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Abstract. The combined wind speed estimator and tip-speed ratio (WSE–TSR) tracking wind turbine control
scheme has seen recent and increased traction from the wind industry. The modern control scheme provides a
flexible trade-off between power and load objectives. On the other hand, the Kω2 controller is often used based
on its simplicity and steady-state optimality and is taken as a baseline here. This paper investigates the potential
benefits of the WSE–TSR tracking controller compared to the baseline by analysis through a frequency-domain
framework and by optimal calibration through a systematic procedure. A multi-objective optimisation problem
is formulated for calibration with the conflicting objectives of power maximisation and torque fluctuation min-
imisation. The optimisation problem is solved by approximating the Pareto front based on the set of optimal
solutions found by an explorative search. The Pareto fronts were obtained by mid-fidelity simulations with the
National Renewable Energy Laboratory (NREL) 5 MW turbine under turbulent wind conditions for calibration
of the baseline and for increasing fidelities of the WSE–TSR tracking controller. Optimisation results show that
the WSE–TSR tracking controller does not provide further benefits in energy capture compared to the baseline
Kω2 controller. There is, however, a trade-off in torque control variance and power capture with control band-
width. By lowering the bandwidth at the expense of generated power of 2 %, the torque actuation effort reduces
by 80 % with respect to the optimal calibration corresponding to the highest control bandwidth.

1 Introduction

Of all the available renewable energy sources, wind energy
is increasingly considered one of the most cost-effective and
sustainable with regard to the global demand for clean en-
ergy (Watson et al., 2019). The total present wind power ca-
pacity installed worldwide is now 837 GW, with year-on-year
growth of 12 % (Lee and Zhao, 2022). However, this growth
rate must quadruple by the end of the decade to meet the net-
zero emissions targets set after the Glasgow climate summit
(United Nations, 2021; Komusanac et al., 2022). To achieve
these ambitious climate goals in an efficient manner, the in-
dustry is developing larger turbines with a more flexible rotor

assembly and support structure to exploit higher wind speeds
(Veers et al., 2019). Increasingly advanced and optimised
control technologies are needed to facilitate and enable the
increased sizes of wind turbines (Pao and Johnson, 2011).

Variable-speed turbines usually employ a generator torque
control strategy to maximise the energy capture in partial-
load conditions (Bossanyi, 2000; Burton et al., 2011). Maxi-
mum power is extracted by operating the turbine at the maxi-
mum power coefficient, corresponding to a specific tip-speed
ratio and pitch angle (Bottasso et al., 2012). The optimal tip-
speed ratio is tracked by varying the generator torque result-
ing from a closed-loop controller, while the pitch angle is
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generally kept constant in the partial-load region (Pao and
Johnson, 2011).

Nowadays, theKω2 controller is still a commonly consid-
ered partial-load region wind turbine torque control strategy
due to its satisfactory performance, ease of derivation and
simple implementation by only requiring a measurement of
the rotor or generator speed (Johnson et al., 2006; Ozdemir
et al., 2013). Nevertheless, the Kω2 controller has short-
comings that can result in suboptimal power-tracking per-
formance (Johnson et al., 2004). First, the torque gain K
is calculated from modelled wind turbine properties, often
subject to assumptions and estimation errors (Abbas et al.,
2022). Even if the gain K is initially accurate, the turbine
properties can change over time due to e.g. blade erosion and
ice, dirt and/or bug buildup, thereby causing this initial value
to be suboptimal (Johnson et al., 2004, 2006). For instance,
according to Fingersh and Carlin (1999), a 5 % error in the
optimal tip-speed ratio can lead to inaccurate K and, con-
sequently, to a cumulative captured energy loss of 1 %–3 %.
Second, suppose the wind turbine operates in turbulent wind
conditions and that K is accurately determined. In this case,
the large rotor inertia prevents fast acceleration and thus hin-
ders the tracking of rapid changes in wind speed, leading to
a lower operating power coefficient (Bossanyi, 2000). This
problem is emphasised for heavy rotors and sharp power co-
efficient curves.

The torque gain K can be calibrated through an extremum
seeking control (ESC) acting on the rotor power to overcome
the effect of time-varying wind turbine properties (Creaby
et al., 2009). While providing an energy capture improve-
ment of 8 %–12 % when applied on the Controls Advanced
Research Turbine (CART), this control scheme results in be-
ing sensitive to wind speed variations (Xiao et al., 2016).
Therefore, Rotea (2017) proposes a log-of-power feedback in
the ESC algorithm (LP-ESC). Using high-fidelity large-eddy
simulations, Ciri et al. (2018) demonstrate that this modifi-
cation renders the controller independent of changes in the
mean wind speed.

One way to increase the energy capture for higher turbu-
lence intensity is by reducing the gain K below the nominal
value. This choice allows the generator torque to decrease
and the rotor to accelerate more quickly in response to a gust.
For instance, in the study conducted by Johnson et al. (2004),
a reduction of 10 % in the gain K of the CART rotor con-
troller resulted in a measurable increase of 0.5 % in captured
power. This gain reduction strategy, aimed at enhancing en-
ergy capture, is not limited to the CART rotor alone; it holds
the potential for implementation on any existing wind tur-
bine employing the Kω2 controller. It is important to note
that there is no discernible linear correlation between the
gain reduction factor and the specific site conditions. Conse-
quently, it becomes evident that the extent of increased cap-
tured power is contingent upon the turbulent wind conditions
and the characteristics of the particular turbine in use. Given

this variability, selecting a constant value for the gain reduc-
tion factor is deemed impractical (Johnson et al., 2004).

To provide better rotor acceleration and deceleration, Fin-
gersh and Carlin (1999) proposed the optimally tracking ro-
tor (OTR) controller. This scheme augments the Kω2 con-
troller with a second term. The additional term is a gain
multiplied by the net torque, being the difference between
the (estimated) aerodynamic torque and the generator torque
contribution resulting from the Kω2 control law. Subtract-
ing the new term from the original formulation will aid rotor
acceleration or deceleration if the wind speed increases or
decreases. With this approach applied to the CART, the con-
troller bandwidth for tracking the actual optimal operating
point is increased, thereby improving the energy capture by
about 1.2 % (Fingersh and Carlin, 1999). However, the OTR
control scheme relies heavily on correct knowledge of the
aerodynamic rotor properties. Incorrect information will in-
evitably lead to suboptimal operation in transient and steady-
state conditions. Another more advanced turbine controller
was developed by van der Hooft et al. (2003) and includes
pseudo-feedforward control based on an estimation of the
rotor-effective wind speed (REWS) to realise an additional
pitch control action in partial-load conditions. With this strat-
egy, an energy yield increase of 0.9 % was achieved at the
expense of larger speed and load variations.

To cope with the described disadvantages of theKω2 con-
trol scheme, combined wind speed estimator and tip-speed
ratio (WSE–TSR) tracking control schemes have recently
been considered (Abbas et al., 2022). The idea behind this
scheme is to use the estimated REWS (Østergaard et al.,
2007; Soltani et al., 2013) to calculate an estimate of the de-
sired rotor speed, which in turn is employed as a feedback
signal to close the loop by a proportional and integral (PI)
controller. According to Bossanyi (2000), this controller al-
lows for tracking the optimal tip-speed ratio even in turbulent
wind conditions, with a 1 % power increase compared to the
baseline Kω2, but at the expense of significant power varia-
tions.

In the work of Boukhezzar and Siguerdidjane (2005), a
Kalman filter estimator combined with a rotor speed ref-
erence tracking improves the power capture by 10 % when
compared with the Kω2 controller, but no analytical demon-
stration of its dynamic behaviour was provided. A similar
study by Abbas et al. (2022) focused only on a time-domain
analysis when comparing the combined estimator-feedback
controller with the Kω2 control law. Earlier work by the
current authors (Brandetti et al., 2022) has proved that an
analytical frequency-domain framework could be a valuable
tool for analysing the dynamics of the WSE–TSR tracking
controller. However, neither the performance benefits of us-
ing such a control scheme over the baseline Kω2 controller
nor the optimal calibration are discussed in Brandetti et al.
(2022).

Therefore, this paper presents the steady-state equivalence
and dynamic differences between theseKω2 and WSE–TSR
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tracking controllers and proposes a systematic procedure
for optimal calibration. Calibration of the parameters in the
WSE–TSR tracking control scheme is fundamental to opti-
mising controller performance in terms of power maximisa-
tion, load minimisation and stability (Bossanyi, 2000).

However, the use of classical analysis techniques to cal-
ibrate the proposed scheme is complex due to the trade-off
between conflicting control requirements, e.g. maximising
power production and minimising the loads. Recent studies
(Odgaard et al., 2016; Lara et al., 2023) have demonstrated
the effectiveness of multi-objective optimisation techniques
based on Pareto fronts for tuning wind turbine controllers.
For this reason, the calibration of the WSE–TSR tracking
controller is formulated as a multi-objective optimisation
problem. First, the parameter space of the considered con-
trol scheme is explored by a guided search procedure. Sub-
sequently, the set of optimal solutions is found to construct
the Pareto front in a trade-off between power maximisation
and load minimisation. The solutions found are then assessed
using the extended version of the frequency-domain frame-
work, based on Brandetti et al. (2022), for comparison with
the baseline controller. As also shown by Leith and Leithead
(1997), analysing a controller in the frequency domain allows
for gathering relevant insights into its performance. There-
fore, applying a frequency-domain framework to evaluate the
optimal solutions found by solving the multi-objective opti-
misation problem enables linking the conflicting control ob-
jectives with the stability and performance of the closed-loop
system in terms of controller bandwidth.

In this context, the present research aims to illustrate the
additional benefits of using the WSE–TSR tracking con-
troller compared to the baseline Kω2 for partial-load con-
trol when applied to realistic wind turbine sizes, in terms of
two performance metrics widely discussed in the literature:
power maximisation and load minimisation (Leith and Leit-
head, 1997; Leithead and Connor, 2000). Thereby, the fol-
lowing contributions are presented:

– demonstrating the steady-state similarities and dynamic
differences between the WSE–TSR tracking control
scheme and the baseline Kω2 controller in the fre-
quency domain by a universal linear analysis frame-
work,

– mapping the performance of the fixed-structure WSE–
TSR tracking controller for sets of calibration param-
eters of increasing dimensionality by a guided ex-
ploratory search in their constrained parameter spaces,

– formulating the optimal calibration as a multi-objective
problem using Pareto front approximation techniques,

– exploiting the frequency-domain framework in conjunc-
tion with mid-fidelity simulations under realistic en-
vironmental conditions to discover and showcase the
characteristics of an optimally calibrated WSE–TSR
tracking control scheme to the baseline strategy.

The paper is structured as follows: Sect. 2 gives a mathe-
matical overview of the WSE–TSR tracking control scheme
and baseline Kω2 controller, together with the assumptions
made for their implementation. Based on the nonlinear im-
plementation, Sect. 3 provides a linear frequency-domain
framework analysing the two controllers. Section 4 illustrates
the exploration and multi-objective Pareto optimisation strat-
egy for calibrating the WSE–TSR tracking control scheme.
Section 5 evaluates the performance of the calibrated WSE–
TSR tracking scheme compared to the baseline controller by
leveraging the results from the frequency-domain analysis
framework and the ones derived from realistic mid-fidelity
time-domain simulations. Finally, Sect. 6 summarises the
main findings and recommendations for future work.

Prerequisites

This section provides the prerequisites needed for the analy-
sis of the controllers. Estimated quantities and time deriva-
tives are indicated by ˆ(·) and ˙(·), respectively. Values cor-
responding to a specific operating point are denoted by (·),
whereas values indicating the intended optimal parameters
are presented with (·)∗. The symbols ωr, Tg, V and λ repre-
sent the rotational speed, generator torque, wind speed and
tip-speed ratio signals in the time domain, while �r, Tg, V
and 3 represent the corresponding signals in the frequency
domain.

In addition, this work relies on a set of assumptions,
which are formulated as follows.

Assumption 1.1. The considered control schemes are
analysed in the partial-load region with a constant (fine-)
pitch angle. For this reason, the power coefficient mapping
is only taken as a function of the tip-speed ratio.

Assumption 1.2. The generator torque control input and
the rotational speed of the turbine are measured signals. The
rotor-effective wind speed is considered an unknown and
positive disturbance input to the plant.

Assumption 1.3. The turbine model information included in
the estimator and control framework represents the actual
turbine characteristics. This assumption highlights the best-
case performance benefits achievable with the WSE–TSR
tracking control scheme over the baseline Kω2 control
strategy without capturing the inherent uncertainties of
real-world turbine dynamics. The assessment of the effects
of model uncertainty on performance levels and control
robustness is devoted to future work.

2 Theory of partial-load control schemes

The baseline Kω2 controller is a well-known, effective and
commonly used torque control strategy for maximising en-
ergy capture in the partial-load operating region (Bossanyi,
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Table 1. Main operational parameters for the National Renewable Energy Laboratory (NREL) 5 MW turbine (Jonkman et al., 2009).

Description Symbol Value Unit

Generator inertia Jg 543.116 kg m2

Rotor inertia Jr 35.444× 106 kg m2

Total drivetrain inertia at the low-speed shaft J 40.470× 106 kg m2

Gearbox ratio N 97 –
Air density ρ 1.225 kg m−3

Fine-pitch angle β0 0 rad
Rotor radius R 63 m
Optimal tip-speed ratio λ∗ 7.2 –
Optimal power coefficient Cp 0.4623 –

2000). While the Kω2 strategy provides satisfactory per-
formance, it is inflexible in providing a granular trade-
off between power and load objectives for present-day
wind turbines. Therefore, modern large-scale wind tur-
bines are controlled by more advanced WSE–TSR tracking
schemes (Mulders et al., 2023), and wind turbine manufac-
turers are currently exploring the possibilities of applying
model predictive control (MPC) to provide such flexibility
(Hovgaard et al., 2015; Pamososuryo et al., 2023). This work
focuses on comparing the baseline strategy, with the first be-
ing the WSE–TSR tracking control scheme, which is also of-
ten referred to as a power coefficient Cp-tracking scheme in
other works (Bossanyi, 2000). In this section, first, the Kω2

and WSE–TSR tracking control schemes are derived in their
full and nonlinear representations. To this end, the wind tur-
bine system is considered, and the individual required com-
ponent building blocks are obtained for completing the two
schemes.

2.1 Wind turbine

The wind turbine system is represented by the first-order
model:

J ω̇r = Tr− TgN, (1)

where ωr represents the rotor speed, and J is the total drive-
train inertia at the low-speed shaft (LSS) side, obtained from
the relation J = JgN

2
+ Jr, with Jg and Jr representing the

generator and rotor inertias, respectively. The gearbox ratio
is defined as the transmission ratio N = ωg/ωr, with ωg rep-
resenting the generator speed. The turbine is considered to
be subject to a torque control input Tg ∈ R, and, according to
Assumption 1.1, the aerodynamic rotor torque is given by

Tr =
1
2
ρArot

V 3

ωr
Cp(λ), (2)

where ρ represents the air density; Arot is the rotor-swept
area; V ∈ R is the rotor-effective wind speed (REWS); and
Cp(·) is the power coefficient, being a function of the tip-
speed ratio

λ=
ωrR

V
, (3)

with R being the rotor radius. The shape of the Cp(·) curve
depends on the design of the turbine and can be computed
from either numerical simulations or experimental data.

This study focuses on showing the potential benefits of
an advanced controller for large-scale turbines at both on-
shore and offshore locations. Therefore, for its size and rated
power capacity, the National Renewable Energy Laboratory
(NREL) 5 MW wind turbine model (Jonkman et al., 2009)
is used to strike a balance. The main operational parameters
are summarised in Table 1, and the Cp(·) curve covering the
operating region of interest is illustrated in Fig. 1. The pre-
sented curve is obtained from steady-state wind turbine sim-
ulations for a wind profile with a uniform velocity of 9 m s−1.
It can be observed that a single λ∗ exists, which corresponds
to the rotor operating point for maximum power extraction
efficiency Cp,∗(λ∗). In the remainder of this paper, a distinc-
tion is made between the torque controller input variable for
the two schemes, namely Tg,K and Tg,TSR, for the baseline
Kω2 and WSE–TSR tracking controller, respectively.

2.2 Baseline Kω2 controller

The derivation of the baseline Kω2 control law is presented
in this section. Figure 2 illustrates a block diagram of the
controller, and as shown, the framework only consists of the
wind turbine and the controller. The controller is a static
(nonlinear) function without dynamics, providing the gener-
ator torque control signal based on the rotor speed:

Tg,K =K
ω2

r
N
, (4)

in which the torque gainK (Bossanyi, 2000) is defined at the
LSS side of the drivetrain as

K =
ρArotR

3Cp,∗ (λ∗)
2λ3
∗

(5)

under Assumption 1.1.
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Figure 1. Power coefficient for the NREL 5 MW wind turbine model (Jonkman et al., 2009) at a uniform wind speed of 9 m s−1. The
maximum power extraction efficiency and the corresponding optimal tip-speed ratio are indicated as Cp,∗ and λ∗, respectively.

Figure 2. Block diagram of the Kω2 control framework. The red
box highlights the wind turbine system with two inputs (the gen-
erator torque, Tg,K, and the wind speed, V ) and two outputs (the
rotational speed, ωr, and the TSR, λ). The measured ωr and the op-
timal TSR, λ∗, are used as inputs of the controller (cyan box) to
compute Tg,K.

2.3 WSE–TSR tracking controller

The WSE–TSR tracking framework, outlined in Fig. 3, com-
bines an estimator and a tip-speed ratio tracking controller.
The estimator provides the tip-speed ratio estimate λ̂, which
is used by the controller that acts on the difference between
the estimate and the tip-speed ratio reference. This refer-
ence is usually taken as λ∗, corresponding to the rotor op-
erating point for maximum power extraction efficiency C∗p .
The controller provides the torque control signal Tg,TSR and
forces the turbine to track the reference. The following sec-

tion provides derivations of commonly used implementations
for both elements in the WSE–TSR tracking framework.

2.3.1 Wind speed estimator

The REWS is estimated based on the immersion and invari-
ance (I&I) estimator (Ortega et al., 2013) with an augmented
integral correction term (Liu et al., 2022). The estimator is
illustrated in Fig. 4 and uses the control signal, the measured
system plant output and a nonlinear plant model to estimate
the REWS. Given Assumptions 1.2 and 1.3, the estimator is
formulated as follows:
J ˆ̇ωr = T̂r− Tg,TSRN

εωr = ωr− ω̂r

V̂ =Kp,wεωr +Ki,w

t∫
0
εωr (τ )dτ,

(6)

with V̂ indicating the estimated REWS, Kp,w the propor-
tional estimator gain and Ki,w the integral estimator gain.
Furthermore, t indicates the present time, and τ is the vari-
able of integration. By adding integral action to the estimator,
the error εωr is forced to converge to 0, providing consistent
estimates of the rotor speed state ω̂r. Under Assumption 1.1,
the estimated aerodynamic torque is defined as

T̂r =
1
2
ρArot

V̂ 3

ωr
Ĉp

(
λ̂
)
, (7)

where Ĉp(·) is the estimated power coefficient, being a non-
linear function of the estimated tip-speed ratio λ̂= ωrR/V̂ .

2.3.2 Tip-speed ratio tracking controller

The proportional and integral (PI) controller in the WSE–
TSR tracking scheme acts on the tip-speed ratio error, which
is defined as

ελ = λ∗− λ̂, (8)
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Figure 3. Block diagram of the WSE–TSR tracking control framework. The red box highlights the wind turbine system with two inputs (the
generator torque, Tg,TSR, and the wind speed, V ) and two outputs (the rotational speed, ωr, and the TSR, λ). The cyan box highlights the
WSE–TSR tracking controller, which includes the estimator (purple box) and the TSR tracker controller (green box). The measured Tg,TSR
and ωr are used to estimate the rotor-effective wind speed V̂ and to calculate an estimate of TSR, λ̂, in the estimator block. The controller
acts on the difference between λ̂ and the optimal TSR, λ∗, to calculate the torque control signal Tg,TSR.

Figure 4. Block diagram of the estimator (Liu et al., 2022; Ortega et al., 2013). The measured generator torque, Tg,TSR, and rotational speed,
ωr, are used to estimate the REWS, V̂ , and to calculate an estimate of the TSR, λ̂.

being the difference between the reference and estimated
tip-speed ratio. This error is used to compute the generator
torque demand:

Tg,TSR =Kp,cελ+Ki,c

t∫
0

ελ(τ )dτ, (9)

where Kp,c and Ki,c are the respective proportional and inte-
gral controller gains.
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3 Frequency-domain framework

This section provides the linear frequency-domain frame-
work for analysing the baseline Kω2 and the WSE–TSR
tracking controllers, where the dynamics of the nonlinear
system are linearised around a specific operating point. The
subscripts (·)K and (·)TSR are employed to distinguish the
transfer functions for the two schemes. Following the struc-
ture of Sect. 2 and in the subsequent subsections, the relevant
transfer functions are first derived and provided for the wind
turbine dynamics, followed by the individual and combined
subsystems for the considered control schemes.

The presented framework has undergone rigorous verifica-
tion procedures. Firstly, it was validated through linearisation
of the fully coupled and nonlinear system, using a numeri-
cal control system linearisation tool (The MathWorks Inc.,
2021). This initial step ensured the accuracy and reliabil-
ity of our framework. Its correctness is further validated by
comparison to the linearisation results for the same coupled
system in related published work (Mulders et al., 2023). To
ensure the applicability of the framework in real-world sce-
narios, extensive time-domain simulations of the nonlinear
model were conducted using the mid-fidelity software Open-
FAST (NREL, 2021). These simulations provide empirical
evidence of the effectiveness of the framework in capturing
system dynamics. It is important to note that, in the interest
of brevity and focus, the detailed verification process is not
included in this paper.

3.1 Wind turbine dynamics

This section considers the linearisation of the wind turbine
dynamics. The differential equation in Eq. (1) is first com-
bined with the nonlinear expression for the aerodynamic ro-
tor torque defined in Eq. (2). Subsequently, the resulting ex-
pression is linearised with respect to the rotor speed state,
generator torque control input and wind speed disturbance
input, resulting in

ω̇r =G(V )ωr+ETg+H (V )V. (10)

For reasons of conciseness, the values perturbed around their
operating points are defined using the same original vari-
ables. The introduced variables representing partial deriva-
tives are defined as

G(V )=
1
J

∂Tr

∂ωr

∣∣∣∣(
ωr,V

) = 1
2J
ρArot

(
−
V 3

ω2
r
Cp (ωr,V )

+
V 2R

ωr

∂Cp (ωr,V )
∂λ

)∣∣∣∣(
ωr,V

), E =−NJ , (11)

H (V )=
1
J

∂Tr

∂V

∣∣∣∣(
ωr,V

) = 1
2J
ρArot

(
3V 2

ωr
Cp (ωr,V )

−VR
∂Cp (ωr,V )

∂λ

)∣∣∣∣(
ωr,V

). (12)

The argument V is included here to allow for the convenient
definition of estimator-based expressions for G and H in a
later section; however, the argument is omitted in expressions
from this point onwards. Finally, the linearised expression is
Laplace transformed to obtain the following:

(s−G)�r(s)= ETg(s)+HV(s),

where s represents the Laplace operator. The resulting equa-
tion is defined to give the rotor speed,

�r(s)=
E

s−G
Tg(s)+

H

s−G
V(s), (13)

which depends on the transfer functions from the generator
torque control and wind speed disturbance.

3.2 Analysis framework

To compare the characteristics of the baseline Kω2 and
WSE–TSR tracking control strategies, a universal analysis
framework is defined in this section and is illustrated in
Fig. 5. Here, the controllers are generalised as a single block
with two inputs and one output, being the reference tip-speed
ratio, rotor speed and generator torque control signals, re-
spectively. In the linear- and frequency-domain formulation,
the control scheme is formalised as

Tg(s)=K�r→Tg (s)�r(s)+K3∗→Tg (s)3∗(s). (14)

In the remainder of this section, the expressions K�r→Tg

and K3∗→Tg are derived and analysed for the different con-
trollers, representing the feedback and the reference shaping
terms, respectively. In particular, it will be shown that for the
Kω2 controller, these elements are equivalent to a state feed-
back controller with reference shaping gain. Since both the
WSE–TSR tracking controller and a state feedback controller
aim to regulate the output of the wind turbine, ωr, so that it
tracks the reference input, λ∗, this equivalence represents the
first step to comparing the baseline with the proposed con-
troller.

By substituting Eq. (14) into Eq. (13), the following ex-
pression is obtained:

�r(s)=
EK�r→Tg (s)

s−G
�r(s)+

EK3∗→Tg (s)

s−G
3∗(s)

+
H

s−G
V(s), (15)

https://doi.org/10.5194/wes-8-1553-2023 Wind Energ. Sci., 8, 1553–1573, 2023



1560 L. Brandetti et al.: Analysis and multi-objective optimisation of wind turbine torque control strategies

Figure 5. Block diagram of the universal framework used for the
controller analysis. The red box highlights the wind turbine system
with two inputs (the generator torque, Tg, and the wind speed, V )
and two outputs (the rotational speed, ωr, and the TSR, λ). The cyan
box represents the controller with two inputs (ωr and the TSR set
point, λ∗), one output (Tg) and two terms used for the linear analysis
framework (the feedback term, Kωr→Tg , and the reference shaping
term, Kλ∗→Tg ).

and by further manipulation,

�r(s)=
EK3∗→Tg (s)

s−G−EK�r→Tg (s)
3∗(s)

+
H

s−G−EK�r→Tg (s)
V(s). (16)

In Eq. (16), the closed-loop transfer functions are defined
with the rotor speed as the output variable. As the scheme
intends to regulate the tip-speed ratio to the TSR reference,
this output should be converted to the actual tip-speed ratio λ
of the turbine rotor. Therefore, the TSR expression defined in
Eq. (3) is linearised with respect to the rotor speed and wind
speed, and the following expression is obtained:

3(s)=
R

V
�r(s)−

Rωr

V
2 V(s). (17)

By combining Eq. (17) with Eq. (16),

3(s)=
REK3∗→Tg (s)

V
(
s−G−EK�r→Tg (s)

)︸ ︷︷ ︸
T3∗→3(s)

3∗(s)

+
R
(
H −

(
ωr/V

)(
s−G−EK�r→Tg (s)

))
V
(
s−G−EK�r→Tg (s)

)︸ ︷︷ ︸
TV→3(s)

V(s). (18)

The two transfer function terms on the right-hand side of
Eq. (18) represent the closed-loop system reference track-
ing and disturbance attenuation capabilities, respectively. In
particular, the term T3∗→3(s) indicates if the controller is
tracking the optimal condition (i.e. λ= λ∗), while TV→3(s)
shows the controller’s performance in reacting to external
wind speed disturbances. Later in this paper, these closed-
loop transfer functions are evaluated in terms of optimal con-
troller calibration to further investigate the controller in the
frequency domain.

3.3 Baseline Kω2 control dynamics

With the open-loop linearised wind turbine plant dynamics
and analysis framework defined, this section derives the re-
spective quantities in the universal controller framework for
the baseline controller. The nonlinear representation of the
Kω2 controller given by Eq. (4) is linearised to obtain the
following quantities:

K(�r→Tg),K =
∂Tg,K

∂ωr

∣∣∣∣
(ωr,λ∗)

=
2Kωr

N

=
ρR3ArotCp,∗ (λ∗)

Nλ3
∗

ωr, (19)

K(3∗→Tg),K =
∂Tg,K

∂λ∗

∣∣∣∣
(ωr,λ∗)

=
ρR3Arot

2N(
−

3
λ4
∗

Cp,∗ (λ∗)+
1
λ3
∗

∂Cp,∗ (λ∗)
∂λ∗

)
ω2

r . (20)

These are equivalent to the state feedback and reference
shaping gain, respectively, as defined in state feedback con-
trol theory. The interested reader is referred to Sect. A for the
full derivation of this similarity.

3.4 WSE–TSR tracking control dynamics

This section provides a derivation of the frequency-domain
control dynamics of the WSE–TSR tracking controller. As
shown in Fig. 3, the control scheme consists of a combined
estimator and tracking controller. For this reason, to obtain
the dynamics of the full scheme, the linear frequency-domain
representations of the individual estimator and controller are
derived first. Then, the framework dynamics are achieved by
coupling the estimator and the controller.
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3.4.1 Estimator dynamics

As illustrated in Fig. 4, the estimator has the generator torque
and the rotor speed as inputs and the estimated tip-speed ra-
tio as output. Therefore, several steps must be taken to derive
a frequency-domain representation for the estimator, which
are briefly summarised here. First, the equations for the esti-
mated rotor speed and REWS (Eq. 6) are combined and ap-
plied at the linearisation point in terms of the Laplace vari-
able. As a result, the estimated REWS is defined as a func-
tion of the rotor speed and the generator torque. Then, by
substituting this expression into the nonlinear function of the
estimated tip-speed ratio, the following is obtained:

3̂(s)=X(s)Tg,TSR(s)+Y (s)�r(s), (21)

where

X(s)=
3̂Tg,TSR (s)

Tg,TSR(s)
=

RωrE
(
Kp,ws+Ki,w

)
V

2
(
s2+ ĤKp,ws+ ĤKi,w

) (22)

and

Y (s)=
3̂�r (s)
�r(s)

=

R
[(

1−
(
ωr/V

)
Kp,w

)
s2
+

(
ĤKp,w −

(
ωr/V

)(
Ki,w − ĜKp,w

))
s+

(
Ĥ +

(
ωr/V

)
Ĝ
)
Ki,w

]
V
(
s2 + ĤKp,ws+ ĤKi,w

) (23)

represent the transfer functions from the generator torque and
rotational speed, respectively, to the estimated tip-speed ra-
tio. According to Assumption 1.3, the variables Ĝ :=G(V̂ )
and Ĥ :=H (V̂ ) indicate the estimated partial derivatives de-
fined in Eqs. (11) and (12).

3.4.2 Tip-speed ratio tracking control dynamics

According to Fig. 3, the TSR tracking controller has two in-
puts, the tip-speed ratio estimate and set point, and one out-
put, the generator torque. The TSR tracking control dynam-
ics are derived in the frequency domain by combining Eq. (9)
with the tracking error definition (Eq. 8) at the linearisation
point in terms of the Laplace variable as follows:

Tg,TSR(s)= Z(s)3∗(s)+Q(s)3̂(s), (24)

with

Z(s)=
Tg,TSR3∗ (s)
3∗(s)

=
Kp,cs+Ki,c

s
(25)

and

Q(s)=
Tg,TSR

3̂
(s)

3̂(s)
=−

Kp,cs+Ki,c

s
(26)

being the transfer functions from the reference and estimated
tip-speed ratio, respectively, to the generator torque.

3.4.3 Combined scheme

The combined control scheme can now be formed using the
individually derived elements. To this end, the linearised es-
timator and controller expressions (Eqs. 21 and 24) are com-
bined to comply with the desired form of Eq. (14), resulting
in the following expression:

Tg,TSR(s)=Q(s)X(s)Tg,TSR(s)+Q(s)Y (s)�r(s)

+Z(s)3∗(s). (27)

Following further manipulation,

Tg,TSR(s)=
Q(s)Y (s)

(1−Q(s)X(s))︸ ︷︷ ︸
K(�r→Tg),TSR(s)

�r(s)+
Z(s)

(1−Q(s)X(s))︸ ︷︷ ︸
K(3∗→Tg),TSR(s)

3∗(s), (28)

with

K(
�r→Tg

)
,TSR

(s)=
Tg,TSR�r (s)
�r(s)

=

R
(
Kp,cs+Ki,c

)((
ωrKp,w−V

)
s2
+F4s−

(
VH +ωrĜ

)
Ki,w

)
(
V

2
s3+F1s2+F2s+F3

) (29)

and

K(3∗→Tg),TSR(s)=
Tg,TSR3∗ (s)
3∗(s)

=

V
2 (
Kp,cs+Ki,c

)(
s2
+ ĤKp,ws+ ĤKi,w

)
(
V

2
s3+F1s2+F2s+F3

) (30)

representing the controller transfer functions from the rota-
tional speed and tip-speed ratio reference, respectively, to the
generator torque output. The unknown quantities in the above
expressions are defined as

F1 = V
2
ĤKp,w+RωrEKp,cKp,w,

F2 = V
2
ĤKi,w+RωrEKp,cKi,w+RωrEKi,cKp,w,

F3 = RωrEKi,cKi,w,

F4 = ωrKi,w−
(
V Ĥ +ωrĜ

)
Kp,w,

in order to simplify Eqs. (29) and (30).

3.5 Comparison between controllers

In the previous section, the controllers are expressed in a uni-
versal analysis framework to allow for comparison. Using the
controller expression given by Eq. (14), this section analyses
the controller transfer functions K�r→Tg (s) and K3∗→Tg (s)
of the baseline Kω2 and WSE–TSR tracking controllers to
understand the similarities and differences between the two
seemingly dissimilar controllers. Since the closed-loop dy-
namics are strictly dependent on the calibration chosen for

https://doi.org/10.5194/wes-8-1553-2023 Wind Energ. Sci., 8, 1553–1573, 2023



1562 L. Brandetti et al.: Analysis and multi-objective optimisation of wind turbine torque control strategies

Figure 6. Bode plots of the controller transfer functions K�r→Tg (s) and K3∗→Tg (s) for the Kω2 controller (red line) and the WSE–
TSR tracking controller (grey line) without optimal calibration. For the baseline, both transfer functions are frequency independent. For the
combined scheme, in the low-frequency region,K�r→Tg (s) andK3∗→Tg (s) have gains equal to the baseline. In particular, for the right-hand
plot, the controller gains match the inverted model of the wind turbine (blue line), exhibiting a second-order lead–lag behaviour. By contrast,
for higher frequencies, the response varies for both transfer functions for the combined scheme.

the WSE–TSR tracking control scheme, the analysis of the
corresponding transfer functions is evaluated in a later sec-
tion using the results from the multi-objective optimisation.

Equations (19) and (20) show that the controller transfer
functions are merely frequency-independent static gains for
the baseline controller. That is, the gain is constant over all
frequencies. In contrast, the WSE–TSR tracking controller
transfer functions possess dynamics (Eqs. 29 and 30). For
this reason, it is assumed that for the low-frequency region,
the (DC) gain of the latter controller equals the gain of the
baseline controller, whereas, for higher frequencies, the fre-
quency responses vary.

To examine the controller transfer functions, Eqs. (29)
and (30) are symbolically evaluated as s = jω = 0, with j
being the imaginary unit number. By doing so, the steady-
state responses of the WSE–TSR tracking controller transfer
functions are computed, and after substitutions and simplifi-
cations, the following expressions are derived:

K(�r→Tg),TSR(s = 0)=−

(
V Ĥ +ωrĜ

)
ωrE

=
V

ωrN

(
∂T̂r

∂V̂

)

+
1
N

(
∂T̂r

∂ωr

)
=
ρR3ArotCp,∗ (λ∗)

Nλ3
∗

ωr, (31)

K(3∗→Tg),TSR(s = 0)=
V

2
Ĥ

RωrE
=−

V
2

RωrN

(
∂T̂r

∂V̂

)

=
ρR3Arot

2N

(
−

3
λ4
∗

Cp,∗ (λ∗)+
1
λ3
∗

∂Cp,∗ (λ∗)
∂λ∗

)
ω2

r . (32)

It is immediately evident that KTSR(s = 0)=KK as defined
earlier in Eqs. (19) and (20). This proves that the WSE–
TSR tracking controller is equivalent to the Kω2 controller
in steady state. Thus, the two controllers will have the same
static behaviour (Aström and Murray, 2010), operating at the
same point of power extraction efficiency, Cp,∗(λ∗).

Similarities and differences between the two controllers
are further illustrated in Fig. 6 with Bode plots of the anal-
ysed controller transfer functions. The frequency responses
are obtained using the NREL 5 MW reference turbine pa-
rameters (Jonkman et al., 2009) and a controller calibration
that performs satisfactorily but is non-optimised. In the fig-
ure illustrating the Bode plot for K�r→Tg (s) of both con-
trollers, it can be observed that the two controllers show the
same characteristics for the low-frequency region (between
1× 10−5 and 1× 10−2 Hz). However, for higher frequen-
cies, the WSE–TSR tracking controller presents additional
dynamics in the form of a resonance resulting from a com-
plex left half-plane pole pair and a double right half-plane
zero. The explanation for these additional dynamics is the
controller attaining a higher open-loop unity crossover, re-
sulting in an increased closed-loop control bandwidth. The
right plot presents the frequency response forK3∗→Tg (s) and
for the inverted transfer function of the wind turbine defined
in Eq. (13). It is clear that both controllers exhibit a second-
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order lead–lag behaviour related to the model inversion re-
quired for the reference shaping action (Leith and Leithead,
1997).

4 Calibration of the WSE–TSR tracking control
scheme

From the frequency-domain framework derived in the pre-
vious section, it is recognised that the WSE–TSR tracking
controller presents a higher-dimensional design space than
the baselineKω2. In particular, while theKω2 controller has
only the torque gain K to calibrate, the combined scheme
has a total of five variables: Kp,w, Ki,w, Kp,c, Ki,c and λ∗.
This tight integration between a disturbance estimator and a
tracking controller makes the mutual calibration of the design
variables in the WSE–TSR tracking controller a complex and
non-trivial task. Therefore, this section addresses the cal-
ibration of the controller by formulating a multi-objective
optimisation problem. The approach to solving this multi-
objective problem is by reconstructing (an approximation
of) the true Pareto front, composed of a set of Pareto opti-
mal solutions. To this end, first, the multi-objective optimi-
sation problem is formalised in Sect. 4.1 and implemented
in Sect. 4.2. An exploratory and guided search over the con-
troller calibration variables examines the performance space
formed by all objectives. The outcomes of this search are
presented in Sect. 4.3 to construct approximations of the true
Pareto front, which are related to the controller calibrations.

4.1 Multi-objective optimisation

A multi-objective optimisation problem is considered over
a set of continuous input variables X ⊂ Rd called the de-
sign space (Lukovic et al., 2020). The optimisation goal is
to minimise the vector of the objective functions defined as
f (x)= (f1(x), · · ·, fm(x))) withm≥ 2, x ∈ X being the vec-
tor of input variables and f (X )⊂ Rm them-dimensional im-
age representing the performance space.

The conflicting nature of the objective functions does not
always allow for the finding of a single best solution to the
minimisation problem but rather a set of optimal solutions,
referred to as the Pareto set Ps ⊆ X in the design space and
the Pareto front Pf = f (Ps)⊂ Rm in the performance space
(Lukovic et al., 2020). In the following, the Pareto front is
approximated by considering the Pareto optimal to be the
point x∗ ∈ Ps, for which there is no other point x ∈ X such
that fj (x∗)≥ fj (x) for all j values and fj (x∗)> fj (x) for
at least one j , with j = {1, · · ·,m} (Miettinen, 1999).

4.2 Implementation of the optimisation framework

The methodology for calibrating the design variables of the
WSE–TSR tracking control scheme is addressed as the multi-
objective optimisation problem previously described. A two-
dimensional vector of the objective functions is considered.

The first objective is the variance of the torque control sig-
nal, representing the responsiveness of the controller (i.e. a
measure of its response speed). This objective can also act
as a measure of loads on the structural components of the
turbine. The second objective is the mean generated power
of the wind turbine. These two objectives are conflicting as
a more responsive controller is expected to result in higher
power production levels with increased loads and a fast re-
sponse time and vice-versa for milder controller calibration.
Thereby, the objective function vector is given by

f (0d)=
[
f1 (0d) ,f2 (0d)

]
, (33)

with the torque variance being defined as

f1 (0d)=

n∑
i=1

(
Tg,i (0d)− Tg,mean (0d)

)2
n

and the mean power as

f2 (0d)=−

n∑
i=1
Pg,i (0d)

n
.

In the above equations, n is the number of data points; Tg,mean
is the mean value of the generator torque; and Tg,i and Pg,i
represent each value of generator torque and power in the
dataset (Brandetti, 2023), respectively. As shown, the result-
ing signals Tg and Pg are a function of 0d ∈ Xd ⊂ Rd, which
is the d-dimensional vector of input variables. In this study,
the dimensionality of the input vectors is investigated to as-
sess the performance of the controller for different levels of
complexity as

05 =
[
Kp,c,Ki,c,Kp,w,Ki,w,λ∗

]
∈ X5,

04 =
[
Kp,c,Ki,c,Kp,w,λ∗

]
∈ X4,

03 =
[
Ki,c,Kp,w,λ∗

]
∈ X3,

02 =
[
Ki,c,Kp,w

]
∈ X2,

01 = [λ∗] ∈ X1,

where the subscript (·)d represents the dimension of each de-
sign space and is used in the remainder of this paper to dif-
ferentiate between the input vectors. Note that d = 5 refers
to the original formulation of the WSE–TSR tracking con-
troller, for which the integral term in the estimator (Ki,w)
was introduced recently in the work of Liu et al. (2022).
The integral term ensures that the internal estimated rotor
speed state is consistent with the actual rotor speed mea-
surement. Furthermore, combining a proportional and inte-
gral term (Kp,w and Ki,w) results in a faster estimation con-
vergence by rapidly reducing the estimation error. The in-
put vectors 0d ⊂ 05 for d = {2, 3, 4}, while, 01 represents
the one-dimensional design space of the Kω2 controller, in
which the variation in λ∗ leads to variation in the gain K ac-
cording to Eq. (5). Furthermore, as can be recognised from
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the defined input vectors 0d, the estimator and controller are
consistently and intricately calibrated in unison throughout
the entire work.

Aero-servo-elastic simulations are performed with
NREL’s mid-fidelity wind turbine simulation software
OpenFAST (NREL, 2021) to compute the objective function
vector f (0d). The NREL 5 MW reference wind turbine
(Jonkman et al., 2009) is subject to a realistic turbulent
wind profile with a mean wind speed of V = 9 m s−1

at hub height and a turbulence intensity of TI= 15 %.
Under these operational conditions, the multi-objective
optimisation is performed. For each simulation, the input
vector is constrained for a guided search to find a set of
optimal solutions Pd

s ⊂ Rd to approximate the Pareto front
Pd

f = f (Pd
s ). Simulations are run in parallel by randomly

varying the input vector inside the constrained design space.
Each simulation has a length of 3600 s, of which the first
100 s is discarded to exclude the transient start-up effects
from the results. The acquired time series is used to calculate
the considered objectives f1(0d) and f2(0d).

4.3 Optimisation results

This section presents the results obtained with the described
optimisation framework. The performance space is explored
using the guided search for the five sets of calibration input
variables. Subsequently, the results are used to approximate
the corresponding Pareto fronts. Finally, the influence of the
gains is assessed by analysing the different regions of the
constrained design space.

4.3.1 Exploratory search and Pareto front

Before constructing the Pareto front, the performance space
is explored by means of a guided search of the input variables
0d. With an increasing dimension d of the design space,
more data are collected to capture the performance space of
interest effectively. The conventional Kω2 controller is used
as a baseline comparison case.

With the exploration data at hand, the Pareto front is ap-
proximated by minimising a weighted linear combination of
f1(0d) and f2(0d) on the complete dataset and for a range of
weights. As shown in Fig. 7, Pareto fronts are approximated
for different dimensionalities of the input vector 0d to com-
pare the baseline to the performance of the WSE–TSR track-
ing controller. The optimal solutions based on each objective
function f1(0d) and f2(0d) are indicated using circles (◦)
and crosses (×), respectively.

From the figure, it is immediately apparent that the
fronts of the higher-dimensional controllers d = {4, 5} cover
the widest area of the performance space; the remaining
fronts are subsets of the original WSE–TSR tracking con-
trol scheme. Since the Pareto fronts for d = {4, 5} overlap,
it is concluded that adding an integral term to the estima-
tor (i.e. Ki,w) leads to no (or marginal) benefits with re-

spect to the performance of the WSE–TSR tracking scheme.
It follows that only by adding a proportional control gain
(i.e. Kp,c) it leads to more flexibility in reaching desired
(Pareto) optimal solutions minimising torque fluctuations
and corresponding (structural) loads, with a minimal impact
on the power extraction performance. This shows the bene-
fits of the more flexible structure of the WSE–TSR tracking
scheme.

Another observation is that the baseline controller al-
ready attains a Pareto optimal solution minimising f2(0d),
i.e. maximising power production. It is clear that increasing
the controller bandwidth and allowing for higher torque fluc-
tuations f1(0d) do not result in the enhancement of energy
capture f2(0d) compared to the baseline control strategy. A
plausible explanation is that the higher inertia of large-scale
wind turbines inherently provides resilience against devia-
tions from the optimal operating point. Therefore, increasing
the controller bandwidth resulting in tighter tracking to the
desired tip-speed ratio reference might not directly result in
additional benefits in terms of energy capture.

4.3.2 Influence of the controller calibration variables

This section qualitatively assesses the influence of the gains
on and correlation of the gains to the performance of the
WSE–TSR tracking controller. The analysis is presented in
Fig. 8, where two areas of interest are selected: the lowest
value of f2(05) (power maximisation) and f1(05) (torque
fluctuation minimisation). The analysis only draws conclu-
sions relating the calibration of the scheme to the consid-
ered objectives; a more formal frequency- and time-domain
analysis is described in the next section. Furthermore, only
the five-dimensional input vector 05 will be evaluated from
this point onwards, as the current study focuses on providing
calibration guidelines for the complete WSE–TSR tracking
control scheme rather than for its subsets.

For the power maximisation case, λ∗ should be taken be-
tween 7.1 and 7.3, which corresponds to the region of max-
imum power extraction for the NREL 5 MW (Fig. 1). For
the torque minimisation case, λ∗ should be chosen as higher
than the power-coefficient-maximising value, resulting in a
power reduction and rotational speed variance increase. Fur-
thermore, as observed from both cases, Kp,w follows an in-
creasing trend proportional to the increase in torque variance,
whileKi,w does not show a clear correlation to the controller
performance.

Considering the controller gains, it is clear that the con-
troller relies heavily on integral action to track the desired
tip-speed ratio reference and therefore achieve power max-
imisation. The gain for the proportional action Kp,c lies in
the same area for the two regions of interest without directly
influencing the performance.
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Figure 7. Pareto fronts obtained for the WSE–TSR tracking control scheme for different sets of estimator-controller design variables: 01,
02, 03, 04 and 05. Simulations are performed with NREL’s mid-fidelity wind turbine simulation software OpenFAST (NREL, 2021) under
realistic turbulent wind conditions. The objective functions f1(0d), i.e. torque fluctuation minimisation, and f2(0d), i.e. power maximisation,
define the performance space for the controller. The optimal solutions for f1(0d) and f2(0d) are indicated using circles (◦) and crosses (×),
respectively. Compared to the baseline controller represented by the Pareto front P1

f , the WSE–TSR tracking controller does not attain an
enhancement in power maximisation but allows the minimisation of torque fluctuations with a small penalty in power extraction.

Figure 8. Results for the WSE–TSR tracking control scheme obtained with an exploratory search of its design variables (i.e. 05). Different
shades of green are used to highlight two areas of interest: the lowest values of f1(05) (torque fluctuation minimisation) and f2(05) (power
maximisation). The two objectives and the rotor speed variance (var(ωr)) are plotted together with the controller gains (Kp,c and Ki,c),
the estimator gains (Kp,w and Ki,w) and the reference tip-speed ratio (λ∗) to show how these calibration variables influence the scheme’s
performance. Clearly, neither Ki,w nor Kp,c correlates to the performance of the WSE–TSR tracking controller. While λ∗ and Kp,w follow
an increasing trend proportional to the increase in torque variance, Ki,c exhibits the opposite behaviour.

5 Analysis of optimally calibrated WSE–TSR
tracking controllers

Pareto fronts are approximated in the previous section, rep-
resenting a set of optimal solutions among the conflicting
objectives. An analysis is presented by directly relating the
objectives to the input vectors of various dimensionalities.
This section compares the characteristics of full-dimensional
and optimally calibrated WSE–TSR tracking controllers to
the baseline Kω2 strategy.

The initial step in this comparison involves a qualitative
assessment of the impact of optimal calibrations on system
parameters. Subsequently, to provide specific guidance for
the optimal calibration of the controller, a sensitivity analy-
sis examines the effect of each calibration variable on cor-
responding objectives and turbine loads. To conclude the
study, the frequency-domain framework outlined in Sect. 3
is applied alongside mid-fidelity time-domain simulations to
replicate realistic turbulent wind conditions.
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5.1 Case study definition

The case studies analysed in this section are presented in
Fig. 9. The figure shows the approximated Pareto fronts P5

f
and P1

f , representing the WSE–TSR tracking and the base-
line controllers, respectively. Along the P5

f front, five distinct
optimal solutions are chosen, and the corresponding calibra-
tions 05 are considered for analysis in the following sub-
sections. The selection considers the evaluation of different
trade-off levels between the considered objectives from the
point of maximum power extraction (A) to the point of min-
imum torque variance (E). Point B is the closest to the maxi-
mum power extraction of the Kω2 controller and is selected
to show similarities between these two schemes.

5.2 Qualitative assessments of optimal controller
solutions

This section provides an overview of how optimal calibration
points, as defined in Sect. 5.1, impact the system parameters,
especially load components. The assessment is performed
qualitatively as a first step to offering calibration guidelines
for the WSE–TSR tracking controller. The analysis outcomes
are summarised in Table 2, where symbols©,++,+,− and
−− denote no influence, really positive influence, positive
influence, negative influence and really negative influence on
the performance metrics.

As points A and E have a positive effect on maximis-
ing power extraction, f2(05), and on minimising generator
torque fluctuations, f1(05), respectively, it is confirmed that
they represent the extremes of the Pareto front P5

f . Point B
emerges as the calibration point closest to the optimal Kω2

controller calibration in terms of power extraction. As the
cases progress towards E, the primary aim of the controller is
to minimise the generator torque variance, leading to a reduc-
tion in bandwidth. Consequently, these controllers positively
affect the mean side-to-side tower moment (SSTM) and the
edgewise blade 1 moment (EdgeBM). However, this im-
provement negatively influences the rotor speed variance as
well as the mean and variance of both the fore–aft tower mo-
ment (FATM) and the flapwise blade 1 moment (FlapBM).
Overall, the optimal controller calibrations under considera-
tion do not affect the variance of the side-to-side tower mo-
ment and the edgewise blade 1 moment. A coupling is ev-
ident between the fore–aft and flapwise moments and be-
tween the side-to-side and edgewise moments. This intricate
interplay proves the complexity of calibrating the WSE–TSR
tracking control scheme, as several system parameters are in-
tertwined, and confirms the need for a multi-objective opti-
misation framework and a frequency-domain analysis to link
controller insight with turbine performance metrics.

5.3 Sensitivity analysis of optimal calibration variables

This section aims to comprehensively evaluate the effect of
the optimal calibration variables on various system parame-

ters. An optimally calibrated WSE–TSR tracking controller
is selected from the case studies outlined in Sect. 5.1 for
this sensitivity analysis. Specifically, controller C is chosen
to represent a trade-off between minimising generator torque
fluctuations and maximising power production. For this con-
troller, the five calibration variables – Kp,c, Ki,c, Kp,w, Ki,w
and λ∗ – are assessed in terms of their positive or negative
influence on the turbine performance metrics. The gains are
varied individually, while keeping the others fixed to their op-
timal value. The analysis results are summarised in Table 3,
where each row corresponds to the effect of increasing the
absolute value of each calibration variable.

As observed, increasingKp,c andKi,c, relative to their op-
timal value, positively affects f2(0d), the rotor speed vari-
ance and the reduction of the mean and variance of the fore–
aft tower moment and flapwise bending moment for blade 1.
This benefit, however, negatively impacts f1(0d) and the
mean of the side-to-side tower moment and edgewise bend-
ing moment for blade 1. No apparent influence is noted on
the variance of the latter variables. These findings further
confirm the coupling between the fore–aft and flapwise mo-
ments and between the side-to-side and edgewise moments.
Conversely, an opposite trend for f1(0d), f2(0d) and the ro-
tor speed variance is observed when increasing Kp,w, Ki,w
and λ∗ beyond their optimal values. These observations con-
firm that optimal tuning of the calibration variables for the
WSE–TSR tracking controller is needed to achieve a trade-
off between power maximisation and torque minimisation.

5.4 Frequency-domain results

This section compares the frequency-domain characteristics
for the defined cases using the linear analysis framework
described in Sect. 3. First, the frequency responses for the
controller transfer functions K�r→Tg (s) and K3∗→Tg (s) are
discussed, followed by the closed-loop transfer functions
T3∗→3(s) and TV→3(s).

5.4.1 Controller transfer functions

The analysis strategy defined in Sect. 3.2 is employed to eval-
uate the characteristics of the controllers. The frequency re-
sponses of the transfer functions K�r→Tg (s) and K3∗→Tg (s)
for the defined cases are presented in Fig. 10. The results
for the Kω2 controller are included as a baseline, being fre-
quency independent with a constant gain over all frequencies.

For case E, the steady-state gain deviates from the base-
line gain because the reference tip-speed ratio is calibrated
at a higher and non-optimal set point of λE

∗ = 7.71. Fur-
thermore, for the same case, it is seen that the controller
cut-off frequencies are at the lowest frequency compared
to the other cases, resulting in reduced torque variance re-
sponses. For increasing points towards case A, the controller
cut-off frequency for both reference shaping and feedback-
related transfer functions increases to higher frequencies, ex-
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Figure 9. Pareto fronts P1
f and P5

f obtained for the baseline and WSE–TSR tracking control schemes and related to the 01 and 05 design
variables. Simulations are performed with NREL’s mid-fidelity wind turbine simulation software OpenFAST (NREL, 2021) under realistic
turbulent wind conditions. The case studies for the WSE–TSR tracking controller are marked on the P5

f front with letters ranging from A
to E, corresponding to maximum power extraction and minimum generator torque fluctuations, respectively. Point B is the closest to the
optimal baseline controller calibration in terms of power extraction.

Table 2. Qualitative assessments of the Kω2 controller and the different WSE–TSR tracking controllers ranging from the maximum power
extraction (A) to the minimum generator torque fluctuation (E) optimal calibrations. The following system quantities are used for the analysis:
f1(0d) (torque fluctuation minimisation), f2(0d) (power maximisation), rotor speed variance, the fore–aft tower moment (FATM), the side-
to-side tower moment (SSTM), the flapwise bending moment for blade 1 (FlapBM) and the edgewise bending moment for blade 1 (EdgeBM).
For each tower and blade load, two values are presented that correspond to the mean and variance, respectively. No influence, really positive
influence, positive influence, negative influence and really negative influence of the considered controllers are indicated with©, ++, +, −
and −−, respectively.

Case f1(0d) f2(0d) ωr FATM SSTM FlapBM EdgeBM

study Variance Mean Variance Mean Variance Mean Variance Mean Variance

Kω2
− + ++ + ++ − © + ++ − ©

A −− ++ ++ ++ ++ −− © ++ ++ −− ©

B − + + ++ + −− © ++ + −− ©

C + − + + + − © + + − ©

D ++ −− − − − + © − − + ©

E ++ −− −− −− −− ++ © −− −− ++ ©

cept for B. As shown in Fig. 9, case B shows the closest re-
semblance with respect to performance attained with the op-
timal baseline controller. A possible explanation is that the
controller adheres to the Kω2 trajectory for the most ex-
tended frequency range. A notable observation is the reso-
nance peaks for cases A and B, which enable a higher cut-off
frequency of the loop gain, resulting in an increased closed-
loop bandwidth to track the desired tip-speed ratio. In this
context, it is essential to consider that while a slight increase
in power performance is observed for case A, it is accompa-
nied by elevated torque fluctuations. Therefore, having a con-
troller with a bandwidth exceeding that of case A would not
be advantageous, as it would likely be more aggressive, po-
tentially leading to system instability and yielding no power
gain at the expense of increased torque fluctuations. A fur-
ther observation from the phase plots is the opposite sign
of the controller transfer functions, which is understandable

from a physical perspective. The generator torque increases
for higher rotational speeds (K�r→Tg (s)), whereas an inverse
proportional relation exists between the desired tip-speed ra-
tio and generator torque (K3∗→Tg (s)).

5.4.2 Closed-loop transfer functions

This section presents an analysis of the closed-loop controller
characteristics. For the different cases, Fig. 11 illustrates the
frequency responses of the transfer functions T3∗→3(s) and
TV→3(s), representing the closed-loop system performance
in terms of reference tracking (complementary sensitivity)
and disturbance rejection (sensitivity), respectively. The re-
sults for these transfer functions confirm the observations in
the open-loop analysis: increasing points toward point A ex-
hibit an increased bandwidth and reference-tracking perfor-
mance. Furthermore, only points A and B show a resonance
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Table 3. Sensitivity analysis of the optimal controller calibration C for the WSE–TSR tracking controller. For each row, the corresponding
calibration variable is varied, while the others are kept fixed to the optimal value. The following system quantities are used for the analysis:
f1(0d) (torque fluctuation minimisation), f2(0d) (power maximisation), rotor speed variance, the fore–aft tower moment (FATM), the
side-to-side tower moment (SSTM), the flapwise bending moment for blade 1 (FlapBM) and the edgewise bending moment for blade 1
(EdgeBM). For each tower and blade load, two values are presented that correspond to the mean and variance, respectively. No influence,
positive influence and negative influence of the considered calibration variable are indicated with©, + and −, respectively.

Calibration f1(0d) f2(0d) ωr FATM SSTM FlapBM EdgeBM

variables Variance Mean Variance Mean Variance Mean Variance Mean Variance

Kp,c − + + + + − © + + − ©

Ki,c − + + + + − © + + − ©

Kp,w + − − © − + © © − + ©

Ki,w + − − + − © © + − © ©

λ∗ + − − − + + © − − + −

Figure 10. Bode plots of the controller transfer functions K�r→Tg (s) and K3∗→Tg (s) for the baseline Kω2 and the WSE–TSR tracking
controller cases. For the baseline,K(�r→Tg),K andK(3∗→Tg),K show a constant gain over all frequencies, while for the WSE–TSR tracking
controllers, K(�r→Tg),T SR(s) and K(3∗→Tg),T SR(s) exhibit additional dynamics with an increasing cut-off frequency for increasing cases
towards B. In particular, cases A and B present resonance peaks in their response to further improve the controller cut-off frequency.

peak resulting in a higher closed-loop cut-off frequency. For
the transfer function TV→3(s), it is concluded that cases C, D
and E are subpar in disturbance rejection performance com-
pared to the baseline case. In addition, the effect of the Bode
sensitivity integral is represented by the two remaining cases.
That is, cases A and B show increased disturbance rejection
performance for frequencies below the controller bandwidth,
whereas, after this value, the characteristics worsen with re-
spect to the baseline controller.

5.5 Time-domain results

To further support the observations from the frequency-
domain analysis, this section presents realistic time-domain
simulation results. For the sake of clarity, only two input vec-
tors 05 corresponding to cases B and C are chosen. This se-
lection aims to illustrate the characteristics of the WSE–TSR

tracking controller for the optimal solution f2(0d) and the
trade-off between f1(0d) and f2(0d) compared to the base-
line controller.

The mid-fidelity simulation is performed with OpenFAST
using the NREL 5 MW reference turbine for a realistic tur-
bulent wind profile, with a mean wind speed of V = 9 m s−1

at hub height, a turbulence intensity of TI= 15 % and a total
simulation time of 3600 s. Figure 12 shows the wind speed
and the simulation results for the tip-speed ratio, tip-speed
ratio tracking error, generator torque, rotor speed and gener-
ator power. A smaller portion of the simulation is presented
to emphasise the features in the time-domain results.

The WSE–TSR tracking controller, calibrated for case B,
demonstrates performance comparable to the baseline con-
troller without exhibiting superior power production. These
observations align with the trends of the Pareto front illus-
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Figure 11. Bode plots of the closed-loop transfer functions T3∗→3(s) and TV→3(s) for the baseline Kω2 and the WSE–TSR tracking
controller cases. Regarding T3∗→3(s), an increase in controller bandwidth with respect to the baseline can be observed when the calibration
selected aims to maximise the power performance (i.e. A and B). On the other hand, for TV→3(s), this improvement is translated into a
high-frequency sensitivity deterioration.

Figure 12. Simulation results for the Kω2 and WSE–TSR tracking controllers subject to a realistic turbulent wind speed with a mean of
9 m s−1 and a turbulence intensity of 15 %. Only results for cases B and C are presented. As expected from the location on the corresponding
Pareto front P5

f , case B shows a similar performance to the baseline control strategy. On the other hand, case C represents a trade-off between
the two objectives, minimising torque fluctuations with a minor impact on power production.

trated in Fig. 9. Simulation results obtained for case C show
reduced torque fluctuations at the expense of increased oscil-
lations in the rotor speed. This particular calibration results
in a slower response of the WSE–TSR tracking controller,
rendering the wind turbine more susceptible to variations in
wind speed and, consequently, leading to higher fluctuations
in rotor speed.

Upon closer examination, a notable instance occurs around
2200 s, wherein a change in wind speed from 8 to 12 m s−1

prompts a corresponding change in rotor speed from 8 to
13 rpm and an alteration in the tip-speed ratio from 7 to 9.

During this transition period, the tip-speed ratio deviates
from the reference λ∗, slightly increasing the tip-speed ratio
tracking error (i.e. λ− λ∗). However, a minimal impact can
be observed in power extraction from the wind, confirming
that tuning C provides a good trade-off between power max-
imisation and load minimisation for the considered turbine.
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6 Conclusions

This study presents a detailed analysis of the conventional
Kω2 and the more advanced WSE–TSR tracking scheme,
being a combined estimator-based tracking controller. A lin-
ear frequency-domain framework is derived to evaluate the
characteristics of both control schemes. A unified analysis
strategy is proposed for a fair comparison of the controllers.

To explore the performance potential of both control
schemes and, more specifically, to discover whether the ad-
vanced controller provides benefits over the conventional
one, a multi-objective optimisation problem is defined. The
conflicting objectives are power maximisation and control
signal variance minimisation. The approach to solving this
optimisation problem is to explore the performance space us-
ing a constrained guided search for different dimensionalities
of the design space. In other words, the controller calibration
parameters have been categorised in input vectors of differ-
ent dimensions, each subject to the multi-objective optimi-
sation problem. The resulting Pareto front approximations
represent the optimal solutions and controller calibrations,
providing a trade-off between the defined objectives and dic-
tating the selection of the specific controller bandwidth. A
set of Pareto optimal solutions is evaluated in the frequency
and time domains to provide more comprehensive insights
into the balance between performance metrics and control
dynamics, enabling users of the WSE–TSR tracking control
scheme to make informed decisions on its optimal calibra-
tion.

Numerical simulations on the NREL 5 MW reference tur-
bine show that an optimally calibrated WSE–TSR tracking
control scheme can increase the controller bandwidth, re-
sulting in larger torque fluctuations. However, as opposed
to claims about improved power capture in the literature, no
power gains are attainable for present-day relevant turbine
sizes compared to baseline control. On the other hand, the
proposed calibration framework makes it possible to find a
set of design variables for the WSE–TSR tracking control
scheme that reduces torque fluctuations with a minor impact
on the captured power.

Overall, the WSE–TSR tracking controller exhibits a more
flexible control structure compared to the baseline Kω2 con-
troller, providing a trade-off between power and load objec-
tives that can facilitate the operation of large-scale modern
wind turbines. Future work will focus on performing a sim-
ilar analysis on smaller-scale wind turbines to confirm these
benefits even for other commercial turbines.

Appendix A: Similarity to state feedback controller
design

This section proves that by following the state feedback con-
trol design theory, it is possible to end up with equal results
for the analysis strategy proposed for the Kω2 controller, as
illustrated in Fig. A1. First, the wind turbine to be controlled

is assumed to be described by a linear state model with a
single input Tg,K, a single output ωr and a single state ωr
(Aström and Murray, 2010):

ω̇r = Aωr+BTg,K, ωr = Cωr+DTg,K, (A1)

where A=G(V ), B = E, C = 1 and D = 0.
By applying Assumption 1.1, the model general time-

invariant control law is a function of the state and the ref-
erence input:

Tg,K = α (ωr,λ∗) .

If the feedback is restricted to be linear, it can be written as

Tg,K =−Kfωr+ krλ∗, (A2)

in which Kf is the feedback gain, kr is the reference shap-
ing gain and λ∗ is assumed to be a constant reference signal.
This representation illustrates the baseline controller with el-
ements Kf and kr in a similar form as the analysis strategy
presented in Eq. (14). Therefore, to prove that the Kω2 con-
troller is equivalent to a state feedback controller with refer-
ence shaping, Eq. (14) should match Eq. (A2), as

K1,K =−Kf, and K2,K = kr. (A3)

Assuming that this equality is valid, it results in

Kf =−K(�r→Tg),K =−
∂Tg,K

∂ωr

∣∣∣∣
(ωr,λ∗)

=−
ρR3ArotCp,∗ (λ∗)

Nλ3
∗

ωr. (A4)

When the feedback (Eq. A2) is applied to the wind turbine
(Eq. A1), the closed-loop system is given by

ω̇r = (A−BKf)ωr+Bkrλ∗. (A5)

Follows the formulation of kr as the controller aims to drive
the output to the given reference

kr =−
1(

C(A−BKf)−1B
) V
R
, (A6)

in which the term V/R is added to the original formulation
(Aström and Murray, 2010) to satisfy the goal of the con-
troller:

ωr = λ∗
V

R
.

Substituting the expressions of A, B, C and D into the for-
mulation of kr (Eq. A6) yields

kr =
ρR3ArotCp,∗ (λ∗)

2N

(
−

3
λ4
∗

Cp,∗ (λ∗)+
1
λ3
∗

∂Cp,∗ (λ∗)
∂λ∗

)
ω2

r

=
∂Tg,K

∂λ∗

∣∣∣∣
(ωr,λ∗)

=K(3∗→Tg),K . (A7)

Since K1,K describes the feedback term and K2,K describes
the reference shaping term, the equivalence between theKω2

controller and state feedback controller with reference shap-
ing is demonstrated.
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Figure A1. Block diagram of a state feedback controller with a reference shaping block, adapted for theKω2 controller (Aström and Murray,
2010). The full system consists of the real system dynamics, here assumed to be linear, and the controller elements Kf and kr. The controller
uses the system state ωr and the reference input λ∗ to command the wind turbine through its input Tg,K.
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