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Abstract. The wind turbine extreme response estimation based on statistical extrapolation necessitates using
a minimal number of simulations to calculate a low exceedance probability. The target exceedance probability
associated with a 50-year return period is 3.8× 10−7, which is challenging to evaluate with a small prediction
error. The situation is further complicated by the fact that the distribution of the wind turbine response might be
multimodal, and the extremes belong to a different statistical population than the main body of the distribution.
Traditional theoretical probability distributions, mostly unimodal, may not be suitable for this task. The problem
could be alleviated by applying a fit specifically on the tail of the distribution. Yet, a single unimodal distribution
may not be sufficient for modeling diverse wind turbine responses, and an inappropriate distribution model
could lead to significant prediction errors, including bias and variance errors. The Gaussian mixture model,
a probabilistic and flexible mixture distribution model used extensively for clustering and density estimation
tasks, is infrequently applied in the wind energy sector. This paper proposes using the Gaussian mixture model
to extrapolate extreme wind turbine responses. The performance of two approaches is evaluated: (1) parametric
fitting first and aggregation afterward and (2) data aggregation first followed by fitting. Different distribution
models are benchmarked against the Gaussian mixture model. The results show that the Gaussian mixture model
is capable of estimating a low exceedance probability with minor bias error, even with limited simulation data,
and demonstrates flexibility in modeling the distributions of varying response variables.

1 Introduction

An accurate low exceedance probability estimation is crucial
for the statistical extrapolation of wind turbine responses, es-
pecially when limited data are available. The crude Monte
Carlo simulation (MCS) requires a large sample size, mak-
ing it computationally expensive. The extreme response with
a 50-year return period is usually extrapolated from 10 min
simulations, and estimating the 50-year extreme response
corresponds to an exceedance probability p = 3.81× 10−7

from 10 min simulations. The coefficient of variation (c.o.v.)
of the MCS estimator is

√
(1−p)/(pN ), where N is the

sample size (Ditlevsen and Bjerager, 1986). Using crude
MCS for analysis with such low probabilities requires at least

10
3.81×10−7 = 26280 000 simulations for sufficient accuracy,

i.e., a c.o.v. ≈
√

1/10≈ 0.316. The ultimate design load
assessment procedure prescribed by the International Elec-
trotechnical Commission (IEC) aims at ensuring the struc-
tural integrity of the turbine when subjected to rare extreme
loading conditions. The standards assume three types of sce-
narios for simulating such rare events: (1) extreme environ-
mental conditions that result in extreme loads, (2) occur-
rence of faults potentially combined with extreme environ-
mental conditions, and (3) rare occurrences under normal op-
eration. The last option is represented by design load case
(DLC) 1.1. It encompasses loads resulting from site-specific
atmospheric turbulence occurring during the turbine’s nor-
mal lifetime, i.e., the normal turbulence model. It establishes
the characteristic load value corresponding to a 50-year re-
turn period, which could be obtained by statistical analysis
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of extreme loading using load extrapolation methods. The
design load is then obtained by multiplying the characteris-
tic loads by an appropriate partial safety factor (IEC, 2019).
The load extrapolation methods are categorized into two ap-
proaches, i.e., (1) parametric fitting first and aggregation af-
terward (FFAA) and (2) data aggregation first and fitting af-
terward (AFFA). Unlike crude MCS, both approaches use
limited data and rely on statistical extrapolation for low ex-
ceedance probability estimation, which will introduce pre-
diction error.

In the FFAA approach, the long-term distribution is ob-
tained by aggregating the short-term distributions weighted
by the probabilities of occurrence at different wind speed
bins. The long-term distribution Flong term(s|T ) of the load
response s with simulation time T is a function of the short-
term distribution Fshort term(s|Vk,T ) at different wind speeds
(IEC, 2019):

Flong term(s|T )=
M∑
k=1

Fshort term(s|Vk,T )pk, (1)

where Vk is the mean wind speed at each wind bin, and

pk = f (Vk)1Vk,Vin ≤ V1 < .. . < VM ≤ Vout (2)

is the probability of occurrence of each wind bin, with
f (Vk) being the probability density of the wind speed. Vin
is the cut-in wind speed (usually 3 m s−1), Vout is the cut-
out wind speed (usually 25 m s−1), and 1Vk is the wind
speed bin width (usually 2 m s−1). The wind speed is di-
vided into bins within the wind turbine’s operational range.
At each wind speed bin, 10 min simulations are performed,
and the short-term distribution of extreme Fshort term(s|Vk,T )
is fitted. The limitation of this approach is that even though
Fshort term(s|Vk,T ) might have different probabilistic behav-
iors at different wind speed bins, the same type of probability
distribution is predefined and adopted for ease of applica-
tion. The tail distribution might not be modeled well at all
wind speed bins as there may be uncertainty in the individ-
ual fits of the underlying short-term distributions (Freuden-
reich and Argyriadis, 2008). The key issue is determining
the proper distribution model without knowing the underly-
ing conditional distributions at each wind bin. Different dis-
tribution models have different tail behaviors, which could
result in different long-term response predictions (Ding and
Chen, 2013). The estimated extreme loads have a wide range
when using the three-parameter Weibull, Gumbel, gener-
alized extreme value (GEV), and lognormal distributions
as conditional distributions (Freudenreich and Argyriadis,
2008; Dimitrov, 2016). An improper distribution could re-
sult in a far-off extreme load prediction (Freudenreich and
Argyriadis, 2008; Dimitrov, 2016).

In the AFFA approach, the environmental input condi-
tions for the 10 min load simulations are sampled directly
from their long-term distributions. Hence the data aggrega-
tion happens automatically through the distribution choice.

The extreme values from all 10 min simulations are fitted
to a single probability distribution for extreme load esti-
mation or exceedance probability calculation. This method
is also referred to as the post-processing method (Zhang
et al., 2020) and is equivalent to a density estimation ap-
proach. It suffers from the same challenge as the FFAA ap-
proach, as selecting a proper distribution becomes difficult,
especially when the underlying distribution is unknown. An
improper distribution selection could introduce large esti-
mation errors and far-off extreme response estimation. As
the number of simulations is limited, even though different
probability distributions are available, selecting the distribu-
tion is challenging. Fit accuracy at the center of the distri-
bution does not guarantee a good extrapolation at the tail,
which is more important for extreme load estimation. The
wind turbine extreme response distributions could have mul-
tiple modes (Yang et al., 2022), whereas distributions like
Weibull, Gumbel, GEV, lognormal, etc. are unimodal distri-
butions. Yang et al. (2022) compared the AFFA and FFAA
approaches with different distributions but have not resolved
the statistical extrapolation issue. A possible solution is to fit
only the tail data; e.g., Natarajan and Holley (2008) fitted the
tail of wind turbine loads using a Gumbel distribution with
a quadratic distortion. Mixture probability distributions (e.g.,
Weibull–Weibull), as discussed in Jung and Schindler (2017),
can be beneficial for accurately modeling an entire multi-
modal statistical population. However, the varying number
of modes in wind turbine response distributions, sometimes
exceeding two, poses challenges for both bimodal distribu-
tions and fixed-component distributions. These challenges
stem from mismatches in mode numbers during distribution
fitting using the complete dataset. When relying solely on tail
data for distribution fitting, the selection of appropriate mix-
ture probability distribution components and their quantities
remains a challenge (e.g., Weibull–Weibull, GEV–Weibull,
GEV–lognormal–Weibull).

The Gaussian mixture model (GMM) (McLachlan and
Peel, 2000) is proposed in this paper as the distribution func-
tion for the AFFA approach. It is a flexible probabilistic
model and is widely used for machine learning tasks: cluster-
ing (He et al., 2011; Zhang et al., 2021; Weber et al., 2022),
classification (Huang et al., 2005; Kim and Kang, 2007; Per-
muter et al., 2006), and image segmentation (Nguyen and
Wu, 2013; Yin et al., 2018; Gupta and Sortrakul, 1998).
GMM has also been used in the field of wind energy, e.g.,
wind speed probability density estimation (Wahbah et al.,
2018), wind power ramps (Cui et al., 2018), wind turbine
power (Zhang et al., 2019), wind turbine power curves
(Srbinovski et al., 2021), and environmental contour esti-
mation (Zhang and Natarajan, 2022). GMM is a mixture
model whose probability density function (PDF) is multi-
modal, which is suitable for modeling the multimodal dis-
tribution of wind turbine responses. However, its potential
in wind turbine extreme response estimation is yet to be ex-
plored. The objective of the present paper is to use GMM

Wind Energ. Sci., 8, 1613–1623, 2023 https://doi.org/10.5194/wes-8-1613-2023



X. Zhang and N. Dimitrov: Extreme wind turbine response extrapolation 1615

for extreme response estimation and especially for response
variables whose distribution is multimodal. Comparison will
be made against using other distributions within the scope of
the FFAA and AFFA approaches. The prediction error, which
includes bias error (the difference between mean prediction
and true value) and variance error (the variability of the pre-
diction), will be systematically investigated on different wind
turbine responses.

2 Gaussian mixture model

GMM is a weighted sum of Gaussian distribution compo-
nents, where each component is defined by its mean (µ) and
standard deviation (σ ).

The PDF of a GMM is

y(x)=
m∑
j=1

πjN
(
x|µj ,σj

)
, (3)

where N
(
x|µj ,σj

)
is the PDF of a normal distribution,m is

the number of components, and πj is the component coeffi-
cient (weight) and follows

m∑
j=1

πj = 1, 0≤ πj ≤ 1. (4)

For a given number of components, the model parame-
ters {πj ,µj ,

∑
j ,j = 1,2, . . .,m} could be estimated from

a dataset whose size is denoted by N , {xn,n= 1,2, . . .,N}
(see Appendix B for more details). The number of compo-
nents is unknown a priori and should also be estimated from
data. It balances the model to prevent underfitting or overfit-
ting. The Akaike information criterion (AIC) (Akaike, 1998)
could be used for estimating the optimal number of compo-
nents m. The method stems from information theory and is
an extension of a maximum likelihood estimation with the
expression

AIC= 2k− 2`(θ |x), (5)

where k = 3m− 1 is the number of parameters. m and
θ = {πj ,µj ,σj ,j = 1,2, . . .,m} that give the minimum AIC
value correspond to the optimal number of components and
the associated model parameters respectively.

As a mixture model, GMM with two or more components
is not Gaussian distributed anymore and has different tail be-
havior compared to the Gaussian distribution. As its num-
ber of components and the associated component coefficients
adapt to data, GMM possesses more flexibility than other
parametric distribution models. However, it is important to
note that when the sample size is small, too many compo-
nents in GMM may result in an overrepresentation of the data
and may compromise its extrapolation capability.

3 Problem formulation and methods

The wind turbine time domain analysis is time-consuming
and requires a lot of computational resources, and the fea-
sible number of simulations is often limited. The low ex-
ceedance probability is usually extrapolated from a small
dataset. Statistical extrapolation thus reduces the number of
simulations but introduces prediction errors simultaneously.
The prediction error could be described by the mean squared
error (MSE) of the estimator P̂F ; i.e., MSE(P̂F )= V (P̂F )+[
B(P̂F )

]2
(Wackerly et al., 2008), where V (P̂F ) is the vari-

ance error, which describes the variability in prediction using
different random samples, and B(P̂F )= E(P̂F )−PF is the
bias error, which describes the difference between the mean
prediction with true value. The variance and bias error, per-
formance indicators of the wind turbine response extrapola-
tion methods, should be examined.

Choosing an inappropriate distribution will undoubtedly
increase the bias error in the FFAA and AFFA approaches.
Furthermore, even with the same distribution, different esti-
mations of model parameters can yield varying results. Pa-
rameter estimation includes but is not limited to (1) the
method of least squares (LSs), which estimates the model
parameters by minimizing the sum of the squares of the dif-
ference between the observed values and the predicted values
from a model; (2) maximum likelihood estimation (MLE);
and (3) method of moments (e.g., Weibull model parameter
estimation, Moriarty et al., 2004). In the FFAA and AFFA
approaches, a comparison is made among the GEV, three-
parameter Weibull, and lognormal distributions, along with
GMM, using different parameter estimation methods. This
comparison involves a total of 11 methods:

1. FFAA with GEV, Weibull, and lognormal as short-
term distributions (referred to as FFAA, GEV; FFAA,
Weibull; and FFAA, lognormal) conditional on wind
speeds, where the MLE is used for model parameter es-
timation.

2. AFFA with the three distributions using MLE and LS
for model parameter estimation (referred to as GEV,
MLE; Weibull, MLE; lognormal, MLE; GEV, LS;
Weibull, LS; and lognormal, LS).

3. AFFA with GMM using AIC and LS for finding the
number of components (referred to as GMM, AIC, and
GMM, LS).

In the LS-estimated AFFA approaches, GEV (LS),
Weibull (LS), and lognormal (LS), only the tail data (above
80 % quantile) are used to fit the theoretical distributions,
where the probability of exceedance of the tail data is cal-
culated as Pt. The probability of exceedance of the response
variable is then determined as Pf = Nt

N
×Pt = 0.2×Pt, where

Nt is the sample size of the tail data, andN is the total sample
size. The AFFA approach using LS minimizes the squared
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difference between the empirical and theoretical probabil-
ity of exceedances in the logarithmic scale, with weights as-
signed to each data point. Specifically, for the sorted dataset
in ascending order S = {xi, i = 1,2, . . .,N}, the correspond-
ing empirical cdf {Fei = (i− 0.5)/N,i = 1,2, . . .,N}, and
the weight {wi = 1/

√
Fei × (1−Fei)}. The residual for the

tail data
∑N
i=N−Nt+1wi×(log(1−Fei)− log(1−F (xi |θ )))2

is minimized to get the model parameter θ . Note that the em-
pirical cdf is calculated based on the entire dataset, but the
squared error is minimized only on the tail data.

Determining the appropriate number of components of a
GMM requires further research. In Eq. (5), AIC is used (re-
ferred to as GMM, AIC), where the first term is a penalty
term, which discourages overfitting a model, thus balancing
model complexity. However, in cases where the sample size
is large, the penalty term becomes relatively small, and the
AIC approaches maximum likelihood estimation. It will lead
to better accuracy at the center of the distribution relative to
the tail. To address this, LS on tail data (above 80 % quantile)
(shown in the legend as GMM(LS)) is proposed for selecting
the number of components m. Following the procedure in
Sect. 2, the squares of the residuals from the tail data using
GMM associated with the number of components k are cal-
culated (the same as AFFA with LS). The optimal value of
m gives the least squares of residuals. Note that the LS here
is only for determining the number of components, which
is independent of the model parameter θ = {πj ,µj ,σj ,j =
1,2, . . .,m} estimation using the expectation-maximization
(EM) algorithm (see Appendix B).

The analysis focuses on four wind turbine responses: (a)
the maximum out-of-plane blade tip deflection, (b) the max-
imum blade root out-of-plane bending moment, (c) the max-
imum blade root in-plane bending moment, and (d) the max-
imum tower base side-to-side bending moment. The simu-
lated wind turbine responses are obtained from Barone et al.
(2011). To extract peak responses from a sampled time se-
ries, the global maxima, block maxima (Fogle et al., 2008;
Dai et al., 2022), and peak over threshold methods, average
conditional exceedance rates (ACERs) (Naess et al., 2013)
could be used (Toft et al., 2011; Dimitrov, 2016; Ding et al.,
2013). Different peak extraction techniques will render dif-
ferent results but will not be the focus of this study, where
the peaks are obtained using only the global maxima method.
The randomness of the responses comes from the wind pa-
rameters, where the mean 10 min wind speed is sampled from
the Rayleigh distribution, and two random seeds are used for
generating the turbulence model. The wind turbine model is a
5 MW NREL reference wind turbine, a three-bladed, upwind
rotor with a diameter of 126 m. The FAST aeroelastic code
is used for the five million aero-elastic simulations (Barone
et al., 2011), which is based on DLC 1.1 in IEC 61400-1
(IEC, 2019).

The 11 methods are firstly compared on the entire dataset
with a sample size N ∼ 105. The methods that exhibit rel-
atively small differences compared to the results obtained

Figure 1. PDF of maximum blade root in-plane bending moment.

through crude MCS are further assessed for prediction error,
which involves performing statistical extrapolation using 100
sets of smaller sample size samples randomly drawn from the
entire dataset. Additionally, for the AFFA approach using the
three distributions, the impact of varying amounts of tail data
on the results will also be discussed.

4 Results

The PDF of wind turbine response (c) from MCS is shown
in Fig. 1, which is multimodal. To model the PDF of re-
sponse (c) using the entire dataset, the Weibull distribution
with maximum likelihood estimation is employed. However,
as the Weibull distribution is unimodal and cannot capture
the multimodal nature of the underlying PDF, a noticeable
discrepancy arises between the MCS and the Weibull dis-
tribution. Consequently, the Weibull distribution cannot be
directly used to model the wind turbine response (c). Simi-
lar observations can be made when utilizing other unimodal
distributions such as GEV, lognormal, and Gumbel distribu-
tions to model other responses. Fitting the wind turbine ex-
treme response with unimodal distributions directly will have
a large estimation error at both the center and the tail distri-
bution. This limitation explains why, in the AFFA approach,
only the tail portion of the distribution is fitted and utilized
for extreme response estimation.

4.1 Wind turbine response distribution modeling

The 11 methods are firstly compared on the entire dataset
with a sample size N ∼ 105, and the probabilities of ex-
ceedance in logarithmic scale are plotted in Fig. 2. Since
the predicted exceedance probability already reaches the
limit that can be calculated using a Monte Carlo simulation
(MCS), this comparison focuses solely on statistical model-
ing rather than extrapolation.
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In the FFAA approach, a large difference is observed be-
tween the prediction and MCS for cases (a) and (b) regard-
less of the short-term conditional distribution used. However,
when using the GEV distribution for cases (c) and (d) and the
lognormal distribution for case (d), a smaller difference is ob-
served. The results indicate that FFAA is a viable option for
extreme response estimation, but distribution selection sig-
nificantly impacts the results.

In the AFFA approach, using MLE for model parameter
estimation may not yield favorable outcomes. A significant
difference between the prediction and MCS results is ob-
served for all cases, regardless of the distribution used, ex-
cept for case (b) when using the three-parameter Weibull dis-
tribution. Among the three distributions, Weibull consistently
performs better than the others regarding tail performance.
By focusing only on fitting the tail data and disregarding the
accuracy of the distribution at the center, using the LS ap-
proach greatly improves the results. For all four cases, the
difference between the prediction and MCS is small, except
when using the lognormal distribution for case (d), as shown
in Fig. 2d. While the choice of distribution has a relatively
small effect on the results when using LS for the AFFA ap-
proach, it is important to note that an improper distribution
selection can still lead to significant deviations in predictions.

Regarding GMM, using LS to determine the number of
components outperforms AIC. When the sample size is large,
the penalty term in AIC becomes negligible, often result-
ing in selecting a model with excessive components. In the
four cases considered, LS suggests usingm= 6 components,
while AIC suggests usingm= 9, explaining the difference in
performance.

It is important to note that the results shown in Fig. 2 are
based on the entire dataset. In practical scenarios, only a rela-
tively small number of simulations can be conducted, and the
low probability of exceedance is statistically extrapolated.
Since the results of the FFAA and AFFA approaches using
MLE for model parameter estimation heavily depend on the
choice of distribution, the extrapolation methods employed
are compared in the subsequent section.

4.2 Wind turbine response distribution extrapolation

To statistically compare the extrapolation performance of dif-
ferent methods, a random sample of 104 data points is drawn
from the entire dataset 100 times. These samples are then uti-
lized for extreme load extrapolation, and the statistical results
obtained from each method using these 100 samples are com-
pared. With a sample size of 104, the exceedance probability
captured by MCS will not be smaller than 10−4; thus the
statistical extrapolation performance of each method is com-
pared. Given the relatively large distribution modeling errors
observed for the FFAA and AFFA with MLE approaches,
even when using the entire data dataset, their extrapolation
performances are not compared here.

Figure 3 shows the results of the AFFA approach with the
GEV, three-parameter Weibull, and lognormal distributions
with LS for model parameter estimation, along with GMM
using LS and AIC for selecting the number of components.
The mean probability of exceedance from 100 samples of
each method is plotted, and its difference with MCS repre-
sents the prediction bias error. The GEV, Weibull, and log-
normal have relatively small bias errors for cases (a), (b), and
(c), while they have relatively large bias errors for case (d).
Lognormal has the largest bias error for case (d), consistent
with the observations made using the entire dataset. On the
other hand, GMM has relatively small bias errors for all the
cases, except case (d), when the exceedance probability is
smaller than 5× 10−6, where it exhibits a relatively larger
bias error.

To make further comparisons, especially to examine the
variance error in the methods compared, the prediction er-
ror at an exceedance probability PF = 1.90× 10−6, the ex-
ceedance probability associated with a 10-year return period,
is compared. Assuming P̂FMCS is the true PF , the associ-
ated extreme response values are obtained as (a) 9.75 m, (b)
1.74×104 kN m, (c) 9.77×103 kN m, and (d) 4.03×104 kN m
for the four wind turbine responses. Several metrics are cal-
culated and presented in Table 1 to compare the performance
of the methods at these response locations. These metrics in-
clude the following:

– the mean of predicted exceedance probability, denoted
as E(P̂F );

– the variance of the predicted exceedance probability, de-
noted as V ;

– the square of the bias error, denoted as B2;

– the mean squared error, denoted as MSE;

– the root mean square error (normalized by PF ), denoted
as rMSE/PF .

These metrics provide a comprehensive evaluation of the
methods in terms of their overall prediction error at the spe-
cific exceedance probability of interest.

Except for case (a), it can be observed from both Fig. 3
and Table 1 that the lognormal distribution exhibits a larger
deviation in terms of the mean P̂F compared to the GEV
and Weibull distributions. This discrepancy is indicated by
the largest bias (B2) value. However, when considering the
variance error, the lognormal distribution shows the smallest
mean square error (MSE) for the first three cases. This high-
lights the importance of considering variance errors when
making comparisons. Conversely, the lognormal distribution
yields the largest MSE for case (d) among all the methods
compared. This is due to the distinct tail behavior of case (d),
which differs significantly from the lognormal distribution,
as it is not sufficiently flexible to fit different response vari-
ables.
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Figure 2. Probability exceedance estimation with MCS data.

In contrast, GMM demonstrates considerable flexibility.
GMM (AIC) has the smallest MSE for cases (c) and (d) and
the second smallest for cases (a) and (b). The distinguishing
factor between GMM and other distributions lies in its per-
formance consistency. Given the uncertainty about the under-
lying data distribution, opting for a flexible distribution with
reliable performance, like GMM, becomes advantageous as
it mitigates the risk of significant prediction errors caused by
an inappropriate model selection. On the other hand, employ-
ing the LS method to determine the number of components
leads to more prediction errors than AIC in all four cases.
This suggests that AIC performs well when the sample size
is relatively small. Table 2 provides the average number of
components for GMM obtained from the 100 sets when us-
ing AIC versus LS.

In almost all cases, the major contribution to the MSE is V ,
as compared to B2, which shows the importance of consider-
ing variance error when performing a statistical comparison.
As an exception, in case (d), B2 is larger than V , which indi-
cates that lognormal is unsuitable for this particular case as
the bias error is excessively large.

4.3 Sample size effect on extreme load extrapolation

The sample size plays a significant role in determining the
prediction error for all the methods examined. Van Eijk et al.
(2017) investigated the effect of different sample sizes on
extreme load predictions and pointed out that the extrapo-
lated 50-year responses could be misleading, and a 300 min
time series is not sufficient for 50-year load extrapolation.
In the cases discussed above, a sample size of 104 was used
to achieve a relatively small prediction error close to the ex-
ceedance probability associated with a 10-year return period.
Limited by the sample size of the data, the exceedance proba-
bility smaller than 1.90×10−6 is not accurate for MCS and is
thus not investigated in this study. Given the time-consuming
nature of wind turbine analysis, a smaller sample size is de-
sirable. The results using 100 random samples with a size of
103 are plotted in Fig. 4. In this analysis, GMM exhibits a
relatively smaller bias for PF ≥ 1.90×10−5, associated with
a 1-year return period. On the other hand, for the other three
distributions, the bias error becomes quite substantial for ex-
ceedance probability smaller than 10−3. This demonstrates
the limitation of all the compared methods when using a
small sample size for extreme response estimation.
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Figure 3. Probability of exceedance estimation with sample data.

Table 1. Extreme load estimation with sample data.

GEV Lognormal Weibull GMM (AIC) GMM (LS)

(a)

E(P̂F ) 2.73×10−6 1.47×10−6 2.82×10−6 1.78×10−6 4.20×10−6

V 2.97×10−11 3.04×10−12 2.27×10−11 1.09×10−11 6.79×10−11

B2 6.82×10−13 1.87×10−13 8.40×10−13 1.43×10−14 5.28×10−12

MSE 3.04×10−11 3.23×10−12 2.35×10−11 1.10×10−11 7.32×10−11

rMSE/PF 2.90 0.94 2.55 1.74 4.50

(b)

E(P̂F ) 1.81×10−6 9.46×10−7 1.92×10−6 9.70×10−7 3.15×10−6

V 1.60×10−11 1.26×10−12 1.20×10−11 1.82×10−12 5.33×10−11

B2 9.31×10−15 9.16×10−13 2.56×10−16 8.70×10−13 1.55×10−12

MSE 1.60×10−11 2.17×10−12 1.20×10−11 2.69×10−12 5.49×10−11

rMSE/PF 2.10 0.77 1.82 0.86 3.89

(c)

E(P̂F ) 4.02×10−6 4.83×10−6 4.29×10−6 8.72×10−7 1.48×10−6

V 8.82×10−11 1.88×10−11 7.01×10−11 7.49×10−12 1.26×10−11

B2 4.47×10−12 8.57×10−12 5.70×10−12 1.06×10−12 1.80×10−13

MSE 9.27×10−11 2.74×10−11 7.58×10−11 8.55×10−12 1.28×10−11

rMSE/PF 5.06 2.75 4.58 1.54 1.88

(d)

E(P̂F ) 6.24×10−6 4.59×10−5 7.73×10−6 3.04×10−6 4.01×10−6

V 3.00×10−10 2.72×10−10 2.73×10−10 1.51×10−10 1.62×10−10

B2 1.88×10−11 1.94×10−9 3.40×10−11 1.30×10−12 4.46×10−12

MSE 3.19×10−10 2.21×10−9 3.07×10−10 1.52×10−10 1.67×10−10

rMSE/PF 9.38 24.71 9.21 6.48 6.78

https://doi.org/10.5194/wes-8-1613-2023 Wind Energ. Sci., 8, 1613–1623, 2023



1620 X. Zhang and N. Dimitrov: Extreme wind turbine response extrapolation

Table 2. Average number of components for GMM.

(a) (b) (c) (d)

AIC 7.04 7.35 8.78 6.34
LS 7.47 7.29 7.49 7.36

Figure 4. Results for case (c) with a sample size of 103.

5 Discussions

Statistical extreme response extrapolation is important for
the probabilistic design of wind turbines. The FFAA and
AFFA approaches in IEC 61400-1 (IEC, 2019) are assessed
on their modeling and extrapolation performances, where
the latter is a more challenging task. The FFAA approach
demonstrates feasibility when a suitable short-term distribu-
tion is selected, e.g., using GEV as a short-term distribution
for cases (c) and (d) (as is shown in Fig. 2). However, it is im-
portant to note that the response at each wind speed bin may
not follow the same distribution. Consequently, using a sin-
gle distribution for all bins might introduce prediction errors.
Furthermore, different response variables may exhibit differ-
ent distribution characteristics, and applying a single distri-
bution to various response variables may lead to additional
prediction errors. As is evident from Fig. 2, the GEV might
perform well for cases (c) and (d) but not the other two re-
sponse variables.

Flexibility in distribution modeling is important for both
the FFAA and the AFFA approaches. The results show that
the AFFA approach with LS is less subjected to the effect
of choosing distribution models. However, an improper dis-
tribution will introduce prediction error. This could be seen
from the examples above that using lognormal distribution
for case (d) will have a large bias error. Given that wind tur-
bine response variables can exhibit multimodal distributions,
it is recommended to utilize a flexible distribution model.
GMM fulfills this requirement, making it suitable for ex-
treme response extrapolation. GMM offers the advantage of
capturing the multimodal nature of wind turbine responses
and can provide more accurate predictions than other distri-
bution models. Therefore, GMM is recommended for model-

Figure 5. Results with different quantiles.

ing and extrapolating extreme wind turbine responses. There
are several advantages to using GMM for extreme response
estimation:

1. GMM can effectively model both the center and the tail
distribution. Figure 1 illustrates that GMM is capable
of capturing the bimodal nature of the probability dis-
tribution well. In contrast, other unimodal distributions
struggle to model the PDF well, making them unsuitable
for direct use in extreme response estimation.

2. GMM is a flexible modeling approach that can be ap-
plied to different types of wind turbine responses. It
consistently performs well across all the compared wind
turbine responses. In contrast, other distribution mod-
els may perform well for certain response variables but
exhibit significant prediction errors for others. For in-
stance, as shown in Fig. 3 and Table 1, the lognor-
mal distribution performs well for the first three cases
but demonstrates the largest prediction error for the last
case.

3. GMM eliminates the prediction error associated with
selecting different percentages of data for tail estima-
tion. Only the tail data are utilized when fitting the
three distributions using the LS method. However, the
amount of tail data selected for estimation can lead to
varying results. GMM (LS) overcomes this limitation
as LS is only used to determine the number of compo-
nents and is not affected by the choice of quantiles. For
example, in Fig. 5, the extreme load estimation for the
maximum out-of-plane blade tip deflection is compared
using Weibull (LS) with data above the 50th (shown
in the legend as 50 %) to 90th (shown in the legend
as 90 %) quantiles. Significant differences are observed
when using different amounts of tail data for LS with
the Weibull distribution.

In summary, the advantages of using GMM for extreme re-
sponse estimation include its ability to accurately model both
the center and the tail distribution, its flexibility in handling

Wind Energ. Sci., 8, 1613–1623, 2023 https://doi.org/10.5194/wes-8-1613-2023
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different response variables, and its avoidance of prediction
errors associated with selecting different amounts of tail data.
These benefits make GMM a recommended choice for wind
turbine extreme response extrapolation.

Statistical extrapolation is a challenging problem, particu-
larly when dealing with smaller sample sizes for lower ex-
ceedance probability extrapolation. With a sample size of
104, GMM has a noticeable bias error when the exceedance
probability is smaller than 5× 10−5 for case (d), as depicted
in Fig. 3. It is important to note that when using a smaller
sample size, the prediction error is expected to increase, as il-
lustrated in Fig. 4. Thus, caution must be exercised when per-
forming statistical extrapolation, and further research should
focus on error analysis in statistical extrapolation. For in-
stance, it would be valuable to investigate the relationship
among the sample size, the desired prediction error, and the
extrapolated exceedance probability.

It should be mentioned that the favorable performance of
GMM in the aforementioned examples is attributed to the un-
derlying distribution being multimodal. For unimodal vari-
ables, a flexible univariate distribution could be used for ex-
treme response estimation, e.g., the distribution based on
maximum entropy with fractional moments (Zhang et al.,
2020). Therefore, the choice of an appropriate distribution
should be guided by the characteristics of the variable being
analyzed.

6 Conclusions

Extreme response estimation can be likened to low ex-
ceedance probability estimation with limited simulations.
Both parametric fitting first and aggregation afterward and
data aggregation first and fitting afterward approaches could
be used for the task. Both approaches with maximum likeli-
hood estimation are quite sensitive to the distribution chosen,
which could lead to biased results with an improper proba-
bility distribution. The data aggregation first and fitting after-
ward coupled with least square estimation for fitting the tail
distribution is less sensitive to the type of probability distri-
bution. However, an improper probability distribution could
still introduce a large prediction error.

There are flexible distributions available, but most are lim-
ited to unimodal distribution. The probability distribution of
the wind turbine responses could be multimodal. Using uni-
modal distribution, e.g., GEV, Weibull, and lognormal, to di-
rectly fit the distribution for extreme response estimation is
infeasible. The Gaussian mixture model is a multimodal dis-
tribution by nature and is proposed here for extreme load es-
timation when the underlying distribution is multimodal. It
could model both the center and the tail distribution, is flexi-
ble enough for different response variables, and does not re-
quire subjectively choosing the threshold compared with the
least square estimation of tail distribution. It is thus recom-

mended as an alternative distribution of wind turbine extreme
response estimation.

Statistical extrapolation is challenging, and extreme cau-
tion must be exercised when making assumptions far be-
yond the available dataset. Given that the extreme response
associated with a 50-year return period necessitates low ex-
ceedance probability estimation, an adequate number of sim-
ulations is critical for accurate prediction.

Appendix A: Nomenclature

AFFA: Data aggregation first and fitting afterward
AIC: Akaike information criterion
FFAA: Parametric fitting first and aggregation afterward
GEV: Generalized extreme value
GMM: Gaussian mixture model
LS: Least squares
MCS: Monte Carlo simulation
MLE: Maximum likelihood estimation
PDF: Probability density function

Appendix B: GMM model parameter estimation

The initial model parameters are calculated from the clus-
ters evaluated by the k-means clustering algorithm (Arthur
and Vassilvitskii, 2007) and optimized by the expectation-
maximization (EM) algorithm (McLachlan and Peel, 2000)
as follows:

1. Divide the N data points into k clusters using the k-
means clustering algorithm. Compute µj , σj , and πj
using the data points within each cluster as the ini-
tial model parameters for the expectation-maximization
(EM) algorithm.

2. EM algorithm

The model parameters {πj ,µj ,σj ,j = 1,2, . . .,m} are
found by an iterative EM algorithm (Dempster et al.,
1977) to have a maximum likelihood estimation.

a. E step
Evaluate the responsibilities using the current
model parameters. The responsibility γj (xn) is the
probability that component j takes for explaining
the observation xn, which is calculated as

γj (xn)=
πjN

(
xn|µj ,σj

)∑m
i=1πiN (xn|µi,σi)

. (B1)

b. M step
Update the model parameters using the responsibil-
ities from the E step. The mean for component j is
calculated as

µj =

∑N
n=1γj (xn)xn∑N
n=1γj (xn)

. (B2)
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The standard deviation for component j is calcu-
lated as

σj =

√√√√∑N
n=1γj (xn)(xn−µj )2∑N

n=1γj (xn)
, (B3)

and the j component coefficient is calculated as

πj =
1
N

N∑
n=1

γj (xn). (B4)

3. Repeat step 2 until the model parameters converge or
the maximum number of iterations is met.
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