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Abstract. Floating wind turbines must withstand a unique and challenging set of loads from the wind and
ocean environment. To de-risk development, accurate predictions of these loads are necessary. Uncertainty in
modeling predictions leads to larger required safety factors, increasing project costs and the levelized cost of
energy. Complex aero-hydro-elastic modeling tools use many input parameters to represent the wind, waves,
current, aerodynamic loads, hydrodynamic loads, and structural properties. It is helpful to understand which of
these parameters ultimately drives a design. In this work, an ultimate and fatigue-proxy load sensitivity analysis
was performed with 35 different input parameters, using an elementary effects approach to identify the most
influential parameters for a case study involving the National Renewable Energy Laboratory (NREL) 5 MW
baseline wind turbine atop the OC4-DeepCwind semisubmersible during normal operation. The importance
of each parameter was evaluated using 14 response quantities of interest across three operational wind speed
conditions.

The study concludes that turbulent wind velocity standard deviation is the parameter with the strongest sensi-
tivity; this value is important not just for turbine loads, but also for the global system response. The system center
of mass in the wind direction is found to have the highest impact on the system rotation and tower loads. The
current velocity is found to be the most dominating parameter for the system global motion and consequently
the mooring loads. All tested wind turbulence parameters in addition to the standard deviation are also found to
be influential. Wave characteristics are influential for some fatigue-proxy loading but do not significantly impact
the extreme ultimate loads in these operational load cases.

The required number of random seeds for stochastic environmental conditions is considered to ensure that the
sensitivities are due to the input parameters and not due to the seed. The required number of analysis points in
the parameter space is identified so that the conclusions represent a global sensitivity. The results are specific to
the platform, turbine, and choice of parameter ranges, but the demonstrated approach can be applied widely to
guide focus in parameter uncertainty.

1 Introduction

It is projected that over 8 GW of floating wind energy will
be installed by 2027 (Musial et al., 2022). Floating offshore
wind turbines (FOWTs) experience a unique set of loads and
responses with complicated physics governing the design re-
quirements. Modeling tools that provide accurate load pre-
dictions are required for safe and efficient development. The
International Electrotechnical Commission (IEC) Technical
Specification 61400-3-2 lays out simulations that should be

run and safety criteria that need to be met (IEC, 2019a). The
outputs from modeling tools are functions of a very large set
of input parameters, including the environmental excitations,
system properties, and aerodynamic and hydrodynamic mod-
eling coefficients.

Not all inputs have an equal impact on the FOWT loads,
and different types of loads are more sensitive to different
inputs. Most modeling parameters have some uncertainty as-
sociated with them. This uncertainty could be due to inaccu-

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



1576 W. Wiley et al.: Sensitivity analysis of numerical modeling input parameters on floating offshore wind turbine loads

racy in defining the parameter, physical statistical variability
in the parameter, or changes in time throughout the life of a
project. The impact of this uncertainty should be assessed for
uncertainty in the ultimate and fatigue loads on the structure.
It is helpful to understand which modeling inputs are really
driving the uncertainty, so the analysis can be focused and
efficient.

Sensitivity studies have previously been done for land-
based and offshore wind turbines. One approach to assess-
ing sensitivity is the elementary effects (EE) method. This
method has commonly been used in the wind industry, where
variance-based sensitivity approaches are difficult, given the
complexity of the modeling. The EE method is sometimes
called a screening method and can effectively identify the set
of the most influential parameters, but it does not consider
any coupling of inputs (Morris, 1991).

In 2018, Robertson et al. used EE to assess the significance
of 18 turbulent wind-inflow-related parameters for three dif-
ferent wind speed ranges on a land-based National Renew-
able Energy Laboratory (NREL) 5 MW baseline wind tur-
bine. They found that shear and turbulence levels in the main
wind direction were the most important parameters impact-
ing the turbine loads (Robertson et al., 2018). They used uni-
form perturbations for each of the parameters and found that
with enough sampled points, the results mirrored sensitivity
approximations (Robertson et al., 2018). A 2019 study by
Shaler et al. replicated this approach but focused fully on air-
foil properties. It was found that the turbine loads were the
most sensitive to aerodynamic lift coefficient and blade twist
distribution (Shaler et al., 2019). Again, the authors divided
the simulations into three different wind speed ranges, where
they found that the ultimate loads were strongly stratified by
the wind condition, while the fatigue loads were more sim-
ilar between conditions (Shaler et al., 2019). Another 2019
analysis used the same EE method to look at not only wind
and aerodynamics, but also mass, structural, and control pa-
rameters with important uncertainties; this work again found
that turbulence in the wind direction and shear were the most
influential inputs, but it also identified new sensitivities to
turbine yaw misalignment and the lift distribution on the out-
board section of the blade (Robertson et al., 2019b).

Wind turbine simulations are very complex, with a huge
number of highly coupled input parameters. The EE ap-
proach with independent radial perturbations has been thor-
oughly tested for effects at the turbine level in the papers
cited above. This process was extended to the farm level, with
an emphasis on wake effects, in a 2021 project (Shaler et al.,
2023). The turbine interactions were evaluated using three
turbines, and 28 wake- and inflow-related parameters were
studied. Again, even when considering multiple turbines, the
turbulence in the wind direction and wind shear dominated
the ultimate and fatigue loads (Shaler et al., 2023).

Offshore wind energy deployments introduce a wide range
of additional input parameters for the ocean environment and
in the complex support structures. A 2023 study assessed

the sensitivity of dynamic modal parameters to four mod-
eling inputs: wind speed, rotor speed, nacelle yaw angle, and
mean sea level for the fixed-bottom Block Island wind tur-
bines (Partovi-Mehr et al., 2023). The study compared mul-
tiple modeling tools, including OpenFAST, and validated the
tools with field data from the operating wind farm. The au-
thors found that for this jacket-supported turbine, the sys-
tem natural frequency was the most strongly dependent on
the rotor speed, and the system damping ratio was the most
strongly dependent on the wind speed (Partovi-Mehr et al.,
2023).

A 2022 study used the EE method to look at the sensi-
tivity of fatigue to a broad set of continuous and discrete
parameters, including cycles to failure curves for the tower
and monopile (Sørum et al., 2022). The project studied three
different monopile-supported large offshore wind turbines
to assess if certain sensitivities were turbine-specific. They
found that the cycles to failure and fatigue capacity param-
eters had the largest influence (Sørum et al., 2022). Envi-
ronmental variables had a secondary impact, and both wind
and wave values were important; wind conditions drove the
tower fatigue, while wave conditions drove the monopile fa-
tigue (Sørum et al., 2022). Across the three tested turbines,
the wind was more influential compared to the waves for the
turbines with the larger rated power (Sørum et al., 2022).

Floating platforms introduce more complexity. Not only
are new modeling parameters involved, but the critical re-
sponse can involve a new range of motions. It is predicted
that FOWT costs can potentially be reduced more than 3
times by 2030 compared to 2021 costs (Musial et al., 2022).
To achieve these drastic gains in efficiency and to do so in a
safe way, it is important that designers can assess the un-
certainty in their load predictions. The previously demon-
strated EE method can help identify which modeling param-
eters have the greatest impact on FOWT loads, isolating the
focus for in-depth uncertainty studies.

A demonstration of this is shown below. Section 2 de-
scribes the chosen FOWT system to analyze and the method
of analysis including numerical models and post-processing
calculations. Section 3 defines the studied input parameters
and their possible ranges. Sections 4 and 5 describe the out-
put loads and their resulting sensitivities. The discussed find-
ings are dependent on two analysis parameters, and the con-
vergence of the sensitivities with respect to these choices is
displayed in Sects. 6 and 7.

2 Approach

The EE method tested with previous sensitivity studies was
extended to a semisubmersible floating wind platform. A
range of input parameters was selected, focusing on in-
puts previously identified as having a strong sensitivity and
adding new offshore and floating support-structure-specific
variables. The tested ranges of the input variables were cho-
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sen based on possible or expected levels of uncertainty. The
study was conducted for an operating wind turbine in three
different wind conditions: below rated, near rated, and above
rated. These conditions correspond to wind speeds of 8.0,
12.0, and 18.0 m s−1, respectively, and also include wave and
current conditions. Some input parameter ranges are func-
tions of the wind speeds, while some are constant across the
conditions.

2.1 Wind turbine and floating platform

The wind turbine chosen in this study is the NREL offshore
5 MW baseline wind turbine. This device has open-source
characteristics and has been used in many research efforts. It
was designed to be representative of commercial turbines to
help enable and advance conceptual design studies. The tur-
bine features an upwind three-bladed rotor and uses variable
speed and collective pitch control (Jonkman et al., 2009).

The platform used in the study is the OC4-DeepCwind
semisubmersible designed for the DeepCwind Consortium
and adapted for a collaborative verification and validation
project (Robertson et al., 2014). This platform has pub-
licly available properties. It has been the subject of multi-
ple phases of the International Energy Agency (IEA) Wind
Task 30 Offshore Code Comparison Collaborative (OC4–
OC6) project and has generally well-understood behavior
(Robertson et al., 2014). The design features three offset
columns with heave-plate-type caps at the bottom. A smaller-
diameter central column supporting the wind turbine tower
is connected with a system of more slender pontoons and
braces. Figure 1 shows the configuration used in the OC4
project, which was also paired with the NREL 5 MW turbine.
The platform is held in place by a catenary mooring system
with three radial lines connecting three anchors to fairleads
near the base of the columns at the tops of the heave plates.
The three lines are all composed of a single type of chain.

2.2 Modeling approach

The numerical modeling was performed using OpenFAST
version 3.3.0 for the aero-hydro-servo-elastic analysis. The
turbulent inflow wind was generated using TurbSim. The hy-
drodynamic forces on the floating platform were calculated
in the HydroDyn module using a combination of potential
flow coefficients and viscous-drag elements. The irregular
wave field was generated using the JONSWAP spectrum, and
the current was depth independent. Note that wave stretch-
ing was not included, with drag forces only applied up to
the mean free surface; this will lead to an underprediction
of second-order wave forces and a reduced sensitivity to the
hydrodynamic forces near the waterline. Steady current was
applied as a simple superposition on the wave velocities. No
vortex shedding forces associated with the steady current are
modeled. The first- and second-order potential flow calcula-
tions were performed using the panel method code WAMIT.

Figure 1. DeepCwind floating offshore wind platform (Robertson
et al., 2014).

The mooring system was modeled using the lumped-mass-
dynamics-based MoorDyn module. The substructure was
treated as rigid, but the tower and blades were compliant,
and their deflections were calculated using the ElastoDyn
module. Previous analysis of the NREL 5 MW baseline wind
turbine has shown that the higher-fidelity BeamDyn solver
produces results that are generally aligned with the lower-
fidelity ElastoDyn solver. The largest difference for this tur-
bine is that BeamDyn does predict a small amount of blade
torsion not captured by ElastoDyn, but this is generally com-
pensated for by the active blade-pitch controller. The aero-
dynamic forces were calculated in the AeroDyn module, us-
ing blade element momentum theory with unsteady aerody-
namics and tower forces. The turbine was controlled using
the ServoDyn module, using the baseline controller for the
NREL 5 MW turbine atop the OC4-DeepCwind semisub-
mersible with a Bladed-style dynamic link library.

Each simulation was run for a 10 min time series with a
1 min transient removed from the results. This transient pe-
riod was selected based on time series of the nominal load
case for each of the three conditions. The time of the tran-
sient period was reduced by using initial surge and pitch val-
ues near their expected mean values for each wind speed.
IEC recommends using at least six 10 min simulations, with
potentially more depending on the specific FOWT and site
(IEC, 2019a). The IEC floating wind specification encour-
ages the use of more random seed numbers instead of longer
simulations (IEC, 2019a). In this work, the simulation time
is held constant, and the number of seeds is increased until
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Figure 2. Three-parameter representation of input parameter hy-
perspace with a set of starting points and individual parameter per-
turbations, adapted from Robertson et al. (2019b).

the results are no longer dependent on the number of seeds,
as described in Sect. 6.

2.3 EE

The EE method was outlined by Max Morris in 1991 for gen-
eral computational experiments. The key advantage is one
factor is adjusted at a time, reducing the total number of sim-
ulations required for a sensitivity assessment (Morris, 1991).
This approach does not identify coupling between input pa-
rameters but is effective for screening for the variables creat-
ing the largest sensitivity.

A modification of the original technique uses radial per-
turbations of all parameters for a sufficiently large number
of starting points. This radial EE method was described and
tested by Robertsen et al. in 2018 and is used here (Robert-
son et al., 2018). The technique is graphically represented
in Fig. 2 for a simplified model with only three input pa-
rameters. Each blue dot represents a position in the parame-
ter hyperspace, and the red dots represent a small shift from
that point for one of the parameters. The effect on the out-
put quantity due to the perturbation informs the sensitivity to
that parameter at that specific location in the possible range
of inputs. When each parameter is perturbed, their relative
influence and importance can be determined. As the number
of blue dots, or starting set of conditions, grows, the results
converge toward the global sensitivity. This process can be
extended to any number of input parameters, and the results
can be assessed for any number of output quantities of inter-
est.

In this work, the size of the perturbations was held con-
stant, to ±10 % of the parameter range. The direction of
the perturbation (plus or minus) was randomly chosen, with
the constraint that the perturbation had to remain inside
the possible range. The starting points were chosen follow-
ing a Sobol sequence. This sequence is designed to have a
uniform-type distribution in an n-dimensioned space (Sobol,
1967). This approach avoids biasing the results to some loca-
tion in the parameter ranges and allows the addition of new
starting points after simulations have been run.

Irregular wave conditions and turbulent wind conditions
require a seed for the pseudo-random number generator
(pRNG) for phase information. There can be variation in
loads based only on the seed, so a sufficient number of seeds
should be tested to ensure the influence in the seed does
not mask the influence of the parameter variation. IEC rec-
ommends a minimum of six seeds may be higher depend-
ing on the specific device and environmental condition (IEC,
2019a). In this work, the same number of seeds was used at
every starting point and perturbation. The sets of seeds were
chosen to be unique for every starting point and perturbation.
The necessary number of seeds was specifically considered
for this model and is described in Sect. 6.

The output quantities of interest (Y ) were combined for all
seeds (S) of a certain set of inputs (U ) following Eqs. (1)
and (2), for the ultimate and fatigue-proxy loads, respec-
tively. The ultimate load (Yult.) is taken as the mean of the ab-
solute maxima across each seed (s). The fatigue-proxy load
(Yfat.) is taken as the mean of the standard deviations across
each seed. This evaluation is not a true representation of fa-
tigue loads, as only the size of the load cycles is consid-
ered, not the number of cycles. It is expected that the rele-
vant frequencies for each load output will be similar enough
for the standard deviation to serve as a reasonable proxy for
the fatigue. This was done to simplify the post-processing
where detailed structural and material properties are not fully
known. It is possible that if true fatigue calculations were per-
formed, the relative fatigue sensitivity of input parameters
highly impacting system frequencies could be larger.

Yult.(U )=
1
S

S∑
s=1

MAX(|Y (U )|) (1)

Yfat.(U )=
1
S

S∑
s=1

SD(Y (U )) (2)

The EE sensitivity value for an input parameter (i) at a cer-
tain starting point in the parameter hyperspace (b) for a cer-
tain wind speed condition (w) is defined for ultimate loads in
Eq. (3) and for fatigue-proxy loads in Eq. (4). Both equations
feature a local partial-derivative-like calculation, with the ra-
tio of the change in output to the change in input (1iw).Ub is
the set of all conditions at the starting point, andUb+xi is the
same set of conditions with the addition of the perturbation
in the i input parameter. The partial derivative is multiplied
by the total range for the i input parameter; it is not only the
gradient that is important to sensitivity, but also the possible
range. The sensitivity values from different input parameters
are then all in the units of the output value, allowing com-
parison. The resulting value represents how much the output
would vary across the full input range if the local sensitivity
was constant.

There are likely large differences in the output loads based
on the wind speed condition. For ultimate loads, the max-
imum value experienced is a key concern, so if sensitivity
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Table 1. Wind condition probability used for the fatigue-proxy ele-
mentary effects sensitivity calculation.

Condition Below rated Near rated Above rated

Wind speed range [m s−1
] 3.0–9.0 9.0–15.0 15.0–25.0

Aggregate probability 0.525 0.322 0.062

is high, but the total load is still low, it is not important. To
account for this, the ultimate sensitivity value includes the
addition of the output for the nominal value of all input pa-
rameters corresponding to the wind speed (Yw). This results
in a set of three nominal additions for below rated, near rated,
and above rated.

UEEbiw =

∣∣∣∣∣Yult.
(
Ub+ xi

)
−Yult.

(
Ub
)

1iw
uiw,range

∣∣∣∣∣+Yw (3)

For fatigue-proxy loads, if the sensitivity is high but the num-
ber of relevant cycles is very low in the device’s lifetime, it
will not drive the design. The fatigue-proxy sensitivity value
is thus scaled by the probability of occurrence of the corre-
sponding wind speed condition (P (w)).

FEEbiw = P (w)

∣∣∣∣∣Yfat.
(
Ub+ xi

)
−Yfat.

(
Ub
)

1iw
uiw,range

∣∣∣∣∣ (4)

The probability of each wind condition was calculated based
on an aggregate model of the United States offshore wind
locations created in a 2016 study based on data from the Na-
tional Data Buoy Center (Stewart et al., 2015). The project
created comprehensive joint probability distributions for
wind speed, significant wave height, wave peak spectral pe-
riod, and wind–wave misalignment for the West Coast, East
Coast, and Gulf Coast (Stewart et al., 2015). The wind con-
dition probabilities were based on a combination of the three
representative sites with an even weighting and are found in
Table 1. The total of the probabilities does not equal 100 %
because the speeds below cut-in and above cut-out are not in-
cluded in this study. This is not a problem for the weighting
done in Eq. (4).

To identify which input parameters contributed to the
highest sensitivity, significant events were defined following
Eqs. (5) and (6), where an EE value greater than 2 times the
standard deviation larger than the mean EE value is counted.
The number of times that an individual input parameter led to
a significant EE value quantifies how sensitive the output is
to that parameter relative to the rest of the studied variables.

UEEsignificant > UEE+ 2σUEE (5)
FEEsignificant > FEE+ 2σFEE (6)

3 Input parameters

Table 2 lists all 35 studied input parameters. The italicized
variables are related to wind and aerodynamics. The plain

Table 2. Modeling input parameters for sensitivity analysis (italic,
wind and aerodynamics; plain, system and structure; bold, sea state
and hydrodynamics).

Input parameter Label Unit

Shear exponent Shear –
Veer Veer ◦

Coherence exponent γwind –
σu (standard deviation) σu m s−1

Lu (integral-scale parameter) Lu m
au (coherence decrement) au –
bu (offset parameter) bu m−1

Yaw error Yaw ◦

Air density ρair kg m−3

Blade mass Mblade %
Blade mass imbalance (factor) MbladeIMB %
Blade twist at tip Twist ◦

Airfoil lift coefficient at root Clroot %
Airfoil lift coefficient at tip Cltip %
Tower stiffness factor TK –
Tower damping tuner TD –
Mooring mass per unit length Mmooring kg m−1

System center of mass – upwind SCMX m
System center of mass – vertical SCMZ m
System inertia – pitch direction SIP kg m−2

System inertia – yaw direction SIY kg m−2

System mass Msystem kg
Water depth Depth m
Water density ρwater kg m−3

Directional spreading range 2spread
◦

Wind–wave misalignment 2mis
◦

Significant wave height Hs m
Peak wave period Tp s
Wave spectral shape factor γwave –
Current speed Vcurrent m s−1

Current direction 2current
◦

Transverse drag coefficient near water line CdWL –
Transverse drag coefficient on column Cdtop –
Transverse drag coefficient on heave plate Cdbottom –
Axial drag coefficient Cdaxial –

variables are related to the system and structure. The vari-
ables in bold are related to the sea state and hydrodynam-
ics. The first 16 parameters have previously been identified
in EE studies as having significant sensitivity (Robertson
et al., 2018; Shaler et al., 2019; Robertson et al., 2019b).
The last 19 parameters are additions for a floating offshore
system that are expected to have potential importance. Some
critical parameters were highlighted in a 2019 analysis that
studied hydrodynamic uncertainty for the OC5-DeepCwind
semisubmersible, with a particular focus on numerical un-
derprediction of low-frequency response (Robertson et al.,
2019a). The mooring stiffness (dependent on mooring weight
for a catenary system), the system center of gravity, and the
wave amplitude were all found to contribute significant un-
certainty (Robertson et al., 2019a). An important difference
in this 2019 study is that an operating wind turbine was not
present.
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3.1 Parameter ranges

For each input parameter, the potential range of uncertainty
and a nominal value were selected. The ranges are based on
either statistical variation in time or uncertainty. These val-
ues are shown in Table 3. The minimum, nominal, and maxi-
mum values are given for each of the three wind bins if there
is a dependence (otherwise, the same value is used for all
wind speed bins). The nominal values are used for the ulti-
mate EE sensitivity calculation as described in Eq. (3), and
the minimum and maximum values determine the range that
the parameters can lie between. It should be noted that the
parameter ranges represent the range of possible values for a
wide range of conditions and not a range of uncertainty for
the design value. This applies to wind and wave conditions
and generally increases the size of the parameter range, in-
creasing the relative sensitivity. The sensitivity to a parame-
ter is directly correlated to the parameter range, so the result-
ing relative sensitivities need to be understood in the context
of the parameter range choices. The presented range selec-
tion informs us about the possible variation in loads across a
wide range of conditions.

In general, the variables are independent of each other. The
exception to this is coupling between wind and wave mis-
alignment, significant wave height, and peak wave period.
The maximum significant wave height is a function of the
wind and wave misalignment; waves can potentially be larger
when the misalignment is small. Both the minimum and max-
imum wave periods are functions of the wave height.

The first 16 parameter ranges were based on the ranges
from previous EE studies with some adjustments for an off-
shore wind environment (Robertson et al., 2019b; Shaler
et al., 2019, 2023). The wind shear exponent ranges are based
on a 2021 study of lidar data from floating lease areas off the
coast of New Jersey (Debnath et al., 2021). The wind veer
ranges are based on a relationship with the shear exponent
described in the same study (Debnath et al., 2021). The max-
imum for the turbulent wind standard deviation was selected
based on a class B wind turbine as defined by IEC using
the wind speed for each condition, and the minima were se-
lected as having a turbulence intensity of 3.5 % (IEC, 2019b).
The range of air density values was taken as the largest sea-
sonal variation for an offshore site (US East Coast) as identi-
fied in a 2019 study examining the effect of density changes
on global power production (Ulazia et al., 2019). The tower
stiffness range results in a±15 % change in tower frequency.
This full range still falls above the turbine 1P and below the
turbine 3P frequencies tested.

The justifications for the new floating-offshore-specific
parameter range selections are as follows:

– Mooring mass. The mooring mass range is taken as
±1 % of the nominal value. This amount of uncertainty
was recommended by industry experts due to manufac-
turing uncertainty and the addition of marine growth in
a project lifetime.

– System center of mass, upwind. A range of ±2 % was
recommended by industry experts due to fabrication un-
certainty. This value was applied to the nacelle but could
not be used for the platform, which has a nominal value
of 0.0 m. The platform range was chosen to result in a
mass proportional shift to the shift in the nacelle. A large
portion of the platform mass is ballast water, which is
not shifted in the model adjustment, so the steel ad-
justment is increased to ±8 % to account for the same
change in the ballast position.

– System center of mass, vertical; system inertia, pitch di-
rection; system inertia, yaw direction; and system mass.
The same recommended range of±2 % was used for all
the system mass and inertia properties. Again, the plat-
form steel has a larger shift of ±8 % to account for the
ballast water.

– Water depth. The range in water depth was based on
changes in water level for a single location due to tides
and storm surge. The limits of the highest and lowest
observed water levels come from the LIFES50+ study,
which assessed the metocean conditions for three dif-
ferent types of floating wind sites (Gómez et al., 2015).
Because these changes occur at a single site through
time, no corresponding changes to the mooring system
are made.

– Water density. The range in water density is a con-
servative range based on world limits of 1020.0 to
1030.0 kg m−3 from the NOAA World Ocean Atlas
(NCEI, 2018).

– Directional spreading. The range in directional spread-
ing was chosen based on expert opinion. The cosine
spreading function with an equal-energy method was
used as described in the 2014 paper recommending it for
OpenFAST implementation (Duarte et al., 2014). The
function is given in Eq. (7), where the value of s is set
to 1.0, making a cosine squared function. The value of
C is set so that the total energy at each frequency is as
desired for the spectrum (Duarte et al., 2014). This func-
tion D(2) is multiplied by the spectral value S(ω) for a
combined frequency–direction magnitude.

D(2)= C
∣∣∣∣cos

(
π (2−2mean)

22max

)∣∣∣∣2s (7)

– Wind–wave misalignment. The wind and wave mis-
alignment range was selected to cover a conservative
range of possible conditions. A 2014 study on wind and
wave misalignment effects for floating wind loads found
that most of the tower fatigue loads came from direct
alignment (Bachynski et al., 2014). A wide range of
misalignment angles are considered to see the impact
on other important loads.
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Table 3. Continued.

Input parameter Unit Minimum Nominal Maximum

BR NR AR BR NR AR BR NR AR

Wind–wave misalignment ◦ 0 0 90

Significant wave height m 0 1.45 1.95 3.14 f (2mis)

Peak wave period s f (Hs) 8.25 7.96 8.42 f (Hs)

Wave spectral shape factor – 1.0 1.0 1.0 0.284 7.0

Current speed m s−1 0.0 0.0 2.0

Current direction ◦ 0 0 90

Drag coefficient at water line – 0.4 1.2 2

Drag coefficient on column – 0.4 0.7 1

Drag coefficient on heave plate – 0.4 1.2 2

Axial drag coefficient – 3.5 4.8 5.5

– Significant wave height. The significant wave height is a
function of wind and wave misalignment following joint
probability distributions from a comprehensive meto-
cean analysis of US offshore wind sites (Stewart et al.,
2015). For each point in the input parameter hyperspace,
a unique range of wave heights is applied based on the
wind condition and the local misalignment. The mini-
mum significant wave height is taken as 0.0 m for all
wind conditions and misalignment angles (rather than
what is shown in Fig. 3). The maximum values are taken
from the 2016 study based on data from the National
Data Buoy Center using a 20 min statistical period and
are the maxima of the three sites for each misalignment
angle (Stewart et al., 2015). These maxima are shown
with the solid black lines in the top section of Fig. 3.
The nominal values are taken as the aggregate mean
value shown with the dashed black lines. The colored
lines in the figure, with three of each line type, mark the
East Coast, West Coast, and Gulf Coast individually.

The significant wave height, peak period, and spectral
shape factor are used to define the JONSWAP wave
spectrum, as given by Eq. (8) (ABS, 2016). The peak
angular frequency, ωp, is equal to 2π divided by the
peak period.

S(ω)=
5

16

H 2
s ω

4
p

ω5 exp
[
−

5
4

(ωp

ω

)4
]
γ α(1− 0.287lnγ )

α = exp

[
−

(
ω−ωp

)2
2σ 2ω2

p

]
σ = 0.07 when ω ≤ ωp

σ = 0.09 when ω > ωp (8)

– Peak wave period. The peak period ranges are a function
of the significant wave height and again are uniquely
calculated for each point in the input parameter hy-

perspace. The maxima are chosen based on the 2016
US metocean project with a 20 min statistical period
and are shown as a function of wave height with the
solid black lines in the bottom row of the subfigures in
Fig. 3. The minima are chosen based on the breaking
wave limit and are shown as a function of significant
wave height with the dashed–dotted black lines. Again,
the three colored lines of each line type are the values
for the three comprehensive US locations based on joint
probability distributions (Stewart et al., 2015). At large
wave heights, more and more of the period data fall be-
low the breaking limit, and eventually even the maxi-
mum periods are lower than the limit. These breaking
waves cannot be accurately modeled with mid-fidelity
models like OpenFAST, but the selected ranges of sig-
nificant wave height do not fall into this region.

– Wave spectral shape factor. The wave spectral shape
factor ranges were chosen following guidance from the
American Bureau of Shipping, with a minimum of 1.0
and a maximum of 7.0 (ABS, 2016). The nominal val-
ues were selected as functions of the wave height and
period, as recommended by IEC and stated in Eq. (9)
(IEC, 2019a).

TP
√
HS
≤ 3.6−→ γ = 3.6

3.6<
TP
√
HS

< 5.0−→ γ = 5.75− 1.15
TP
√
HS

5.0≤
TP
√
HS
−→ γ = 1.0 (9)

– Current speed. The current speed range goes up to a
maximum value for open ocean currents; this value of
2.0 m s−1 is from the Gulf Stream (Gyory et al., 2022).
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– Current direction. The current direction range goes up
to a maximum of 90.0◦, perpendicular to the wind direc-
tion. This orthogonal current could create unique load-
ing. It is expected that currents coming from the down-
wind direction would have lower loads than when cur-
rent loads are in the same direction as the wind.

– Drag coefficient near water line. In previous work an-
alyzing this semisubmersible platform, the drag coeffi-
cient near the water line was identified as being partic-
ularly important (Wang et al., 2022). The water particle
velocities are the highest here, and higher-order viscous
effects are the most pronounced. The drag coefficient
in this region was specifically isolated from the coeffi-
cients on the rest of the body to determine its unique
influence. The selected nominal value was found to best
replicate motions from model test experiments in previ-
ous work (Wang et al., 2022). The total range is based
on the possible range of drag coefficients for cylinders
as a function of the Reynolds number. This coefficient
is applied from the top of the columns down to an ele-
vation 4.0 m below the mean water line.

It should be noted that the previous work identifying the
importance of this parameter included a wave stretching
model. In this analysis without wave stretching it is ex-
pected that the significance will be reduced.

– Drag coefficient on column. The nominal drag coeffi-
cient for the main length of the columns was again se-
lected based on what was found to best replicate model
test motions (Wang et al., 2022).

– Drag coefficient on heave plate. The nominal drag co-
efficient for the base of the columns, which act as heave
plates, was also based on the previous work with this
platform (Wang et al., 2022).

– Axial drag coefficient. The nominal axial drag coeffi-
cients for the columns were also based on the previous
work with this platform (Wang et al., 2022). The range
is larger, as there is more variability with the unique vis-
cous effects in the axial direction compared to the well-
studied transverse drag on cylinders. Separated flow is
immediate in this direction, and the drag forces are com-
plex.

4 Output quantities of interest

A total of 14 quantities of interest were selected to evaluate
the importance of each input parameter. Table 4 lists these
quantities of interest and their relevant labels and units. Out-
puts listed in italics are the most strongly linked to aerody-
namics and the rotor, while the non-italicized quantities are
more global.

Table 4. Output quantities of interest for load identification (italic,
rotor-specific; roman, global system).

Quantity of interest Label Unit

Blade root bending moment RootMp N m−1

Blade root pitching moment RootMzc1 N m−1

Low-speed shaft bending moment LSSGagMp N m−1

Rotor torque RotTorq N m−1

Yaw-bearing bending moment YawBrMp N m−1

Yaw-bearing yawing moment YawBrMzp N m−1

Tower base bending moment TwrBsM N m−1

Blade tip out-of-plane deflection OoPDefl1 m
Generator power GenPwr W
Mooring line tension at fairlead Fair N
Mooring line tension at anchor Anch N
Watch circle WatchCircle m
Heel angle Heel ◦

Nacelle acceleration NacAcc m s−2

The blade root bending moment, yaw-bearing bending
moment, tower base bending moment, low-speed shaft bend-
ing moment, and watch circle each have components in two
directions. For ultimate loads, the value of each quantity was
taken as the maximum vector magnitude. For fatigue-proxy
loads, a load rose approach was used. The cycles were di-
vided into 12 directional bins (15◦ increment), and the bin
with the highest standard deviation was used for that output
fatigue-proxy contribution.

The heel angle is a combination of the pitch and roll angle
and was combined at every time step for both ultimate and
fatigue-proxy loads following Eq. (10). The nacelle acceler-
ation is the vector magnitude of the accelerations in all three
directions for both ultimate and fatigue-proxy loads.

Heel= arctan
(√

tan(Pitch)2+ tan(Roll)2
)

(10)

For the mooring loads, the forces at all three fairleads and
all three anchors were considered. The lines with the largest
maximum and the largest standard deviation were selected
separately for the ultimate and fatigue-proxy loads on a case-
by-case basis.

5 Results

In total, 324 000 OpenFAST and 72 000 TurbSim simulations
were run following the quantities in Eq. (11). Only seven of
the input parameter perturbations resulted in a change in the
turbulent inflow wind calculations. For the other 28 pertur-
bations, the inflow wind from the starting point was used,
thereby reducing the number of required TurbSim simula-
tions.
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Figure 3. Wave height dependence on misalignment and wave period dependence on wave height from aggregate values (black) used from
US East Coast (blue), West Coast (green), and Gulf Coast (red) comprehensive sites (data from Stewart et al., 2015).

324000 OpenFAST runs=(3 wind conditions)

(30 starting points)
(1+ 35 input perturbations)
(100 seeds) (11)

72000 TurbSim runs=(3 wind conditions)

(30 starting points)
(1+ 7 wind input perturbations)
(100 seeds) (12)

The histograms in Figs. 4 and 5 show the ultimate and
fatigue-proxy EE values, respectively, for all quantities of in-
terest from all simulations. The plots are divided by color,
according to the wind speed condition. The red lines in each
plot indicate the threshold for a significant event, determined
by 2 times the standard deviation, as described in Eqs. (5)
and (6).

The ultimate values shown in Fig. 4 are strongly strati-
fied by the wind condition for most outputs. This separation
is largely influenced by the changes in the nominal output,
Yw, added to the EE value as shown in Eq. (3). The ultimate
EE values for the blade loads of the root bending moment
and tip deflection are the highest for the near-rated condi-
tion, logically where thrust is expected to be the highest. The
tower, shaft, and nacelle ultimate EE values are the high-
est for the above-rated condition. The only outputs without a
strong wind speed stratification are the global system motion-
related quantities of mooring line tensions, watch circle, and
heel angle. These three outputs are later shown to be largely
dominated by current velocity and the system center of mass,
both input parameters that are independent of wind speed.

The fatigue-proxy EE values are much more consistent be-
tween wind conditions, which is interesting considering that
each is weighted by the probability of the wind speed. This
means that the differences in load variation between the wind
speed are roughly matched by the differences in wind speed
probability. The spread in the ultimate values is larger than
for the fatigue-proxy values.

The bar graphs in Figs. 6 and 7 show the number of ul-
timate and fatigue-proxy significant events, respectively, at-
tributed to each input parameter. The input parameter bar la-
bels are colored by category: red for wind, magenta for aero-
dynamic forces, black for system and structure, blue for sea
state, and cyan for hydrodynamic forces. The bars are divided
and colored according to which output parameter the signif-
icant event is related to. The outputs closely linked with the
rotor have no hatch, and the more global outputs have a di-
agonal hatch.

Looking at the ultimate load sensitivity in Fig. 6, similar to
previous land-based sensitivity studies, the wind speed stan-
dard deviation in the main wind direction is the most influen-
tial input parameter. The next most important parameters are
the horizontal system center of mass and the current veloc-
ity. The wind-related inputs (red) drove the rotor-related out-
puts (no hatch) for the most part and also have some impor-
tant contributions to the nacelle acceleration. Most structural
and mass properties have a limited impact on the ultimate
loads, with the exception of the horizontal center of mass.
This property is highly important for the extreme heel angle
and the bending moment at the tower base. These two out-
puts are expected to be coupled and are logically driven by
this important input. The wave and current conditions appear
to only drive the ultimate loads related to the platform trans-
lation. The watch circle displacement and the mooring ten-
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Figure 4. Ultimate EE value stacked histograms divided into wind speed conditions for 14 quantities of interest; the red line marks the
threshold for the significant EE value.

Figure 5. Fatigue-proxy EE value stacked histograms divided into wind speed conditions for 14 quantities of interest; the red line marks the
threshold for the significant EE value.
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Figure 6. Floating offshore wind turbine ultimate load EE sensitivity, divided by load type; the solid bars correspond to turbine-specific
responses, and the hatched bars correspond to global system responses (input parameter colors: red, inflow wind; magenta, aerodynamic
forces; black, system and structure; blue, sea state; cyan, hydrodynamic forces).

sions at the fairleads and anchors are reasonably influenced
by the current and drag coefficients, which contribute highly
to mean forces. It is somewhat surprising how few signifi-
cant events are attributed to the wave conditions. The Deep-
Cwind semisubmersible is a relatively large platform for the
turbine size, reducing sensitivity to wave loading. That said,
it should be recalled that all wind conditions involved an op-
erating wind turbine, which adds considerable damping and
increases the sensitivity to wind parameters. It is possible that
the influence of the wave parameters may be much stronger
for idling load cases, which will be addressed in future work.

Looking at Fig. 7, the standard deviation of the wind speed
in the main direction is also the most influential input param-
eter for fatigue-proxy loads, again most strongly impacting
the rotor-related loads. Compared to the ultimate load sensi-
tivity, the wave parameters have a larger effect on the fatigue-
proxy loads. The significant wave height, peak wave period,
and wind and wave misalignment angle are all driving inputs
for the global motion fatigue-proxy values of the platform.
The wave conditions are more important for the variability
in the loads than the extreme values. The current speed and
direction are also important for these fatigue-proxy values,
which are less intuitive given their more constant forces. No
structural or mass properties overly dominated the fatigue-
proxy loads.

6 Seed convergence

The presented results in Sect. 5 require a certain number of
seeds for the stochastic irregular waves and turbulent wind
environment. This required number is specific to a given plat-
form, turbine, and environmental condition. If the number

of seeds is very low, it is likely that the differences in loads
between simulations may be more related to the difference
in seed than to the perturbation in input variable. When the
number of seeds is high enough, the averaging process in
Eqs. (1) and (2) removes the dependence on the seeds, and
the difference in output can be accredited to the difference in
input. Some inputs and some outputs are more strongly de-
pendent on the number of seeds, so the required number of
seeds is not universal; however, the same number of seeds
was used for each perturbation in this study.

Given the very large number of inputs, outputs, starting
points, and wind speeds, it is difficult to look at the influence
of the seed number for each input and output combination in-
dividually. Some examples of seed convergence for input and
output combinations that led to a large number of significant
sensitivity are shown in Figs. B1–B4.

Ultimately, the important criterion is that the identified
most influential input parameters are not dependent upon the
seeds used. This means that the bar plots in Figs. 6 and 7
should not change if more seeds are added or if different
seeds are used. Figures 8 and 9 show this convergence of
the final relative sensitivities, measured by the number of
significant events for ultimate and fatigue-proxy loads, re-
spectively. A total of 100 seeds were run for each point and
perturbation in the hyperspace. The post-processing calcula-
tions were performed pulling from a pool of 1 to 100 seeds,
and the resulting number of significant ultimate and fatigue-
proxy events is plotted for each input. The final point in the
lines matches the bar heights in Figs. 6 and 7. When doing
this convergence check, the pools of S seeds are taken ran-
domly from the full set of 100 so that the results at S+ 1 are
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Figure 7. Floating offshore wind turbine fatigue-proxy load EE sensitivity, divided by load type; the solid bars correspond to turbine-specific
responses, and the hatched bars correspond to global system responses (input parameter colors: red, inflow wind; magenta, aerodynamic
forces; black, system and structure; blue, sea state; cyan, hydrodynamic forces).

Figure 8. Convergence of the ultimate response sensitivity due to the number of random seeds.

not as strongly tied to the results at S, leading to a smoother,
clearer convergence.

The ultimate load sensitivity for some important input pa-
rameters is almost independent of the number of seeds, in-
cluding SCMX, Vcurrent, γwind, au, and Lu. The relative im-
portance of shear and veer, in particular, is much higher when
only a few seeds are used. The ultimate load sensitivity con-
verges quickly for all inputs except σu, with stable relative
levels after about 40 seeds. After this point, the variations are
small compared to the differences between inputs. However,
σu, the parameter leading to the highest sensitivity, contin-
ues to become relatively more important with an increased

number of seeds. Between 80 and 90 seeds it is evident that
the number of significant events is converging toward just
below 300. Given the large difference from the other input
parameters, this provides sufficient insight. The number of
seeds needed to identify sensitivity, especially for σu, is much
higher than the minimum of six recommended by IEC (IEC,
2019a). Wind turbulence has high energy at very low fre-
quencies, resulting in some large-amplitude, low-frequency
cycles in any given time series and strongly increasing the
dependence on seed number.

The fatigue-proxy load sensitivity results converge much
quicker than the ultimate load sensitivity results. Even for
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Figure 9. Convergence of the fatigue-proxy response sensitivity due to the number of random seeds.

σu, the number of significant events is relatively stable af-
ter only 20 seeds. It is expected that the fatigue proxy would
require fewer seeds than ultimate loads, as the cyclic ampli-
tudes over a time series are less likely to have outliers than
the tails of the statistical distribution. A 2023 study looking
into the statistical uncertainty in the blade bending moment
fatigue as a function of seed numbers also found that more
than the IEC-suggested minimum of six 10 min simulations
were needed (Mozafari et al., 2023). The Danish-led project
looked at a fixed onshore 10 MW turbine and found that 50
seeds were needed for acceptable accuracy and that more
seeds were needed for lower wind speeds (Mozafari et al.,
2023).

The sensitivity results are determined to be converged after
90 seeds for ultimate loads and after 30 seeds for the fatigue-
proxy loads. This process is likely load case and device de-
pendent, so it should be performed independently for each
application of the EE sensitivity analysis approach. The re-
sults shown in Figs. 4, 5, 7, and 8 use the data from all 100
run seeds.

7 Starting point convergence

The radial one-at-a-time perturbation method looks at the un-
coupled sensitivity at a single point in the parameter hyper-
space, within the ranges defined. Each point, chosen follow-
ing the Sobol sequence, likely has a different local sensitivity
value. To get a picture of the true sensitivity across the full
domain, a sufficient number of starting points must be used.
It should be noted that, while the process treats the inputs as
fully uncoupled (with the exception of wave misalignment,
height, and period), there are likely some combinations of
inputs that would not be physically expected, and the sensi-
tivities at these points can still influence the findings.

The number of necessary starting points is a function of the
local second partial derivatives. When the derivative changes
sharply through the domain, more starting points are needed
for converged identification of the most important inputs.
Similarly to the method of determining seed convergence, the
sufficient number of starting points was determined by calcu-
lating the number of significant events per input using a range
of 1 to B starting points. Figures 10 and 11 show the conver-
gence of the significant events with respect to the number of
starting points. The number of EE values is a direct function
of the number of starting points, so as the number of starting
points grows, so does the number of significant events. The
fraction of the total number of significant events is plotted in-
stead of the absolute number to be able to compare and track
convergence.

In this case, the sets of B starting points are not random as
they follow the Sobol sequence, which is designed to fill in
the n-dimensional region with an even distribution. For the
seed convergence, each individual seed has no inherent bias
toward one input parameter. However, each starting point
does have a bias toward the local partial derivative, resulting
in a less smooth convergence path. Still, if enough starting
points are used, the global sensitivity will converge so that
additional points do not affect the conclusions.

For the ultimate load convergence, shown in Fig. 10, after
20 starting points it is clear that σu is the most dominant in-
put. Vcurrent and SCMX clearly have secondary importance,
and the rest of the inputs are far less influential. It appears
that the relative impact of σu may still grow if more than
30 starting points are used, but the order of importance seems
unlikely to change.

For the fatigue-proxy load convergence shown in Fig. 11,
σu is even more clearly dominant, even after only 10 starting
points. At 30 starting points, it appears there is no relation-
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Figure 10. Convergence of the ultimate response sensitivity due to the number of input parameter hyperspace starting points.

Figure 11. Convergence of the fatigue-proxy response sensitivity due to the number of input parameter hyperspace starting points.

ship between the relative sensitivity and additional starting
points.

8 Conclusions

This work used a radial EE approach to identify which nu-
merical modeling input variables have the most important
effects on ultimate and fatigue-proxy loading of the Deep-
Cwind floating platform supporting the NREL 5 MW off-
shore wind turbine. The standard deviation of the load was
used as a proxy for the fatigue. This simplification quanti-
fies load variability but likely underpredicts the sensitivity
to input parameters which strongly influence load frequency.
Non-linear fatigue paths were not included in this method
at all. All modeling parameters have a range of validity, and
this process can determine which uncertainty ranges should
be assessed in greater detail. A total of 35 input parameters
were tested and evaluated using 14 output responses. The re-

sults were delineated by output to understand which specific
input and response relationships have the highest sensitiv-
ity. The required number of seeds used for stochastic irregu-
lar waves and turbulent wind environments was assessed to
ensure that the variability due to seed was not influencing
the conclusions. The required number of starting points in
the parameter range domain was also assessed to ensure that
the sensitivity assessment approximated a global sensitivity.
In total, 324 000 OpenFAST simulations and 72 000 Turb-
Sim simulations were run, spanning three different operating
wind speed conditions.

The evaluated input parameters included wind and water
environment descriptions, structural properties, and aerody-
namic and hydrodynamic modeling coefficients. All param-
eter ranges were assessed to cover the possible variation due
to changes in time, uncertainty in construction, or uncertainty
in accuracy.
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It was found that ultimate load EE values were highly
stratified by wind speed; depending on the output load, ei-
ther the above-rated or the near-rated condition contributed
the most extreme load sensitivity. Significant fatigue-proxy
EE values, however, were not clearly split by wind condition.

The EE approach has been shown to be effective for
screening the most influential modeling parameters for
FOWT load assessment. For the combination of the NREL
5 MW offshore wind turbine on the DeepCwind semisub-
mersible, the input parameters contributing to the highest
sensitivity in ultimate loads are as follows:

– primary, σu;

– secondary, SCMX and Vcurrent; and

– tertiary, γwind, Lu, au, bu, yaw, and 2current.

The input variables contributing to the highest sensitivity in
fatigue-proxy loads are as follows:

– primary, σu;

– secondary, γwind, au, bu, yaw, hs, and vcurrent; and

– tertiary, sheer, Lu, TK, SCMX, 2mis, Tp, and 2current.

Similarly to previous analyses with land-based wind tur-
bines, the turbulent wind speed standard deviation in the
main direction (σu) is the input parameter with the highest
impact. Not only are rotor-specific loads very sensitive to this
value, but so are the global platform motions. While σu is the
most important, all wind turbulence parameters have a sig-
nificant impact on ultimate and fatigue-proxy loads.

Mooring loads and device watch circles are dominated by
the current. Almost no significant events in these outputs
come from the wind or wave variables. When it comes to
mooring design, a significant effort should be made to assess
the true range of current speeds and directions.

With the exception of the horizontal center of mass, the
system mass, inertia, and structural properties have a lower
impact on the loads; environmental condition variability
seems to be much more important. This is likely a platform-
specific conclusion; the DeepCwind semisubmersible is a
relatively stable design with a relatively large water-plane
area and resonant frequencies outside of the main wave and
wind energy. The one structure parameter that does have a
high relative sensitivity is the horizontal system center of
mass in the wind direction. This value is less important for
the fatigue-proxy cyclic amplitudes but is by far the main
driver for the extreme platform heel angle and, subsequently,
the tower base bending moment.

While the wave misalignment angle, height, and period do
have a meaningful influence on some fatigue-proxy values, it
is somewhat surprising how little of an impact the wave con-
ditions have on the extreme ultimate loads. The wave input
perturbations contribute far fewer significant events than the
current inputs and even fewer compared to the turbulent wind

characteristics. This would indicate that significantly more
emphasis should be placed on understanding the wind en-
vironment rather than the wave environment for an offshore
wind site assessment for this floater. Future analyses that in-
clude idling conditions past the cut-out wind speed may find
that wave inputs are more influential. It is likely that without
the aerodynamic damping of the operational turbine, changes
in the wave height and period may lead to more considerable
changes in the ultimate loads on the platform. It is still log-
ical that the waves are more influential for fatigue loading
than for ultimate loading. Potential wave over-topping and
slamming events could also be design drivers for platform
stiffener design; however, these loads are difficult to under-
stand using mid-fidelity modeling tools.

The method employed in this project can be used as an im-
portant step in the design process. The results identify which
input parameter uncertainty ranges need to be given partic-
ular attention. The conclusions should be treated as unique
to the individual platform and turbine, as well as the selected
parameter ranges, and it is recommended that nonoperational
load cases are also considered.

Appendix A: Fatigue-proxy EE value histogram

Figure A1 shows the same histograms of fatigue-proxy EE
values as shown in Fig. 5, but with a zoomed-in y axis to
see the upper end of the distributions. The lowest bin had by
far the most instances for all quantities of interest, includ-
ing contributions from all three wind speed conditions. The
spread in the fatigue-proxy EE values is small compared to
the ultimate EE values, and there is little stratification; this
is clear in the full figure, but the distribution and significant
events that surpass the threshold are not visible. The zoomed
version of the figure shows this. Note that the lowest bin is
made of instances from all three wind speed conditions, but
the contributions from the near-rated and above-rated condi-
tions are cropped out in this view.
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Figure A1. Fatigue-proxy EE value histograms divided by the wind speed condition for 14 quantities of interest with a zoomed-in y axis;
the red line marks the threshold for the significant EE value.

Appendix B: Seed convergence

Figures B1–B4 show the ultimate and fatigue-proxy output
according to Eqs. (1) and (2) as a function of the number
of seeds run. The blue line shows the results for the starting
point with no perturbation, and the red line shows the results
for the relevant input perturbation. The number of seeds is
sufficient when the difference between the blue and red lines
is clearly larger than the variability in either line due to seed.
This means that the EE value is actually due to the input per-
turbation and not the chosen seeds.

Figure B1 shows the seed convergence for the specific re-
lationship of heel angle sensitivity to the system horizontal
center of mass. Convergence is achieved when the variabil-
ity due to seed has disappeared, but a lower and more im-
portant threshold is when the difference between the lines is
clearly distinguishable from the variability due to seed. Note
that when the sensitivity between an input and an output is
low, the difference due to the input perturbation may never
be large compared to the fluctuations from the seed. This is
true for the bottom-middle and bottom-right plots, that is,
for the fatigue-proxy load in the near-rated and above-rated
conditions. While SCMX is very important for the extreme
absolute value of the heel, it has a much smaller impact on
the cycle size. In general, this relationship is relatively robust
with respect to the number of seeds.

Figure B2 shows the seed convergence for the specific re-
lationship of the low-speed shaft bending moment sensitivity
to the turbulent wind speed standard deviation in the main
wind direction. This relationship is much more sensitive to
the number of seeds. The variability due to seed is large com-
pared to the difference due to input perturbation. This is why
the trend for σu in Fig. 8 is the slowest to converge. Note
that this input–output relationship contributes a large num-
ber of significant events for both ultimate and fatigue-proxy
loads. Even though the relationship is sensitive to the num-
ber of seeds, the difference between the red and blue lines
is clearly distinguishable from the individual fluctuations by
around 70 seeds.

Figures B3 and B4 show the seed convergence for two
more important input–output relationships. Both of these
relationships contribute to the high sensitivity to σu and
demonstrate that the influence of the perturbation is clearly
distinguishable from the influence of the seed number when
at least 80 seeds are used.
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Figure B1. Seed convergence of the platform heel due to the system horizontal center of mass (blue line: nominal starting point, red line:
perturbation in SCMX).

Figure B2. Seed convergence of the low-speed shaft bending moment due to the turbulent wind speed standard deviation in the main wind
direction (blue line: nominal starting point, red line: perturbation in σu).
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Figure B3. Seed convergence of the nacelle acceleration due to the turbulent wind speed standard deviation in the main wind direction (blue
line: nominal starting point, red line: perturbation in σu).

Figure B4. Seed convergence of the yaw-bearing yawing moment due to the turbulent wind speed standard deviation in the main wind
direction (blue line: nominal starting point, red line: perturbation in σu).
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Data availability. The OpenFAST and TurbSim models used
in the study and the open-format versions of the sum-
mary plots found in the report can be publicly found at
https://doi.org/10.5281/zenodo.8326681 (Wiley et al., 2023). The
variable input parameters in the OpenFAST and TurbSim models
correspond to the nominal condition for the below-rated wind bin.

Almost a total of 400 000 simulations were run (OpenFAST and
TurbSim), resulting in a large set of input files and output data. This
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contact the authors for additional information.
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