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Abstract. The power equations of crosswind Ground-Gen and Fly-Gen airborne wind energy systems (AWESs)
flying in circular trajectories are refined to include the contribution from the aerodynamic wake, modeled with
vortex methods. This reveals the effect of changing the turning radius, the wing geometry and the aerodynamic
coefficients on aerodynamic performances and power production. A novel power coefficient is defined by nor-
malizing the aerodynamic power with the wind power passing through a disk with a radius equal to the AWES
wingspan, enabling the comparison of different designs for a given wingspan. The aspect ratio which maximizes
this power coefficient is finite, and its analytical expression for an infinite turning radius is derived. By consid-
ering the optimal wing aspect ratio, the maximum power coefficient is found, and its analytical expression for
an infinite turning radius is derived. Ground-Gen and Fly-Gen AWESs, with the same idealized characteristics,
are compared in terms of power production, and later three AWESs from the literature are analyzed. With this
modeling framework, Ground-Gen systems are found to have a lower power potential than Fly-Gen AWESs with
the same geometry because the reel-out velocity makes Ground-Gen AWESs fly closer to their own wake.

1 Introduction

Airborne wind energy (AWE) is the field of wind energy in
which airborne systems, connected to the ground through a
tether, harvest high-altitude wind power. Airborne wind en-
ergy systems (AWESs) can be classified, based on their flight
operations, as crosswind, rotational and tether aligned (Ver-
million et al., 2021). The mechanical power can be converted
into electrical power on the ground with a moving or fixed
ground station (Ground-Gen) or with onboard wind turbines
and is transmitted to the ground through the tether (Fly-Gen).
In this work, the power equations of Ground-Gen and Fly-
Gen crosswind AWESs featuring a single wing are refined.

The first theoretical power equation of crosswind AWESs
is derived by Loyd (1980), for given lift and drag coefficients
of the system. Other works (e.g., Diehl, 2013; Schmehl et al.,
2013; Luchsinger, 2013; Argatov and Silvennoinen, 2013)
follow Loyd’s effort and refine the power equation, which
is still based on given system aerodynamic coefficients. To
use these models, the lift and drag coefficients need to be
known or modeled. In particular, the lift coefficient is typi-

cally modeled as a function of the wing angle of attack, the
wing geometry and the airfoil characteristics. A desirable and
feasible (i.e., before stall) lift coefficient can be obtained by
pitching the wing to obtain the corresponding angle of attack.
The system drag includes contributions from the wing profile
drag, the tether drag (Trevisi et al., 2020a), the induced drag,
and the drag of all AWES components excluding the wing
and the tether. The induced drag is the result of the velocities
induced by the AWES trailed vorticity (wake) on the AWES
wing itself. Indeed, the finite AWES wing trails vortices ac-
cording to the spanwise lift distribution. The velocities in-
duced by the trailed vortices reduce the relative wind velocity
and effectively rotate the apparent velocity, composed by the
undisturbed relative wind velocity and the AWES velocity,
by an induced angle. Since the aerodynamic lift is defined
as being perpendicular to the local apparent velocity, it is ro-
tated by the induced angle. The component of lift parallel to
the undisturbed apparent velocity is then the induced drag.
In AWE, the induced velocities and the induced drag are
typically estimated using Prandtl lifting-line theory, devel-
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oped for wings in forward flight (i.e., the aerodynamic wake
is straight). For example, Vander Lind (2013), Bauer et al.
(2018) and Trevisi et al. (2020b) refine Loyd’s power equa-
tion by finding the induced drag coefficient with the straight
wake assumption. To overcome the straight wake assump-
tion in engineering models, the induced velocities are mod-
eled with momentum methods (De Lellis et al., 2018; Kheiri
et al., 2018, 2019) and vortex methods (Leuthold et al., 2019;
Gaunaa et al., 2020; Trevisi et al., 2023b).

Gaunaa et al. (2020) point out that using momentum meth-
ods to analyze the induction for an AWES, which is described
by 3D polars, is not physically consistent. Indeed, momen-
tum theory is used in rotor aerodynamics to find the velocity
triangle of an airfoil (2D polars) along the blade. If then mo-
mentum theory is used to evaluate the induction at an airfoil
in the AWES wing (2D polars), a root and a tip correction
would be needed to take into account that the rotor is not a
disk but a single wing. However, the corrections for AWESs
would differ largely from wind turbine corrections, as these
are developed for blades extending almost to the rotation axis
and need a dedicated study. Gaunaa et al. (2020) then intro-
duce a vortex-based engineering model to find the induced
velocities at the AWES. Based on these considerations, Tre-
visi et al. (2023b) find an induced drag coefficient of the
AWES with vortex methods. The helicoidal wake structure is
modeled with an expression for the near wake (first-half ro-
tation of the wake) and one for the far wake (from the second
half of the wake to infinity). The induced drag related to the
near wake is found to be similar to the induced drag the same
wing would have in forward flight (i.e., with straight wakes).
The induced drag coefficient related to the far wake is mod-
eled as a function of the near-wake drag coefficient, the ratio
between the wingspan and the turning radius, and the heli-
coidal wake pitch. The helicoidal wake pitch can be found
iteratively as a function of the other geometrical and aerody-
namic quantities. The model is validated with the lifting line
free-vortex wake method (Marten et al., 2015) implemented
in QBlade.

In this work, a power equation refinement, based on the
aerodynamic modeling from Trevisi et al. (2023b), is intro-
duced, and a novel power coefficient is defined. Properly in-
cluding the aerodynamic wake into the power equation re-
veals the effect of changing the turning radius, the wing as-
pect ratio and the aerodynamic coefficients on the overall per-
formance. The novel power coefficient enables the compar-
ison of different concepts and the definition of optimal geo-
metrical quantities. This work is particularly relevant when
studying the performance of a given system or carrying out a
system design study.

This paper is organized as follows: in Sect. 2, the main
assumptions and equations of the vortex model from Trevisi
et al. (2023b) are recalled to make this paper self-contained.
In Sects. 3 and 4, the power equations of Ground-Gen and
Fly-Gen AWESs are derived. In Sect. 5, Ground-Gen and
Fly-Gen AWESs, with the same geometry, are compared in

Figure 1. Wake structure of an AWES flying in circular trajectories.
The solid and dashed blue lines represent the left and right rolled up
vortices respectively.

terms of power production. In Sect. 6, three AWES designs
from the literature are analyzed. In Sect. 7, the main conclu-
sions are discussed. A nomenclature is given in Appendix A.

2 Vortex wake model

In this section, the main assumptions and final equations of
the vortex wake model introduced by Trevisi et al. (2023b)
are summarized. The velocities induced at the AWES from
the helicoidal trailed vortex filaments are modeled with an
expression for the near wake and one for the far wake. The
near wake is modeled as the first-half rotation of the heli-
coidal filaments, with their axial component being neglected.
The far wake is modeled as two semi-infinite vortex ring cas-
cades with opposite intensity. This model is employed to re-
fine the Ground-Gen and Fly-Gen AWES power equations in
the next sections.

Referring to Fig. 1, the AWES moves in a circular trajec-
tory with radius R0 in the plane (e1,e2), which is perpendic-
ular to the incoming wind vw =−vwe3. In this model, the
wind is assumed constant, and the gravity is neglected. The
AWES has a constant speed, and its wing, assumed to be el-
liptical, is on the rotational plane. Trevisi et al. (2022a) show
that these are the optimal trajectories for a Fly-Gen maximiz-
ing thrust power with constant inflow, and the AWES flight
mechanics can be studied with respect to this condition (Tre-
visi et al., 2021). For Ground-Gen AWESs, the inertial refer-
ence frame (e1,e2,e3) moves with the reel-out velocity of the
tether vo =−voe3, assumed to be only along the axial direc-
tion such that the relative wind velocity is vr = vw− vo. For
Fly-Gen AWESs, the tether and the inertial reference frame
are fixed, and the relative wind velocity coincides with the
wind velocity vr = vw.

The induced drag coefficient due to the near wake is simi-
lar to the induced drag coefficient the same wing would have
in forward flight
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Cn
Di ≈

C2
L

πAR
, (1)

where CL and AR are the wing lift coefficient and the aspect
ratio respectively.

The induced drag coefficient due to the far wake is

Cf
Di ≈

1
4π

C2
L

πAR
κ
π/2
0 λ

3/2
0 , (2)

where κ0 =
b

2R0
is the inverse turning ratio, defined as the

ratio between the half span b/2 and the turning radius R0,
and λ0 is the normalized torsional parameter of the helicoidal
wake, which physically represents the ratio between the cir-
cumference length, which is known, and the helix pitch h0,
which is unknown:

λ0 =
2πR0

h0
. (3)

The system aerodynamic drag coefficient CD is the sum of
the parasite drag coefficient CD,p (Anderson, 2017) and the
induced drag coefficient CDi:

CD = Cd+CD,c+CD,t︸ ︷︷ ︸
CD,p

+Cn
Di+C

f
Di︸ ︷︷ ︸

CDi

. (4)

Cd is the wing profile drag. CD,c contains the drag of the tail
surfaces, fuselage, turbine nacelles (if present) and any other
component of the AWES exposed to the airflow excluding
the tether. CD,t = CD⊥

DtLt
4A is the equivalent tether drag, with

CD⊥ being the drag coefficient of the tether section, Dt the
tether diameter,Lt the tether length andA the main wing area
(Trevisi et al., 2020a).

The system glide ratio is

G=
CL

CD+CT,t

=
CL

CD,p+
C2

L
πAR +

1
4π

C2
L

πARκ
π/2
0 λ

3/2
0 +CT,t

, (5)

where CT,t is a coefficient modeling the thrust of the onboard
wind turbines, in the case of Fly-Gen AWESs. More details
on CT,t are given in Sect. 4.

The axial velocity of the vortex filaments is assumed to
be equal to the relative wind velocity vr minus the velocity

induced by the near wake u0

√
1+ 1

λ2
CL
πAR , where u0 is the

AWES tangential velocity, and the wing speed ratio λ= u0
vr

is defined as the ratio between the AWES tangential veloc-
ity and the relative wind speed. Assuming λ2

� 1, the helix
pitch h0 is

h0 =

(
vr− u0

CL

πAR

)
2πR0

u0
, (6)

Figure 2. Velocity triangle and forces acting on a Ground-Gen
AWES in crosswind steady state.

where 2πR0
u0

is the period. The normalized torsional parame-
ter can then be written as

λ0 =
1

1
λ
−

CL
πAR

. (7)

For the AWES to have a constant speed, the lift, perpendicu-
lar to the apparent velocity va, combines with the drag, par-
allel to va, such that the force balance along the AWES lon-
gitudinal direction e1 is null. The wing speed ratio λ is then
equal to the glide ratio G (see Fig. 2 for Ground-Gen and
Fig. 4 for Fly-Gen AWESs). The normalized torsional pa-
rameter λ0, necessary for the evaluation of the induced drag
due to the far wake Cf

Di (Eq. 2), can be found numerically by
setting the residual h of Eq. (7) to 0:

h(λ0,CL,CD,p,CT,t,AR,κ0)= λ0−
1

1
λ
−

CL
πAR

= 0. (8)

3 Reel-out power equation of Ground-Gen AWESs

In this section, the power equation of Ground-Gen AWESs,
considering the helicoidal wake modeling given in Sect. 2, is
derived.

Referring to Fig. 2, the relative wind velocity vr = vw−vo
is the difference between the incoming wind velocity vw and
the axial component of the reel-out velocity vo. In accor-
dance with the vortex wake model of Sect. 2, the incom-
ing wind is assumed constant, and the gravity is neglected,
which makes the problem axial symmetric. In steady state,
the forces acting on the AWES need to be in equilibrium. For
the force balance along e1 to be null, the lift combines with
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the drag such that the force balance along the AWES longi-
tudinal direction e1 is null. As a result, the wing speed ratio
λ is equal to the glide ratio G. For the force balance along
e3 to be null, the axial component of the tensile force acting
on the tether TGG needs to be equal to the total aerodynamic
force,

TGG =
√
L2+D2 =

1
2
ρACLv

2
a

√
1+

1
G2 , (9)

where ρ is the air density, A is the wing area and va =√
u2

0+ v
2
r = u0

√
1+ 1

λ2 is the apparent velocity. For high
glide ratios G (and thus high wing speed ratio λ), TGG can
then be approximated with

TGG ≈
1
2
ρACLG

2v2
w(1− γo)2, (10)

where γo =
vo
vw

is the reel-out factor (measuring how much
the tether is reeled out along the axial direction with respect
to the wind speed).

Looking at the force balance along e2, it exits one opening
angle 8 of the cone swept by the tether over the loop for
which the lift is entirely used for power production (Trevisi
et al., 2020a). This condition is obtained when the centrifugal
force Fc is equal to the radial component of the tether force

TGG tan8. Writing the centrifugal force as Fc = m
u2

0
R0

, with
m being the AWES mass plus one-third of the tether mass
(Trevisi et al., 2020a) and R0 = Lt sin8, the equation for the
opening angle 8 is

sin8 tan8=
m

1
2ρCLALt

. (11)

The reel-out power is then the product between the axial
component of the tether force TGG and the axial component
of the reel-out velocity vo = vwγo:

PGG =
1
2
ρACLG

2v3
wγo(1− γo)2. (12)

Taking inspiration from conventional wind energy, a
power coefficient can be obtained by normalizing the power
PGG with a reference kinetic energy per unit time, i.e., the
power of the flow passing through a reference area Aref. In
the case of conventional wind turbines, this reference kinetic
energy rate is commonly defined by the far-field flow velocity
value and the rotor disk area. In AWE, one could take as a ref-
erence area the annulus swept by the AWES Aref = 2πR0b

(blue area in Fig. 3). However, this area varies at different
wind speeds as the turning radius R0 depends on the AWES
lift coefficient CL through Eq. (11). A second option would
be to take as reference area the AWES wing area Aref = A.
This would lead to the power harvesting factor (PHF), as de-
fined by Diehl (2013) and Kheiri et al. (2019). The power
harvesting factor enables the comparison of AWESs for a
given wing area. A third option, used in this work, is to take

Figure 3. Reference area for the power coefficient evaluation.

Aref as the area of a disk with a radius equal to the AWES
wingspan Aref = πb

2 (orange area in Fig. 3). With this def-
inition, Aref is a fixed value defined by the geometry of the
system, as for conventional wind turbines, and enables the
comparison of AWESs for a given wingspan. Moreover, Aref
is the reference area of an equivalent conventional turbine
characterized by the same lifting body span (i.e., the wind
turbine blades and the AWES wing have the same span). The
advantage of this power coefficient definition compared to
the first two is evident when analyzing the results in Sect. 5.
Adopting the latter reference area definition and writing the
wing area as A= b2

AR , the power coefficient is

CP,GG =
PGG

1
2ρv

3
wAref

= γo(1− γo)2 CL

πAR

(
CL

CD

)2

. (13)

With the same approach, a thrust coefficient can be defined
as

CT,GG =
TGG

1
2ρv

2
wAref

= (1− γo)2 CL

πAR

(
CL

CD

)2

. (14)

Since the system drag coefficient is not influenced by the
relative wind speed at the AWES, CP,GG is maximized when
the term γo(1− γo)2 is maximized, which is γo = 1/3. The
maximum power coefficient is then

C∗P,GG =
4

27
CL

πAR

(
CL

CD

)2

. (15)

Note that this power coefficient does not model the reel-in
phase and the power losses due to the potential energy ex-
change.

4 Shaft power equation of Fly-Gen AWESs

In this section, the power equation of Fly-Gen AWESs, con-
sidering the wake model given in Sect. 2, is derived.

For a Fly-Gen, as no reel-out velocity is present, the rel-
ative wind speed is the actual wind speed vr = vw. The in-
coming wind is assumed constant, and gravity is neglected
in this work such that the problem is axial symmetric. In
steady state, the forces acting on the AWES need to be in
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Figure 4. Velocity triangle and forces acting on a Fly-Gen AWES
in crosswind steady state.

equilibrium. For the force balance along e1 to be null, the
lift combines with the drag such that the force balance along
the AWES longitudinal direction e1 is null. As a result, the
wing speed ratio λ is equal to the glide ratio G. For the
force balance along e3 to be null, the axial component of
the tensile force acting on the tether TFG needs to be equal to

the total aerodynamic force L
√

1+ 1
G2 . For high glide ratios

G (and thus high wing speed ratio λ), TFG can be approxi-
mated with the aerodynamic lift L, and the apparent velocity

va = u0

√
1+ 1

λ2 can be approximated with the longitudinal
velocity u0 =G vw. TFG becomes

TFG ≈
1
2
ρACLG

2v2
w. (16)

For the force balance along e2 to be null without contri-
butions from the lift, Eq. (11) needs to be satisfied, as for
Ground-Gen AWESs.

Assuming that the onboard turbine rotors are perpendic-
ular to the AWES motion, the thrust force produced by the
onboard wind turbines is

DFG =
1
2
ρACT,tG

2v2
w, (17)

where CT,t is the thrust coefficient of the onboard wind tur-
bines with respect to the wing area (and not with respect to
the onboard wind turbine rotor area, as is typically done for
conventional wind energy). As DFG is felt by the AWES dy-
namics as a drag force, CT,t should be included into the sys-
tem glide ratio estimation, as in Eq. (5).CT,t can be expressed
as a function of the aerodynamic drag as CT,t = γtCD, where

CD is the system drag. γt is then the ratio between the on-
board wind turbine thrust and the aerodynamic system drag.
The system glide ratio is then

G=
CL(

CD,p+
C2

L
πAR +

1
4π

C2
L

πARκ
π/2
0 λ

3/2
0

)
(1+ γt)

. (18)

The thrust power of the onboard wind turbine Pt,FG is
the product between the thrust force DFG and the Fly-Gen
AWES velocity u0 =Gvw:

Pt,FG =
1
2
ρAγtCDG

3v3
w. (19)

The shaft power of the onboard wind turbine PFG (i.e., the
mechanical power that can be converted to electrical power)
is modeled using 1D momentum theory (actuator disk). The
onboard wind turbine thrust (Eq. 17) can be formulated with
momentum theory:

DFG =
1
2
ρAt(4at(1− at))G2v2

w ≈
1
2
ρAt(4at)G2v2

w, (20)

where At is the total turbine area, and the onboard wind tur-
bine induction at is assumed to be small. By setting Eq. (17)
equal to Eq. (20), the onboard wind turbine induction is
at ≈

γtCD
4

A
At

, and the shaft power is

PFG = (1− at)Pt,FG ≈

(
1−

γtCD

4
A

At

)
Pt,FG. (21)

A small value of at ≈
γtCD

4
A
At

is necessary to reduce power
losses due to the onboard wind turbine induction and po-
tential energy exchange (Trevisi et al., 2022a). The turbine
radius can be expressed as a function of the wingspan as
Rt = ξt

b
2 (Fig. 4). The total rotor area of the turbine is At =

nt
π
4 ξ

2
t b

2, where nt is the number of turbines, all assumed to
be of the same size. To present the results in a more concise
way, without losing generality, the number of turbines is as-
sumed to be equal to two nt = 2 such that ξt ∈ [0,1].1 The
shaft power can be written as

PFG =
1
2
ρAγtCDG

3v3
w

(
1−

γtCD

2πARξ2
t

)
. (22)

The thrust power coefficient of Fly-Gen AWES, taking the
reference area as the disk with a radius equal to the AWES
wingspan, is

CPt,FG =
Pt,FG

1
2ρv

3
wAref

=
γt

(1+ γt)3
CL

πAR

(
CL

CD

)2

, (23)

where CD depends on γt through the far-wake induced drag
(the normalized torsional parameter λ0 is a function of λ,

1The limiting case with ξt = 1 can be obtained with the two tur-
bines placed at the wing tips. This corresponds to the largest value
of At possible, considering nt ≥ 2.
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which is a function of γt). In the case of straight wakes (κ0 =

0), the optimal value of γt which maximizes the thrust power
Pt,FG is γt = 1/2 (Loyd, 1980). Using this value, the thrust
power coefficient is

CPt,FG

(
γt =

1
2

)
=

4
27

CL

πAR

(
CL

CD

)2

, (24)

which coincides with the maximum power coefficient of
Ground-Gen AWESs when κ0 = 0: CPt,FG(γt = 1/2,κ0 =

0)= C∗P,GG(κ0 = 0) (Eq. 15). For κ0 larger than 0, the far
wake contributes in different ways for the two generation
types, leading to different power coefficients. This is shown
in Sect. 5.

The shaft power coefficient includes power losses due to
the onboard wind turbine induction:

CP,FG =
PFG

1
2ρv

3
wAref

=
γt

(1+ γt)3
CL

πAR

(
CL

CD

)2(
1−

γtCD

2πARξ2
t

)
. (25)

Note that this power coefficient does not model power losses
due to the potential energy exchange. See Trevisi et al.
(2022a) for more details on these losses.

The thrust coefficient can be defined as

CT,FG =
TFG

1
2ρv

2
wAref

=
1

(1+ γt)2
CL

πAR

(
CL

CD

)2

. (26)

5 Comparison between Ground-Gen and Fly-Gen
AWESs

In this section, Ground-Gen and Fly-Gen AWES perfor-
mances are compared according to the mathematical models
introduced in the previous sections. As a given design can
be operated at lift coefficients different from the lift coef-
ficient the AWES is designed for, the analyses are initially
performed as a function of the operational AWES lift coeffi-
cient CL. Later in the section, the design lift coefficient C̃L
is considered the varying parameter to study its influence on
the geometrical design and on the performances.

The first study concerns Fly-Gen AWESs and addresses
the effects of the size of the onboard wind turbines on their
aerodynamic induction at (see parameter ξt in Fig. 4). A
case with AR= 20, CD,p = 0.05 and the inverse turning ratio
κ0 =

b
2R0
= 0.15 is considered in this section, corresponding

to the example in Trevisi et al. (2023b). Figure 5 shows the
optimal values of the onboard wind turbine thrust factor γt
on the left axis and the efficiency due to the onboard wind
turbine induction 1−at on the right axis, as a function of the
lift coefficient, for three different ξt parameters. The optimal
values of γt are found by solving the optimization problem

(γt,λ0)∗ = arg
(

max
(γt,λ0)

CP,FG(γt,λ0,CL,CD,p,AR,κ0,ξt)
)
,

subject to h(γt,λ0,CL,CD,p,AR,κ0)= 0, (27)

Figure 5. Optimal value of γt (blue – left axis) and efficiency due
to onboard wind turbine induction (red – right axis) for different
onboard wind turbine non-dimensional radii ξt as a function of the
operational AWES lift coefficient. Case AR= 20, κ0 = 0.15 and
CD,p = 0.05.

where h is defined in Eq. (8). For low lift coefficients, the
optimal value of γt is close to 0.5. For increasing lift coeffi-
cients, γt rises slightly above 0.5 to decrease the glide ratioG
(Eq. 18) and consequently the normalized torsional parame-
ter λ0. Decreasing λ0 increases the vortex ring axial distance
h0 (Eq. 3) and thus decreases the induction due to the far
wake. As expected, smaller onboard turbines decrease the ef-
ficiency 1−at. For the following analyses in this section, it is
assumed ξt = 0.15, as this is considered a reasonable value.

The second study investigates the difference in the normal-
ized torsional parameter and glide ratio for Ground-Gen and
Fly-Gen AWESs, shown in Fig. 6. Ground-Gen values are
found by considering the reel-out factor γo = 1/3 and numer-
ically solving Eq. (8). Fly-Gen values are found by solving
the optimization problem (27). As the onboard wind turbine
thrust acts as a drag force on Fly-Gen AWESs, they have a
lower glide ratio compared to Ground-Gen. The normalized
torsional parameter λ0 informs with respect to the pitch of the
helicoidal aerodynamic wake and is linked to the wind speed
ratio λ, which is equal to the glide ratio λ=G. A larger λ0
means a lower pitch h0 of the helicoidal aerodynamic wake,
according to Eq. (3), and thus higher induced velocities due
to the far wake. This is due to the reel-out velocity of Ground-
Gen AWESs, which makes them fly closer to their own wake.

The third study compares the power coefficient of Ground-
Gen and Fly-Gen AWESs for varying aspect ratios as a func-
tion of the operational lift coefficient and investigates which
aspect ratio is optimal as a function of the design lift coef-
ficient. Figure 7 shows the optimal power coefficients for
Ground-Gen and Fly-Gen AWESs as a function of the op-
erational lift coefficient for three different aspect ratios. Fly-
Gen can extract more aerodynamic power compared to the
Ground-Gen AWESs with the same geometry due to the far-
wake pitch. This is in accordance with the findings from
Kheiri et al. (2019). Indeed, as discussed when analyzing
Fig. 6, Ground-Gen AWESs fly closer to their own wake
due to reel-out velocity. Higher power coefficients can be
obtained with higher aspect ratios at high operational lift
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Figure 6. Normalized torsional parameter for a Ground-Gen and
Fly-Gen AWES (solid blue and red lines respectively) and the glide
ratio (dashed blue and red lines respectively) as a function of the
operational lift coefficient. Case AR= 20, κ0 = 0.15, CD,p = 0.05
and ξt = 0.15.

Figure 7. Power coefficients of Ground-Gen (blue lines) and Fly-
Gen (red lines) AWESs as a function of the operational lift coef-
ficient. Case κ0 = 0.15, CD,p = 0.05, ξt = 0.15 and three different
AR values.

coefficients. In this comparison, if the aspect ratio is dou-
bled (e.g., from 10 to 20), the wing area is halved, as the
inverse turning ratio κ0 (and thus b) is kept constant. To
find which aspect ratio maximizes the power coefficient, one
could set the partial derivative of CP with respect to the as-
pect ratio to 0. The resultant aspect ratio can then be consid-
ered in the conceptual design phase of an AWES project. To
get to an analytical solution, the wake is considered straight
(κ0 = 0). The maximum power coefficient for Ground-Gen
AWESs (γo = 1/3, Eq. 15) and the thrust power coefficient
with γt = 1/2 for Fly-Gen (Eq. 24) are considered. Un-
der these assumptions, the power coefficients of Ground-
Gen and Fly-Gen AWESs coincide: CPt,FG(γt = 1/2,κ0 =

0)= CP,GG(γo = 1/3,κ0 = 0) (Eqs. 15 and 24). The partial
derivative of CP with respect to the aspect ratio is

∂CP

∂AR
=

4
27
C̃L

3

π

(
∂(1/AR)
∂AR

1
C2

D
+

1
AR

∂(1/C2
D)

∂AR

)
= 0, (28)

where C̃L is the lift coefficient chosen for the design of the
aspect ratio, and

∂CD

∂AR
=−

1
AR

Cn
Di, (29)

assuming that the parasite drag coefficient CD,p is not depen-
dent on the aspect ratio.

After a few steps, the condition which maximizes CP is
found when the induced drag coefficient is equal to the para-
site drag coefficient, Cn

Di = CD,p, which results in

AR⊗ =
1
π

C̃L
2

CD,p
, (30)

where the symbol ⊗ indicates an optimal quantity obtained
with analytical models. This aspect ratio answers the fol-
lowing question: given a wingspan, which aspect ratio maxi-
mizes power? Note that this derivation would not have been
possible if the power coefficient was defined as the power
harvesting factor (PHF) (taking as reference area Aref in
Eqs. (13) and (23) the wing area A). Indeed, by taking
∂PHF
∂AR = 0, one looks for the aspect ratio which answers the

following question: given a wing area, which aspect ratio
maximize power? The solution to this question is an infinite
aspect ratio. This highlights one of the benefits of using a
reference area for the power coefficient proportional to the
wingspan and not to the wing area.

The aspect ratios which maximize the CP for Ground-Gen
and Fly-Gen AWESs, considering the wake structure and the
onboard wind turbine induction, can be found by solving two
optimization problems.

For Ground-Gen AWESs, the optimal values of γo and AR
can be found by solving the optimization problem

(γo,AR,λ0)∗

= arg
(

max
(γo,AR,λ0)

CP,GG(γo,λ0, C̃L,CD,p,AR,κ0)
)

subject to h(λ0, C̃L,CD,p,AR,κ0)= 0, (31)

where h is defined in Eq. (8), and it does not depend on γo.
Its optimal value is always γ ∗o = 1/3 (Eq. 15).

For Fly-Gen AWESs, the optimal values of γt and AR can
be found by solving the optimization problem

(γt,AR,λ0)∗

= arg
(

max
(γt,AR,λ0)

CP,FG(γt,λ0, C̃L,CD,p,AR,κ0,ξt)
)

subject to h(γt,λ0, C̃L,CD,p,AR,κ0)= 0. (32)

In Fig. 8, the analytical solution (Eq. 30) is compared with
the optimization problem results. For κ0 = 0, the optimal AR
for Ground-Gen is equal to the analytical expression, while
for Fly-Gen it is slightly different because Eq. (30) is derived
by considering thrust power and not shaft power. By increas-
ing κ0, the optimal aspect ratio increases by a relatively small

https://doi.org/10.5194/wes-8-1639-2023 Wind Energ. Sci., 8, 1639–1650, 2023



1646 F. Trevisi et al.: Refining the AWES power equations with a vortex wake model

Figure 8. Optimal aspect ratio found analytically (AR⊗) and nu-
merically (AR∗) for Ground-Gen (blue lines) and Fly-Gen (red
lines) for different κ0 values as a function of the design lift coef-
ficient C̃L. Case CD,p = 0.05 and ξt = 0.15.

value compared to the analytical solution. Equation (30) can
then be used in design and optimization studies as an edu-
cated initial guess for the wing aspect ratio, when the de-
sign wing lift coefficient and the parasite drag coefficient are
known.

In the last study of this section, the optimal power co-
efficient is studied as a function of the design lift coeffi-
cient for different inverse turning ratios. By using the ana-
lytical expression for the optimal AR (Eq. 30), obtained with
Cn

Di = CD,p, in Eqs. (15) and (24) (the thrust power coeffi-
cient for Fly-Gen is considered), the maximum power coef-
ficient C⊗P with a straight wake (κ0 = 0) is

C⊗P =
1
27

C̃L

CD,p
. (33)

This power coefficient physically represents the upper bound
of the power production of an AWES flying in a circular path
with an infinite radius, for a given design lift coefficient and
parasite drag coefficient.

Following a similar procedure, a corresponding thrust co-
efficient is found by inserting the analytical expression for
AR⊗ into Eq. (14) with γo = 1/3 and Eq. (26) with γt = 1/2
and considering κ0 = 0:

C⊗T =
1
9
C̃L

CD,p
. (34)

Figure 9 shows the optimal power coefficients, found by
solving the optimization problems (31) and (32), as a func-
tion of C̃L for different κ0 values. The maximum power co-
efficient, considering straight wakes, of Fly-Gen AWESs is
slightly lower than the analytical maximum power coefficient
C⊗P (Eq. 33) and C∗P,GG(κ0 = 0) because of the power losses
due to onboard wind turbine induction. For increasing κ0, the
maximum power coefficient decreases. As noted when ana-
lyzing Fig. 7, Fly-Gen AWESs have a higher power genera-
tion potential compared to Ground-Gen AWESs. The power

Figure 9. Aerodynamic power coefficients, as a function of the de-
sign lift coefficient C̃L, of Ground-Gen (blue lines) and Fly-Gen
(red lines) AWESs and the maximum aerodynamic power coeffi-
cient (dashed yellow line). CaseCD,p = 0.05, ξt = 0.15, the optimal
aspect ratio AR∗, and the optimal coefficients γo = 1/3 and γ ∗t .

coefficients of Ground-Gen (Eq. 13) and Fly-Gen (Eq. 25)
are defined by taking the disk with a radius equal to the
AWES wingspan as the reference area. Considering this ref-
erence area, the AWES power coefficient can take values
higher than the Betz limit and the unity without violating any
physical laws. Note that the power coefficient for Ground-
Gen AWESs neglects the reel-in phase and the losses due to
the potential energy exchange, while the power coefficient
for Fly-Gen AWESs neglects the losses due to the potential
energy exchange.

In this section, Ground-Gen and Fly-Gen AWESs, with the
same geometry, are compared. Fly-Gen AWESs have smaller
glide ratios because the onboard wind turbine thrust is in-
cluded in the drag estimation. Ground-Gen AWESs fly closer
to their own wake due to the reel-out velocity; they thus have
a larger normalized torsional parameter λ0. Fly-Gen AWESs
can then harvest more power because of the wake structure.
If the aspect ratio is increased, higher power coefficients can
be obtained at high operational lift coefficients. The aspect
ratio which maximizes the power coefficient is finite, and the

analytical solution for straight wakes is AR⊗ = 1
π
C̃L

2

CD,p
. This

analytical expression can be used in the preliminary design
phase of an AWES project. By considering the optimal as-
pect ratio, the maximum thrust and power coefficients can be
found, and their analytical expressions for straight wakes can
be obtained. The expression for the maximum power coeffi-
cient C⊗P =

1
27

C̃L
CD,p

can be used to estimate the upper bound
of an AWES power production.

6 Numerical examples

In this section, two Ground-Gen AWESs and one Fly-Gen
AWES from the literature are analyzed based on the mathe-
matical models introduced in this paper. In particular, the in-
verse turning ratio, the glide ratio, the contribution from the
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Figure 10. Inverse turning ratios as a function of the lift coefficient
for the examples (Table 1). The Ground-Gen AWES κ0 is shown at
the initial and final tether length.

far-wake induced drag coefficient and the power coefficients
are analyzed.

In Table 1, the parameters describing the selected AWESs
are given. The flight mechanics of Zefiro, an ultralight glider,
when used as Ground-Gen AWESs is studied by Trevisi et al.
(2021) and its design is studied by Trevisi et al. (2022b).
MegAWES refers to the AWES introduced by Eijkelhof and
Schmehl (2022). As Zefiro and MegAWES operate at differ-
ent tether lengths during the reel-out phase, they are studied
at the initial and final tether lengths by solving Eq. (8). The
Makani MX2 (Tucker, 2020) is a Fly-Gen AWES, and it is
studied by solving the optimization problem (27). A detailed
analysis of its power losses due to potential energy exchange
is carried out by Trevisi et al. (2022a).

In Fig. 10, the inverse turning ratios are shown as a func-
tion of the lift coefficient. The optimal opening angle 8,
computed with Eq. (11), is used to find the turning radius
R0, and thus κ0 =

b/2
R0

. The inverse turning ratio is larger for
Ground-Gen AWESs at the initial tether length. Note that the
vortex model assumes a fully developed wake, and this as-
sumption does not hold when analyzing the first few loops of
the reel-out phase.

In Fig. 11, the glide ratio is shown. As noted when com-
paring Ground-Gen and Fly-Gen AWESs in Sect. 5, the Fly-
Gen MX2 has a lower glide ratio as the onboard wind turbine
thrust is included in the drag estimation. The tether length
largely influences the glide ratio. At low tether lengths, the
glide ratio is higher because the tether drag contributes with
a small share to the parasite drag coefficient CD,p.

In Fig. 12, the ratio of induced drag due to the far wake
to the total induced drag is shown. For Ground-Gen AWESs,
the far-wake contribution is high at low tether lengths and
decreases during the reel-out as the inverse turning ratio
(Fig. 10) and the glide ratio (Fig. 11) decrease.

Finally, the optimal power coefficients are shown in
Fig. 13. Ground-Gen AWESs at low tether lengths can
achieve higher optimal CP values. At the initial tether length,
Zefiro maximizes power with a lift coefficient of approxi-
mately CL ≈ 1.5 and MegAWES of approximately CL ≈ 2.

Figure 11. Glide ratios as a function of the lift coefficient for the
examples (Table 1). Ground-Gen AWESs G is shown at initial and
final tether length.

Figure 12. Ratio of the induced drag due to the far wake and the to-
tal induced drag as a function of the lift coefficient for the examples
(Table 1). The Ground-Gen AWES values are shown at the initial
and final tether lengths.

This indicates that, from aerodynamic considerations, oper-
ating the AWES at different lift coefficients could be optimal
at different tether lengths. The MX2 maximizes power with
a lift coefficient of approximately CL ≈ 2.3. This shows that
higher lift coefficients could not be required for a design sim-
ilar to the MX2.

7 Conclusions

In this work, the aerodynamic wake model developed by Tre-
visi et al. (2023b) is used to refine the power equations of
Ground-Gen and Fly-Gen AWESs. The aerodynamic model
assumes steady crosswind circular trajectories and a non-
expanding helicoidal vortex wake. The main assumptions
and equations of the wake model are reported in Sect. 2.
The power equations of Ground-Gen and Fly-Gen AWESs
are refined by accounting for the aerodynamic wake in the
induced drag coefficient estimation. In this way, the effects
of changing the aspect ratio, turning radius, lift coefficient,
parasite drag coefficient, dimension of the onboard turbines
(for Fly-Gen AWESs) and control quantities (reel-out veloc-
ity for Ground-Gen AWESs and onboard wind turbine thrust
for Fly-Gen AWESs) on the aerodynamic performances and
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Table 1. Reference values for the examples. Zefiro (Trevisi et al., 2022b) and MegAWES (Eijkelhof and Schmehl, 2022) are Ground-Gen
AWESs, and the Makani MX2 is a Fly-Gen AWES (Tucker, 2020).

Zefiro
m 530 kg b 15.18 m AR 16.2 Cd 0.018 CD⊥ 0.8
Dt 0.01 Lt,in 100 m CD,p,in 0.032 Lt,fin 700 m CD,p,fin 0.116

MegAWES
m 6885 kg b 42.5 m AR 12 Cd 0.02 CD⊥ 1.2
Dt 0.03 Lt,in 750 m CD,p,in 0.065 Lt,fin 1500 m CD,p,fin 0.110

MX2
m 2000 kg b 26 m AR 12.5 Cd 0.04 CD⊥ 0.7
Dt 0.03 Lt 300 m CD,p 0.069 At 35 m2 ξt 0.18

Figure 13. Power coefficients as a function of the lift coefficient for
the examples (Table 1). The Ground-Gen AWES CP is shown at the
initial and final tether lengths.

power production can be intuitively understood. The optimal
onboard wind turbine thrust of Fly-Gen is slightly influenced
by the wake structure, while the optimal reel-out velocity of
Ground-Gen is not.

A novel power coefficient is defined by normalizing the
aerodynamic power with the wind power passing through a
disk with a radius equal to the AWES wingspan, enabling
the comparison of different designs for a given wingspan.
The aspect ratio which maximizes this power coefficient is
found to be finite. Considering an infinite turning radius, the

optimal aspect ratio is 1
π
C̃L

2

CD,p
, where C̃L is the design lift

coefficient and CD,p the parasite drag coefficient, and the

maximum power coefficient is 1
27

C̃L
CD,p

. For decreasing turn-
ing radii, the optimal aspect ratios increase slightly, and the
maximum power coefficients decrease with respect to the an-
alytical expressions.

By comparing power coefficients, Ground-Gen AWESs
are found to have a lower power generation potential with
respect to Fly-Gen AWESs with the same geometry because
they fly closer to their own wake due to the reel-out velocity
of the tether. Three AWESs of different sizes from the lit-
erature are studied. Two Ground-Gen AWESs are analyzed
at the initial and final tether lengths of the reel-out phase,
revealing that higher power coefficients can be obtained at
shorter tether lengths because of the reduced tether drag. A
Fly-Gen AWES is analyzed, showing that power is maxi-
mized at a finite lift coefficient.
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Appendix A: Nomenclature

Latin symbols
A Wing area
AR Wing aspect ratio
b Wingspan
Cd Wing profile drag coefficient
CD System drag coefficient
CD,c Drag coefficient modeling all AWES components

excluding the main wing and the tether
CDi Induced drag coefficient
Cf

Di Induced drag coefficient due to the far wake
Cn

Di Induced drag coefficient due to the near wake
CD,p Parasite drag coefficient
CD⊥ Drag coefficient of the tether section
CD,t Equivalent tether drag coefficient
CL Wing lift coefficient
C̃L Design wing lift coefficient
CP Power coefficient
CPt Thrust power coefficient (for Fly-Gen AWESs)
CT Thrust coefficient
CT,t Onboard wind turbine thrust coefficient

with respect to the AWES wing area
Dt Tether diameter
G Glide ratio
h0 Helicoidal wake pitch
Lt Tether length
m AWES mass plus one-third of the tether mass
R0 Mid-span turning radius
u0 Longitudinal velocity
va Apparent wind speed
vr Relative wind speed
vw Wind speed
Greek symbols
γo vo/vw: reel-out factor
γt CT,t/CD: onboard wind turbine thrust factor
κ0 b/(2R0): inverse turning ratio
λ u0/vr: wing speed ratio
λ0 2πR0/h0: normalized torsional parameter of the

helicoidal wake
8 Opening angle of the cone swept by the tether

during one loop
ρ Air density
Symbols
∗ Optimal quantity
⊗ Optimal quantity found analytically
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