four DT-based models (optimized via
FLAML). Out of these samples, 72 d worth of data are used
for hyperparameter tuning for each case, following Sect. 6.1.
These site-specific tuned models are then used to predict
Wp for the other 10 years for the same site. We repeat the
procedure in a round-robin manner for the other years. The
mean prediction scores of all the models, in terms of the bias,
MAE, MSE, and R2 metrics, are given in Figs. 4–7, respec-
tively.

As an illustrative example, let us consider the random
forest (RF) model at REESE. First, a distinct RF model is
trained using data from 2003 to predict Wp for the years
2004, 2005, . . . , and 2013. Next, we use the data from 2004
to make predictions for the years 2003, 2005, 2006, . . . , and
2013. We repeat this procedure for all the possible 10 com-
binations. For the year 2003, the average MAE from these
10 predictions is 1.39 m s−1.

According to Fig. 4, the ML models have a tendency to
overestimate the wind gusts; however, the bias values are
typically much lower than 0.5 m s−1. The performance of the
baseline predictors from ERA5 is much poorer. At MACY,
both the W i

p10 and Wm
p10 variables excessively underestimate

wind gusts.

From Figs. 5–7, it is clear that the performance of ERA5’s
W i

p10 and Wm
p10 variables as surrogates for Wp exhibits inter-

annual variability. For example, for the W i
p10 variable, the

MAE at REESE ranges from 1.53 m s−1–1.68−1 with an av-
erage of 1.59 m s−1. These figures also attest to the superior
performance of the ERA5 baseline at the REESE and FLU-
VANNA stations in comparison to MACY. Given the com-
plex location of MACY and the coarse effective resolution
of ERA5, such a deterioration in performance at MACY is
expected.

All the performance metrics are considerably improved
when using the DT-based models instead of the ERA5 base-
line. According to Fig. 7, the XGB model improves the av-
erage R2 scores for the REESE, MACY, and FLUVANNA
stations by 0.08, 0.11, and 0.11, respectively, in compari-
son to the ERA5 Wm

p10 baseline. The performances of the
four DT-based ML models are pretty similar. In the case of
REESE, the XGB model provides 12 %, 13 %, and 23 % im-
provements in terms of R2, MAE, and MSE, respectively.

In Figs. 5–7, all the scores of the ML models are averaged
over 10 years. Due to averaging, the perceived inter-annual
variability in all these models is much lower in comparison to
the ERA5 baseline. For example, in the context of the XGB
model, the R2 score at MACY has a narrow range of 0.68–
0.70. In order to investigate the year-to-year variability and
performance of an ML model, we report the annualR2 scores
at the MACY station in Table 3. As an illustrative example,
we only tabulate the results of the XGB model. The results
of the other ML models are very similar and, thus, are not
shown. It is satisfying to see that the inter-annual variability
in the R2 score is not more pronounced than the ERA5 base-
line. In other words, with only 1 year of training data, the
XGB model can estimate Wp values for other years with R2

scores ranging from 0.63 to 0.74. These scores are consider-
ably higher than the corresponding values (R2

= 0.52–0.65)
from the ERA5 Wm

p10 baseline.

7.2 Cross-prediction

In order to demonstrate the potential generalizability of the
ML models, the optimized models for the REESE station
are utilized for predictions at the MACY and FLUVANNA
stations. The R2 scores are reported in Fig. 8. In the case
of self-prediction, the R2 scores for the ML models were
around 0.66–0.69 for MACY and 0.72–0.73 for FLUVANNA
(refer to Fig. 7). In the case of cross-prediction, the results
are slightly poorer. In the case of MACY, the R2 values are
approximately equal to 0.64, whereas the corresponding R2

values are around 0.70–0.71 at FLUVANNA. These results
are encouraging and imply that the proposed INTRIGUE ap-
proach might be used for cross-predictions as long as the
training and testing locations are not too far apart and experi-
ence similar regional climatic conditions. Along these lines,
more studies are needed for rigorous validations.
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Figure 4. Bias (m s−1) scores of two baseline ERA5 variables and four DT-based models.

Figure 5. MAE (m s−1) scores of two baseline ERA5 variables and four DT-based models.
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Figure 6. MSE (m2 s−2) scores of two baseline ERA5 variables and four DT-based models.

Figure 7. R2 scores of two baseline ERA5 variables and four DT-based models.
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Table 3. Detailed R2 scores of the XGB model at the MACY station for each year.

Training Testing years

Years 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

2003 – 0.67 0.69 0.67 0.67 0.74 0.69 0.69 0.74 0.68 0.70
2004 0.70 – 0.68 0.65 0.66 0.73 0.67 0.68 0.71 0.67 0.70
2005 0.70 0.67 – 0.66 0.66 0.73 0.69 0.68 0.74 0.69 0.71
2006 0.71 0.66 0.69 – 0.66 0.74 0.69 0.68 0.74 0.69 0.71
2007 0.71 0.66 0.69 0.66 – 0.73 0.70 0.69 0.74 0.69 0.70
2008 0.69 0.65 0.68 0.66 0.66 – 0.68 0.70 0.73 0.68 0.71
2009 0.69 0.63 0.68 0.63 0.65 0.72 – 0.67 0.69 0.66 0.70
2010 0.68 0.64 0.67 0.65 0.65 0.72 0.68 – 0.74 0.68 0.70
2011 0.69 0.66 0.68 0.67 0.66 0.73 0.70 0.70 – 0.69 0.71
2012 0.70 0.66 0.70 0.67 0.66 0.73 0.70 0.71 0.74 – 0.71
2013 0.69 0.66 0.69 0.66 0.67 0.74 0.69 0.70 0.74 0.68 –

W i
p10 0.52 0.47 0.52 0.50 0.52 0.58 0.54 0.55 0.62 0.53 0.57

Wm
p10 0.58 0.52 0.56 0.54 0.55 0.61 0.58 0.59 0.65 0.57 0.60

Figure 8. R2 scores of the two baseline ERA5 variables and four DT-based models at MACY and FLUVANNA. Models are trained using
data from the REESE station.

7.3 Feature importance

In the INTRIGUE approach, we have used 265 input fea-
tures. It is likely that not all of these features are equally im-
portant for peak wind gust predictions. One way to rank the
input features is via using the “permutation feature impor-
tance” strategy (Breiman, 2001; Molnar, 2022). To describe

this simple algorithm, we closely follow Sect. 7.5 of Molnar
(2022).

First, an ML model (say XGB) is trained using 1 year of
data from a specific station (e.g., REESE). Then, we make
a prediction for another year for the same station. Both the
training and testing data contain 265 input features. Using
the observed and predicted Wp values, we compute predic-
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Figure 9. Feature importance scores of the ERA5 parameters for REESE (a), MACY (b), and FLUVANNA (c). The results from two ML
models, XGB and RF, are shown for comparison.

tion errors (e.g., using R2) and denote this error as eo. Next,
we randomly shuffle only one of the input features (say the
ith feature) of the test data and keep the ordering of all other
features the same. Now, we make a new prediction. The
error associated with this new prediction is denoted as ei

p.
Since we have randomized only one input feature, that fea-
ture no longer has any association with the other input fea-
tures. Thus, we expect ei

p to be worse than eo; in the case of
R2, ei

p ≤ eo. To achieve converged statistics, we repeat the
randomization process for the same ith feature a few times
(typically five or more) and compute an averaged value of
ei

p. The net reduction the in R2 score due to the randomiza-

tion of the ith feature is
(
eo− ei

p

)
.

One at a time, we repeat the random-shuffling exercise for
all 265 input features and compute the reduction in R2 cor-
responding to each input feature. If an input feature is very
important for peak wind gust estimation, the reduction in R2

for that feature will be large. On the other hand, the irrelevant
input features marginally impact the R2 scores.

In Fig. 9, the importance (in terms of reduction in R2) of
all the input features is plotted for the XGB and RF mod-
els. For computation, we use the ELI5 library (https://eli5.
readthedocs.io/en/latest/overview.html, last access: 14 Octo-
ber 2023). We average the statistics over 10 years for robust-
ness.

Although there are differences in the magnitude of the fea-
ture importance depending on the stations, the following in-
put features are found to be very relevant for all three sta-
tions: W10, Wm

p10, W i
p10, u∗, τns, W100, ε, εm, and α. Interest-

ingly, both the XGB and RF models capture the same behav-
ior. These input features are also the ones that are commonly
used in physical parameterizations (see Sect. 2).

Some of the input features (e.g., related to the time of day,
temperature, cloud cover) are not relevant for peak wind gust
predictions. Thus, one can remove these input features from
future ML models and achieve a similar level of prediction
accuracy with reduced computational costs.

8 Limitations of the INTRIGUE approach

The WTM dataset contains a handful of extreme wind gust
events. In Fig. 10, a few illustrative cases measured at the
REESE station are shown. One of these cases is related to
a supercell thunderstorm, while the others are produced by
non-supercell thunderstorm events. These cases and a few
others were studied in depth by Lombardo et al. (2014). On
these plots, we have overlaid W i

p10 values from ERA5 and
also the predictions from two of the ML models (i.e., RF and
XGB). It is apparent that the W i

p10 variable has not captured
the extreme wind gusts in a faithful manner. This failure is
likely due to the coarse effective resolution of the ERA5 data,
which cannot resolve thunderstorms. The ML models are un-
able to make any improvement to these extreme wind gust
predictions.

To further investigate this limitation of the INTRIGUE ap-
proach, we provided several confusion matrices in Fig. 11.
We classified peak wind gusts into extreme (1) and nom-
inal (0). When Wp exceeds 20 m s−1, we denote the event
as an extreme. From these matrices, it is evident that the
INTRIGUE approach leads to numerous false positives and
false negatives.

In Fig. 12, we show scatterplots of a few input features (or
predictors) and the predictand (Wp). While discussing feature
importance, we demonstrated that overall W10, W i

p10, and
Wm

p10 are very important features. However, these features
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Figure 10. Examples of extreme wind gust events measured at the REESE station on 19 June 2008 (a; non-supercell thunderstorm), 14 Au-
gust 2008 (b; non-supercell thunderstorm), 4 June 2009 (c; bow-echo/supercell thunderstorm), and 12 August 2009 (d; non-supercell thun-
derstorm). In these figures, the instantaneous (W i

p10) and mean (Wm
p10) wind gust values from the ERA5 dataset are overlaid for comparison.

In addition, we have plotted the predictions from the RF and XGB models.

Figure 11. Confusion matrices for extreme wind gust (Wp > 20 m s−1) prediction. The top and bottom panels represent XGB and RF
models, respectively. The left, middle, and right panels correspond to the REESE, MACY, and FLUVANNA stations, respectively.
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Figure 12. Scatterplots of W10 (a–c), W i
p10 (d–f), and CAPE (g–i) against Wp measured at the REESE station. The Wp values greater than

20 m s−1 are only included in these plots. The left, middle, and the right panels correspond to years 2003, 2008, and 2013, respectively. There
are only 77, 78, and 63 samples in the left, middle, and the right panels, respectively. It is clear that the correlations between the predictors
and the predictand are very low for all the cases. In the bottom-right corner of each plot, we report the Pearson’s correlation coefficient (r).
The black lines in these plots represent the linear regression fits.

are barely correlated with Wp for extreme conditions. Fur-
thermore, ERA5’s CAPE variable (typically related to thun-
derstorm development) is also not well correlated with Wp
values. In lieu of adequate input features, the INTRIGUE ap-
proach fails to perform satisfactorily for the extreme wind
gust conditions. We speculate that parameters derived from
vertical profiles of the ERA5 reanalysis (e.g., deep-layer
wind shear, storm relative helicity, integrated Scorer parame-
ter, Sangster parameter) as input features might improve the
predictions.

In this study, we have utilized the INTRIGUE approach
for Wp predictions at 10 m heights. The availability of Wp
for higher altitudes is rather limited, and only a few studies
(e.g., Deacon, 1955; Brook and Spillane, 1970; Suomi et al.,

2015; Hu et al., 2018; Shu et al., 2021) exist in the litera-
ture. However, high-altitude (say 100 m) Wp data are highly
relevant from a wind energy perspective. The contemporary
physical parameterizations (see Suomi et al., 2013, and the
references therein) use the surface friction velocity, sensible
heat flux, and boundary layer height as input for the estima-
tion of hub-heightWp values. Since the INTRIGUE approach
already uses these input features (among others), it should be
applicable for Wp predictions for turbine hub heights. Un-
doubtedly, more work is needed in this arena.
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9 Conclusions

In this study, we proposed a decision-tree-based MCP ap-
proach (called INTRIGUE) for peak wind gust estimation.
This approach utilizes several meteorological variables (in-
cluding the instantaneous wind gust variable) from the ERA5
reanalysis dataset as input features. For non-extreme (i.e.,
nominal) cases, the INTRIGUE-approach-predicted peak
wind gust values are closer to the observed ones than the
baseline approaches. This approach can also make predic-
tions for neighboring stations where training data are not
available. In addition to site assessments, our proposed IN-
TRIGUE approach can be used in wind gust forecasting. In-
stead of a reanalysis dataset, predicted meteorological fields
from a numerical weather prediction model can be used as
input features for the ML models.

However, there is room for significant improvements as
the INTRIGUE approach drastically underestimates extreme
wind gust events of magnitudes higher than 20 m s−1. For
these cases, none of the 265 input features that we consid-
ered in this study correlate with Wp. Clearly, we need more
relevant input features. In our future work, we will also an-
alyze meteorological profiles from ERA5 and compute vari-
ous thunderstorm-related parameters as input features. In ad-
dition, we will add input features extracted from radar reflec-
tivity fields using autoencoders. We speculate that the addi-
tion of such input features will enable the INTRIGUE ap-
proach to capture extreme wind gusts in a more faithful man-
ner.

We would like to remind the readers that we intentionally
use only 1 year of training data in this study. As a result, only
a few such extreme cases (on the order of 60–80 samples)
are included in the training process. In the ML literature, this
problem is known as the imbalance data problem. In the fu-
ture, we will explore various ML strategies (e.g., isolation
forest) to tackle this challenging problem.

In typical wind energy projects, one does not have access
to on-site long-term wind gust datasets. Thus, increasing the
sample size from a single site is not a viable solution. How-
ever, it will be possible to increase the sample size by ag-
gregating observational data from different sites around the
world with comparable climatic conditions. By doing so, we
will be able to come up with a more generalized ML model
for wind gust prediction. We will pursue this line of research
in the near future.
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