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Abstract. Offshore wind turbine support structures are fatigue-driven designs subject to a wide variety of cyclic
loads from wind, waves, and turbine controls. While most wind turbine loads and metocean data are collected
at short-term 10 min intervals, some of the largest fatigue cycles have periods over 1 d. Therefore, these low-
frequency fatigue dynamics (LFFDs) are not fully considered when working with the industry-standard short-
term window. To recover these LFFDs in the state-of-the-industry practices, the authors implemented a short-
to long-term factor applied to the accumulated short-term damages while maintaining the ability to work with
the 10 min data. In the current work, we study the LFFD impact on the damage from the fore–aft and side–side
bending moments and the sensors’ strain measurements and their variability within and across wind farms. While
results might vary strongly between sites, for the current site and a stress–life (SN) curve slope of m= 5, up to
65 % of damage is directly related to LFFDs.

1 Introduction

In the next decade, several European offshore wind farms
will start approaching their end of as-designed service life
(Archer et al., 2014). As a result, the industry must prepare
for making complex decisions such as lifetime extension, re-
powering, optimizing, or decommissioning (Pakenham et al.,
2021). A viable option to support this decision would be us-
ing structural health monitoring (SHM), through which it is
possible to update the as-designed lifetime figures with in
situ data. To this aim, strain sensors are installed at the tower–
transition piece interface to measure the strains, collecting
the support structure’s strain over an extended period of up
to several years. The strain data, as well as other sources of
operational and environmental data, are commonly stored as
segmented datasets in 10 min blocks (short term) to be con-
sistent with the duration of design load case (DLC) time se-
ries defined and used in the design phase (DNV, 2016). Time
series are commonly cycle counted into a histogram through

standardized algorithms (ASTM International, 2017), among
which rain flow (Amzallag et al., 1994; Socie, 1992) is the
most commonly used. The cycle-count histogram summa-
rizes the mean-range (or mean-amplitude) couples and their
cycle counts (i.e., the frequency of occurrence within the
considered time window).

One cycle represents a closed hysteresis loop in the time
series, while a half cycle, also known as residual, is part of a
hysteresis loop that did not have the time to complete within
the time window. When analyzing signals, it is important to
consider the length of the time window used for analysis. Ide-
ally, an infinitely long signal would not have any residuals.
However, when working with finite-length signals, residuals
can appear with a frequency of at least 1 divided by the time
window length (Sutherland, 1999). Therefore, in the indus-
trial approaches, if we analyze multiple 10 min long signals
separately, we may obtain different results compared with an-
alyzing a concatenated signal that spans a longer period. This
is because the longer period may reduce the impact of residu-
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als on the analysis. This poses a challenge when considering
the low-frequency fatigue dynamics (LFFDs) of a (offshore)
wind turbine primarily caused by the slow variations in wind
speed and direction, which have periods well beyond the de-
fault 10 min window.

In this paper, we are interested in the additional damage
that might remain unnoticed if the LFFD impact is not taken
into account in common practices, such as the commonly
used recommended practice (DNV, 2019) for the structural
design of offshore wind turbines. Our research intends to pro-
vide practical industrial applications, so it must follow the
most frequently used industry norms for predicting fatigue
lifetimes.

When processing 10 min long signals, these LFFDs can-
not be captured, and any possible fatigue damage calculation
rule (e.g., linear Palmgren–Miner; Ciavarella et al., 2018;
Miner, 1945; Palmgren, 1924) or non-linear models (Hectors
and De Waele, 2021) will result in possibly non-conservative
fatigue life estimates as some of the largest cycles remain
unaccounted for. On the other hand, concatenating the seg-
mented signals and cycle counting the output are of very
little practical applicability, given that there could be mul-
tiple years of SHM data sampled at frequencies well above
1 Hz (D’Antuono et al., 2022), and results can no longer be
matched with the 10 min design load cases (DLCs). To con-
sider the LFFD effect, some researchers have adopted various
strategies.

One idea is to count half cycles as full cycles, but this
would not cover the whole effect of the LFFD. In fact, count-
ing residuals as full cycles is not a common practice as it does
not have any physical rationale, as there is no hysteretic loop
being artificially closed. Based on the IEC standard (IEC,
2001), it is recommended to treat half cycles as half cycles.

Because of the potential discrepancy, some research on
the role of LFFDs in wind energy has been conducted. On
a small wind turbine (Micon M150), Larsen and Thom-
sen (1996) established and used a framework for an ap-
proximative treatment of low-frequency contributions. They
demonstrated that the low-frequency part of the blade flap-
wise moment accounts for roughly 8 % and 1 % for large and
small Basquin slopes in terms of equivalent moments. For
large and small Basquin slopes, the low-frequency portion
contribution to the corresponding moment for the rotor tilt is
roughly 2 % and 0.4 %. When considering the LFFD effect
of a Vestas V90-2.0 MW wind turbine, Pacheco et al. (2022)
reported that the damage calculated with a trilinear SN curve
from Eurocode 3 and from a 24 h time series was 11 % higher
than the damage obtained with a 10 min time series.

The present paper adopts an algorithm that allows for re-
covering the LFFD through the sequences of residuals of the
segmented data and their cycle-count histograms. The algo-
rithm was first proposed by Amzallag et al. (1994), and then
Marsh et al. (2016) applied it specifically to wind energy on a
multi-megawatt offshore wind turbine. Form= 3 andm= 5,
Marsh et al. (2016) reported an increase of up to 10 % and

170 %, respectively, in the final damage when LFFD was ac-
counted for. Finally, Sadeghi et al. (2022) validated the pro-
cedure using 3 years of SHM data coming from an offshore
wind turbine monopile foundation. In that work, the LFFD
recovery algorithm was used to calculate an LFFD factor
that, once applied to the sum of the damages from each short-
term dataset, allows the recovery of the detrimental effect of
the low-frequency and high-range fatigue cycles.

The LFFD factor is equal to the ratio of the damage cal-
culated using long-term data to the damage calculated us-
ing short-term data. Both Marsh et al. (2016) and Sadeghi et
al. (2022) have found that the said factor converges to a fixed
value after a specific amount of time, suggesting that once
the LFFD factor is converged there is no need to continue
to work with long-term cycle counting. Moreover, the LFFD
factor provides direct insight into the relative importance of
LFFDs on overall fatigue.

The LFFD factor will play a role in assessing the fatigue
life of operational offshore wind turbines (OWTs) to account
for the long-term cycles to which the support structure is sub-
jected and meanwhile collect data in 10 min windows, far
better suited for comparing with DLCs or fatigue prognoses
(Noppe et al., 2020). However, Marsh et al. (2016) have al-
ready showed that the LFFD factor is highly dependent on
the gradient of the chosen SN curve. Moreover, the LFFD
factor presumably depends on the stress history, which is
site-, turbine-, and even sensor-specific, as the number and
size of LFFD cycles will depend on the prevailing environ-
mental and operational conditions. This work investigates the
behavior of the LFFD factor under various scenarios using
strain measurements from several OWTs.

2 Measurement setup and methodology

The OWI-Lab had access to data of four OWTs across two
wind farms which were geographically close to each other,
with near-identical metocean conditions. The first farm in-
cludes one of the first generations of 3 MW OWTs, while
the second farm has a larger and newer generation of 9 MW
OWTs, installed in deeper waters and with larger rotor di-
ameters compared with the first wind turbine in Farm 1.
While both farms used monopile foundations, the larger
monopiles in Farm 2 have a far larger impact from wave-
loading-induced fatigue compared with the smaller monopile
at Farm 1, as the larger wind turbines have lower natural fre-
quencies, closer to the wave spectra (Laszlo et al., 2016). We
have 3 years of data for one turbine (Farm 1), while for the
remaining three wind turbines (Farm 2), we have collected
1 year of data. As shown in Fig. 1, each turbine is equipped
with six longitudinal strain gauges mounted 60◦ apart and
installed at the tower–transition piece interface, 16 and 19 m
above the lowest astronomical tide (LAT). The three turbines
of Farm 2 (F2) have similar models and structural designs.
The heading (position) of strain sensors along the circumfer-
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Figure 1. Schematics of the instrumentation setup for Farm 1 and Farm 2. Sensors are installed at the tower–transition piece interface level.

ence of the tower is almost similar for all four turbines. Also,
the dominant wind direction, which was almost similar for
the four turbines, is shown in this figure. Sensors S2 and S4
of Turbine 1 and S6 of Turbine 3 were faulty and were nei-
ther used to calculate bending moments nor used to calculate
the heading-specific damage.

From the strain measurements at the sensors (S1 to S6),
we can calculate stresses (σ ) and bending moments (M) at
any location in the structure through Hooke’s law (Eq. 1)
Navier’s formula for axial stress (Eq. 2), and a rotation ma-
trix (Eq. 3):

σzz,j = Eεzz,j , (1)

σzz,j =
FN

A
+Ri ·

[Mnorth–south

IC
· sin

(
θj
)
−
Meast–west

IC

· cos
(
θj
)]
, (2){

Mtl
Mtn

}
=

[
cos(−ψ +π ) sin(−ψ +π )
−sin(−ψ +π ) cos(−ψ +π )

]
·{

Mnorth–south
Meast–west

}
, (3)

where E is Young’s modulus; εzz,j and σzz,j are the axial
strain and stress at the j th sensor, respectively; FN is the nor-
mal load; θj is the clockwise angle between the north–south
axis and the j th sensor; Ri is the inner radius of the sensor
location; A is its cross-sectional area; IC is its area moment
of inertia; and ψ can be any desired heading. In Eq. (3), ψ
is selected as the average yaw angle within a 10 min time
window, so the rotation matrix will return the fore–aft (FA)
and side–side (SS) bending moments (Mtn and Mtl) for each
window.

The authors dealt with the methodology to recover the
low-frequency fatigue cycles in detail in a previous study
(Sadeghi et al., 2022); therefore, the process is not repeated
in this paper. In that work, 3 years of SHM data have been
used to demonstrate that concatenating the segmented time

signals and cycle counting the resulting signal have the same
effect as merging the segmented cycle-count histograms with
the cycle-count histogram of the residual sequences from the
segmented data. This operation has multiple advantages: (i) it
is faster, (ii) it requires less database space, and (iii) it is
much more versatile than the short-term signal concatena-
tions (Marsh et al., 2016). The necessary steps to obtain a
long-term cycle-count histogram through the LFFD recovery
algorithm are described in detail in our previous publication
(Sadeghi et al., 2022). The final result is a cycle-count his-
togram which contains the low-frequency cycles.

In the current study, the overall fatigue damage with
LFFDs is calculated using the Py-Fatigue Python package
(D’Antuono et al., 2023) and through the Palmgren–Miner
rule (Eq. 5) combined with the stress–life (SN) curve as de-
fined by Basquin’s law (Basquin, 1910) (Eq. 4). Although
the linear Palmgren–Miner rule is relatively imprecise and
does not account for load sequence or memory effects, it is
by far the most popular and commonly utilized damage ac-
cumulation rule (Ciavarella et al., 2018), required as a safety
standard even by safety-critical industries such as aviation
transport (EASA, 2020), although more accurate models are
available (Hsiao et al., 2021). Following the DNV-RP-C203
guidelines using the single-gradient curves (Iliopoulos et al.,
2017), the selected SN curves are illustrated in Fig. 2. We
chose three linear SN curves with different slopes (3, 4,
and 5) because these are normally used to calculate damage-
equivalent moments (DEMs), as one of the applications of
the desired LFFD factor would be to consider the LFFD ef-
fect in the calculated DEM (refer to Appendix C). The focus
on the single-gradient linear SN curves is motivated by the
desire to have a general LFFD factor, independent of the fa-
tigue spectra and multiplicative factors. On the other hand,
bilinear SN curves will yield to a non-generalizable LFFD
factor, as is discussed in Sect. 4.3, using two bilinear SN
curves of DNV_D_A and DNV_D_CP, which are the SN

https://doi.org/10.5194/wes-8-1839-2023 Wind Energ. Sci., 8, 1839–1852, 2023



1842 N. Sadeghi et al.: Quantifying the effect of low-frequency fatigue dynamics on offshore wind turbine foundations

Figure 2. SN curves used.

curves for detail type D in air and in seawater with cathodic
protection, respectively (Iliopoulos et al., 2017). Meanwhile,
the seawater with a free corrosion curve is a single-slope SN
curve (m= 3), and thus the LFFD factor for m= 3 applies.

It is worth mentioning that in the current research, for sim-
plicity no existing damage was assumed on the structures,
and initially the residuals were counted as half cycles. Fur-
thermore, no mean stress corrections were used, and the load-
ing was assumed to be uniaxial. Both assumptions serve to
simplify the outcomes of this analysis while aligning with
DNV (2019). As the recommended practice specifies that
if the maximum cyclic stress is greater than 0 (overall ten-
sion), no mean stress correction shall be applied (factor= 1),
while a constant factor< 1 can optionally be used for the
stress ranges when residual compressive stresses can be doc-
umented.

Similarly, regarding the behavior under combined loading,
we again follow the recommended practice (DNV, 2019). As
the SN curves used were obtained from specimens that un-
derwent uniaxial tests, we disregard the impact of torsional
and shear loads. From a practical point, no data were col-
lected for these loads due to the lack of sensors in those di-
rections.

The short- to long-term fatigue damage LFFD factor is ex-
pressed in Eq. (6) as the ratio of the damage from long-term
fatigue histograms to the damage from short-term fatigue his-
tograms; i.e.,

N · (1σ )m = a, (4)

D =

Nblocks∑
j=1

nj

Nj
= 1/a ·

Nblocks∑
j=1

nj (1σ )mj , (5)

LFFD_factor=DLT/DST, (6)

where (m, a) are the SN curve slope and intercept, respec-
tively; nj is the number of cycles in the j th load block; Nj
is the cycle to failure at the load level 1σj ; and DLT and
DST are the long-term and short-term fatigue damages. As
the number and the stress range of large cycles increase after
the LFFD recovery, see Fig. 3, LFFD_factor≥ 1.

Figure 3. Comparison of full cycles of 1 year of cycle count FA
from Turbine 1, before and after applying LFFDs.

Figure 3 shows how the number of full cycles increases
after considering the low-frequency cycles. It can be seen
that the added full cycles mainly have stress ranges of over
10 MPa, and therefore they will have a large contribution to
the final damage.

It is noteworthy that the LFFD factor for single-gradient
curves does not depend on the SN curve intercept (a) but
the slope (m) only. This is shown in Eq. (7) by substituting
Eq. (5) in Eq. (6):

LFFD_factor=

Nblocks∑
j=1

nLT,j (1σ )mLT,j

Nblocks∑
j=1

nST,j (1σ )mST,j

. (7)

As a consequence, given that max[(1σ )LT,j ] ≥

max[(1σ )ST,j ], if the slope increases, the effect of the
large low-frequency cycles will increase, and the LFFD
factor will increase.

In Fig. 4a, a single day of real-world data collected from
Farm 1 are used to show how a low-frequency cycle forms.
The measurements for both the FA and the SS bending mo-
ments as well as two individual strain gauges are shown
against the wind speed and direction. The vertical grid lines
show the 10 min short-term windows. For the FA direction,
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Figure 4. (a) Strain signals of FA, SS, and two sensors. The dashed black lines show the schematic of two LFFD cycles forming during a
day from the change in wind speed and direction. (b) The frequency spectrum of FA, SS, and two sensors. The two dotted vertical lines show
the first and second modes.

slow variations in the bending moment spanning several
hours can be seen. These LFFDs far exceed the cycles ob-
served within a 10 min window and can be directly correlated
to the variations in wind speed over the day. Meanwhile, for
the SS, the bending moment is not affected by these varia-
tions in wind speed.

While the FA bending moment is only affected by the wind
speed, a secondary effect can be seen for the individual strain
gauges at headings 145 and 265◦ (S3 and S5). For example,
at the start of the day, S3 is in tension as the wind is com-
ing from the southeast (153◦); meanwhile, S5 is in compres-
sion. In the midday, the wind heading is between the two
sensors, and therefore their mean strain is around 0. Towards
the end of the day, S3 is in compression and S5 is in ten-
sion. These LFFD cycles are readily explained when consid-
ering that the wind direction has also changed towards the
west (237◦). Examples of two LFFD cycles are shown by the
dashed black lines. This illustration suggests that the size of
the LFFD effect will vary along with the wind conditions at
a site as well as the type of signal considered. Note that in
this plot, the sensors’ strain is de-trended to have 0 means.
In Fig. 4b, the frequency spectrum of the two sensors as well
as the FA and SS strain signals are shown. The sensors’ fre-
quency plots are overlying. The first highest peak happens at
a very low frequency of 0.016 Hz, and FA and SS have the
highest and lowest power density, while the sensors’ power is
in between them. The second dominant frequency is around
0.36 Hz at the frequency of the first dynamic mode, but in
this frequency, SS has the largest height, while FA has the
least value.

3 Objective

In the present work, we perform an in-depth analysis of the
LFFD factors to investigate the variability of the LFFD fac-

tor over time, across different sensor positions, locations, and
wind farms. We are interested in the additional damage that
might be ignored if we do not consider the LFFD effect in
common practices. Our work is aimed at practical industrial
applications, and, as such, it must adopt the most widely ac-
cepted industry practices and standards for fatigue lifetime
prediction. In particular, the following is investigated in fur-
ther detail:

1. the trend of the convergence of LFFD factors over time
and the relative importance of growing time horizons in
LFFDs

2. comparison of LFFD factors for the direct measure-
ments of sensors along the circumference of the wind
turbine support structure with those calculated for FA
and SS bending moments

3. multiple support structures (with similar designs) in the
same wind farm

4. multiple foundation designs coming from two different
wind farms.

The final scope of this study is to define the right short-
to long-term fatigue damage LFFD factor for a specific
OWT that can be applied as a multiplicative constant to the
short-term damage whenever the low-frequency fatigue cy-
cles cannot be retrieved, for instance, when working with
10 min damages or equivalently when working with short-
term damage-equivalent loads (DELs), where the time order
of the short-term dataset is not available (Hübler et al., 2018;
Weijtens et al., 2016).
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Figure 5. (a) Trend in LFFD factor along the circumference of T1 over time using 3 years of SHM data, plus the results of Marsh et al. (2016).
The solid grey line shows the average of the converged values of all sensors, and the grey area is the average± 2 SDs. (b) Comparison of the
LFFD factor value from FA and SS and the average of the sensors for m= 5.

4 Case studies

4.1 The behavior of the LFFD factor for FA and SS and
sensors and the trend over time

Figure 5a shows the trend in the LFFD factor over time along
the circumference (four sensors) of the monopile under con-
sideration (T1) for single-slope SN curves with slopes of
m= 3, 4, and 5 shown by purple, yellow, and blue lines. Ad-
ditionally, the results of Marsh et al. (2016), from 1 year of
stress data collected from a multi-megawatt offshore wind
turbine support structure are plotted for m= 3 and 5.

Generally, the factor depends mostly on the SN curve
slope (m) rather than the considered strain history. The first
stabilization of the LFFD factor appears after 3 months, in
agreement with what was found by Marsh et al. (2016),
but after almost 6 months, a season-dependent effect causes
some variation in the LFFD factor. For this reason, we con-
sider the alternation of four seasons (≥ 1 year) as the min-
imum time window that gives a stable value of the LFFD
factor. Concerning the influence of the SN curve and the be-
havior along the circumference, after convergence, the LFFD
factor is relatively stable. Its variations can be safely ex-
pressed by a mean value of± 2 SDs (standard deviations)
(solid grey line and area in Fig. 5a). Marsh et al. (2016)
showed a factor of around 2.3 and 2.7 for m= 5 and 1.1 for
m= 3, which are comparable with the values from the cur-
rent study. A summary of the information on the converged
factors for different SN slopes (m= 3, 3.5, 4, 4.5, and 5) for
all four turbines is available in Appendix A.

To evaluate the different LFFD factors for FA, SS, and
strain of individual sensors, we compared the LFFD factor
calculated from the FA and SS bending moments with the
average LFFD factor of the sensors of Turbine 1, in Fig. 5b.
We only focused on m= 5, as it has the highest LFFD factor

values. The plot shows that the lowest LFFD factor is found
for the SS direction and that the average LFFD factor of the
sensors (2.76) is much higher than those found for the FA
and SS directions (1.89 and 1.5, respectively). As illustrated
in Fig. 4, the likely cause of the larger role of LFFDs for
fixed headings is the LFFD cycles caused by the changing
wind directions over time. The maximum margin of scatter
for the average value of all four sensors (grey line in Fig. 5a)
(form= 5) is 0.25. It is equal to 2 standard deviations, which
is shown by the grey area.

To better understand the mechanism behind the LFFD fac-
tors, we calculated the LFFD factors by considering different
window sizes over the whole measurement duration: yearly,
seasonal, monthly, daily, and 10 min. For example, for the
whole duration, all the low-frequency cycles are considered;
for yearly (Y ) durations, cycles shorter than 1 year are con-
sidered; for seasonal (Q) durations, cycles shorter than 3
months are considered; for monthly (M) durations, cycles
less than 1 month are considered; for daily (D) durations,
cycles shorter than a day are considered; and for 10 min win-
dows, no LFFDs are considered (T ). Figure 6 shows the re-
sults for damages calculated with the mentioned aggregation
windows. The damages are normalized to the “total damage”
from cycle counting the entire signal together. The result was
valid over both farms and all four turbines; therefore we only
show the T1 results. The plots for the other three turbines are
in Appendix B.

Note that the LFFD factor(s) are found as 100/normalized
damage (T ). Figure 6 illustrates that for all slopes, daily cy-
cles contribute to the majority of the LFFD factor. For this
turbine, we notice that for m= 3, cycle counting on a daily
basis covers ca. 98 % of the total damage of an individual
sensor and in the FA direction. By comparison, for m= 4,
cycle counting daily only accounts for ca. 90 % of the total
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Figure 6. Share of the low-frequency cycles of various lengths in the final LFFD factor of T1 after 3 years. Damages are normalized to
100 %. (Without LFFD: T, daily: D, weekly: W, monthly: M, quarterly: Q, and yearly: Y). Results for the three other turbines are provided
in Appendix B.

damage for individual sensors, while 96 % and 99 % of to-
tal damage is accounted for when a weekly and a monthly
basis, respectively, is considered. For m= 5, cycle counting
on a monthly basis covers ca. 96 % of the total damage (of
sensors). Results seem to suggest that considering longer pe-
riods has trivial added value. The exception is an apparent
large contribution of yearly cycles in the SS result form= 5;
however, this behavior seems limited to turbine T1 and might
be due to an anomalous cycle, e.g., due to a sensor malfunc-
tion.

Consistent with Eq. (7), by the increase in the slope of
the SN curve, the share of long-term damages and the need
to consider a longer time window increase. Among the sen-
sors, S3 and S6, which are normal to the dominant wind di-
rection, have the smallest short-term damage contribution,
which translates to the highest LFFD factors.

Comparing the composition of the LFFD for individual
sensors against that of the FA and SS directions, we observe
that the share of cycles lasting more than a day is absent in
both FA and SS for m= 3 and insignificant for m= 4, while
a considerable percentage (> 10 %) of those cycles is present
form= 5. Meanwhile, these long cycles do play a role when
considering the strain history of a sensor for a fixed loca-
tion on the structure. Considering that the wind direction and
wind speed act together to form low-frequency cycles, it usu-
ally takes more time (> 1 d) for both wind speed and direc-
tion to have a concurrent effect. The shares of weekly and
monthly cycles are higher for individual sensors due to the
additional cycles from combined wind speed and direction
changes, which by definition have been taken out of the FA
and SS signals. Meanwhile, it is observed that, for all val-
ues of m, the impact of the LFFD cycles is the smallest for
the SS direction and can even be considered negligible for
m= 3. This can be explained by the fact that the main load-
ing in this direction comes from cyclic loads of (misaligned)
waves and the tower dynamics with periods of less than 10 s,

rather than from the much slower variations in wind speed
or wind direction. Also, note that the variability among the
LFFD factors of sensors is less than the difference between
sensors and the FA and SS LFFD factors.

As previously mentioned, the variations of wind speed
and wind direction beyond 10 min (diurnal, weekly, monthly,
etc.) have a pivotal effect on the LFFD factor, and results will
vary between sites. However, there is no widely accepted
metric to reflect LFFDs in wind data. Although for wind
speed, the LFFD effect might be obtained from a spectrum of
the wind speed that represents these gradual variabilities over
the course of several years. Considering that wind speed is
connected to the thrust curve of the wind turbine, one might
be able to quantify the effect of wind speed variability on
the LFFD factor. Meanwhile, the combined effect of wind
speed and direction and the resulting LFFD effect might be
obtained by constructing a similar spectrum of the projected
thrust load to a specific heading. But the accuracy of such an
approach is still to be proven. Additionally, there is, to our
knowledge, no commonly accepted way of representing the
variability of wind direction over long periods of time.

4.2 The behavior of the LFFD factor on different wind
turbines within the same farm and in two distinct
farms

Figure 7 shows the average of the LFFD factors for each
slope of the SN curve (m= 3, 4, and 5) after convergence
(> 9 months). In each box, the factors for all four turbines
across the two farms are provided.

If we take the average of the sensors for each turbine, the
difference between turbines in the same farm is below 0.02,
0.1, and 0.3 for m= 3, 4, and 5, respectively (refer to Ap-
pendix A). The wind and wave conditions for the three tur-
bines in the same farm are quite similar. Therefore, the differ-
ence from one turbine to another might be explained by the
different reactions of the turbine’s structure to these loading
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Figure 7. Average of the stabilized LFFD factors after 9 months for the six positions along the circumference and FA and SS, for T1 of
Farm 1 and T2, T3, and T4 of Farm 2. Each box is for an SN curve slope.

conditions. T2 has the lowest LFFD factors because this tur-
bine experienced more parked conditions compared with T3
and T4.

In parked conditions the importance of wave-induced
loading increases, while the low-frequency wind loads are
reduced significantly, ultimately reducing the LFFD damage.
Moreover, the fatigue loading is larger in parked conditions;
as a result, T2 has accumulated more base damage than T3
and T4. The higher base damage (without LFFD) and lower
added LFFD damage will lead to a lower LFFD factor.

The FA LFFD factor is slightly higher than those for the
sensors form= 3, but with the increase inm, sensors’ LFFD
factors overcome FA. That is because, with the increase in the
SN slope, the added LFFD damage due to the wind direction
grows. SS always has the lowest LFFD factors. The LFFD
factors of FA and SS can be up to around 1.1, 1.4, and 2
and 1.03, 1.1, and 1.5 for m= 3, 4, and 5, respectively.

Since Farms 1 and 2 significantly differ in design and nat-
ural frequencies, a comparative study helps to understand if
and how these differences can affect the short- to long-term
fatigue damage LFFD factor behavior and value. From Fig. 7,
it seems that overall the low-frequency fatigue effect is dif-
ferent between the two farms, with higher LFFD factors for
Farm 1 for all values of m. If we take the average LFFD fac-
tor of the sensors for each turbine, the difference between
turbines in the two farms is below 0.05, 0.2, and 0.5 for
m= 3, 4, and 5, respectively (refer to Table A1). Conversely,
T2, T3, and T4 are larger structures (the resonance frequency
is lower and therefore closer to the wave frequency); there-
fore the damage is more affected by waves, and wave loading
gives less low-frequency variation in damage.

For each SN slope, the variability of the LFFD factor is
less between sensors compared with FA and SS. For sensors
and SS, the shift in the turbine in a farm causes less change
in the factor compared with the shift in the farm. While for
FA, the shift in the farm yields a greater change in the factor
compared with the change in the turbine in a farm.

As expected, opposite sensors show similar, if not pre-
cisely identical, LFFD factors due to the circular symmetry
of the support structure. In all four turbines, the sensors per-
pendicular to the dominant wind (S3 and S6) have higher
LFFD factors. Surprisingly, the sensors that are mostly af-

fected by the thrust loading (S1–S4 and S2–S5 pairs) have
lower LFFD factors. We observed that among the sensors
normal and parallel to the dominant wind direction, the dif-
ferences in base damage (T ) are larger than the differences
in the added LFFD damage. Therefore, the LFFD factor of
sensors parallel to the wind is lower than the sensors normal
to the wind.

4.3 Role of LFFDs with bilinear SN curves

In this study, until here we analyzed the effect of linear SN
curves with slopes equal to m= 3, 4, and 5 on the LFFD
factor. These SN curves are mainly used to calculate the
damage-equivalent moments (DEMs). But to calculate the
fatigue damage of OWTs, bilinear SN curves are widely
used. In Fig. 2, two commonly used bilinear curves from
DNV (2019) are selected to study the change in the LFFD
factor with the use of bilinear instead of linear SN curves.
Both SN curves are partially at slopes m= 3 and m= 5 for
large and small stress cycles, respectively. As a result, the
bilinear SN curve will penalize large cycles, such as those
caused by LFFDs, less than a single-sloped m= 5 curve.
A fundamental consideration is that for bilinear curves, the
LFFD factor will be dependent on the stress ranges. Depend-
ing on whether the majority of stress cycles fall in the m= 3
or m= 5 region, it will result in a lower or higher LFFD fac-
tor, respectively. In Fig. 8, the LFFD factor of four turbines
is analyzed after 1 year with the aforementioned bilinear SN
curves. To investigate the role of the overall stress range, a
stress concentration factor (SCF) is introduced in Eq. (8):

1σSCF = SCF ·1σ. (8)

In Fig. 8, the SCF is varied from 1 to a maximum of 4,
and LFFD factors are calculated for each value of the SCF.
Note that the results hold for any (combined) multiplier on
the stress ranges, e.g., a material factor (Natarajan, 2022).
Figure 8 shows that as the SCF increases, the LFFD factor
decreases. This is because the higher SCF shifts the fatigue
spectra upwards towards a higher stress range, into them= 3
region of the bilinear SN curve, as a result pushing the LFFD
factor closer to the LFFD factor of the linear SN curve with
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Figure 8. Trend of LFFD factor versus SCF for all turbines for both DNV_D_A and DNV_D_CP.

m= 3. However, even with an SCF of 4, the LFFD factors
of sensors and FA from the bilinear curves were not as low
as those from the linear SN curve with m= 3. On the other
hand, the bilinear SN curve generally resulted in a lower
LFFD factor compared with the linear SN curve with m= 5,
even when the SCF was 1. Due to the lower stress ranges,
which are mostly affected by the m= 5 region and do not
reach the m= 3 part of the bilinear curve at all, there is a
significantly smaller difference between the linear and bilin-
ear LFFD factors for the smallest turbine (T1) compared with
other turbines. Thus, the fatigue spectrum continues to be in
them= 5 region of the bilinear curve, even after applying an
SCF of 4.

Furthermore, the LFFD factors from the SN curve with
cathodic protection (DNV_D_CP) are higher than those from
the SN curve in the air (DNV_D_A). This is because the tran-
sition of the DNV_D_CP curve to m= 3 is at higher stress
ranges, making the LFFD factors closer to the LFFD factors
from the linear SN curve with m= 5. An interesting point
to note is the FA LFFD factor of T1 for DNV_D_CP, which
from SCF= 1 to 2 does not have the same sudden drop com-
pared with other cases. This is explained by the fact that the
full fatigue spectrum remains in the m= 5 region even with
SCF= 2.

5 Conclusions

This study examined long-term OWT fatigue using 3 years
of SHM data. We found that at least 1 year is needed to
achieve a reliable LFFD factor. Our results are specific to
the North Sea and are influenced by site-specific parame-
ters, including weather conditions and structural dynamics.
As a result, LFFD factors will vary (significantly) when con-
sidering different sites and turbines, and knowing the num-
ber of elements playing a role in this factor, we recommend
quantifying it site specifically using in situ measurements.
Our findings show that at the studied sites, the LFFD fac-
tor is the lowest for the SS direction and mainly the highest
for fixed headings, an effect that strengthens for larger SN
slopes. Considering the effect of gradual variabilities (LFFD)
in the analysis can contribute significantly to damage – up to
65 % for an individual sensor and a Basquin slope of m= 5.

Given that wind speed and direction interact to create low-
frequency cycles, it usually takes more than a day for both
variables to have a large impact simultaneously, which leads
to a larger importance of weekly and monthly cycles in over-
all fatigue damage for individual headings compared with the
FA and SS directions. The majority of the low-frequency cy-
cles last less than a day, and the share of low-frequency cy-
cles in the total damage increases for higher slopes in the SN
curve. Fatigue analyses on the strain sensors showed that the
heading has a secondary effect on the LFFD factor.
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The LFFD factor calculated from one turbine can be
roughly used for other turbines within the same farm. Also,
LFFD factors for different wind farms with different sup-
port structure designs can vary with up to 50 % and 110 %
for linear SN curves with m= 5 and bilinear SN curves
withm= [3,5], respectively. The bilinear curves cannot pro-
duce conclusions that are generalizable since the LFFD fac-
tor varies from spectrum to spectrum.

In future work, we plan to use the LFFD factors when-
ever the recovery of the low-frequency fatigue from cycle-
count histograms cannot be directly applied, e.g., when only
DELs are available (see Appendix C) or when we lose the
time sequence in the data (like bootstrapping or binning the
short-term damages). A further study on the quantification of
LFFDs based on Supervisory Control and Data Acquisition
(SCADA) will also be done for cases where no strain mea-
surement is available.

Appendix A

Table A1 lists the observations of the converged LFFD fac-
tors after 9 months from Fig. 5a and for the three turbines
of Farm 2. In addition, the values for m= 3.5 and 4.5 are
included. The highest LFFD factors for m= 3, 4, and 5
are, as you can see, approximately 1.1, 1.5, and 2.9, respec-
tively. And for m= 3, 4, and 5, the maximum 2 SDs are
roughly 0.02, 0.1, and 0.5, respectively.
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Table A1. The converged LFFD factors for sensors, FA, and SS for all four turbines.

T1 T2 T3 T4

Average 2 SDs Average 2 SDs Average 2 SDs Average 2 SDs
m
=

3

S1 1.094 0.010 1.059 0.003 1.071 0.003 1.069 0.004
S2 1.064 0.004 1.075 0.007 1.072 0.002
S3 1.098 0.005 1.061 0.004 1.068 0.003 1.066 0.002
S4 1.059 0.003 1.073 0.003 1.069 0.003
S5 1.088 0.008 1.064 0.004 1.073 0.003 1.071 0.002
S6 1.100 0.005 1.061 0.004 1.068 0.003
Sensors 1.094 0.012 1.061 0.005 1.072 0.006 1.069 0.005
FA 1.091 0.009 1.087 0.006 1.106 0.003 1.107 0.003
SS 1.029 0.002 1.011 0.000 1.012 0.000 1.011 0.000

m
=

3.
5

S1 1.219 0.025 1.137 0.009 1.174 0.011 1.169 0.013
S2 1.147 0.009 1.173 0.008 1.169 0.007
S3 1.235 0.014 1.147 0.009 1.168 0.008 1.161 0.007
S4 1.137 0.008 1.178 0.010 1.167 0.012
S5 1.209 0.021 1.147 0.009 1.173 0.008 1.168 0.008
S6 1.242 0.015 1.146 0.009 1.167 0.007
Sensors 1.226 0.018 1.144 0.009 1.173 0.009 1.167 0.009
FA 1.186 0.019 1.175 0.010 1.219 0.006 1.223 0.009
SS 1.059 0.007 1.017 0.001 1.019 0.001 1.017 0.001

m
=

4

S1 1.465 0.055 1.299 0.016 1.385 0.016 1.372 0.022
S2 1.321 0.025 1.394 0.041 1.369 0.016
S3 1.504 0.033 1.344 0.027 1.406 0.012 1.381 0.011
S4 1.298 0.017 1.396 0.015 1.367 0.020
S5 1.454 0.048 1.321 0.026 1.383 0.021 1.368 0.017
S6 1.523 0.037 1.343 0.027 1.400 0.012
Sensors 1.480 0.077 1.321 0.045 1.393 0.031 1.376 0.029
FA 1.340 0.034 1.324 0.025 1.404 0.012 1.405 0.010
SS 1.121 0.020 1.027 0.002 1.030 0.001 1.027 0.001

m
=

4.
5

S1 1.917 0.104 1.625 0.033 1.831 0.041 1.814 0.053
S2 1.655 0.062 1.798 0.056 1.764 0.050
S3 1.977 0.082 1.753 0.064 1.897 0.050 1.828 0.037
S4 1.616 0.030 1.853 0.037 1.798 0.049
S5 1.919 0.095 1.658 0.067 1.795 0.057 1.764 0.053
S6 2.034 0.094 1.748 0.062 1.886 0.038
Sensors 1.962 0.094 1.676 0.053 1.835 0.048 1.809 0.047
FA 1.574 0.055 1.539 0.029 1.666 0.013 1.672 0.023
SS 1.254 0.049 1.042 0.005 1.048 0.004 1.043 0.003

m
=

5

S1 2.681 0.184 2.225 0.051 2.629 0.087 2.591 0.112
S2 2.235 0.130 2.518 0.122 2.426 0.108
S3 2.727 0.180 2.541 0.151 2.897 0.057 2.713 0.060
S4 2.207 0.051 2.676 0.087 2.553 0.106
S5 2.724 0.178 2.240 0.143 2.502 0.123 2.429 0.116
S6 2.868 0.211 2.540 0.145 2.861 0.074
Sensors 2.760 0.256 2.322 0.349 2.637 0.323 2.586 0.360
FA 1.897 0.080 1.844 0.048 2.004 0.019 2.002 0.022
SS 1.509 0.129 1.063 0.006 1.074 0.004 1.064 0.005
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Appendix B

Figure B1 shows the share of low-frequency cycles with mul-
tiple aggregation window lengths. As shown, the shares of
LFFD damages in the same farm are similar, except for the
lower share of T2, since it was parked more. In general, the
share of LFFD damages (except for SS) is almost similar for
T1 and other turbines.

Figure B1. Share of low-frequency cycles with different cycle periods for turbines of Farm 2.
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Appendix C

The damage-equivalent load (DEL) derived from a load time
signal history for a chosen single-slope SN curve (typically
m= 3, 4, and 5 for steel) and an equivalent number of cycles
(typically Neq = 1×107) creates the same amount of fatigue
damage as the Miner damage derived from the original load
time signal on the same SN curve. The DEL is a direct quan-
tification of fatigue loads derived from load measurement
time series. The DEL from simulations is made during the
design phase under the condition that the SN curve character-
istics (m and Neq) are the same. The DEL can be utilized as
an alternative for damage because the Miner damage cannot
be measured physically and requires a more refined selection
of the SN curve. We use DELs with SN slopes of m= 3, 4,
and 5 in accordance with established practices (DNV, 2016).
Considering the logarithmic distribution of damage, DEL is
often employed in the design process of (offshore) wind tur-
bines since it offers a linear scale for presenting damage. This
choice ensures independence from the SN curve’s intercept
and improves readability.

In this appendix, we show how the short- to long-term
fatigue damage LFFD factor could be applied to convert a
short-term DEL into a long-term DEL. For the demonstra-
tion, we need the definitions of DEL (Natarajan, 2022) (or,
more specifically, DES, as it is a damage-equivalent stress
range), the SN curve in Basquin’s law, and the Palmgren–
Miner rule.

DES=


Nblocks∑
j=1

nj (1σ )mj

Neq


1/m

(C1)

(1σ )m = a/N (C2)

By substituting Eq. (C2) into Eq. (C1), one retrieves the def-
inition of DES concerning the Palmgren–Miner rule.

DESm ·Neq =

Nblocks∑
j=1

nj (1σ )mj = a ·
Nblocks∑
j=1

nj/Nj︸ ︷︷ ︸
PM rule

(C3)

Therefore,

DESm ·Neq = a ·D. (C4)

Applying the definition of the LFFD factor leads to

DLT = DESmLT ·
Neq

a
=DST ·LFFD_factor

=

(
DESmST ·

Neq

a

)
·LFFD_factor, (C5)

from which the relation between DESLT and DESST is
straightforward:

DESLT = DESST ·LFFD_factor1/m. (C6)
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