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Abstract. Renewable energies have an entirely different cost structure than fossil-fuel-based electricity gener-
ation. This is mainly due to the operation at zero marginal cost, whereas for fossil fuel plants the fuel itself is
a major driver of the entire cost of energy. For a wind turbine, most of the materials and resources are spent up
front. Over its lifetime, this initial capital and material investment is converted into usable energy. Therefore, it
is desirable to gain the maximum benefit from the utilized materials for each individual turbine over its entire
operating lifetime. Material usage is closely linked to individual damage progression of various turbine com-
ponents and their respective failure modes. In this work, we present a novel approach for an optimal long-term
planning of the operation of wind energy systems over their entire lifetime. It is based on a process for setting up
a mathematical optimization problem that optimally distributes the available damage budget of a given failure
mode over the entire lifetime. The complete process ranges from an adaptation of real-time wind turbine control
to the evaluation of long-term goals and requirements. During this process, relevant deterministic external con-
ditions and real-time controller setpoints influence the damage progression with equal importance. Finally, the
selection of optimal planning strategies is based on an economic evaluation. The method is applied to an example
for demonstration. It shows the high potential of the approach for an effective damage reduction in different use
cases. The focus of the example is to effectively reduce power of a turbine under conditions where high loads
are induced from wake-induced turbulence of neighbouring turbines. Through the optimization approach, the
damage budget can be saved or spent under conditions where it pays off most in the long term. This way, it is
possible to gain more energy from a given system and thus to reduce cost and ecological impact by a better usage
of materials.

1 Introduction

Meeting the rising demand for energy without using fossil
fuels is one of the greatest challenges of our time. Wind en-
ergy plays a key role in achieving this worldwide, and the
wind industry has been developing into a mature and effec-
tive branch of technology. Nevertheless, energy production
will always involve the use of materials and resources. For a
wind turbine, this includes the production of large complex
components like the tower, the rotor blades and the generator,

but also the use of land on- and offshore as well as continuous
operating costs due to maintenance and repair activities.

Therefore, it is desirable to gain the maximum benefit from
the utilized materials for each individual turbine over its en-
tire lifetime. Materials will be used up through the operation
in many different ways. The usage is closely linked to indi-
vidual failure modes of various turbine components. While
some of these failure modes need to be avoided through ad-
vancements in design and robustness to environmental condi-
tions, other failure modes are highly influenced through the
operational strategy. Especially fatigue damage is strongly
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influenced by induced loads which depend on the external
conditions in combination with the operational control of the
turbine. Even with the smartest individual control solutions
for load reduction like, for example, individual pitch con-
trol and active damping, there will always be some trade-off
between power production and induced damage which can-
not be fully prevented. Additionally, load reducing effects for
some failure modes might have negative effects on others.

With the development of a maturing wind industry, stan-
dard procedures for the design of wind turbines have been es-
tablished for finding a reasonable trade-off between induced
damage and power production. This way, wind turbines can
be operated for at least 20 years under various conditions
from the environment and the grid. While the external con-
ditions of each turbine are highly individual, wind turbine
design can only consider site-specific conditions to some ex-
tent, e.g. by type certificates for different wind classes (IEC,
2019). In order to operate each turbine at its individual op-
timal balance of induced damage and power production, an
adaptive operation based on information of the current con-
dition and performance is required. A concept for such an
operation is proposed through reliability(-adaptive) control
which can principally be applied to any system where com-
ponents are used up from operation, i.e. are subject to degra-
dation. The reliability controller is implemented as a closed-
loop supervisory controller which adapts the system such that
it meets predetermined reliability objectives. Within this con-
cept, it is important to distinguish between the real-time con-
troller directly interacting with the actuators of a system and
the outer supervisory control. The outer loop runs on a slower
timescale and can send setpoints to the real-time controller.

In this work, a method for finding an optimal long-
term operational planning which already includes the avail-
able setpoints for the wind turbine real-time controller is
presented. Thus, it contributes to the development of a
reliability(-adaptive) control loop for wind turbines by creat-
ing a desired operation which is necessary for a closed-loop
operation. It also brings advantages in itself for an open-loop
operation.

1.1 State of the art

A concept for a Safety and Reliability Control Engineering
(SRCE) including a supervisory reliability controller, which
uses information about the current state of health, was intro-
duced in Söffker and Rakowsky (1997) and further discussed,
for example, in Rakowsky (2005) and Rakowsky (2006). In
Meyer (2016) a reliability controller based on the health in-
dex, used as a measure for the stat of health, for a mecha-
tronic system was implemented and validated. On the one
hand, the application of such an approach for wind energy
systems has a high potential due to the highly individual
site and turbine-specific operating and environmental con-
ditions as well as ageing characteristics of various compo-
nents (Meyer et al., 2017). On the other hand, the complexity

of the coupled system, the interaction of wind turbines in a
wind farm as well as constraints from operating and main-
tenance strategies, market conditions, grid requirement and
certification processes, nevertheless lead to a challenging in-
teraction between different areas. One of the major aspects
for the operation of a reliability controller in a closed loop
is the information about the state of health of the consid-
ered system. While wind turbines are equipped with various
sensors and associated condition monitoring systems (CMS)
or structural health monitoring (SHM) systems, the progno-
sis of the actual state of health and the associated remaining
useful lifetime (RUL) still requires a lot of research and de-
velopment. In Beganovic and Söffker (2016), an overview
of signal-based monitoring methods with a focus on the us-
age for online fault detection and advanced control is pro-
vided. In Do and Söffker (2021), an overview of manage-
ment and control strategies for wind turbines based on health
prognostics is provided. Both papers clearly state that further
investigation is needed to determine the state of health. Addi-
tionally, the stringent requirements for an adaptive controller
due to the multiobjective nature of the problem under vari-
ous loading conditions is also mentioned. Nevertheless, the
full advantage of health monitoring combined with advanced
reliability control strategies can only be fully exploited with
further development in each of the fields, which can later be
combined into an integrated approach.

There are two major advantages which result from the use
of closed-loop structure for controlling the reliability. On
the one hand, it enables a synchronization with maintenance
strategies or planned decommissioning. On the other hand,
it allows extending the lifetime of a system by switching to
a load-reducing control configuration at any point in time.
The latter point is specifically addressed in the concept of
life-extending control, for which a concept was introduced
in Lorenzo and Merrill (1991). This concept is more oriented
towards fatigue damage and thus also well applicable for
wind turbines. The approach was pursued for wind turbine
operation in Santos (2006) and the associated patent (Santos,
2008). In the study, the wind turbine actuators are directly
modified by a model predictive control algorithm, which re-
ceives setpoints for the degradation of the turbine from a
supervisory control loop. Comparable concepts based on an
online fatigue accumulation using online rainflow counting
were also followed by Loew et al. (2020) and Njiri et al.
(2019). The latter is clearly related to the concept of reli-
ability adaptive control, which was explained above. In all
three of the applications, the controllers are tested on rather
short time frames of at maximum 600 s such that long-term
benefits from these methods cannot yet be fully considered.
Long-term effects of adapting control strategies during op-
eration for lifetime extension are examined in Pettas et al.
(2018) and Pettas and Cheng (2018). In Requate and Meyer
(2020), the concept of reliability control is implemented by
switching between different down- and uprating configura-
tions to follow a predetermined desired degradation for sev-
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eral years. Dependent on the desired target, a lifetime exten-
sion by several years can be reached. While the concept of di-
rectly adapting the turbine actuators according to the desired
planning targets might have a higher theoretical potential be-
cause its reaction is more flexible, the concept of switching
between different configurations seems to be more straight-
forward to implement for existing structures for wind turbine
and wind farm control concepts. It also facilitates a guarantee
for a safeguarded operation in all of the selected configura-
tions. The combination of both concepts might offer addi-
tional advantages in the future.

In all of the mentioned work, the aspect of planning the
operation up until the end of a wind turbine’s lifetime has
not yet been addressed in much detail. This becomes even
more relevant in the context of wind farm control where the
higher-level constraints like the market prices, maintenance
strategies and planning of decommissioning are relevant. In
Kölle et al. (2022a), the results of several participants on
showcases for wind farm flow control under consideration
of electricity prices are discussed. The influence of opera-
tion on loads and damage is only considered by one of the
five participants for a single turbine. In general, wind farm
control has gained growing interest of research and also in-
dustry in recent years. One major focus of research was the
mitigation of wake effects, which decrease power produc-
tion but increase loads on downstream turbines (Dimitrov,
2019). Wake steering by yaw misalignment, but also derat-
ing1 of the upstream turbines can be used to increase the
overall power production of a wind farm. In addition to in-
creasing the power production, the influence on the loads and
lifetime of the wind turbines of such methods are examined
(Andersson et al., 2021; Nash et al., 2021; Meyers et al.,
2022; Houck, 2022). At first, the focus is not to increase the
loads above the limits of certification, but the use of wind
farm control for active load reduction is also examined in
several studies (Bossanyi, 2018; Kanev et al., 2018, 2020;
Harrison et al., 2020). Concepts for an integrated control of
wind farms covering the complete range from short-term de-
mands for grid services up to long-term objectives for relia-
bility are required (Eguinoa et al., 2021; Kölle et al., 2022b).
Therefore, combining the approaches of wind farm control
with reliability adaptive control offers a high potential for a
truly optimal operation, e.g. by intelligently managing which
turbines should take over grid services in certain situations
based on their current state of health and a planning until the
end of the desired lifetime. For future energy systems, the
interconnection to storage systems or power-to-X technolo-

1In general, there are various terms for reducing the power of a
wind turbine and the usage often depends on the context. In wind
farm control, the term “axial-induction control” is often used. Also,
“down-regulation” or “curtailment” are prominent terms. The lat-
ter term is often referred to in the context of requests by the grid
operator. The term “derating” is used throughout this work.

gies, and their reliability and degradation mechanisms, also
need to be considered.

Since the future damage progression of a system depends
on the way it is operated, it is important to integrate the adap-
tive control behaviour into the planning process. Implicitly,
this is done when sector management is applied to avoid high
loads from an upstream turbine. Previous studies have shown
that it is possible to balance energy and loads with sector
management strategies using derating (Bossanyi and Jorge,
2016). A method for derating a wind turbine is integrated
into any modern wind turbine to comply with grid require-
ments in one way or the other. Additionally, it can be used
as an instrument to either reduce the effects from wake on
the downstream turbine or to reduce loads of the turbine it-
self. The derating of the turbine is a setpoint to the wind tur-
bine’s real-time controller. The implementation of the der-
ating method by parameters within the real-time controller
thus depends on the objective and also on the individual dy-
namic behaviour of each turbine (Meyers et al., 2022; Houck,
2022). Even reducing damage from heavy rain on the lead-
ing edge of the blades might be a possible objective for rotor
speed reduction, besides the more common fatigue damage
(Bech et al., 2018).

1.2 Objectives

We assume a basic setup for a supervisory reliability control
loop of a wind turbine or a complete wind farm by separating
into different stages acting on different timescales. On the
real-time stage, the dynamic loads of a wind turbine result
from the interaction between the real-time wind turbine con-
troller and the external conditions from the environment and
the grid. Those loads slowly induce damage to the wind tur-
bine. The supervisory reliability control loop acts on a time
scope of 10 min up to several days because such a time scope
allows for an appropriate performance evaluation of the wind
turbine in terms of damage progression and power produc-
tion. On this operating stage, setpoints are sent to the real-
time controller of the wind turbine. The planned desired op-
eration determines the targets for this stage which result from
the long-term reliability objectives, i.e. the planned damage
progression. Because of the dependency between reliability
and operation, the desired operation already needs to con-
sider the influence of adaptive control on the damage while
at the same time focusing on long-term planning decisions
and economic benefits. An overview of a wind farm which
is operated using adaptive operation on these two stages is
given in Fig. 1. The long-term planning (”Planning stage” on
the left side of the figure) can either be used in an open-loop
by providing setpoints to the wind turbine controller for spe-
cific input conditions or a target damage progression of the
reliability control loop. In both cases, it should cover most
relevant deterministic effects on long-term damage progres-
sion in an optimal way. Through a closed-loop behaviour on
the operating stage, it is additionally possible to react to the
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Figure 1. Overview of adaptive wind farm operation separated into
planning and operating stages.

actual performance of the wind turbine, including the current
state of health and additional current inputs from weather or
market price conditions (right side of the figure). At the same
time, the long-term objectives are still met. A re-adaption of
the planning required when large deviations of the original
planning occur or if the long-term objectives change. Thus,
it is not a real closed-loop operation, but it can also be applied
when open-loop setpoints are sent to the real-time controller.
It should just be applied after longer time periods of months
or several years.

The long-term objectives for wind turbine operation are
specifically driven by fatigue damage progression, which is
an important failure mode for wind turbine principal compo-
nents like the tower and the blades. For an optimal material
usage, fatigue budget is ideally fully used up at the desired
lifetime while a maximum amount of energy has been pro-
duced during this time. Thus, balancing the trade-off between
induced damage and power production over the whole range
of external conditions and under consideration of their fre-
quency of occurrence is required. The goal is to find a plan-
ning method which distributes the fatigue damage optimally
over the planned operating time by saving the fatigue bud-
get where it pays off most, i.e. where loads are high but en-
ergy production is low. This is possible because of the non-
linear relationship between external conditions, load reduc-
ing control features and induced damage. When a turbine is
subjected to high wake-induced turbulence, for example, the
relationship between induced damage and produced energy
is definitely worse than for a turbine operating at the same
wind speed at a low turbulence. The key question for an op-
timally planned target distribution is to decide by how much
the damage should be reduced through adaptive control so
that the long-term objectives are met. To answer this ques-
tion, a method to find an optimal planning through mathe-
matical optimization for an individual wind turbine is devel-
oped.

1.3 Methodology

In order to create a planning method which fulfils the objec-
tives, the complete process from an adaptation of real-time
wind turbine control to the evaluation of long-term goals and
requirements needs to be covered. During this process, the
influence on damage progression of relevant deterministic
external conditions is just as important as that of real-time
controller setpoints.

The key part of our proposed method consists of the for-
mulation of a mathematical optimization problem, where the
aim is to meet long-term objectives, such as maximum power
or revenue over the entire lifetime, by finding an individual
trade-off between induced damage and power production for
each relevant operational condition.

For application of our method to a given system, it is cru-
cial to know how it interacts with its environment. For this,
the system boundary must be well defined beforehand. It
forms the basis for definition of environmental inputs, for set-
points of the real-time controller, as well as for the damage
of different failure modes and performance measures such as
energy production.

We identified a four-step process to create the optimal
planning for this well-defined system within its boundaries
(Fig. 2). For optimizing the distribution of the fatigue budget
over the system’s lifetime, it must be possible to evaluate the
effect of changes in the setpoints of the adaptable real-time
controllers with low computational effort. The setpoints of
the real-time controller of the system directly influence the
trade-off between induced damage and energy production.
Once the adaptable real-time controller is provided, surro-
gate models can be set up. They represent the relationship
between external conditions and setpoints of the controller
to damage and energy. These steps 1 and 2 are necessary but
existing prerequisites for the long-term optimization of the
operation. They need a careful selection and have a strong
influence on the quality and the validity of the results. The
optimal operational planning is found by steps 3 and 4 of the
process. Both of the steps are part of the proposed long-term
planning method which we name value-integrated optimiza-
tion of lifetime asset operation (VIOLA). The optimization
problem is developed in step 3. This step still yields multi-
ple results, where each one represents an individual trade-off
between energy production and damage. The selection of a
single optimal planning becomes possible by evaluating eco-
nomic aspects of the results from step 3. The four steps not
only allow for a feasible computation time, but they also lead
to an easily explainable result after each step, which is in
high contrast to more integrated approaches. The four steps
can principally be applied to any system which is subject to a
strong coupling of control setpoints and external conditions.
Due to the high influence of wind conditions on the fatigue
damage to wind turbines, wind energy systems represent a
prime example for its application.
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Figure 2. Four-step process for optimal planning, subdivided into prerequisites and new method.

1.4 Outline of the remaining paper

The above-mentioned four-step process forms the core of
the remaining paper. At first, the theoretical background and
a more in-depth explanation for the approach are given in
Sect. 2. The process is demonstrated with an application ex-
ample. The focus of the example is to effectively reduce
power of a considered turbine under conditions where high
loads are induced from wake-induced turbulence of neigh-
bouring turbines. In Sect. 3, the considered system is defined.
Also, its prerequisites are introduced and implemented, re-
sulting in surrogate models usable for the optimization. Af-
terwards, the long-term optimization process VIOLA is pre-
sented and applied to the example in Sect. 4. The process
and the results are discussed in Sect. 5 before the findings
are concluded, and an outlook is given in Sect. 6.

2 Theoretical background

The basic idea of our method is to optimally distribute the in-
duced damage over the operating time. With this, we assume
a continuous and deterministic increase in damage over time,
as depicted in Fig. 3.

Damage always refers to damage which directly and ex-
clusively contributes to a certain failure mode, fm. The life-
time of a system or a component is reached when the damage
for a failure mode Dfm reaches the value 1, which is equiv-
alent to 100 % of the available damage budget. Using a ref-
erence operational strategy uref, the value Dfm(τ ref

;uref, ·)2

is reached at the reference lifetime τ ref. Our goal is to use a
modified operational strategy uopt over a freely chosen oper-
ation period τ life to distribute the damage Dfm(τ life

;uopt, ·)
in such a way that maximum energy yield or largest eco-
nomic profit is obtained. Figure 3 also depicts a time span
1τ , which for wind energy problems is commonly selected
as 1 calendar year because it captures the seasonal variations
of the wind. Thus, the damage over this time span is referred

2Note that in our notation we distinguish between inputs and pa-
rameters of the defined function. Parameters are assumed to be fixed
for a specific use case. They are separated by a semicolon, whereas
the function inputs are in front of the semicolon. If additional pa-
rameters exist but are not important for a certain passage, we omit
them to improve readability and replace them with a centred dot (·).
So for Dfm(τ ref

;uref, ·), τ ref is an input, uref is a set of parameters
and · denotes that additional parameters are omitted.

to as annual damage 1Dfm(u, ·) for any operating strategy
u. Within the time span 1τ , the damage increment on the
minutes scope is not constant. Instead, it changes over time
due to the variation in environmental conditions and corre-
spondingly varying control setpoints. The continuous dam-
age progression at the more detailed minutes scope is indi-
cated in Fig. 3 by the wave-like behaviour of the increasing
damage value (solid curves). This relationship from environ-
mental input conditions and setpoints to damage increment is
highly nonlinear in both dimensions, which makes it possible
to compensate for high-damage environmental conditions by
using low-damage setpoints. For now, the effect of seasonal
variation on damage and energy yield is fully included in the
final value after the time span1τ . We use this as the basis of
our optimization.

It is immediately apparent that there is a linear relationship
between the total damageDfm(τ ;u, ·) and time τ for any op-
erational strategy u. But this holds for given values at discrete
time points 1τ only, i.e. for τ = Y ·1τ . The value Y is the
number of time spans to the full time period τ , i.e. the num-
ber of operating years when 1τ represents 1 year with the
annual damage being the slope of the linear function. This is
expressed by

Dfm(τ ;u, ·)=Dfm(1τ ;u, ·) ·Y =1Dfm(u, ·) · τ. (1)

We now assume that by using an optimal operating strat-
egy uopt, we achieve an optimized lifetime τ life. During
this changed lifetime, the entire damage budget is spent,
i.e.Dfm(τ life

;uopt, ·)= 1. The modified lifetime period using
uopt is then simply given by inserting the optimized values in
Eq. (1) and resolving for τ life:

τ life
=
Dfm(τ life

;uopt, ·)
1Dfm(uopt)

=
1

1Dfm(uopt, ·)
. (2)

Thus, our aim is now to find a strategy uopt which optimally
changes the annual damage to 1Dfm(uopt, ·).

Computing the modified lifetime with Eq. (2) can result in
any time span τ life. However, due to seasonality and the as-
sociated nonlinearity within the time span 1τ , Eq. (1) only
holds true for Y ∈ N. This applies for τ ref, but the resulting
value τ life from Eq. (2) depends on the optimized damage
increment 1Dfm(uopt, ·) and can take up any value. It is in
turn not restricted to natural numbers. For a long time span
τ life, the resulting error is small in comparison with uncer-
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Figure 3. Illustration of damage progression over time for a reference (green) and an optimized operational strategy (yellow). Solid lines:
representation of continuous damage progression at a time scope of minutes. Dashed lines: linear approximation of damage progression at a
time scope of 1τ ≈ 1 year.

tainties resulting from the assumptions for the deterministic
long-term fatigue modelling approach.

That the assumption

τ ref
= Y ·1τ, Y ∈ N (3)

holds is due to a suitable scaling of 1Dfm(uref, ·). Among
other things, this includes the assumptions that the damage
budget is completely used up under the reference strategy
uref and that the damage increment is always the same for
each time increment 1τ . The latter is based on the standard
approach in the design process of wind turbines, where the
damage increment of a short time interval 1t (10 min to 1 h)
is extrapolated to the annual damage progression using a fre-
quency distribution of the input conditions, i.e. to the time
periods 1τ and τ life respectively. Therefore, the damage in-
crement dfm(x,u) under the external input conditions x ∈X
and the control setpoints u ∈ U needs to be known. Here, X
defines the space of selected input conditions for the speci-
fied system boundaries and U is the space of possible control
setpoints. In principle, dfm(x,u) can be obtained from an ar-
bitrary method for a specific failure mode. In this work, we
use the standard approach for wind turbine fatigue modelling
based on the assumption of a linear damage accumulation by
Palmgren and Miner (1945, Sutherland, 1999).

For the long-term calculation of damage and fatigue, dif-
ferent time scopes are relevant. Figure 4 shows an overview
of the different time scopes in interaction with the surrogate
models. It also gives an overview of terms and symbols used.
For the surrogate models, inputs and outputs on the minute
scope are decisive. The relationship between in- and outputs
is created by using high-fidelity simulations on the seconds
scope and evaluating their time series into a single value. At
the seconds scope, the control setpoints u are transferred into
the real-time controller of the wind turbine. Multiple simula-
tions of this type are carried out to create the surrogate mod-
els. Thus, the creation of the models finalizes the required
prerequisites of steps 1 and 2 according to Fig. 2. The op-
timization process is later carried out on the annual scope,

where the surrogates are evaluated to calculate the annual
damage and the annual energy depending on different oper-
ational strategies. Finally, the annual values can be used, to
compute the lifetime total energy and total damage. Before
those can be used for the long-term optimization process in
steps 3 and 4, we explain the relationship between the differ-
ent time scopes with respect to loads, fatigue damage, life-
time and energy production on a theoretical level.

2.1 Long-term fatigue damage progression and energy
production depending on external conditions and
operational planning

The standard approach in wind turbine design is the extrap-
olation of wind turbine loads from simulations to the design
lifetime of, for example, 20 or 25 years. It is also a require-
ment for the certification of a turbine, defined in standards
like (IEC, 2019; DNVGL-ST-0263, 2016). In the standards,
design load cases (DLCs) determine the external conditions.
To cover a wide range of sites, reference classes of wind con-
ditions are defined, and conservative assumptions are often
made. Currently, a fixed operational strategy is assumed for
each turbine. The major difference between standard design
calculations for fatigue damage and the presented approach
for optimal planning is the explicit integration of the control
setpoints as a dependent variable on the external conditions,
which can adaptively be selected and thus used as an opti-
mization variable. To cover the dependency of control on the
external conditions, we assume that for each external input
condition x ∈X, there is one setpoint or multiple setpoints
for the real-time controller u(x) ∈ U that can be selected.
Both, input conditions and control setpoints, are defined on
the minutes scope and thus valid over the time increment1t ,
i.e. between minutes and hours. To determine the relative fre-
quency for each combination of input conditions, binning is
required. Each combination of conditions is allocated to a
separate bin j . The vector of input conditions is denoted as
xj for a corresponding bin j = 1, . . .,Bx , where Bx is the
total number of all bins of all input conditions.
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Figure 4. Overview of time scopes for creation and usage of surrogate models. The white rectangles with rounded curves denote in- and
outputs on different time scopes. The white arrows describe a transition from input to output with a corresponding model. The rectangle
in the centre contains the prerequisites and ends with the creation of surrogate models which can be evaluated on the minutes scope. The
creation process is depicted by the cyan arrows, starting from the pool of input samples. Within the annual scope, the surrogate models are
used to compute the annual value with the frequency distribution as an additional input.

The dimension of xj is given by the number of input con-
ditions w = Dim(X). The entire set of input conditions is de-
noted as x := {xj }B

x

j=1. For each combination of input condi-
tions, a separate operational strategy, i.e. setpoints of the sys-
tem within the specified system boundaries, u := {u(xj )}B

x

j=1,
is defined. The total number of bins Bx is usually defined as
a full-factorial multiplication Bx = Bx

(1)
· . . . ·Bx

(w)
, where

Bx
(i)

denotes the number of bins defined for each condition
x(i).

In order to extrapolate the effects of the input conditions
over long periods of time, a relative frequency distribution
p1τ , which is representative of the input conditions within a
period 1τ , is usually used. Hence,

Bx∑
j=1

p1τ (xj )= 1, (4)

which can be scaled to an (absolute) frequency distribution,

hτ (x)= p1τ · τ, (5)

for a time period

τ = Y1τ,Y ∈ N. (6)

For wind turbines, an annual distribution for the wind
conditions, i.e. 1τ = 1year, is able to represent the varia-
tions through the different seasons. With the frequency dis-
tribution and the planned operational strategy, a damage

1Dfm(u,h1τ ) can then be determined over the period 1τ ,
i.e. an annual damage progression assuming an annual wind
distribution.

Using this and the assumption of a linear damage accumu-
lation, damage can also be defined as a function of τ depend-
ing on the defined frequency distribution over that period and
the operational strategy,

Dfm(τ ;u,hτ ) :=
Bx∑
j=1

dfm(xj ,uj )hτ
(
xj
)

=

Bx∑
j=1

dfm(xj ,uj )h1τ
(
xj
)

︸ ︷︷ ︸
1D(u),h1τ

,Y. (7)

where dfm(x,u) is the damage increment under the exter-
nal input conditions x and the control setpoints u. It is also
possible to compute the energy production accordingly by

E(τ ;u,hτ ) :=
Bx∑
j=1

P (xj ,uj )hτ
(
xj
)

=

Bx∑
j=1

P (xj ,uj )h1τ
(
xj
)

︸ ︷︷ ︸
1E(u),h1τ

,Y. (8)
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where P (x,u)= E(x,u)
1t

is the energy increment under the in-
put conditions and 1E(u) the average annual energy within
1τ .

With adapted operational control for modified lifetime, the
time period over which energy is produced is changed as
well. The total lifetime energy yield can be computed by in-
troducing a lifetime extension factor. It relates the lifetime
with the reference operational strategy to the modified life-
time:

cext
:=
τ life

τ ref =
Dfm(τ ref

;uref,hτ )
Dfm(τ ref;u,hτ )

=
1

Dfm(τ ref;u,hτ )
=
1Dfm(uref,h1τ )
1Dfm(u,h1τ )

. (9)

Until now, the resulting lifetime was denoted as τ life, but
in fact, this value is computed from damage Dfm(·) relevant
for a certain failure mode, fm, and thus also only valid for
this specific failure mode. For this reason, hereafter it is de-
noted as τ life

fm (u) and the extension factor as cext
fm (u). With this,

Eq. (9) can be expressed as

τ life
fm (u)=

1
1Dfm(u,h1τ )

=
1Dfm(uref,h1τ ) · τ ref

1Dfm(u,h1τ )
= cext

fm (u) · τ ref. (10)

The deterministic lifetime extension factor cext
fm (u) can thus

be used to compute the potential for lifetime extension on any
time period where the damage increment is compared for two
different strategies.

Then, the energy production from the optimized opera-
tional strategy uopt is given by

E
(
τ life

fm (uopt);uopt,hτ

)
= cext

fm (uopt) ·E
(
τ ref
;uopt,hτ

)
. (11)

Within the course of this work, Dfm(τ ref
;u,hτ ) is later used

within the optimization process. It is important to realize that
this value is actually closely related to the damage computed
with the reference strategy. This becomes more clear when
the damage increments are connected to the fatigue damage
budget. Up to now, the assumed damage progression is appli-
cable to any failure mode where damage accumulates over
time. With this, we implicitly also assume that the details
about material properties of the specific failure mode are in-
cluded in dfm(xj ,uj ).

2.2 Relationship between fatigue damage and damage
equivalent load (DEL)

Fatigue damage is typically based on the linear damage ac-
cumulation by Palmgren and Miner (1945). Especially for
the comparison of loads under different environmental con-
ditions or control approaches, it remains a useful approach
as a first step before more advanced evaluations can be ex-
amined with further development. For the explanation of the

general process, the failure mode index, fm, is dropped. The
fatigue damage increment of a load time series simulated on
the seconds scope, with input conditions xj , is given by

d(xj ,uj )=
ncyc,j∑
i=1

nij

Nij
(12)

for i effective load collectives with a number of load cycles
ni . Ni denotes the maximum bearable number of load cycles
until failure for the corresponding specific oscillation ampli-
tude. The number of load cycles counted in the load time
series of length 1t is denoted by ncyc,j . The tolerable num-
ber of load cycles Nij depend onDult and can be determined
with

Nij =

(
Dult

Lij

)m
. (13)

Lij represents the oscillation amplitude of a load cycle and
are usually obtained from a rainflow counting algorithm. The
parameter m is the component specific Wöhler exponent de-
scribing the slope of the S–N curve as negative inverse on
a double logarithmic axis. In the formulation of Eq. (13),
the mean load is neglected and no Goodman correction is
performed. The value Dult denotes the ultimate design load
which would lead to a damage of D = 1 if it occurred once.
Therefore, Dult is a design parameter which needs to be
determined from the design process under consideration of
all conditions and their frequency for the desired reference
design period τ ref. In addition, it normally includes safety
margins and design reserves. For simplification Dult can be
scaled in such a way that

D(τ ref
;uref,href)= 1 (14)

is valid, i.e. that fatigue damage is fully utilized with the
reference operational strategy and under some site-specific
reference frequency distribution:

href(x) := hτ ref (x)= p1τ τ ref. (15)

In this case,Dult can be expressed by making use of the dam-
age equivalent fatigue load (DEL). It is a representative value
which would yield the same damage as the considered time-
varying signal with a constant amplitude and frequency. This
value is related to an equivalent number of load cycles Neq.
Then, the short-term DEL is computed by

DELst(xj ,uj )=
(∑

inij (Lij )m

Neq

) 1
m

(16)

and the total DEL over the time span τ is given by

DEL(τ ;u)=

(
Bx∑
j=1

(
DELst(xj ,uj )

)m (
hτ (xj )

)) 1
m

. (17)
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This can be used to solve Eq. (14) for Dult:

1=
Bx∑
j=1

d(xj ,uref
j )href (xj )= Bx∑

j=1

ncyc,j∑
i

nij

Nij
href (xj )

=

Bx∑
j=1

ncyc,j∑
i

nij (Lij )m

(Dult)m
href (xj )

=

Bx∑
j=1

(
DELst(xj ,uref

j )
)m
href (xj )︸ ︷︷ ︸

DEL(href;u)m

Neq

(Dult)m

⇒Dult
= DEL(href

;uref)(Neq)
1
m = DELref(Neq)

1
m . (18)

This can subsequently be inserted into Eq. (13) so that the
damage can be expressed using the DELs as a relative value:

d(xj ,uj )=
ncyc,j∑
i

nij

Nij
=

nij (Lij )m

(DELref)m(Neq)

=
DELst(xj ,uj )mNeq

(DELref)mNeq
=

(
DELst(xj ,uj )

DELref

)m
(19)

In order to model the nonlinear damage increment for the
external conditions, surrogate models can be created by us-
ing the relationship to the short-term DELs which is given by
Eq. (19). In principle, surrogate models for the damage incre-
ments could directly be computed, but creating the models
for the DEL is more common and easier to interpret because
the Wöhler exponent m adds additional nonlinearity to the
damage value.

3 Definition of example system and implementing
prerequisites for optimization

Based on the theoretical background for fatigue calculation,
the four-step process will be applied to a specific use case.
Therefore, the system boundaries for the exemplary use case
will be defined first. Afterwards, the first two steps of the
process are explained and applied to the example.

3.1 System boundaries for application example

We focus on optimal operation of a single turbine within
a wind farm. This means that effects from the surrounding
wind farm have to be taken into account as well. These in-
clude mainly the wake effects from other turbines, which act
on the considered turbine and are, under normal operation, a
significant driver of its loads. Each single considered turbine
will thus be able to react to the wake effects from the sur-
rounding turbines, but the effect from changes in control on
the wake cannot be considered yet.

3.1.1 Modelling of a single turbine and its system
boundaries

The generic direct-drive wind turbine IWT7.5 with a nominal
power of 7.5 MW, rotor diameter of 164 m and a hub height
of 100 m is used (Popko et al., 2018). To compute the loads
of the turbine on the so-called seconds scope (1t = 0.01 s),
the aero-elastic load simulation tool “The Modelica Library
for Wind Turbines” (MoWiT) (Thomas, 2022) is employed.
Three-dimensional wind fields covering the properties of
the external conditions for each simulation are used as in-
put. They are created with the software Turbsim (Jonkman,
2009). MoWiT is developed at Fraunhofer IWES as an
object-oriented library for fully coupled aero-hydro-servo-
elastic simulations of wind turbines. Detailed information on
the development of MoWiT can be found in the literature
(Thomas et al., 2014; Leimeister and Thomas, 2017). The
tool covers on- and offshore turbines with bottom-fixed sub-
structures, and also floating wind turbines. It is coupled to the
adaptable controller outlined in Sect. 3.2. Two major envi-
ronmental inputs influencing the wind turbine loads in power
production mode are considered as local input conditions:
mean wind speed v and turbulence intensity at hub height tur-
bulence intensity (TI). Those input conditions are defined lo-
cally as the inflow to a single turbine which positioned its ro-
tor perpendicular to the main inflow wind direction. All other
parameters which define the inflow wind field, such as verti-
cal and horizontal wind shear, are fixed at their IEC-standard
values. The local inflow on a turbine from wake effects is
covered through an increase in turbulence intensity only and
does not include wake meandering effects. This simplifica-
tion allows splitting the aero-elastic turbine simulations from
the wake modelling, and thus reduces simulation effort. Con-
sidering other effects like wake meandering for the creation
of surrogate models is possible through an extension of the
load simulations but goes beyond the scope of this work,
because the major effect of an increase in loads is covered
through the applied approach. For the demonstration of the
approach, the structural loads of the blades and the tower are
considered. Both are supposed to last for the complete design
lifetime of 20 or 25 years. Both are also influenced by the
turbine controller and the wake-induced turbulence. For the
blades, the flapwise and edgewise bending moments (BMs)
are considered as separate failure modes, because they repre-
sent the two major load driving moments on the rotor blades.
For the tower, the combined bending moment at the bottom
is utilized as failure mode. All these loads can be considered
as representatives for the fatigue accumulation of different
components that can be influenced by the wind turbine con-
troller and the environmental conditions in different ways.
While the tower and the flapwise bending moment are more
strongly influenced by turbulence, the variations in the edge-
wise BM are driven by gravity loads dependent on the rotor
speed, i.e. the controller and the wind speed.
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The considered loads, their corresponding abbreviations
and the utilized Wöhler exponent m are summarized in Ta-
ble 1. Using linear fatigue accumulation by using DEL is a
very strong simplification for the fatigue degradation of lami-
nate, which is a composite material containing fibreglass. Us-
ing this approach is still standard for design calculation and
allows for straightforward use without detailed knowledge
about the material properties. For the tower, an exponent of
m= 3 is used, which is representative for steel components
and m= 10 for the blade loads as an approximate for fibre-
glass (Sutherland, 1999).

3.1.2 Wind farm setup: from surrounding system to
considered wind turbine

The influences of the surrounding system on the considered
wind turbine are covered by a site-specific wind distribution
and the wake influences from the surrounding turbines in the
wind farm. The wind farm consists of nine turbines with a
regular 3× 3 layout, shown in Fig. 5a. It was already used
in Schmidt et al. (2021). In this work, we optimize oper-
ational strategies for the turbine in the centre (index 4). In
doing so, we can put a focus on the method for operational
planning and the discussion of derived results. There are var-
ious studies and models to illustrate the effects of wakes on
the loads, ranging from wake meandering to partial wake ef-
fects (Mendez Reyes et al., 2019; Nash et al., 2021). Since
the core of this work lies in the optimization methods, we
limit ourselves here to a simple steady-state modelling of the
wake effects for wind and turbulence, which cannot cover
these effects yet. For this purpose, we use the IWES soft-
ware FOXES (Schmidt, 2022). The local wind speed is com-
puted using the Gauss-type wake model by Bastankhah and
Porté-Agel (2016). The wake-induced TI is calculated using
the top-hat wake model as described in IEC (2019). For the
ambient TI, we use the wind-dependent Weibull distribution
according to IEC (2019) with class B at the 50 % quantile to
cover the mean effects at such a site. For the superposition of
wakes, we use a linear superposition for the wind speed and
the maximum superposition for TI. Local TI depending on
the ambient wind speed and direction is shown in Fig. 5b.

The annual frequency distribution is derived from a 30-
year time series of ERA5 data in the North Sea with a res-
olution of 1h from 1990 to 2019 (Hersbach et al., 2018).
The mean wind speed and wind direction at 100 m height
are extracted to create a relative frequency distribution of
ambient wind speed vamb and wind direction θamb, which
are both subdivided into bins. Therefore, the reference rel-
ative wind distribution for the ambient wind conditions is
pref
1τ (vamb,θ

amb) with 1τ = 1 year. Because wind speed and
direction are covered separately, the total number of bins Bx

is subdivided into bins for each direction. The wind speeds
vamb are first binned with a resolution of 1 m s−1 from 1.5
to 49.5 m s−1. Only values within the operating envelope of
the turbine (4.5 m s−1

≤ vamb
≤ 23.5 m s−1, number of wind

speed bins Bv
amb
= 20), where derating can influence the

turbine, are considered for optimization. It also means that
pref
1τ (vamb,θ

amb) does not sum up to 1 anymore. The wind
direction is binned with a resolution of 2◦ from 0 to 358◦

(Number of wind speed bins Bθ
amb
= 180). This results in a

total number of Bx
amb
= 180 · 20= 3600 bins. The percent-

age annual frequency for those bins is shown in Fig. 5c.
For a single turbine, the wake model represents a function

which maps the ambient mean wind speed vamb and wind
direction θamb to the local mean wind speed v and turbu-
lence intensity TI. Since the interaction of the turbines is only
modelled unidirectionally, without considering the influence
of the changed control setpoint on wake towards other tur-
bines, it is possible to create a local frequency distribution
for each turbine, which only depends on the distribution of
local wind speeds and turbulence. To do so, the frequencies
of pref

1τ (vamb,θamb) are binned again into Bv = 20 wind bins,
as before, and BTI

= 25 TI bins with a width of 1 % starting
from 5 %, resulting in 500 total bins. The frequency distribu-
tion for the additional binning is denoted as h̃ref

s and is only
valid separately for each turbine s = {1, . . .,S} in an arbitrary
wind farm with S turbines. The local frequency distribution
of the centre turbine 4 is shown in Fig. 5d. The TI values
increase from the ambient TI, which still shows the highest
relative frequency. The frequency of TI values increases for
certain combinations, as indicated in Fig. 5b. Then, the dam-
age and energy calculation can be derived:

D̃fm(τ ;u)=
Bv∑
j=1

BTI∑
i=1

dfm(vj ,TIi,u(vj ,TIi)h̃ref
s (vj ,TIi) (20)

and

Ẽ(τ ;u)=
Bv∑
j=1

BTI∑
i=1

P (vj ,TIi,u(vj ,TIi))h̃ref
s (vj ,TIi). (21)

This simplified form, which adds uncertainty to the opti-
mization result, will be used in the results part during appli-
cation of our approach. The uncertainty can be influenced by
the number of bins selected. It can be well estimated in com-
parison with the original binning and lies below 1 % for the
considered cases.

3.2 Adaptable real-time controller of the wind turbine
(step 1)

The primary objective of a wind turbine controller is to max-
imize power production while meeting the requirements of a
grid operator (Burton et al., 2011; Njiri and Söffker, 2016;
Requate et al., 2020). Additionally, secondary objectives,
such as load reduction, are pursued during control design.
This can be achieved, for example, by implementing fea-
tures for reduction in loads on specific components. Exam-
ples are exclusion zones to reduce tower vibrations or in-
dividual pitch control (IPC) to reduce fluctuations in blade
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Table 1. Summary of terms for the selected failure modes.

Load Flapwise bending moment Edgewise bending moment Tower bottom bending moment

Abbreviation Flapwise BM Edgewise BM Tower (bottom) BM
Wöhler exponent 10 10 3
Short-term DEL DELst

flap(x,u(x)) [Nm] DELst
edge(x,u(x)) [Nm] DELst

tower(x,u(x)) [Nm]
Damage rate dflap(x,u(x)) [1/h] dedge(x,u(x)) [1/h] dtower(x,u(x)) [1/h]

Figure 5. Setup for surrounding system of the wind turbine.

root bending moments. However, these secondary objectives
usually force the controller to deviate from optimal opera-
tion with regard to its primary objectives. Some secondary
objectives might even compete with one another, e.g. blade
root loads and pitch actuator activity for IPC. We now as-
sume that the balance between primary objective and sec-
ondary objectives can be selected externally by adapting the
controller through a control setpoint.

In Sect. 2.1, we already introduced the control setpoint as
u(x). We assume this to be an abstract value which can be
selected based on the external input conditions x. Thus, u

is a vector of controller setpoints, which in turn reacts by
adjusting its own internal parameters. In a larger wind farm
system, which is composed of multiple turbines, which uses
wake steering or wake reduction, u(x) could be the yaw angle
or the amount of power derating (Nash et al., 2021). Within
the remainder of this paper, we assume a one-dimensional
control setpoint for the power derating of a single turbine.
This is a commonly available input, as reduced power ca-
pability is also requested by grid operators to mitigate grid
congestion. There are several studies which investigate derat-
ing methods with respect to various objectives. These meth-

https://doi.org/10.5194/wes-8-1727-2023 Wind Energ. Sci., 8, 1727–1753, 2023



1738 N. Requate et al.: From wind conditions to operational strategy

ods include power regulation for the grid, wake reduction or
loads. In Houck (2022), several studies on derating (or axial-
induction control) are summarized and sorted into the men-
tioned categories. Many studies investigate load reduction as
a side effect, while the main objective is either the power
regulation or reducing the wake on the downstream turbine.

Within the system boundaries of this study, the main ob-
jective is not to determine the best fitting derating method
for the generic wind turbine, but to show the benefits of us-
ing derating for an optimal planning. Therefore, the choice
is conducted based on the findings from the literature and
from previous experience with the generic IWT7.5 wind tur-
bine, and not through an extensive study and tuning of the
controller under various conditions. Also, no additional fea-
tures, such as individual pitch control or active dampers, are
activated. For a real-world application, fine-tuning the con-
troller for every derating configuration would be beneficial
and could lead to an improved performance with respect to
loads and power. The IWT7.5 is controlled with the IWES
research controller (Wiens, 2021). The derating method is
implemented such that it reduces power in partial and in full
load by a percentage factor δP ∈ [δmin

P = 50%,100%]. Such
a derating method is referred to as proportional delta control
in Elorza et al. (2019) or percentage reserve in van der Hoek
et al. (2018).

In partial load, both tower and blade fatigue loads should
be decreased. To do so, the constant-λ method is imple-
mented (Astrain Juangarcia et al., 2018), because we expect
a positive effect on these loads based on the literature, and
we avoid potential negative effects like a near-stall operation
as, for example, by using the minimum-thrust strategy. This
is achieved by finding the steady-state pitch angle β so that
the reduced power coefficient δPcp is found while λ is kept
constant. From these values, the parameters for derated oper-
ation can be computed.

In the full load region, the torque setpoint is normally re-
duced for derating. This allows for a fast recovery of power
when derating is no longer required, and is thus beneficial
for ancillary services (Fleming et al., 2016; van der Hoek
et al., 2018). However, it only has a minor effect on the fa-
tigue loads of the blade and the tower. Reducing the gener-
ator speed mainly has a strong positive effect on the blade
loads in the flapwise direction (Requate and Meyer, 2020),
while reducing the torque has a positive influence on the driv-
ing torque loads (Pettas et al., 2018). The effect on the tower
loads are quite turbine dependent because a reduction in gen-
erator speed can reduce oscillations to some extent but often
also increases them due to the lowered aerodynamic damp-
ing (van der Hoek et al., 2018). Therefore, a mixed method
between reducing torque and speed might be advantageous,
again depending on individual objectives and turbine charac-
teristics. Both methods are combined for reducing the rated
generator torque Mr and ωr.

In Fig. 6, the operating points of the controller for the se-
lected setpoints are presented. Figure 6a shows the speed–

torque curve of the controller. The end point of the curves al-
ways determines the combination of Mr and ωr. By compar-
ing the progression of these curves, the effect of both strate-
gies can be observed. In partial load, the constant-λ strategy
determines a specific combination of parameters including
the static pitch angle. The steady-state operating points of
the pitch-angle are plotted over the wind speed in Fig. 6b.
In combination, this results in the steady-state power curves
which are shown in Fig. 6c.

The control setpoints can then be used as optimization
variables in the formulation of a mathematical optimization
problem. However, using them directly within an optimiza-
tion requires full simulation of respective load cases, which is
not feasible due to the required computational effort. Instead,
surrogate models can be set up which abstract the whole
turbine–controller interaction.

3.3 Surrogate models for damage progression and
energy production (step 2)

Surrogate models, sometimes also called meta-models, are
a necessary prerequisite for evaluating and optimizing differ-
ent influences on damage over long periods of time. For wind
turbines, they have gained growing research interest to cover
the influences of various external conditions and control on
fatigue damage. They have in common that aero-elastic sim-
ulations are used to create a database of fatigue loads for
various input conditions. In Fig. 4, those aero-elastic simu-
lation models are denoted more generally as higher fidelity
models on the seconds scope. The surrogate model is cre-
ated by performing multiple simulations for a pool of input
samples. Due to the relationship between damage increments
and DELs, the surrogate models can be calculated on the ba-
sis of the short-term DELs. Thus, the strong nonlinearity due
to the Wöhler exponent does not have to be considered, and
the damage increments can be calculated using Eq. (19). The
short term DEL DELst

fm(z) is obtained through aero-elastic
simulations of the wind turbine model and a subsequent eval-
uation using the rainflow counting algorithm and Eq. (16).

By using surrogate models to compute damage and en-
ergy increment, additional uncertainties are inevitable when
calculating long periods of time. At the same time, the load
calculation of wind turbines is always associated with uncer-
tainties due to the stochastic influences of the wind (Mozafari
et al., 2023). This must be taken into account when creating
surrogate models. Depending on the application and effort,
different requirements are made on the surrogate models.
For example, more accurate models are required for fatigue
tracking or for calculating the remaining service life than for
use in an optimization. Here, fast evaluation and good map-
ping of the correlations between optimization variables and
initial values are of particular importance.

In this work, the surrogate is considered as an existing
prerequisite with various suitable approaches from the lit-
erature ranging from Gaussian regression (often referred to
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Figure 6. Operating points of the real-time controller for selected derating methods.

Table 2. Input sampling for load simulations.

Wind Speed v̂ Turbulence intensity T̂I Percentage power δ̂P

4,5, . . . , 25 m s−1 (
√

2)i%∀i = 2, . . .,11 50, 60, . . . , 100 %

as kriging) to polynomial chaos expansion to artificial neural
networks (Dimitrov, 2019; Hübler, 2019; Slot et al., 2020;
Gasparis et al., 2020; Debusscher et al., 2022; Singh et al.,
2022). A good overview of different surrogate methods and
a comparison of their performance is given in Dimitrov et al.
(2018). Despite their known lower accuracy compared with
some of the other methods, we select multidimensional poly-
nomial regression models for the DELs due to their suitabil-
ity for optimization, their simple usage, their differentiability
and their fast training and evaluation time. For the electrical
power, a linear interpolation is used.

The pool of input conditions is created with a full-factorial
sampling for the wind conditions x together with the per-
centage power u(x)= δP(x). The sampling values are pro-
vided in Table 2. While wind speed and power are sampled
equidistantly, the sampling of the TI values is selected so that
the distance between the samples increases exponentially, as
indicated by the formula in Table 2. This reduces simula-
tion time and still creates enough data in situations with high
occurrence. To account for the randomness in the incoming
wind, various realizations of the same mean input charac-
teristics are usually simulated; those are determined through
pseudo-random seeds. For the simulations performed in this
work, 6 simulations of 10 min on the seconds scope are per-
formed to obtain a damage increment on the minutes scope
with the time increment 1t = 60 min= 1 h as is standard for
DEL calculations.

To obtain the parameters of the polynomial regression
model for the DELs, a least squares approach is used. The
maximum order of the polynomial is set to 5. The value is
found by cross validating different orders of the polynomial
between 1 and 8. For the further usage of the surrogate mod-

els, it is particularly important that the influence of the de-
rating setpoint at the different input condition be correctly
represented. For all three failure modes, a general agreement
of the surrogate model to the data can be observed. Figures 7
and 8 exemplarily show the evaluated surrogate model (solid
lines) as well as the simulated training data (dots in same
colour as solid line) when one of the input conditions is set
to a fixed value. The DELs are normalized with respect to
the fixed values (v = 8 m s−1 and TI= 16 %) at the nomi-
nal percentage power δP = 100 %. The power is not explic-
itly shown here because its behaviour, dependent on wind
speed, directly derives from the control setpoints (cf. Fig 6c).
In general, the accuracy of the fit for the flapwise BM and
the tower base BM is lower than that of the edgewise BM.
These loads are more strongly influenced by the turbulence
of the wind and thus also have a higher uncertainty in the
simulated DELs. Especially for the tower, the high variation
in the simulation data makes it difficult to create a surrogate
model. Also, the relative mean error on the complete dataset
is highest for the tower BM (error= 3.88 %), compared with
the error in the flapwise BM (2.32 %) and the edgewise BM
(0.23 %).

The behaviour of the DELs depending on the control set-
points will now be briefly discussed. Figure 7 shows the re-
sults with the wind speed v on the x axis for different values
of percentage power δP = 100 % with a fix TI= 16 %. Both,
the flapwise and the tower DELs (DELst

flap and DELst
tower),

strongly increase with the wind speed (cf. Fig. 7b and c),
while the DELs of the edgewise BM DELst

edge reduce when
the rated wind speed is reached at 12 m s−1 and the turbine
starts pitching (cf. Fig. 7b). The reduction in DELst

edge de-
pending on δP = 100 % directly relates to the lower rota-
tional speed through the control setpoints at each wind speed.
Thus, it has a stronger effect at 90 % and 80 % when the
rotor speed is lowered by a higher amount than the gen-
erator torque to achieve the power setpoint. The decrease
in DELst

edge is also rather small compared with the other
two failure modes, where the relative difference in DELs
is much higher. The DELst

flap can be reduced for almost all
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Figure 7. Evaluated surrogate models (solid curves) and simulated data points (dots) for a fixed TI of 16 % normalized with the short-term
DEL of the nominal strategy δP = 100 % at v= 8 m s−1 and TI= 16 %.

Figure 8. Evaluated surrogate models (solid curves) and simulated data points (dots) for a fixed wind speed of 8 m s−1 normalized with the
short-term DEL of the nominal strategy δP = 100 % at v= 8 m s−1 and TI= 16 %.

wind speeds (cf. Fig. 7b), but not by the same amount. The
DELs of the tower BM show a much less clear relation to
the percentage of power. For low wind speeds, the values of
DELst

tower also decrease with the lower values of δP = 100 %,
but with some significant variation within the simulated data
points. For higher wind speeds, reducing the power can even
increase the tower loads, and the relation is not completely
deterministic. This effect is caused by the reduced aero-
dynamic damping due to the rotor speed reduction or from
resonance effects.

Figure 8 shows results with TI on the x axis for different
values of δP with a fix wind speed v = 8 %. The DELst

edge is
not significantly influenced by the turbulence. The load re-
duction in the edgewise DEL is low compared with the other
two failure modes. For the flapwise bending moment and the
tower bending moment, the strongest relative reduction can
be achieved by reducing the power to 90 %, but more derat-
ing still decreases the DELs slightly further. The relative load
reduction also increases with increasing turbulence.

The results presented in this section show several aspects
which are relevant for the optimal planning approach. The
selected method for derating is suitable to reduce the short-
term DELs and thus the damage increments of all the fail-
ure modes. Also, the surrogate models are able to cover the
nonlinearity sufficiently to be used for further optimization.

The optimal planning approach can make use of this to de-
termine when a load reduction should be favoured over a
higher energy production. This can especially be done by ex-
ploiting the fact that higher turbulence significantly increases
loads, but the power production remains almost the same.
This effect is even strongly enforced from the relation of the
short-term DEL to the damage increment because the value is
raised to a higher power by the Wöhler exponent (see Eq. 19).

4 Method for optimal long-term planning: VIOLA

Having created the surrogate models depending on the se-
lected control setpoints as prerequisites, they can now be
used to determine how much derating is beneficial to ap-
ply, through the optimal operational planning method. The
process for the assessment of lifetime objectives dependent
on the operational strategy is shown in Fig. 9. The lifetime
objectives are modelled by making use of the surrogate ap-
proach on the annual scope. The total damage determines the
lifetime of the wind turbine, which influences total energy
production and total value. While the total energy and dam-
age define the objectives on a technical level, maximizing
the total value is the final goal. All objectives are influenced
by the setpoints for the operational strategy, which determine
the optimization variables. The key of the method is to for-
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mulate the problem in such a way that a control setpoint is
found for each external condition while these long-term ob-
jectives are fulfilled. We refer to value as a general measure
for the overall valuation of the considered wind energy sys-
tem. It will usually contain an economic valuation but may
also include other factors such as environmental impact or
contributions to grid stability. We call the framework for
this method VIOLA (value-integrated optimization of life-
time asset operation). The process shown in Fig. 9 forms the
basis for the formulation of the optimization problem which
currently consists of the two separate steps, namely steps 3
and 4, of the complete process (cf. Fig. 2).

4.1 Condition-based optimization of operational
planning (step 3)

Developing the mathematical optimization process for find-
ing the operational strategies is the central part of this work.
Neglecting economic factors and other influences and re-
strictions for the total value of a farm at first, it is ecologi-
cally most beneficial to get the maximum amount of energy
over the lifetime τ life of the turbine while the fatigue bud-
get of each component is fully used up. Therefore, the to-
tal energy for a given target damage budget is maximized
over the fixed reference time τ ref. The operational strategy
u= {u(xj )}B

x

j=1 is optimized for each of the external con-
ditions which were previously selected by the definition of
the system boundaries. It follows that the number of selected
independent control setpoints, defined by Dim(U ) and the
number of bins which are used for the external conditions
Bx , determine the number of optimization variables, which is
equal to Bx ·Dim(U ). Within the scope of this work Dim(U )
is equal to 1 because a single derating strategy will be ap-
plied. With a fixed known target fatigue budget Dtarget

fm for
failure mode fm ∈ F , the optimization problem is formulated
as

maxu
Bx∑
j=1

P (xj ,u(xj ))href(xj )

subset to
Bx∑
j=1

dfm(xj ,u(xj ))href(xj )≤Dtarget
fm , ∀fm ∈ F . (22)

Using this simple and compact formulation, it is possible to
spare the fatigue budget when the damage increment is high
compared with the energy increment. When the damage of
all failure modes is reduced compared with a baseline opera-
tion uref, i.e. Dtarget

fm ≤Dref
fm , the turbine can be operated for a

longer time and ultimately more energy can be produced.
The optimization problem is solved by using the gradient-

based interior point algorithm for constrained nonlinear opti-
mization problems (Waechter and Laird, 2022). The process
itself is formulated with Python and the optimizer is inter-
faced through the library pygmo (Biscani and Izzo, 2020a),
which builds on the C++ library pagmo (Biscani and Izzo,

2020b). Gradients are computed using finite differences. Op-
timization runs were executed on a laptop with an Intel i7
four-core processor, 2.1 GHz speed and 32 GB RAM. The
execution time of each run ranges from several minutes to
several hours, depending on the specified target damages.
The optimizer typically needs between 100 and 500 iterations
to converge. As starting values, the reference strategy with
100 % power production at each turbine was always used,
which is a nonoptimal but feasible solution. All optimization
runs show plausible results in terms of an improved relation-
ship between the energy increment and damage increment.
For this reason, no explicit variations of the starting values
were required to check for convergence to local minima.

Clearly, the solution strongly depends on the selected fail-
ure modes, their behaviour with regard to the damage rate de-
termined from the surrogate models and on the target fatigue
budget. When several failure modes should be optimized si-
multaneously, it might be impossible to fulfil the constraints
and no solution can be found. Therefore, the selection of the
target budget strongly depends on the specific problem which
relates to a specific wind farm or wind turbine. The formu-
lation in Eq. (22) provides a clear separation of the techni-
cal aspect from the economic aspect and therefore allows
investigating the relationship between damage progression
and energy production for different components under con-
sideration of the operational strategies over long periods of
time. It can also directly be used to create a Pareto front be-
tween damage and energy production by principally applying
the epsilon constraint method for multiobjective optimization
(Chiandussi et al., 2012), i.e. by fixing various combinations
of the target values Dtarget

fm . We pursue this approach in this
work and select a specific strategy based on further informa-
tion in the final step 4.

4.1.1 Creating Pareto-optimal solutions for the
application example

We apply the optimization method to the considered turbine
in the centre of the wind farm. To do so, we first need to de-
fine the reference design value DELref. It is computed with
the site-specific wind distribution, including wake effects for
wind and TI, and with the reference operational strategy uref.
This means that operating with the reference strategy yields a
damage value of 1 for all failure modes after the nominal op-
erating period. This implies a site-specific design, where all
components are designed for the local site conditions. This
strong assumption stands in contrast with series manufactur-
ing of turbine components. However, it allows a simpler in-
terpretation of the results at this point. We limit ourselves to
the factors that can be influenced beyond design decisions
and safety factors. Therefore, each reduction in damage of a
failure mode results in an extended lifetime according to the
deterministic assumption from Eq. (10).

By solving the problem for various values of Dtarget
fm ∈

[0,1], the maximum amount of energy for each of these val-
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Figure 9. Process for computing the lifetime objectives dependent on operational strategy. The setpoints of the operational strategy define
the optimization variables. They are input to the annual scope calculation based on surrogate models and frequency distribution. With the
output of this calculation, annual damage and annual energy can be accumulated to a lifetime value. The lifetime is determined from the total
damage and thus used as an input for lifetime energy and lifetime value accumulation. The lifetime value is computed with additional inputs
for the specified value metric.

ues can be found. For simplification, each failure mode is
considered separately. On the one hand, this increases the
interpretability of the results. On the other hand, it would
be applicable if the weakest failure mode of a turbine or
component can clearly be determined. For each failure mode
fm ∈ {flap,edge, tower}, at first the minimum possible dam-
age is computed as an orientation. Then the optimization
problem

maxû
Bv∑
j=1

BTI∑
i=1

P (vj ,TIi,u(vj ,TIi))h̃ref
4 (vj ,TIi)

subset to
Bv∑
j=1

BTI∑
i=1

dfm(vj ,TIi,u(vj ,TIi))h̃ref
4 (vj ,TIi)

≤D
target
fm . (23)

is solved with constraint between 0.3 and 1 depending on the
failure mode to obtain desired points the three Pareto fronts.
Each point yields an optimal planning strategy separately for
each failure mode. Such a strategy is denoted as uopt

fm .
The results of the optimization, i.e. the Pareto fronts, are

shown in Fig. 10 where the relative percentage energy pro-
duction compared with the reference case is plotted over the
total damage, which is equal to 1 for the reference case.
When comparing the results, one can clearly see the differ-
ent behaviour of the failure modes, which results from the
determined relation of the damage rates to the control set-
points and the external conditions. While it is possible to
significantly decrease the damage value for the flapwise BM
(Fig. 10c) and the tower BM (Fig. 10b) without losing much
energy, the edgewise damage can only be reduced with com-
parable losses in the energy production. This is mainly due
to the fact that the dependency of the edgewise BM on TI is

lower and that damage can mainly be reduced by reducing
the rotational speed.

Reducing the damage results in a factor for lifetime exten-
sion, which is approximately determined by Eq. (9). Accord-
ing to Eq. (11), the energy yield after the extended lifetime
τ life

fm (uopt
fm ) is also increased by that factor. Additionally, the

selected failure mode is assumed to be the only one relevant
to life extension such that the damage of the others can be ne-
glected for this example. By directly maximizing the energy
production, the maximum amount of energy can be produced
while fully using up the fatigue budget of the failure mode
with a variable time span in this case. The result of this opti-
mization is shown as a large blue dot in Figs. 10 and 11. Fig-
ure 11 additionally shows the relative energy production for
each failure mode plotted over the relative damage. For the
edgewise BM, only a slight increase in the energy production
of about 5 % can be obtained when the damage is reduced
between 0.75 and 0.85. For the tower BM, the reduction in
damage leads to a lower loss in energy than for the edgewise
BM. Therefore, the overall energy production after the ex-
tended lifetime can be significantly increased by up to 17 %
when damage is reduced to 0.77. A further damage reduction
reduces the effect significantly. The strongest positive effect
can be seen on the flapwise BM due to the combined influ-
ence of the selected control method, the strong influence of
high wind speeds and turbulence, as well as the high Wöh-
ler exponent. The damage can be reduced to a value of 0.25
resulting in an increase in energy by more than a factor of 3.
While the additional energy production for the tower BM al-
most increases linearly at first and then reaches the maximum
value at 0.77, it clearly shows a more than linear growth
for the flapwise BM. The computed Pareto fronts represent
a trade-off between damage and energy production over a
given time period, of which a single value and correspond-
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Figure 10. Pareto front of relative energy production and damage for each failure mode separately.

Figure 11. Relative energy over damage plotted over the relative damage for each failure mode separately.

ing strategy need to be selected to complete the four-step
process. Before we apply this step, the resulting operational
strategies for each result which yields the highest relationship
between energy and damage (large blue dot) are investigated
more closely.

4.1.2 Detailed results of a single optimization run

To be able to interpret the optimized operational strategies,
the distributions of damage with reference operation are
shown for each failure mode in Fig. 12. In each plot, the wind
speed is plotted radially and the wind direction circumferen-
tially. The damage values are given by their total value share
on the overall value during τ life.

The highest frequency in the wind distribution occurs in
the southwestern direction (see Fig. 5c). This distribution is
also strongly reflected in the damage value for the edgewise
BM (Fig. 12a) and partially for the flapwise BM (Fig. 12b).
While the highest amount of damage is induced at wind
speeds below rated for the edgewise BM, the flapwise dam-
age distribution is dominated by the high share at high wind
speeds in the southwestern direction. For both, the flapwise
BM and also the tower BM (Fig. 12c), there is high share of
damage when they are subject to wake from the upstream
surrounding turbines. The resulting operational strategies,
which are optimized to reduce each of the failure modes
while maximizing energy production, are shown in Fig. 13.
The results depending on local wind speed and turbulence
are transferred back to values depending on ambient wind
speed and wind direction by sorting the results into corre-

sponding bins. While optimization based on local wind speed
and direction reduces the number of optimization variables,
an implementation of the strategy based on wind direction
is easier to apply in reality in an open-loop setting of the
planning approach. In all three operational strategies, the re-
action to the significant damage in the situations, where the
turbine is in the wake of other turbines, is visible. In such sit-
uations, the damage is increased due to the wake-induced tur-
bulence while energy production is decreased due to reduced
wind speeds. This leads to a significant benefit from reduc-
ing power in such situations. In addition, each of the strate-
gies reflects the individual behaviour of the selected failure
modes and of the influence by the control setpoints under
the specific conditions. While slight reduction in power, es-
pecially at low wind speeds, maximizes the energy produc-
tion with the constraint on the edgewise BM (Fig. 13a), the
strategy with the flapwise constraint mainly reduces power
at high wind speeds (Fig. 13b). With the tower BM used as
constraint, the optimized strategy selects the lowest possible
setpoint of 50 % at low wind speeds up to 8 m s−1 in addi-
tion to the slight reduction in waked situations (Fig. 13c).
Due to the selected method of the real-time controller, a sig-
nificant load reduction can mainly be achieved at such low
wind speeds for the tower. The strategies thus result overall
from the interaction of the selected method and setpoints of
the real-time controller, the derived surrogate models and the
specified objectives of the optimizer.
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Figure 12. Original distribution of damage (without applying derating) for all wind speeds (plotted radially in m s−1) and all wind directions
(plotted circumferentially in degrees) of the considered turbine in the centre of the wind farm.

Figure 13. Selection of optimized operational strategies, each of which maximizes the total relation of energy over damage for one of the
failure modes. The power percentage values are plotted for all wind speeds (radially in m s−1) and directions (circumferentially in degrees).

4.2 Selection of best solution (step 4)

With the presented optimal planning approach, higher total
energy yield can be achieved with lifetime extension, which
is made possible by accepting lower annual energy produc-
tion throughout the lifetime. This reduction in annual energy
has a significant impact on the overall value of the wind farm,
especially when taking into account economic factors that in-
clude loan repayments and the value of the money. This as-
pect is considered for the evaluation and selection of the op-
erational strategies under consideration of a basic financing
model. Through this first evaluation, the difference between
a pure maximization of energy from the materials used and
additional factors can be emphasized. We use the net present
value (NPV) for this.

4.2.1 Computation of net present value

The net present value maps a future payment to its current
value. We assume a constant interest rate CWACC covered by
the weighted average costs of capital (WACC), constant an-
nual maintenance costs COPEX and a constant average price
of electricity CelPrice. The repayment can be variable over the
entire operating period and is made depending on the annual
energy yield E(1τ ;u,h1τ ). Currently, it is assumed to be

constant in each year, because we use the same operational
strategy and frequency distribution. With these parameters,
the NPV can be computed for payments until a given year Y :

NPV(Y )=
Y∑
t=0

CelPrice ·E(1τ ;u,h1τ )−COpex

(1+CWACC)t
. (24)

The future value at the end of the lifetime of an adapted
operating strategy is given by NPV(Y life) where the number
of full operating years with the strategy is defined as

Y life
:=

⌊
τ life

fm (u)
1τ

⌋
. (25)

This model maps all future payments to their current value
and thus also gives an upper bound to the initial investment
that is permissible. Any revenue above the initial investment
leads to additional profit.

The average costs for a wind farm are taken from BVG
Associates (2019) and are summarized in Table 3. All val-
ues are scaled to a single turbine with 7.5 MW power. The
financial estimations refer to an entire wind farm, so scaling
it to a single turbine is not fully realistic. It can be interpreted
as the “per turbine” costs of a farm. Therefore, all of these
values are very rough assumptions which just allow for the
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possibility to compute the potential increase in profit within
a realistic range.

The annual income is computed with the reference annual
frequency distribution and the operational strategies from the
results. An availability factor of 0.95 is assumed. In addition,
we assume an electricity price of 0.064 EUR/kWh at which
the wind farm is barely able to recover the investment cost
after a lifetime of 25 years when being operated with the ref-
erence strategy uref.

4.2.2 Selection of strategy based on net present value

In Sect. 4.1.1, each of the three failure modes were consid-
ered separately. We first make a preselection of the strategy
by limiting ourselves to a single failure mode. An economic
evaluation is most important for tower damage. A tower re-
placement is usually considered to be infeasible, which in
turn determines the possible lifetime of the entire wind tur-
bine. An exchange of the rotor blade, in contrast to this, can
be a feasible approach to extend the turbine’s lifetime when
one of its failure modes has reached its fatigue budget. Hav-
ing this in mind, it is still advantageous to create a planning
for these replaceable components in order to coordinate the
replacement of several blades or to find the best timing. Con-
sidering all of these aspects would require further detailed
models on component costs and the specific situation of a
wind farm.

The financing model using the NPV from Eq. (24) is ap-
plied to all of the derating strategies which were computed
for the tower in Sect. 4.1.1. The lifetime of the turbine is al-
ways determined as the time after which the induced damage
has reached the fatigue budget, i.e. by Eq. (10). For the final
year, the annual income is computed as a fractional value,
depending on the relative damage increment before the value
of 1 is reached. Here, the seasonal variations discussed in
Sect. 2 are neglected.

The results are shown in Fig. 14. In all three panels, the
green dashed curves correspond to the Pareto-optimal points
from Fig. 10b. The blue curves highlight the one trade-off,
where the maximum energy is being produced over the ex-
tended lifetime, which is almost 32 years. The light blue
curves highlight the operational strategy with the best eco-
nomic results, i.e. the highest NPV at the lifetime where the
damage equals 1. It results in a relative damage value of 0.9
and an extended lifetime of about 27 years. Since the same
frequency distribution for wind conditions and the same op-
erating strategy is assumed for each year, also the annual
damage and annual energy production are equal. This results
in a linear increase in the damage in Fig. 14a and the en-
ergy production in Fig. 14b. Figure 14c shows the net present
value representing the permissible investment if the system
was operated until a certain year.

The assumed initial costs (CAPEX) are equal to about
7.5 MW ·2.73 EUR/MW, which is ≈EUR 20.4 million. It
can be seen that for maximum energy generation, the system

is not economically viable even after its extended lifetime
of 32 years (cf. Fig. 14c). The NPV of that strategy is about
EUR 1.7 million lower than the value with the reference strat-
egy at 25 years. The reference strategy and the economically
optimal strategy require about 25 or 26 years of operation
respectively to exceed the CAPEX. The strategy which max-
imizes NPV is achieved with a target damage of 0.9 at a life-
time of 27 years. The difference to the reference strategy at
25 years is about EUR 0.5 million. Also, the strategies with
target damages of 0.95 and 0.9 reach a higher NPV compared
with the reference strategy. Therefore, these strategies will
pay off after a longer operating time under the given circum-
stances. In contrast to this, the reduced energy yield per year
of the strategy maximizing total energy (light blue curve with
dots) leads to lower income, lower repayment per year and in
turn to lower NPV over the entire lifetime compared with
the strategy which maximizes NPV (dark blue curve with
crosses) and the reference strategy (dashed dark green curve).
For all strategies, it must be noted that the assumed WACC
of 6 % needs to be taken into account as well. While the net
present value does not change significantly in later years, the
profit would increase strongly once the investment has been
repaid. Thus, the actual profit can be multiplied by (1,06)r

where r is the number of years operating once the investment
has been returned. Therefore, a slightly higher NPV can al-
ready result in much higher profits.

Overall, the assessment of economic benefits always needs
to be done under consideration of the specific assumptions
and parameters for a specific project and can be done in much
more detail. Especially the price of electricity underlies a
high uncertainty and can hardly be predicted for 30 years
in the future. Nevertheless, the exemplary evaluation shows
how multiple optimized planning strategies can be used to
obtain an economically optimized solution, depending on the
objectives and input parameters.

5 Discussion

The application of all four steps to the application exam-
ple has shown the interaction of inputs (e.g. control set-
points), environmental conditions, damage progression, en-
ergy production and economic value. The considered ex-
ample mainly illustrates that the mathematical optimization
method is applicable for creating operational strategies and
how the method can be used to exploit the full load-bearing
capacity of one component and to increase the value of the
considered system. The mathematical optimization builds on
the assumptions of the underlying models and their input
data. It finds the best operational strategy under these as-
sumptions in a deterministic way. The resulting determinis-
tic lifetime extension factor includes these assumptions and
should therefore be interpreted as a potential value that needs
to be validated by further assessments.
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Table 3. Overview of parameters for financing model.

CAPEX per MW OPEX Exchange rate WACC

2.37 million GBP/MW≈ 2.73 million EUR/MW 76 000 GBP/MW≈ 87.4 EUR/MW 1.15 EUR/1 GBP 6 %

Figure 14. Annual progression over time for accumulated damage, energy and NPV for multiple optimized planning strategies. Green:
results of Pareto front; light blue with dots: maximum energy production; dark blue with crosses: maximum NPV).

The solution also includes the uncertainties resulting either
from model inaccuracies or from uncertain assumptions in
the input data. This inherent limitation must always be taken
into account when evaluating and discussing the results. For
this reason, we have taken great care to describe the required
prerequisites in detail. In addition, we have limited ourselves
to the technical level first when performing the optimization
(step 3). The consideration of economic factors is subject to
a high degree of uncertainty due to the uncertainty of future
electricity prices and other influences which are not consid-
ered. The selection of an operational strategy must always be
made for a specific application, taking into account the in-
herent uncertainties and risk. The selection process applied
in this work mainly aims at showing how the economic as-
pect can be taken into account and that an intelligent opera-
tional strategy can lead to higher economic profit when se-
lected carefully.

The presented method VIOLA yields a deterministic op-
timal solution, which is intended as an operational plan for
an uncertain future. Therefore, on the one hand, it has to be
discussed how the uncertainties of the deterministic solution
can be reduced by improved partial models. On the other
hand, current limitations of the method and possible exten-
sions have to be named.

5.1 Limitations and possible improvements on partial
models of the current approach

The optimization process builds on the usage of surrogate
models. They implement the deterministic relationship from
inputs to damage and energy increments on the minutes
scope. Within these models, the limits and uncertainties of
various partial effects are aggregated. This includes the mod-
elling of input conditions, the high-fidelity simulation model

on the seconds scope, the calculation of damage increments
and finally the selection and training of the surrogate models
themselves. The modelling approach for each of these is very
closely linked to the specified system boundaries.

For the application example, we have limited ourselves to
two main environmental conditions and one controller set-
point as considered input conditions. These inputs define a
subset and can be extended for both, environmental condi-
tions and the possible setpoints. Fatigue damage of structural
components is represented by three main failure modes. (Dis-
cussing the complexity of fatigue damage modelling goes be-
yond the scope of this paper; instead, readers are referred to,
for example, Liao et al. (2022), which provides an overview
about developments in this field.)

Regarding the environmental conditions, further influ-
ences like wind shear, yaw misalignment and wave effects
for offshore wind farms can be considered. In addition, the
wake effects of surrounding wind turbines can be modelled
with a higher level of detail to cover effects like partial wake
overlap or wake meandering. This requires an extension of
the models on the minutes as well as the seconds scope.

The control setpoints of the real-time controller act as in-
puts to the surrogate model and as influencing variables for
the optimizer. Thus, by extending the number of controller
features which can be adapted and used as optimization vari-
ables, the possibilities for balancing damage under various
environmental conditions increase. It would be ideal to di-
rectly optimize the control parameters under all influencing
load conditions and select the trade-off according to the over-
all objectives, including their frequency of occurrence. Such
an approach is not computationally feasible due to the need
for load simulations under each condition in combination
with a control parameter. Therefore, extending the possibil-
ities of the real-time controller combined with a smart pre-
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selection of further control setpoints, such as allowing for
partial overload or wake steering, will lead to more degrees
of freedom for the long-term operational planning. With lim-
ited computational capacities, a balance between accuracy,
degrees of freedom, interpretability of results and also en-
hancement of the approach needs to be found for specific use
cases and for the optimization process itself. To assess the
importance of various influences on the results, sensitivity
analysis could be performed, but this is beyond the scope of
this paper.

5.2 Long-term forecasting models and uncertainties

While partial models could theoretically be improved until
they provide a perfect representation of reality, the forecast-
ing over long periods of time will always be subject to re-
maining uncertainties. Therefore, prediction of the future al-
ways contains assumptions, which are usually modelled by
a probabilistic approach. For the long-term forecast, one can
distinguish between the technical part, where the forecast of
environmental conditions influences the fatigue damage cal-
culation, and the forecasting of the economic developments.
This is affected by many unknowns from the global market
and even politics.

Regarding the technical part, we use the classical approach
for the computation of fatigue damage by covering the long-
term forecast by a relative frequency distribution derived
from site-specific measurements from the past. In combina-
tion with partial safety factors, such an approach is suitable
for estimating a conservative design fatigue budget. Never-
theless, they neglect some important influences like annual
variations of the wind (Pryor et al., 2018). Also, long-term
changes in the weather due to climate change could become
relevant. Hübler and Rolfes (2021) found an insignificant in-
fluence on fatigue life compared with other influences but
pointed out their potential influence with improved meth-
ods. For a more detailed estimation for each individual tur-
bine, probabilistic approaches for the fatigue damage pre-
diction using surrogate models can be used, e.g. by using
Monte Carlo simulations with a representative time series
(Hübler, 2019) or by using stochastic distributions for mod-
elling the uncertainty (Nielsen et al., 2021). Due to the high
computational effort, such approaches are less suitable for
the use within an optimization loop. The probabilistic ap-
proach for fatigue life prediction is strongly connected with
the choice of inputs for the models. One also needs to distin-
guish between conditions which can be influenced by con-
trol setpoints of the controller, and conditions which cannot
be influenced (e.g. idling) but which nevertheless contribute
to the overall damage process. Therefore, it is also possible
to reduce uncertainties with further details in the models. To
determine the overall risk, it is required to assess the uncer-
tainties of the partial models and the forecasts.

In our current implementation of the proposed method, a
very basic approach for the financial part, i.e. computing the

asset value, is implemented. Regulatory and legal framework
conditions are excluded from the model, as they can change
over time and are strongly dependent on the specific location.
Also, our focus is on showing the technical feasibility. Cov-
ering all regulatory aspects and expected, planned or coming
legislation is a highly specialized but separate task. Neverthe-
less, the current approach can be supplemented with further
inputs to reduce the uncertainties. Also, other value metrics,
such as the cost of valued energy (COVE), could be inte-
grated (Loth et al., 2022). A highly significant influence is
the price of electricity, which is not constant over the entire
lifetime.

In summary, the amount of detail in the mathematical op-
timization process has to be a deliberate decision. This de-
cision also depends on other parameters like the available
computational power and the optimization method. With the
current subdivision into two parts – the technical, determinis-
tic optimization in step 3 and the subsequent selection based
on additional (economic) factors in step 4 – the mathemati-
cal optimization problem can be solved with low computa-
tional effort, and the deterministic solutions are well under-
standable and interpretable. Nevertheless, several drawbacks
to our approach remain and are discussed next.

5.3 Limitations and potential improvements of the
optimization method VIOLA

Without any limitations on computational power and time,
the robust optimization approach which directly maximizes
the asset value as an objective containing further inputs
like, for example, reliability models, component replacement
costs and forecasts of the market, including their probabilis-
tic uncertainties, would be ideal. To approach such an ideal
solution within given boundaries, several smaller steps can
be made.

The deterministic optimization method is currently limited
to a single turbine. The influence of the turbine controller on
the wake and thus on surrounding turbines is neglected. To
extend our approach to an entire wind farm two possible so-
lutions exist. The first way is to optimize operation of all tur-
bines once, but this could increase the size of the optimiza-
tion problem beyond feasibility. The second solution could
be to iteratively cycle through computing inflow conditions
for an individual turbine from a wind farm flow model and
then optimize operation for each turbine separately for their
respective inflow conditions. We expect such an approach to
converge after a few cycles while keeping computational re-
quirements at bay and scaling well. Both solutions allow a
combination with farm control solutions, such as wake steer-
ing.

Overall, any deterministic solution of a single turbine or
an entire wind farm requires the specification of an individual
target damage for each selected failure mode. Here, the speci-
fication of a desired target reliability level for the components
of each wind turbine could be covered by probabilistic relia-
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bility methods. Further research is required to assess how this
can be integrated with the current method. It also needs to be
investigated how the computation of any value metric can
be integrated into the optimization approach, either directly
within the mathematical optimization or for a subsequent se-
lection of Pareto-optimal operational strategies.

To cover the forecast of volatile market prices within
the deterministic mathematical optimization, the annual fre-
quency distribution of input conditions can be extended with
another dimension for price and thus a combined probabil-
ity for wind and price, similar to the approach in Loepel-
mann and Fischer (2022). In addition, an annual selection of
the trade-off between energy and damage could be integrated
into the optimization. This way, it would be possible to allow
for a higher damage progression at the beginning to reduce
the interest burden and to reduce the damage progression of
the turbine later.

One aspect, which cannot be covered by the current plan-
ning approach, is considering sequence effects, i.e. depen-
dencies of future damage progression on previous damage.
With the use of frequency distributions for long-term effects,
linearity of damage progression is inherently assumed. To
consider sequence effects, the current approach can at least
be used as an initial planning step, partially covering the lin-
ear part of a damage progression process.

5.4 Application of optimized strategies

Regardless of the limitations, the results of the application
example show how a condition-based long-term planning ap-
proach can realize a targeted fatigue damage progression.
It balances the trade-off between induced damage and en-
ergy production under the given system boundaries and con-
straints of the application example optimally. It is possible
to apply the method to a real-world scenario when the sys-
tem boundaries are well defined and adapted to the specific
use case. In a first step, the provided planning strategy can be
used in an open-loop scenario, where the turbine follows the
planned setpoints. The open-loop approach can also be used
to extend the lifetime after the turbine has already been op-
erating for a significant time span. If the approach is applied
during the design process, it could be used to save material
through a less conservative design or to optimize the power
curve as part of the real-time controller. In a second step, the
approach could be further developed into reliability-adaptive
control, where measurements of turbine operation are fed
back into continuous re-planning, thus forming a closed-loop
controller as presented on the right side of Fig. 1.

6 Conclusion and Outlook

We presented a novel method for an optimal planning for the
operation of wind energy systems over their entire lifetime.
This comprises a four-step process, of which the key is to
formulate a mathematical optimization problem which opti-
mally distributes the available damage budget of a given fail-
ure mode over the total turbine lifetime. In the introduction,
the objectives for this work were derived from the context
of reliability(-adaptive) control. A planning, which pursues
long-term objectives of operation, was identified as an im-
portant input. Our process is focused on the planning of the
fatigue damage progression of different wind turbine failure
modes. As a basis, the theoretical background for the deter-
ministic computation of fatigue damage progression was in-
troduced. The process is applied to an application example
for demonstration, which serves as a proof of concept.

Each of the four steps is introduced providing some gen-
eral background and subsequently applied to the demonstra-
tion example. Tho process starts by providing setpoints for
the real-time controller of a wind turbine (step 1) and is con-
tinued by their usage as an input for the creation of surro-
gate models for the induced damage (step 2). Those two steps
were identified as required prerequisites for the new method
VIOLA consisting of steps 3 and 4. In step 3, the mathemat-
ical nonlinear optimization problem is developed and solved
using the surrogates from step 2. Several Pareto-optimal op-
erational strategies are found as results. Finally, the results
are selected based on an economic evaluation (step 4). The
application example shows the great potential for an effec-
tive planning of damage progression in relation to energy
production. By assessing several strategies based on the eco-
nomic value, the potential and risk of such strategies become
apparent at the same time. Many of the limitations, assump-
tions and potential improvements were discussed in Sect. 5.
The key is to use partial models within their assumptions and
limitations. They must be carefully examined and tested for
each actual use case. Improvements, starting from the real-
time controller, over the damage calculation with surrogates
up to long-term predictions, can be made in the respective
domain.

In our future work, we want to focus on further develop-
ment of the method VIOLA. Here, one can distinguish be-
tween further improvement of the currently used determin-
istic mathematical optimization and the use of probabilistic
methods. For the deterministic part, a first step would be an
extension of the system boundaries for the operational plan-
ning of all turbines in a wind farm at once. In addition, op-
erational strategies need to be able to handle volatile market
prices and further requirements of future wind energy sys-
tems. This could be combined with control setpoints for up-
rating or power boost and for grid support. With all these
aspects, we aim at integrating wind farm flow control consid-
ering electricity prices, as shown in Kölle et al. (2022a), with
our optimal planning of the damage progression to increase
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the value of wind farms. Since the deterministic approach for
fatigue damage progression neglects the stochastic nature of
system and component failures, probabilistic approaches to
define target reliability values for each wind turbine as a sys-
tem can be employed. At first, probabilistic approaches can
be used for the selection of the best operational strategy by
estimating the underlying uncertainty. Subsequently, it needs
to be evaluated if and how the uncertainty assessment can be
integrated into the optimization process, e.g. using robust op-
timization methods. Stochastic methods can also be applied
to integrate the uncertainties of the future market.

To apply the strategy during operation, coupling the plan-
ning stage with the operational stage is required. As a first
step, open-loop control can be implemented. To do so, the
properties of a specific wind turbine or wind farm need to
be identified and coupled with the planning approach. Regu-
lar readjustment of the planning, as also indicated in Fig. 1,
would allow for a simplified semi-continuous adaption of
the system based on current system performance. In such
a scenario, it needs to be examined how short-term devia-
tions from the planning, for example, by reacting on electric-
ity prices or simply on grid requirements, can be tolerated
while at the same time following the provided planning suf-
ficiently well. The best time and way to readjust the planning
also need to be investigated. Connecting the operational plan-
ning with additional inputs like maintenance planning would
bring further advantageous to the approach. Real closed-loop
behaviour, where the planning provides setpoints for a relia-
bility controller, has an even higher overall potential but also
brings further challenges which were discussed in the intro-
duction (Sect. 1.1).

In the future, the coupled operation of wind turbines or
wind farms with power-to-X systems will become highly rel-
evant. This increases the need for adaptive operation because
the damage progression of connected systems also needs to
be considered, and the question of when to operate each sys-
tem, and on what level, needs to be answered. Therefore,
such a coupled operation leads to a further expansion of the
system boundaries and brings more complexity on different
levels. For hydrogen production, the damage progression in
electrolyzers needs to be integrated in order to assess their
reliability. It is also necessary to include prices for selling
hydrogen, and thus to serve a second market.

In conclusion, the presented work provides an applicable
and adaptable method for the long-term planning of wind
turbine operation. More research is needed to reduce uncer-
tainty and consider multiple components and failure modes
in the planning. Additionally, the integration with reliability-
adaptive control offers further advancements to discover the
full benefits for a more sustainable wind farm operation.

Appendix A: List of symbols

fm: failure mode
uref: reference operational strategy
τ ref: reference lifetime
uopt: optimized operational strategy
u: arbitrary operational strategy
τ life: free modified lifetime
1τ : time increment for long-term planning,

e.g. 1 year
Y : number of time increments
cext: extension factor
cext

fm (u): extension factor for failure mode fm
depending on operational strategy

τ life
fm (u): chosen operation period for failure mode

fm depending on operational strategy
1t : time increment for the definition of input

condition, e.g. 1 h
x ∈X: external input conditions valid for a

time of 1t
x = {xj }

Bx

j=1: set of input conditions with Bx bins
Bx : number of bins for all input conditions
xj : input conditions for bin j
w = Dim(X): number of independent wind conditions
Bx

(w)
: number of bins defined for condition x(i)

u(x) ∈ U : setpoints for real-time controller
depending on x

u= {u(xj )}B
x

j=1: definition for operational strategy as set
of setpoints depending on x

p1τ (x): relative frequency distribution of
input conditions

hτ (x): absolute frequency distribution of input
conditions for a time period τ

href: reference absolute frequency distribution
which is applied for planning of a site

Dfm(τ ref
: u,hτ ): function for damage for a failure mode

with variable τ depending on the
operating strategy and the frequency
distribution as parameters

1Dfm(u,h1τ ): annual or mean damage for strategy u
(time period 1τ )

dfm(x,u): damage increment for failure mode
(time increment 1t)

P (x,u): energy increment under the input
conditions (time increment 1t)

E(τ ;u,hτ ): function for energy production with
variable τ depending on the operating
strategy and the frequency distribution
as parameters

1E(u,h1τ ): annual or mean energy for strategy u
(time period 1τ )
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ni : number of load cycles
Ni : maximum bearable number of load cycles
Dult: ultimate design load
m: Wöhler coefficient
Lij : oscillation amplitude of a load cycle
Neq: number of equivalent load cycles
DELst(x,u): short-term damage equivalent load
DEL(τ,u): lifetime damage equivalent load
DELref: reference damage equivalent load
z= (x,u(x)): input to surrogate model as a

combination of external conditions and
control setpoints

ẑ= (x̂, û(x)): input sampling for the creation of
surrogate models

fDEL(z): surrogate function for DEL of
failure mode

fP(z): surrogate function for power production
D

target
fm : target fatigue budget for failure mode

NPV(Y ): net present value depending on year Y
CelPrice: constant electricity price
COPEX: constant annual costs for operation

and maintenance
cWACC: constant interest rate defined as weighted

average costs of capital (WACC)
vamb: ambient wind speed
v: local wind speed
TI: local turbulence intensity
θamb: ambient wind direction
s: turbine index in a wind farm
S: number of turbines in a wind farm
f wake
s (v,θ ): wake calculation function for a turbine s
Bv: number of bins for local wind speed
BTI: number of bins for local turbulence

intensity
M: generator torque
k: generator torque coefficient
Mr: rated generator torque
ωr: rated generator speed
δP: percentage power factor
β: pitch angle
λ: tip speed ratio
Pr: rated power
δω: percentage generator speed factor
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Kölle, K., Manjock, A., Koivisto, M. J., and Smailes, M.: Wind
farm flow control oriented to electricity markets and grid integra-
tion: Initial perspective analysis, Advanced Control for Applica-
tions, 3, 1–28, https://doi.org/10.1002/adc2.80, 2021.

Elorza, I., Calleja, C., and Pujana-Arrese, A.: On Wind
Turbine Power Delta Control, Energies, 12, 2344,
https://doi.org/10.3390/en12122344, 2019.

Fleming, P. A., Aho, J., Buckspan, A., Ela, E., Zhang, Y., Gevorgian,
V., Scholbrock, A., Pao, L., and Damiani, R.: Effects of power
reserve control on wind turbine structural loading, Wind Energy,
19, 453–469, https://doi.org/10.1002/we.1844, 2016.

Gasparis, G., Lio, W. H., and Meng, F.: Surrogate Models for Wind
Turbine Electrical Power and Fatigue Loads in Wind Farm, En-
ergies, 13, 6360, https://doi.org/10.3390/en13236360, 2020.

Harrison, M., Bossanyi, E., Ruisi, R., and Skeen, N.: An initial
study into the potential of wind farm control to reduce fatigue
loads and extend asset life, J. Phys. Conf. Ser., 1618, 022007,
https://doi.org/10.1088/1742-6596/1618/2/022007, 2020.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-
N.: ERA5 hourly data on single levels from 1959 to present, CDS
[data set], https://doi.org/10.24381/cds.adbb2d47, 2018.

Houck, D. R.: Review of wake management tech-
niques for wind turbines, Wind Energy, 25, 195–220,
https://doi.org/10.1002/we.2668, 2022.

Hübler, C. and Rolfes, R.: Analysis of the influence of cli-
mate change on the fatigue lifetime of offshore wind tur-
bines using imprecise probabilities, Wind Energy, 24, 275–289,
https://doi.org/10.1002/we.2572, 2021.

Hübler, C. J.: Efficient probabilistic analysis of offshore
wind turbines based on time-domain simulations, Disser-
tation, Gottfried Wilhelm Leibniz Universität, Hannover,
https://doi.org/10.15488/4822, 2019.

IEC: Wind Turbines – Part 1: Design Requirements, IEC 61400-1,
International Standard, 2019.

Jonkman, B. J.: TurbSim User’s Guide: Version 1.50, NREL,
https://doi.org/10.2172/965520, 2009.

Kanev, S., Bot, E., and Giles, J.: Wind Farm Loads un-
der Wake Redirection Control, Energies, 13, 4088,
https://doi.org/10.3390/en13164088, 2020.

Kanev, S. K., Savenije, F. J., and Engels, W. P.: Active wake control:
An approach to optimize the lifetime operation of wind farms,
Wind Energy, 21, 488–501, https://doi.org/10.1002/we.2173,
2018.

Kölle, K., Göçmen, T., Eguinoa, I., Alcayaga Román, L. A.,
Aparicio-Sanchez, M., Feng, J., Meyers, J., Pettas, V., and Sood,
I.: FarmConners market showcase results: wind farm flow control
considering electricity prices, Wind Energ. Sci., 7, 2181–2200,
https://doi.org/10.5194/wes-7-2181-2022, 2022a.

Kölle, K., Göçmen, T., Garcia-Rosa, P. B., Petrović, V., Eguinoa,
I., Vrana, T. K., Long, Q., Pettas, V., Anand, A., Barlas, T. K.,
Cutululis, N., Manjock, A., Tande, J. O., Ruisi, R., and Bossanyi,
E.: Towards integrated wind farm control: interfacing farm flow
and power plant controls, Advanced Control for Applications, 4,
e105, https://doi.org/10.1002/adc2.105, 2022b.

Leimeister, M. and Thomas, P.: The OneWind Modelica Library
for Floating Offshore Wind Turbine Simulations with Flexible
Structures, in: Proceedings of the 12th International Modelica
Conference, edited by: Kofránek, J. and Casella, F., Modelica As-
sociation and Linköping University Electronic Press, Linköping,
633–642, https://doi.org/10.3384/ecp17132633, 2017.

Liao, D., Zhu, S.-P., Correia, J. A., de Jesus, A. M.,
Veljkovic, M., and Berto, F.: Fatigue reliability of wind
turbines: historical perspectives, recent developments
and future prospects, Renew. Energ., 200, 724–742,
https://doi.org/10.1016/j.renene.2022.09.093, 2022.

Loepelmann, P. and Fischer, B.: Lifetime extension and opex re-
duction by adapting the operational strategy of wind farms, J.
Phys. Conf. Ser., 2257, 012014, https://doi.org/10.1088/1742-
6596/2257/1/012014, 2022.

Loew, S., Obradovic, D., and Bottasso, C. L.: Model predictive
control of wind turbine fatigue via online rainflow-counting on

https://doi.org/10.5194/wes-8-1727-2023 Wind Energ. Sci., 8, 1727–1753, 2023

https://doi.org/10.1016/j.rser.2016.05.083
https://esa.github.io/pygmo2/index.html
https://esa.github.io/pygmo2/index.html
https://doi.org/10.21105/joss.02338
https://doi.org/10.1088/1742-6596/1037/3/032011
https://doi.org/10.1088/1742-6596/1037/3/032011
https://doi.org/10.1109/ECC.2016.7810407
https://doi.org/10.1002/9781119992714
https://guidetoanoffshorewindfarm.com/wind-farm-costs
https://doi.org/10.1016/j.camwa.2011.11.057
https://doi.org/10.1088/1742-6596/2265/3/032110
https://doi.org/10.1088/1742-6596/2265/3/032110
https://doi.org/10.1002/we.2362
https://doi.org/10.5194/wes-3-767-2018
https://doi.org/10.1016/j.rser.2021.111102
https://doi.org/10.1002/adc2.80
https://doi.org/10.3390/en12122344
https://doi.org/10.1002/we.1844
https://doi.org/10.3390/en13236360
https://doi.org/10.1088/1742-6596/1618/2/022007
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1002/we.2668
https://doi.org/10.1002/we.2572
https://doi.org/10.15488/4822
https://doi.org/10.2172/965520
https://doi.org/10.3390/en13164088
https://doi.org/10.1002/we.2173
https://doi.org/10.5194/wes-7-2181-2022
https://doi.org/10.1002/adc2.105
https://doi.org/10.3384/ecp17132633
https://doi.org/10.1016/j.renene.2022.09.093
https://doi.org/10.1088/1742-6596/2257/1/012014
https://doi.org/10.1088/1742-6596/2257/1/012014


1752 N. Requate et al.: From wind conditions to operational strategy

stress history and prediction, J. Phys. Conf. Ser., 1618, 022041,
https://doi.org/10.1088/1742-6596/1618/2/022041, 2020.

Lorenzo, C. F. and Merrill, W. C.: Life Extending
Control – A Concept Paper, in: American Con-
trol Conference, 1991, IEEE, Piscataway, 1081–1095,
https://doi.org/10.23919/ACC.1991.4791545, 1991.

Loth, E., Qin, C., Simpson, J. G., and Dykes, K.: Why
we must move beyond LCOE for renewable en-
ergy design, Advances in Applied Energy, 8, 100112,
https://doi.org/10.1016/j.adapen.2022.100112, 2022.

Mendez Reyes, H., Kanev, S., Doekemeijer, B., and van Wingerden,
J.-W.: Validation of a lookup-table approach to modeling turbine
fatigue loads in wind farms under active wake control, Wind En-
erg. Sci., 4, 549–561, https://doi.org/10.5194/wes-4-549-2019,
2019.

Meyer, T.: Optimization-based reliability control of mecha-
tronic systems, Ph.D. Thesis, Universität Paderborn,
https://doi.org/10.17619/UNIPB/1-3, 2016.

Meyer, T., Fischer, K., Wenske, J., and Reuter, A.: Closed-loop
supervisory control for defined component reliability levels
and optimized power generation, in: Windeurope Conference
and Exhibition Proceedings, https://doi.org/10.24406/publica-
fhg-406740, 2017.

Meyers, J., Bottasso, C., Dykes, K., Fleming, P., Gebraad, P.,
Giebel, G., Göçmen, T., and van Wingerden, J.-W.: Wind farm
flow control: prospects and challenges, Wind Energ. Sci., 7,
2271–2306, https://doi.org/10.5194/wes-7-2271-2022, 2022.

Miner, M. A.: Cumulative Damage in Fatigue, J. Appl. Mech., 12,
A159–A164, https://doi.org/10.1115/1.4009458, 1945.

Mozafari, S., Dykes, K., Rinker, J. M., and Veers, P.:
Effects of finite sampling on fatigue damage es-
timation of wind turbine components: A statisti-
cal study, Wind Engineering, 47, 0309524X2311638,
https://doi.org/10.1177/0309524X231163825, 2023.

Nash, R., Nouri, R., and Vasel-Be-Hagh, A.: Wind tur-
bine wake control strategies: A review and concept
proposal, Energ. Convers. Manage., 245, 114581,
https://doi.org/10.1016/j.enconman.2021.114581, 2021.

Nielsen, J. S., Miller-Branovacki, L., and Carriveau, R.: Prob-
abilistic and Risk-Informed Life Extension Assessment of
Wind Turbine Structural Components, Energies, 14, 821,
https://doi.org/10.3390/en14040821, 2021.

Njiri, J. G. and Söffker, D.: State-of-the-art in wind turbine control:
Trends and challenges, Renew. Sust. Energ. Rev., 60, 377–393,
https://doi.org/10.1016/j.rser.2016.01.110, 2016.

Njiri, J. G., Beganovic, N., Do, M. H., and Söffker,
D.: Consideration of lifetime and fatigue load in
wind turbine control, Renew. Energ., 131, 818–828,
https://doi.org/10.1016/j.renene.2018.07.109, 2019.

Pettas, V. and Cheng, P. W.: Down-regulation and indi-
vidual blade control as lifetime extension enablers, J.
Phys. Conf. Ser., 1102, 012026, https://doi.org/10.1088/1742-
6596/1102/1/012026, 2018.

Pettas, V., Salari, M., Schlipf, D., and Cheng, P. W.: Investigation
on the potential of individual blade control for lifetime extension,
J. Phys. Conf. Ser., 1037, 032006, https://doi.org/10.1088/1742-
6596/1037/3/032006, 2018.

Popko, W., Thomas, P., Sevinc, A., Rosemeier, M., Bätge, M.,
Braun, R., Meng, F., Horte, D., and Balzani, C.: IWES Wind

Turbine IWT-7.5-164. Rev 4, Fraunhofer IWES, Bremerhaven,
https://doi.org/10.24406/IWES-N-518562, 2018.

Pryor, S. C., Shepherd, T. J., and Barthelmie, R. J.: Interannual vari-
ability of wind climates and wind turbine annual energy produc-
tion, Wind Energ. Sci., 3, 651–665, https://doi.org/10.5194/wes-
3-651-2018, 2018.

Rakowsky, K. U.: An introduction to Reliability-Adaptive Systems,
in: Advances in Safety and Reliability, edited by: Kolowrocki,
K., 1633–1636, ISBN 0415383404, 2005.

Rakowsky, U. K.: Modelling Reliability-Adaptive multi-system op-
eration, International Journal of Automation and Computing, 3,
192–198, https://doi.org/10.1007/s11633-006-0192-8, 2006.

Requate, N. and Meyer, T.: Active Control of the Reliabil-
ity of Wind Turbines, IFAC-PapersOnLine, 53, 12789–12796,
https://doi.org/10.1016/j.ifacol.2020.12.1941, 2020.

Requate, N. and Meyer, T.: Database of Short Term Damage
Equivalent Loads (DEL) of IWT7.5MW wind turbine de-
pending on wind, TI, yaw and derating, Zenodo [data set],
https://doi.org/10.5281/zenodo.8385296, 2023.

Requate, N., Wiens, M., and Meyer, T.: A Structured Wind Tur-
bine Controller Evaluation Process Embedded into the V-Model
for System Development, J. Phys. Conf. Ser., 1618, 022045,
https://doi.org/10.1088/1742-6596/1618/2/022045, 2020.

Santos, R. A.: Damage mitigating control for wind turbines, Ph.D.
Thesis, The University of Colorado, Colorado, 2006.

Santos, R. A.: Control system for wind turbine (U.S Patent
No. US20080086281A1), https://worldwide.espacenet.
com/publicationDetails/biblio?FT=D&CC=US&NR=
2008086281A1&KC=A1 (last access: 3 November 2023),
2008.

Schmidt, J.: FOXES (Farm Optimization and eXtended yield Eval-
uation Software), https://fraunhoferiwes.github.io/foxes.docs/
index.html (last access: 3 November 2023), 2022.

Schmidt, J., Requate, N., and Vollmer, L.: Wind Farm Yield
and Lifetime Optimization by Smart Steering of Wakes, J.
Phys. Conf. Ser., 1934, 012020, https://doi.org/10.1088/1742-
6596/1934/1/012020, 2021.

Singh, D., Dwight, R. P., Laugesen, K., Beaudet, L., and Viré, A.:
Probabilistic surrogate modeling of offshore wind-turbine loads
with chained Gaussian processes, J. Phys. Conf. Ser., 2265,
032070, https://doi.org/10.1088/1742-6596/2265/3/032070,
2022.

Slot, R. M., Sørensen, J. D., Sudret, B., Svenningsen, L., and
Thøgersen, M. L.: Surrogate model uncertainty in wind tur-
bine reliability assessment, Renew. Energ., 151, 1150–1162,
https://doi.org/10.1016/j.renene.2019.11.101, 2020.

Söffker, D. and Rakowsky, U. K.: Perspectives of monitoring and
control of vibrating structures by combining new methods of
fault detection with new approaches of reliability engineering,
A Critical Link: Diagnosis to Prognosis, 671–682, 1997.

Sutherland, H. J.: On the Fatigue Analysis of Wind Tur-
bines, Sandia National Labs., Albuquerque, NM (US),
Sandia National Laboratories, Albuquerque, New Mexico,
https://doi.org/10.2172/9460, 1999.

Thomas, P.: MoWiT, http://www.mowit.info (last access: 3 Novem-
ber 2023), 2022.

Thomas, P., Gu, X., Samlaus, R., Hillmann, C., and Wihlfahrt,
U.: The OneWind Modelica Library for Wind Turbine Sim-
ulation with Flexible Structure – Modal Reduction Method

Wind Energ. Sci., 8, 1727–1753, 2023 https://doi.org/10.5194/wes-8-1727-2023

https://doi.org/10.1088/1742-6596/1618/2/022041
https://doi.org/10.23919/ACC.1991.4791545
https://doi.org/10.1016/j.adapen.2022.100112
https://doi.org/10.5194/wes-4-549-2019
https://doi.org/10.17619/UNIPB/1-3
https://doi.org/10.24406/publica-fhg-406740
https://doi.org/10.24406/publica-fhg-406740
https://doi.org/10.5194/wes-7-2271-2022
https://doi.org/10.1115/1.4009458
https://doi.org/10.1177/0309524X231163825
https://doi.org/10.1016/j.enconman.2021.114581
https://doi.org/10.3390/en14040821
https://doi.org/10.1016/j.rser.2016.01.110
https://doi.org/10.1016/j.renene.2018.07.109
https://doi.org/10.1088/1742-6596/1102/1/012026
https://doi.org/10.1088/1742-6596/1102/1/012026
https://doi.org/10.1088/1742-6596/1037/3/032006
https://doi.org/10.1088/1742-6596/1037/3/032006
https://doi.org/10.24406/IWES-N-518562
https://doi.org/10.5194/wes-3-651-2018
https://doi.org/10.5194/wes-3-651-2018
https://doi.org/10.1007/s11633-006-0192-8
https://doi.org/10.1016/j.ifacol.2020.12.1941
https://doi.org/10.5281/zenodo.8385296
https://doi.org/10.1088/1742-6596/1618/2/022045
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=US&NR=2008086281A1&KC=A1
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=US&NR=2008086281A1&KC=A1
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=US&NR=2008086281A1&KC=A1
https://fraunhoferiwes.github.io/foxes.docs/index.html
https://fraunhoferiwes.github.io/foxes.docs/index.html
https://doi.org/10.1088/1742-6596/1934/1/012020
https://doi.org/10.1088/1742-6596/1934/1/012020
https://doi.org/10.1088/1742-6596/2265/3/032070
https://doi.org/10.1016/j.renene.2019.11.101
https://doi.org/10.2172/9460
http://www.mowit.info


N. Requate et al.: From wind conditions to operational strategy 1753

in Modelica, in: Proceedings of the 10th International
Modelica Conference, Linköping Electronic Conference Pro-
ceedings, Linköping University Electronic Press, 939–948,
https://doi.org/10.3384/ecp14096939, 2014.

van der Hoek, D., Kanev, S., and Engels, W.: Compari-
son of Down-Regulation Strategies for Wind Farm Con-
trol and their Effects on Fatigue Loads, in: 2018 An-
nual American Control Conference (ACC), IEEE, 3116–3121,
https://doi.org/10.23919/ACC.2018.8431162, 2018.

Waechter, A. and Laird, C.: Ipopt, https://coin-or.github.io/Ipopt/
index.html (last access: 3 November 2023), 2022.

Wiens, M.: Turbine operation: Control systems keep every-
thing running smoothly, https://websites.fraunhofer.de/IWES-
Blog/en/turbine-operation-control-systems-keep-everything-
running-smoothly/marcus-wiens (last access: 3 November
2023), 2021.

https://doi.org/10.5194/wes-8-1727-2023 Wind Energ. Sci., 8, 1727–1753, 2023

https://doi.org/10.3384/ecp14096939
https://doi.org/10.23919/ACC.2018.8431162
https://coin-or.github.io/Ipopt/index.html
https://coin-or.github.io/Ipopt/index.html
https://websites.fraunhofer.de/IWES-Blog/en/turbine-operation-control-systems-keep-everything-running-smoothly/marcus-wiens
https://websites.fraunhofer.de/IWES-Blog/en/turbine-operation-control-systems-keep-everything-running-smoothly/marcus-wiens
https://websites.fraunhofer.de/IWES-Blog/en/turbine-operation-control-systems-keep-everything-running-smoothly/marcus-wiens

	Abstract
	Introduction
	State of the art
	Objectives
	Methodology
	Outline of the remaining paper

	Theoretical background
	Long-term fatigue damage progression and energy production depending on external conditions and operational planning
	Relationship between fatigue damage and damage equivalent load (DEL)

	Definition of example system and implementing prerequisites for optimization
	System boundaries for application example
	Modelling of a single turbine and its system boundaries
	Wind farm setup: from surrounding system to considered wind turbine

	Adaptable real-time controller of the wind turbine (step 1)
	Surrogate models for damage progression and energy production (step 2)

	Method for optimal long-term planning: VIOLA
	Condition-based optimization of operational planning (step 3)
	Creating Pareto-optimal solutions for the application example
	Detailed results of a single optimization run

	Selection of best solution (step 4)
	Computation of net present value
	Selection of strategy based on net present value


	Discussion
	Limitations and possible improvements on partial models of the current approach
	Long-term forecasting models and uncertainties
	Limitations and potential improvements of the optimization method VIOLA
	Application of optimized strategies

	Conclusion and Outlook
	Appendix A: List of symbols
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

