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Abstract. The continuous up-scaling of wind turbines enabled by more lightweight and flexible blades in com-
bination with coning has challenged the assumptions of a plane disc in the commonly used blade element mo-
mentum (BEM)-type aerodynamic codes for the design and analysis of wind turbines. The objective with the
present work is thus to take a step back relative to the integral 1-dimensional (1-D) momentum theory solution
in the BEM model in order to study the actuator disc (AD) flow in more detail.

We present an analytical, linear solution for a two-dimensional (2-D) AD flow with one equation for the axial
velocity and one for the lateral velocity, respectively. Although it is a 2-D model, we show in the paper that there
is a good correlation with axis-symmetric and three-dimensional (3-D) computational fluid dynamics (CFD)
simulations on a circular disc. The 2-D model has thus the potential to form the basis for a simple and consistent
rotor induction model.

For a constant loading, the axial velocity distribution at the disc is uniform as in the case of the classical
momentum theory for an AD. However, an important observation of the simulated flow field is that immediately
downstream of the disc the axial velocity profiles change rapidly to a shape with increased induction towards the
edges of the disc and less induction on the central part. This is typically what is seen at the disc in full non-linear
CFD AD simulations, which is what we compare with in the paper.

By a simple coordinate rotation the analytical solution is extended to a yawed disc with constant loading.
Again, a comparison with CFD, now with a 3-D simulation on a circular disc in yaw, confirms a good perfor-
mance of the analytical 2-D model for this more complicated flow.

Finally, a further extension of the model to simulate a coned disc is obtained using a simple superposition of
the solution of two yawed discs with opposite yaw angles and positioned so the two discs just touch each other.
Now the validation of the model is performed with results from axis-symmetric CFD simulations of an AD with
a coning of both 20 and −20◦. In particular, for the disc coned in the downwind direction there is a very good
correlation between the simulated normal velocity to the disc, whereas some deviations are seen for the upwind
coning.

The promising correlation of the results for the 2-D model in comparison with 3-D simulations of a circular
disc with CFD for complicated inflow like what occurs at yaw and coning indicates that the 2-D model could
form the basis for a new, consistent rotor induction model. The model should be applied along diagonal lines on
a rotor and coupled to an angular momentum model. This application is sketched in the outlook and is a subject
for future research.
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1 Introduction

The most striking characteristic of the modern, industrial
wind turbine development over the last 4–5 decades is the
up-scaling. In the beginning of the 1980s there was already
an industrial series production of turbines with a rated power
of 50–100 kW and rotor diameters of 15–20 m. Many were
installed in big wind farms like Palm Springs and Tehachapi
in the United States. Today turbines of the maximum size of
around 15 MW with rotor diameters of 230–240 m have been
introduced in the market, which gives an up-scaling factor of
around 15 on rotor diameter over this time span.

It is clear that this up-scaling correspondingly increased
the requirements for the aerodynamic and aeroelastic design
tools like the modelling of unsteady inflow over the rotor
disc, wind shear and wind veer, yawed flow, and wake flow
(Madsen et al., 2020). The origin of the aerodynamic mod-
elling of the common aeroelastic model tools today – like
FLEX5 (Flex4) (Øye, 1996), FAST (Jonkman et al., 2016),
BLADED (Bossanyi, 2003), GAST (Riziotis and Voustinas,
1997), Cp-Lambda (Botasso et al., 2006), FOCUS (WMC,
2019) and HAWC2 (Larsen and Hansen, 2007) – is the blade
element momentum (BEM) theory based on the propeller
theory by Glauert (1935) which originally assumed homoge-
neous and stationary flow. Various modifications have been
implemented in the different codes to adapt to the conditions
mentioned above. Most codes, e.g., now use a more local rep-
resentation of the induction over the rotor plane than on a ring
element as originally proposed to better account for varying
inflow over the rotor disc from wind shear and turbulence.

An excellent overview of the capability of most of the
above-mentioned codes has recently been presented by
Boorsma et al. (2023). This was done by both bench-
marking and validation of experimental data as well as of
higher-fidelity model data. One conclusion is that the BEM-
type codes still show higher deviations for yawed inflow
than higher-fidelity codes like computational fluid dynam-
ics (CFD) and vortex-type codes. For yawed flow cases the
variability between BEM-type codes is double the variability
between CFD codes. This illustrates the lack of a unified im-
plementation of the sub-models in BEM-type codes, e.g., for
the modelling of yaw.

The objective with the present work is thus to take a step
back relative to the integral momentum theory solution for an
actuator disc, which is the core of the BEM model. We will
study the actuator disc (AD) flow in more detail to provide
a better background for understanding the shortcomings and
approximations in the BEM-implemented momentum theory
and deviations from higher-fidelity modelling of AD flow
such as (1) the velocity distribution at the disc for constant
loading, (2) independence of annular stream tubes, (3) flow
field for a yawed AD and (4) flow field for a coned AD.

With respect to the axial velocity distribution for a con-
stant loaded AD where the integral momentum theory pre-
dicts (assumes) a uniform, constant profile, a number of

CFD-based AD simulations have shown higher induction to-
wards the edges of the disc and less induction on the central
part (Sørensen and Kock, 1995; Madsen, 1997; Mikkelsen
et al., 2001). Also the shortcomings of the momentum theory
to predict the flow through a coned rotor have been illustrated
by CFD AD simulations of Madsen and Rasmussen (1999)
and Mikkelsen et al. (2001), where considerable deviations
from the constant axial velocity profile assumed by the mo-
mentum theory are found.

Studies within these four areas have been carried out by
many researchers in the past, and it seems that the mod-
elling can be grouped into three approaches: (1) vortex
models, (2) combined analytical and numerical models, and
(3) Euler-equation-based models which the present model
belongs to.

The approach based on vortex models is by far the most
common way of studying the AD flow field and not least the
use of a vortex cylinder (VC) model with a none-expanding
wake, infinite number of blades, infinite tip speed ratio
and uniform loading. Some recent studies in relation to the
above-mentioned research areas using this model are Bran-
lard and Gaunaa (2015) (relations between momentum the-
ory and vortex theory), Li et al. (2022) (modelling of non-
planar rotors), Troldborg et al. (2014) (yawed disc), and Gau-
naa et al. (2023) (independence of annular stream tubes).

In the category of studies combining analytical and numer-
ical solutions Crawford (2006) presented a modified BEM
for coned rotors. The improvement in the BEM model com-
prises a proper consideration of the relative placement of the
wake and includes the radial-induced velocity. A comparison
of the improved BEM with the CFD results of Madsen and
Rasmussen (1999) and Mikkelsen et al. (2001) shows reason-
able correlation as concerns the slope of the profiles on the
inner part of the disc, whereas the non-linear outboard part
required a further modelling of the expansion of the stream
tubes.

Another study by van Kuik and Lignarolo (2016) shows
the non-uniformity of the axial velocity profile caused by the
pressure acting at the stream tube annuli, thus making them
not independent from each other in contradiction to the in-
dependence found by Gaunaa et al. (2023). Finally in this
group of models the work by Wood and Hammam (2022)
can be mentioned, who used conservation of axial and an-
gular momentum and the calculus of variations to derive the
optimal performance of horizontal-axis wind turbines over a
wide range of tip speed ratios. In the two-dimensional (2-D)
model to be presented here the analytical solution is limited
to a constant loading.

In the third model group, the Euler equations and the con-
tinuity equation together with specified body forces are the
starting point for modelling the AD flow. It seems to be a
unique approach, and only the so-called asymptotic acceler-
ation potential method by van Bussel (1992) has some re-
semblance to the method used in the present research.
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It might be considered surprising to study a 2-D AD model
for the representation of rotor induction. However, it is ex-
pected that the main difference between an axis-symmetric
and a 2-D model will be related to the analogy between radial
velocity and lateral velocity for the axis-symmetric and 2-D
model, respectively, where the last mentioned is expected to
have the highest velocities.

The model and the background for its derivation are pre-
sented in Sect. 2 followed by flow characteristics of the
AD model in axial flow in Sect. 3, including comparisons
with axis-symmetric CFD simulations. Section 4 extends
the model to yawed inflow and the validation with three-
dimensional (3-D) CFD AD simulations. Section 5 presents
a further extension for modelling a coned disc and compar-
isons with axis-symmetric CFD AD simulation of a disc with
both 20 and−20◦ coning. Outlook and conclusions are given
in Sects. 6 and 7, respectively.

2 The analytical 2-D AD model

The analytical linear solution (2Dl) of the 2-D AD model was
first presented by Madsen (1983) during a work on the devel-
opment of the actuator cylinder (AC) model for modelling
the aerodynamics of vertical-axis wind turbines (VAWTs).
The basic idea behind the AC model was the need to ex-
tend the well-known actuator disc concept to an actuator sur-
face (AS) of arbitrary shape where the AS coincides with
the swept surface of the considered turbine type (Madsen,
1983, 1985, 1988). For a straight-bladed VAWT rotor this
means a cylindrical shape which thus can be modelled with
the AC model.

However, this extension of the AD concept to an AS raised
the question of how to compute the flow field through and
around an AS. The well-known momentum theory solution
in an integral form for an AD cannot just be transferred for
use on an AS of arbitrary shape, which would violate the
assumptions in the AD momentum model.

2.1 Derivation of the descriptive system of equations

We have chosen an approach for the derivation of the equa-
tions that follows a general method of Von Kármán and Burg-
ers (1935) for the analysis of flow fields with a main velocity
V under the influence of external body forces f . Von Kármán
and Burgers (1935) used the method to develop a general the-
ory for wings of finite span and considered in most cases the
induced velocities from the action of external forces as per-
turbations to the main flow field with the velocity V .

Koning (1935) presented an analysis of the flow around
“the ideal propeller” described as a thin disc with axial
forces acting over the disc, which is based on the method
of Von Kármán and Burgers (1935) and thus also forms the
basis for the present work. However, Koning (1935) studied
the axis-symmetric flow problem, where we here will stick
to a 2-D flow. The reason to focus on the 2-D flow case is

that, as we will see later, a complete and simple analytical
solution can be derived, which gives valuable and relevant
insight into different flow features, whereas Koning (1935)
for the analysis of the axis-symmetric case had to introduce
approximations or assumptions, e.g., that the pressure solu-
tion found along the centre line of the disc was assumed to be
valid at other radial positions. As we also will see later, the 2-
D AD flow has characteristics resembling the 3-D AD flow
and thus the potential to form the basis for a wind turbine
rotor induction model. Furthermore the simple approach to
model a coned rotor with two yawed disc is a big advantage
of the 2-D model.

It should be noted that the full 3-D set of equations for
the flow around an arbitrary 3-D AS has been presented by
Madsen (1985) and Madsen (1988).

2.1.1 The full non-linear 2-D solution

The approach for derivation of the descriptive system of
equations is based on the Euler equations on differential form
and the equation of continuity with the external body forces
f specified on the AD. Assuming steady flow the 2-D Euler
equations take the following form:

vx
∂vx

∂x
+ vy

∂vx

∂y
=−

1
ρ

∂p

∂x
+

1
ρ
fx, (1)

vx
∂vy

∂x
+ vy

∂vy

∂y
=−

1
ρ

∂p

∂y
+

1
ρ
fy, (2)

and the equation of continuity is as follows:

∂vx

∂x
+
∂vy

∂y
= 0. (3)

Following the approach by Von Kármán and Burgers
(1935) we rewrite the velocity components as

vx = V +wx, (4)
vy = wy . (5)

Here V is the velocity of the main, uniform flow field;wx and
wy the induced velocities by the action of the body forces;
and vx and vy the final velocity components.

We then non-dimensionalize the velocity components
with V , the pressure p with V 2ρ, and volume forces fx
and fy with V 3ρ. However, although we now have non-
dimensionalized the equations, the notation of velocity, body
force components and pressure will not be changed.

Inserting the new velocity component notation and the
non-dimensionalization into Eqs. (1), (2) and (3) and rear-
ranging, we get

∂wx

∂x
=−

∂p

∂x
+ fx −

(
wx
∂wx

∂x
+wy

∂wx

∂y

)
, (6)

∂wy

∂x
=−

∂p

∂y
+ fy −

(
wx
∂wy

∂x
+wy

∂wy

∂y

)
, (7)
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and the continuity equation

∂wx

∂x
+
∂wy

∂y
= 0. (8)

Following the terminology of Von Kármán and Burgers
(1935), the terms in the brackets on the right-hand side of
Eqs. (6) and (7) can be interpreted as induced or second-order
forces gx and gy , defined as

gx =−

(
wx
∂wx

∂x
+wy

∂wx

∂y

)
, (9)

gy =−

(
wx
∂wy

∂x
+wy

∂wy

∂y

)
. (10)

Inserting Eqs. (9) and (10) into Eqs. (6) and (7), we get

∂wx

∂x
=−

∂p

∂x
+ fx + gx, (11)

∂wy

∂x
=−

∂p

∂y
+ fy + gy . (12)

Now we take the divergence of Eqs. (11) and (12):

∂2wx

∂x2 =−
∂2p

∂x2 +
∂fx

∂x
+
∂gx

∂x
, (13)

∂2wy

∂x∂y
=−

∂2p

∂x∂y
+
∂fy

∂y
+
∂gy

∂y
. (14)

Differentiating the equation of continuity Eq. (8) with re-
spect to x and inserting Eqs. (13) and (14), we get

∂2p

∂x2 +
∂2p

∂y2 =

(
∂fx

∂x
+
∂fy

∂y

)
+

(
∂gx

∂x
+
∂gy

∂y

)
. (15)

This is a type of Poisson equation, and with the boundary
conditions that the body forces are zero at infinity the solu-
tion takes the following form:

p(f )=
1

2π

∫∫
fx(x− ξ )+ fy(y− η)

(x− ξ )2+ (y− η)2 dξdη, (16)

and the pressure part from the g terms takes the form

p(g)=
1

2π

∫∫
gx(x− ξ )+ gy(y− η)

(x− ξ )2+ (y− η)2 dξdη. (17)

The pressure for the full solution can then be written as

p = p(f )+p(g). (18)

This shows that the full solution for the pressure is derived
as the sum of two parts: one part, the linear part, being a
function of the prescribed forces f on the disc, and the non-
linear part, which is a function of the g forces called second-
order or induced forces.

When the pressure is derived, the velocity components can
be determined by integration of Eqs. (11) and (12).

Figure 1. Notation for the 2-D actuator disc.

We will now in the remaining part of the paper focus on
the linear solution of the AD flow as this part is much sim-
pler than the full solution. This is because the f forces are
prescribed and only different from zero on the disc, whereas
the g forces are different from zero in the whole wake region.
See Von Kármán and Burgers (1935) for more details.

Furthermore, it is important to notice that the linear solu-
tion is still a valid solution satisfying the equations, however,
for a new flow problem where also the g forces, derived on
the basis of the linear solution, have to be considered as ex-
ternal body forces. The evaluation and interpretation of the
linear solution with this in mind is valuable for understand-
ing the flow characteristics of the linear AD flow solution.

This insight into the linear solution is also the basis for
the procedure for deriving the full non-linear solution in an
iterative manner (see Von Kármán and Burgers, 1935). In a
first iteration the derived g forces from the linear solution
are inserted as volume forces but with opposite sign. Then
a new solution, which now is a function of both the f and
g forces, is derived comprising the solution of the Poisson
equation over the area where the g forces are acting. This
iterative solution procedure continues until the solutions do
not change from iteration to iteration. The technique has been
used for the solution of the full non-linear AC flow model
(Madsen, 1983).

2.2 The 2Dl solution for the 2-D AD

In the linear solution the flow field is only acted upon by
the body forces f on the infinitely thin actuator disc as the
induced body forces g are assumed to be zero (see Fig. 1 for
notation). The pressure field is then derived from Eq. (15),
which now has the following form:

∂2p

∂x2 +
∂2p

∂y2 = 0. (19)
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This is the Laplace equation. The pressure p will thus be a
potential function outside the disc showing a jump 1p over
the disc. Following the derivation by Koning (1935) the po-
tential function for the pressure can be obtained by cover-
ing the surface with doublets with strength1p. The pressure
jump 1p is linked to the body forces fx as

1p(η)=
∫
S

dη lim
ε→0

ε∫
−ε

fxdξ. (20)

As mentioned above Koning (1935) derived the solution for
an axis-symmetric disc, but we will derive the pressure po-
tential for a 2-D disc or in fact an actuator strip with a width
of 2b and extending from −z to z and with doublets with the
intensity1p distributed over the surface S. For any point not
situated on the disc the potential will, according to Koning
(1935), be given by

p =
1

4π

∫
S

1p
∂

∂n

(
1
ω

)
dS, (21)

where n denotes the positive normal to the disc and ω the
distance from any point on the disc to the point A where the
potential is calculated. The details of the derivation can be
found in Appendix A.

The resulting pressure function has been derived to

p =−
1

2π

1∫
−1

1p
x

x2+ (y− η)2 dη. (22)

where x and y have been non-dimensionalized with the
half width b of the disc.

The induced axial velocity wx can now be found by inte-
grating Eq. (11) from −∞ to x:

wx =−p+

x∫
∞

fxdξ =
1

2π

1∫
−1

1p
x

x2+ (y− η)2 dη

+1p (last term only in the wake, x > 0). (23)

The wy component is determined through Eq. (12) with
fy = 0. It means first differentiating p with respect to y and
then integrating ∂p/∂y from −∞ to x. The derivation found
in Appendix B leads to the following equation for wy :

wy =

x∫
∞

∂p

∂y
dξ =

1
2π

1∫
−1

1p
y− η

x2+ (y− η)2 dη. (24)

2.2.1 The 2Dl solution for a constant disc loading

With a constant loading 1p on the disc, the pressure and ve-
locity components can be derived by integrating Eqs. (22),

(23) and (24) over the width of the disc. The derivation of
the pressure function shown in Appendix C leads to

p =−
1

2π
1p

[
arctan

(1− y)
x
+ arctan

(1+ y)
x

]
, (25)

and then inserting the pressure equation into Eq. (23), we get

wx =
1

2π
1p[arctan

(1− y)
x
+ arctan

(1+ y)
x
] +1p

(last term only in the wake,x > 0). (26)

Likewise the integration ofwy for constant loading, shown
in Appendix D, yields

wy =
1p

4π
ln
(
x2
+ (y+ 1)2

x2+ (y− 1)2

)
. (27)

Finally, according to Eqs. (4) and (5) the vx and vy velocity
components are derived as

vx = 1+wx, (28)
vy = wy . (29)

3 AD flow characteristics

In this section we will study the flow characteristics through
the 2-D actuator disc by numerical exploration based on the
analytical linear solution, 2Dl, for a constant, uniform load-
ing of the disc.

First we relate the pressure jump,1p, to the thrust, T , and
thrust coefficient, CT:

T = 2b1p, (30)

where 2b is the width of the actuator disc.
From the definition of the thrust coefficient, CT, we get

CT =
T

2b 1
2ρV

2
. (31)

Combining Eqs. (30) and (31) and keeping in mind that
1p is non-dimensionalized with ρV 2, we get

CT = 21p. (32)

3.1 Velocity profiles vx and vy

For a loading corresponding to a thrust coefficient CT = 0.4
the vx and vy velocity profiles as a function of y are shown
for different upstream and downstream positions in Fig. 2.
The vx velocity profiles are seen to develop from a Gaussian-
type profile upstream of the disc, to be sharper when ap-
proaching the disc, and finally at the disc to be completely
rectangular with free-stream velocity just outside the disc.
Accelerated flow above free-stream velocity is then seen to
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Figure 2. (a) The axial velocity component vx is shown as a function of the lateral coordinate y for different streamwise positions x from
upstream of the disc to far downstream in the wake for a thrust coefficient of 0.4. The velocity profiles for the momentum solution are also
shown at the disc and in the far wake. (b) The lateral velocity component vy is shown for the same positions.

occur just downstream of the disc and peaking before x = 2.
Further downstream in the wake the velocity profiles become
almost rectangular at x = 10 and with a deficit within the pro-
jected area of the disc, which means a non-expanding wake.

The vy profiles are seen to be anti-symmetric around the
x axis as expected and have a strong peak at the edge of the
disc. Downstream the profiles decay fast.

The momentum solution for the vx component, also shown
in Fig. 2, is seen to be lower than the actual linear solution,
which will be explored next.

3.2 Scaling CT to fit the 2Dl solution to momentum
theory

As seen above the 2Dl solution does not fit exactly with the
classical momentum theory solution for an actuator disc. The
computed induction is lower, and it is an important shortcom-
ing for the wider use of the model as a rotor induction model.

To investigate that further we derive the relation between
the thrust coefficient CTl of the 2Dl model and the induction
coefficient, al , for the 2Dl solution presented above.

The axial velocity vxd at the disc is derived from Eq. (26)
by x→−0,

wxd =
1p

2π

(π
2
+
π

2

)
=
1p

2
, (33)

and from the definition of a,

al = 1− vxd = 1− (1−wxd ), (34)

al = wxd =
1p

2
=
CTl

4
, (35)

or

CTl = 4al . (36)

The classical momentum theory derived as an axis-
symmetric solution for a circular actuator disc gives the fol-
lowing relation between the thrust coefficient, CTm, and the

induction, am (the subscript m denotes momentum theory):

CTm = 4am(1− am). (37)

Comparing the solution from the two models, the momen-
tum theory gives a velocity at the disc, vxm = 0.887, for a CT
of 0.4, while the 2Dl model gives vx = 0.9 for a similar CT.

The reduced induction by the 2Dl model is due to the ac-
tion of the induced body forces defined in Eqs. (9) and (10)
that accelerate the flow in the wake region and also through
the disc and upstream of the disc through the pressure field
from the g forces.

Without a detailed derivation of the g forces, we can con-
clude that there will be gx forces along the lines y =±1 in
the wake region, which is responsible for the acceleration of
the flow through the disc, requiring increased external vol-
ume forces, fx (increased CTl), in order to correlate with the
velocity at the disc from the momentum solution. A check
of the x-momentum balance of a control volume around the
disc at some distance will show that the balance is only ful-
filled if the g forces are considered as external body forces.
This has been demonstrated for the AC flow models based on
the same solution approach (Madsen, 1982).

The analogy to use a fixed wake vortex model for the same
flow problem would be a vortex sheet along the lines y =±1.
This vortex sheet will require external body forces to be fixed
(non-expanding wake) because the flow in the vicinity of the
disc is not aligned with the vortex sheet and thus induces
forces on the sheet.

In order to force the 2Dl model to give the same induction
in the rotor plane and in the far-field wake as the momentum
theory, we can simply scale the thrust coefficient based on
Eqs. (36) and (37):

CTl

CTm
=

4al
4am(1− am)

, (38)
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and enforcing al to be equal to am, we get

CTl = CTm

4am
4am(1− am)

= CTm

1
1− am

= CTm
2

1+
√

1−CTm

. (39)

(further down we will denote CTm as CT).
For example for a thrust coefficient of 0.89 we shall in-

crease CTl to 1.34 to match the momentum solution as shown
in the left graph in Fig. 3. As mentioned above this consid-
erable increase in CT is necessary due to the strong impact
of the g forces on the wake flow, which is seen clearly in the
right graph in Fig. 3. Here the vx velocity profiles together
with the enclosing streamlines of the disc show that part of
the flow passing through the disc and thus de-accelerated due
to the f forces at the disc plane is accelerated up to free-
stream velocity at a short distance downstream in the wake
region. Although the g forces are only acting from the disc
plane and downstream along the lines y =±1, the pressure
field from these forces will also influence the flow upstream
of the disc.

It can finally be noticed that the same scaling procedure for
correcting a linear solution is used in the actuator cylinder
model for the VAWT’s implemented in HAWC2. However,
in this case the correction is applied directly as the scaling of
the velocity components (Madsen et al., 2013).

3.3 Superposition of solutions for more discs

As we have a linear model type we can easily study the inter-
action of more discs with, e.g., different loadings or locations
to each other. Later we will show that the superposition is one
way to model a coned disc by the superposition of two yawed
discs.

Let a new disc 2 have the origin xD2,yD2 and a loading
1pD2 in the original coordinate system as shown in Fig. 1.
We then get the contributions vxD2 and vyD2 to the velocity
field by inserting them into Eqs. (26) and (27):

wxD2 =
1

2π
1pD2

[
arctan

1− (y− yD2)
x− xD2

+ arctan
1+ (y− yD2)
x− xD2

]
+1pD2

(last term only in the wake of disc 2), (40)

wyD2 =
1pD2

4π
ln
(

(x− xD2)2
+ ((y− yD2)+ 1)2

(x− xD2)2+ ((y− yD2)− 1)2

)
. (41)

However, the set-up does not work for overlapping discs.
Here the superposition will first be used to study an impor-

tant characteristic of the model for discs at the same stream-
wise position with different loadings as in the example in the
left part of Fig. 4. The discs are positioned so close that they

form one disc with double width, 4b, and with a thrust co-
efficient of 0.89 and 0.45 on each half. Upstream and down-
stream of the discs there is a clear interaction between the vx
velocity profiles of the discs, but exactly in the plane of the
discs there is no interaction of the axial velocity component,
although the thrust coefficient jumps from 0.89 on the lower
part to half, 0.445, on the upper part.

This can be used to guide the implementation of the BEM
model in aerodynamic and aeroelastic codes as proposed by
Gaunaa et al. (2023) using a VC model for a similar case. The
result justifies a local, point-wise evaluation of the momen-
tum balance, e.g., used in the implementation of the BEM
model in the HAWC2 code (Madsen et al., 2020). Finally,
it should be noticed that there is an interaction of the lateral
velocity component in the disc plane.

When the two discs do not have the same streamwise posi-
tion, we see an interaction of the vx profiles, as in the case for
the example in the right part of Fig. 4. A slightly increased in-
duction can be seen on the upper part of disc 1. Furthermore,
an accelerated axial flow velocity between the two discs is
noted.

3.4 An important characteristic of the velocity profiles of
the 2Dl model at a small distance downstream of
the disc and comparison with CFD simulations

In Fig. 3 we saw that at the disc and far downstream in the
wake the vx profiles were rectangular, but in between some
bending or curved profiles could be seen, e.g., at x = 1 and
x = 2. We will now go much closer to the disc where we find
the development of the profiles as shown in the left graph in
Fig. 5. It is clearly seen that the vx velocity profiles imme-
diately develop from a uniform distribution to shapes with
stronger deceleration close to y =±1. The same is typically
seen in full, non-linear simulations of AD flow (Sørensen and
Kock, 1995; Madsen, 1997; Mikkelsen et al., 2001).

We use here the results of Madsen and Rasmussen (1999)
from an axis-symmetric simulation of an AD. Comparing the
axial velocity profile at the disc from the CFD simulation
with profiles from the 2Dl model extracted at different down-
stream positions, we find the best correlation in shape using
the 2Dl profiles at x = 0.08 and scaled by a factor of 1.05, as
shown in the right graph of Fig. 5.

The reason for this development of the vx profiles close
behind the disc is probably that in this region the g forces
along the lines y =±1 are acting both upstream and down-
stream of the axial position where we extract the velocity
profiles. Therefore, there might be some local cancelling of
their influence so that the deficit is closer to the full solution.
The left graph of Fig. 6 shows a very good correlation with
the CFD solution when applying the above scaling. It is ex-
pected that such scaling is necessary as we have computed
the velocity profile a short distance downstream of the disc
where the axial velocity decays rapidly. For a wider applica-
tion of the 2Dl model it is important that the scaling factor
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Figure 3. (a) The axial velocity component vx is shown as a function of the lateral coordinate y for different streamwise positions x from
upstream of the disc to far downstream in the wake for a thrust coefficient of 1.34 in the 2Dl model and compared with the momentum
solution for a CT of 0.89. (b) The enclosing streamlines of the disc for the same loading are shown together with vx profiles at different
streamwise positions. The streamlines are derived on the basis of the local flow angle arctan

(
vy
vx

)
with starting points at the edge of the disc.

Figure 4. In (a) we show the flow characteristics of two discs placed side by side so they just touch. The lower disc has the double loading
of the upper disc. Enclosing streamlines for the two discs are shown together with vx velocity profiles at different axial positions. (b) The
same type of data is shown, however, for the same loading on the two discs and with disc 2 shifted a distance of half the disc width in both x
and y directions.

is constant. Therefore, we will use the same scaling in the
remaining flow examples in the paper.

Finally, the vy profiles are compared with the profiles of
the radial velocity component, vr, from CFD simulations in
the right graph of Fig. 6. When vy is computed at the same
position, x = 0.08, as for vx the best fit is obtained by scaling
down by a factor of 0.67. The need for a strong down-scaling
is expected as a 2-D solution will have a much stronger lat-
eral velocity component than the radial velocity in an axis-
symmetric solution.

4 The 2Dl solution for yawed flow and comparisons
with 3-D CFD AD computations with constant
loading

We continue now to derive the analytical solution for a 2-
D AD in yawed flow (see Fig. 7). This is an important flow
situation for a turbine which causes increased loading and
reduced power. However, yaw is now frequently studied and
used for wake steering in wind farms to increase the power
of downstream turbines by upstream wake deflection.

The objective with the present model derivation is the fur-
ther study of the capability of the simple model to handle
complex flow like a yawed AD. A further objective is, as the
next step (next section), to combine two yawed discs with
opposite yaw angles to model a coned rotor.
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Figure 5. In (a) we show the axial velocity vx profiles at positions close behind the disc as well as further downstream for a thrust coefficient
of 0.89. For comparison the momentum solution for vx at the disc and in the far wake is also included. (b) The vx velocity profile at the disc
from an axis-symmetric CFD AD simulation is compared with the 2Dl profile at a downstream distance of 0.08 scaled by a factor of 1.05 to
account for the decrease in velocity downstream behind the disc and to give the best fit to the CFD results extracted at the disc.

Figure 6. (a) A zoom of the right graph in Fig. 5. (b) 2Dl vy velocity profiles are compared with the radial velocity profile from an axis-
symmetric simulation. At the same downstream position x = 0.08 as for the vx component, the best fit for vy is obtained by a scaling factor
of 0.67.

The starting point is the flow solution for wx and wy in
Eqs. (26) and (27) in the non-yawed x,y coordinate system
which then is rotated by the yaw angle, 2, into the new sys-
tem, x′,y′ (see Fig. 7). The velocity components,wx andwy ,
in the original system, x,y, are then derived as a function of
x′,y′.

The following coordinate transformation is introduced:

x′ = (x cos2− y sin2), (42)
y′ = (x sin2+ y cos2). (43)

The coordinate transformations are inserted into Eqs. (26)
and (27):

wx =
1p

2π

(
arctan

1− (x sin2+ y cos2)
x cos2− y sin2

+arctan
1+ (x sin2+ y cos2)
x cos2− y sin2

)
, (44)

and

wy =
1p

4π
ln


(x cos2− y sin2)2

+

((x sin2+ y cos2)+ 1)2

(x cos2− y sin2)2
+

((x sin2+ y cos2)− 1)2

 . (45)

The total velocity components, vx and vy , for the yawed
disc in the x,y coordinate system are then derived as

vx = 1+wx −1p (last term only in the wake of the

yawed disc: x′ > 0 and y >−cos2 and y < cos2),
vy = wy . (46)
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Figure 7. Notation for the 2-D actuator disc in yaw.

4.1 Streamlines and velocity profiles for a yawed disc of
30, 45 and 60◦ in comparison with 3-D CFD
computations

We will now explore the flow field of a yawed disc of 30,
45 and 60◦ by presenting enclosing stream lines of the disc
and axial velocity profiles from upstream to downstream po-
sitions (left graph in Figs. 8, 9 and 10). Further, a comparison
with 3-D CFD AD simulations by Madsen (2001) and Mad-
sen et al. (2020) is shown in the graphs to the right.

We compare the normal velocity to the disc vn along a
line yd at a distance of 1x = 0.08 (see the streamline plots
where the yd line is included), which was the distance we
found above to give the best correlation with CFD for aligned
flow. The normal velocity vn to the disc is important as it is
the velocity component in a rotor simulation with a major
influence on the angle of attack (AoA).

We also show vn along other lines parallel to the disc at
other distances1x, where one is at the disc and one is down-
stream at 1x = 0.2. This is to illustrate the variation in the
velocity profiles close behind the disc.

Starting with the evaluation of the results for the yaw case
of 30◦ in Fig. 8 we find overall a very good correlation for the
vn profiles with considerable higher induction on the down-
stream edge of the disc. Also the non-linear shape in this
region fits well with the CFD results. Similar non-linear ve-
locity profiles are seen in the CFD simulations by Trold-
borg et al. (2014) and by the skewed cylindrical vortex wake
model by Branlard and Gaunaa (2015).

Typically in engineering yaw modelling in aerodynamic
and aeroelastic codes this velocity distribution is approx-
imated with a linear correlation using the Glauert (1935)
model as, e.g., in the implementation of the HAWC2 code
(Madsen et al., 2020). We further notice the acceleration of
vn on the upstream edge of the disc and outside, which is
stronger than in the CFD results. This can mainly be ascribed

to the difference between a 2-D and 3-D flow solution with
higher lateral velocities in the 2-D flow.

Continuing with the 45◦ yaw case in Fig. 9 there is still
overall a good correlation between the 2Dl model results and
the CFD computations. As above the correlation is almost
perfect on the downstream half of the disc, whereas the de-
viations now are slightly increased on the other half where
the 2Dl model computes less induction than the CFD results.
Again this is probably due to the 2-D modelling of the flow
that results in a stronger acceleration of the lateral flow, in
particular outside the disc but now also influencing part of
the flow through the disc close to the edge of the disc.

Finally in the 60◦ yaw case in Fig. 10 we now see major
deviations, although the slope of the vn curves is compara-
ble. Overall the 2Dl model computes less induction over the
whole disc, and this might be due to the scaling of CT based
on aligned flow where the wake with the g forces now is off-
set considerably from one side of the disc to the other.

Based on the above comparison cases with 3-D CFD re-
sults we can conclude that the 2Dl model simulates yawed
flow cases up to 30–40◦ with quite good accuracy and in-
cludes details, like the bending of the vn curves, not modelled
by common engineering yaw models.

5 Modelling of coned rotors with the 2Dl model

Modelling of coned rotors has been of great importance for
decades in the wind research community as turbine concept
studies often have included downwind coned rotors. This
is due to potential advantages by such concepts by allevi-
ating the flapwise blade root moment due to the deloading
by centrifugal forces on a coned rotor or blade. In fact the
CFD computations on coned rotors (Madsen and Rasmussen,
1999), to be used here for comparisons, were carried out his-
torically to provide input for the design of a small two-bladed
rotor (Vølund and Rasmussen, 1999) that could be coned up
to 90◦ for surviving storm situations.

Recent concept studies that include downwind coned ro-
tors are, e.g., Bortolotti et al. (2019), Pao et al. (2021) and
Bortolotti et al. (2022). These studies still rely on BEM-type
simulation tools which do not model any impact on induction
from the coning, which is in contrast to results with higher-
fidelity models like the CFD AD simulations presented here.

5.1 Modelling a coned disc by superposition of two
yawed discs

The modelling of the coned rotor is based on the superposi-
tion of two yawed discs with an opposite yaw angle of±30◦,
as in the example shown in the left graph of Fig. 11. In this
case there is still a distance between the edges of the discs,
and we can notice an accelerated flow between the discs.

However, when we now move the discs so close that the
two edges just coincide, as shown in the right graph of
Fig. 11, we see one velocity deficit behind the two yawed
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Figure 8. (a) The enclosing streamlines of the yawed disc plus the streamline through the centre of the disc for a yaw of 30◦. Further, vx
profiles are shown at three x positions. We show also the line yd along the disc at a distance of 1x = 0.08, which is the line along which the
normal velocity to the disc is shown in (b) in comparison with 3-D CFD simulation of the AD.

Figure 9. Similar graphs as in Fig. 8 above but for a yaw of 45◦.

discs and we can call it one coned disc with a cone angle of
30◦ and the double size of the two yawed discs.

5.2 Comparison of the 2Dl model with an
axis-symmetric CFD simulation for a coned disc of
20 and −20◦

Next we compare the 2Dl solution for a coned rotor with
axis-symmetric CFD simulations, as shown in the right graph
of Fig. 12. As for the yawed disc we compare vn as this is the
most important velocity component in a rotor simulation with
direct influence on angle of attack.

To be consistent with the distance behind the disc where
we extract the 2Dl velocities, as tuned for aligned flow, we
use the same relative distance behind the disc, which means
a double absolute distance 1x = 2 · 0.08 as the coned disc
has double the size of the aligned and yawed disc.

Comparing now the 2Dl simulations with the CFD results
we see a very close correlation and just a small underestima-
tion of vn when using the data extracted at 1x = 2 ·0.08. An

almost complete coincidence is seen for the data extracted
slightly closer to the disc at 1x = 2 · 0.04.

In Fig. 13 we compare next the 2Dl simulations with CFD
results for a cone angle of −20◦. First of all we notice that
the shape of the curves are quite different from the velocity
profiles for downwind coning as shown above as there is a
decrease in the velocity close to the edge. However, the 2Dl
model predicts this quite well. The difference occurs when
we apply the scaling of the velocities as it shifts the profile
slightly towards higher velocities than the CFD results show.

5.3 On the complexity of the flow solution for a coned
disc

As mentioned in the Introduction (Sect. 1), Crawford (2006)
has proposed a correction to BEM for improving the mod-
elling of a coned rotor. To illustrate with the present model
how complex the induction is in a coned disc and thus how
challenging a single-point correction of BEM like the one of
Crawford (2006) can be, we show in Fig. 14 the vx and vy
contributions from both sides of the coned disc which then
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Figure 10. Similar graphs as in Fig. 8 above but for a yaw of 60◦.

Figure 11. In (a) we show two separated actuator discs with a yaw angle of 30 and −30◦. In (b) they are moved towards each other so the
edges just coincide and form one coned disc of 30◦ coning.

sum up to the total component. Disc 1 is the lower part of the
downwind coned rotor, and in the left graph in Fig. 14 the
green line is thus the vx induction from disc 1 itself, whereas
the red line is the contribution from the other half, disc 2 of
the coned rotor. This contribution is seen to be accelerated
flow towards the centre of the coned disc. Likewise we show
the same for the vy component in the graph to the right in
Fig. 14. It is seen that the total component is about 0.4 at the
tip and therefore contributes significantly to vn. This illus-
trates the importance of including the radial component for
the derivation of the induction in a coned rotor.

5.4 Flow solution for a range of cone angles

With the 2Dl model we have simulated the normal velocity,
vn, for a range of cone angles from 60 to −60◦ for a thrust
coefficient of 0.89.

In Fig. 15, in the graph to the left with the vn result for
positive cone angles, the shape of the profiles becomes more
slender with an increasing difference in velocity at the centre
and at the edge. At low cone angles the increase in the normal

velocity at the central part of the disc above the velocity for
a plane disc can be noticed.

For the negative cone angles in the right graph of Fig. 15
the characteristic sweep on the outer part of the velocity pro-
file towards higher induction can be seen up to a cone angle
of about −40◦.

5.5 Coned disc in yaw

Finally, we have simulated a coned disc of 30◦ in 20◦ yawed
flow to explore the capability of the 2Dl model to simulate
such complex inflow. In the right graph in Fig. 16 we show
the enclosing streamlines of the disc. A considerable down-
ward deflection of the wake flow is seen. It means that a big-
ger part of the flow passing through the lower part of the disc
is deflected outside the projected area of the disc and thus
accelerated up to the free-stream velocity due to the induced
g forces.

In the right graph of Fig. 16 the normal velocity to the
disc along the line yd parallel to the disc at a distance of
1x = 2× 0.08 shows as expected a jump passing through
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Figure 12. In (a) we show the enclosing streamlines of a coned disc with 20◦ coning and a CT = 0.89. In the same graph we also show the
yd lines parallel with the two disc parts at a distance of 1x = 2× 0.08, which are the lines along which we extract the velocities in the 2Dl
model for comparison with the CFD results in (b). However, the CFD velocities were extracted at the disc.

Figure 13. Same type of data as in Fig. 12 but for a cone angle of −20◦.

the centre of the disc. Further it can be seen that the induction
on the two sides of the yawed disc are quite different with a
stronger variation from edge to centre on the downwind part.

6 Outlook

The promising results of the 2Dl model based on compar-
isons with 3-D and axis-symmetric CFD simulations indicate
that although the model is 2-D, it could form the basis for a
consistent, general rotor induction model for wind turbine ro-
tors with one equation for vx and one for vy including mod-
elling of yawed and coned disc flow. This simplicity would
also be of big advantage for the model to be used in rotor
optimizations in the derivation of analytical gradients.

One prerequisite for the model to be used for a rotor in-
duction model is a coupling to an angular momentum model
for tangential induction. Following the model approach by
Madsen et al. (2010) this can be done through the following
equation derived from angular momentum balance over the

actuator disc combined with a blade element analysis:

vt =
V0CQ

2(1− a)
, (47)

where vt is the tangential-induced velocity andCQ is the non-
dimensional tangential load coefficient defined as

CQ =
V 2

r CxcNB

V 2
0 2πr

(48)

and

Cx = Cl sinϕ−Cd cosϕ. (49)

Vr is the relative velocity to the blade section, c local chord,
NB number of blades, ϕ the local flow angle from the rotor
plane to Vr, Cl and Cd the local airfoil coefficients, and a the
axial induction factor which is computed with the 2Dl model.

The specific implementation of the tangential induction
model can be discussed, e.g., if it is based on local values or
probably best as the average CQ and a over a ring element.
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Figure 14. In (a) we show the vx components contributing to the total induction on the lower part, i.e. disc 1. The same for vy in (b).

Figure 15. Simulated vn distributions with the 2Dl model for a range of positive cone angles in (a) and for negative cone angles (b).

Likewise the input to the 2Dl model in the form of CT has
to be derived from the blade element analysis and takes a
similar form as for CQ (Madsen et al., 2010):

CT =
V 2

r CycNB

V 2
0 2πr

, (50)

with

Cy = Cl cosϕ+Cd sinϕ. (51)

Further on the implementation of the 2Dl model in a rotor
analysis, the induction should be computed along diagonal
lines of the rotor using the local yaw and tilt angle and cone
angle in the 2Dl model. Such an implementation would fit
well to the polar grid implementation of BEM in HAWC2
as described in Madsen et al. (2020). The approach could be
the computation of the induction along 12–16 diagonals at
equally spaced azimuth positions which would give a good
resolution of azimuthal variations due to non-uniform inflow
and yaw and tilt angles.

It would also be necessary to relax the constant loading
assumed for the integration across the disc of Eqs. (23) and

(24). However, these integrals can be integrated numerically
without slowing down the computations too much or as in
the implementation of the actuator cylinder model (Madsen
et al., 2013) where the loading is assumed to be piecewise
constant which allows the integration of influence coeffi-
cients only once in a time simulation.

The capability of the 2Dl model to simulate the flow
through a coned rotor in yaw by using two yawed discs of
different yaw angles with opposite sign is a big advantage of
the model. This allows also for a straightforward simulation
of a coned disc in yaw by yawing the one disc more than the
other.

The superposition of several differently yawed discs with
constant loading could also be used to approximate an arbi-
trary rotor shape and loading by a segmented diagonal line
of discs just coinciding at the edges. This has some resem-
blance to the approach by Li et al. (2022) where a staggering
of VC models shifted in the streamwise direction is used to
model non-planar rotors.

A final comment on the 2Dl model is that the evaluation of
the velocities at a distance 5 %–10 % behind the disc means
that the induction even for a plane rotor is not completely
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Figure 16. In (a) we show the enclosing streamlines of a 30◦ coned disc with a yaw angle of 20◦ together with axial velocity profiles
at different streamwise positions. In (b) the normal velocity to the disc along the coned and yawed disc is shown in comparison with the
velocities for an aligned coned disc.

local as there would be velocity contributions from nearby
points along the diagonal line. This is considered as an ad-
vantage as test cases with high loading in the aeroelastic code
HAWC2 (Madsen et al., 2020) using the local induction ap-
proach indicate that some averaging of the local CT should
be used.

7 Conclusions

We have presented an analytical linear solution for a 2-D AD
flow that is derived from the Euler equations and the equa-
tion of continuity. The induction at the disc is uniform for a
constant loading like in the momentum theory, but we have
shown that immediately behind the disc the axial velocity
profiles are non-linear and match by simple scaling a full
non-linear axis-symmetric flow solution for an AD.

By a simple coordinate rotation the analytical solution was
extended to a yawed disc. This flow solution matches well a
full 3-D CFD simulation of a circular AD when comparing
the normal velocity to the disc in the plane with skewed in-
flow up to 30–40◦.

The superposition of more discs enabled studying turbine
interaction and is also used to form a coned disc by posi-
tioning two yawed discs with opposite yaw angles so the
edges of the discs just coincide. An excellent agreement for
a downwind coned disc of 20◦ was found when comparing
the normal velocity to the disc with an axis-symmetric CFD
simulation of a coned circular disc. For a disc with upwind
coning of −20◦ the typical shape of the velocity profile with
increased induction on the most outboard part matched well
the CFD simulations, but some offset of the velocity profile
was found.

The promising results of comparing the 2Dl model with
3-D and axis-symmetric CFD simulations on a circular AD
have indicated that the 2Dl model could form the basis for
a consistent, simple induction model for aerodynamic and

aeroelastic wind turbine rotor simulations. First of all the
model should for such an application be combined with an
angular momentum model which has been sketched in the
paper. Then the computation of induction should be used
along diagonal lines of the rotor in 12–16 different azimuth
positions where the skewed inflow angle from yaw error or
tilt is input to the model. Finally, an extension of the present
implementation to simulate a variable loading across the disc
could be done by numerical integration of the equations for
vx and vy or by superposition of several yawed discs, each
with a constant loading and yaw angle forming a segmented
line approximating the real diagonal line of the rotor shape.

Appendix A: Derivation of the pressure function

We show here the derivation of pressure potential for a 2-
D disc or in fact an actuator strip extending from −z to z
and with doublets with the intensity 1p distributed over the
surface S. For any point not situated on the disc the potential
will according to Koning (1935) be given by

p =
1

4π

∫
S

1p
∂

∂n

(
1
ω

)
dS, (A1)

where n denotes the positive normal to the disc and ω the
distance from any point on the disc to the point A where the
potential is calculated. ω will then be

ω =

√
x2+ (y− η)2+ ζ 2, (A2)
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and inserting into Eq. (21), we get

p =
1

4π

b∫
−b

1pdη

∞∫
−∞

∂

∂x

(
1√

x2+ (y− η)2+ ζ 2

)
dζ

=
1

4π

b∫
−b

1pdη

∞∫
−∞

−0.5 · 2x
(x2+ (y− η)2+ ζ 2)3/2 dζ. (A3)

The integral is of the type (207) in the handbook of Rumble
(2023):

∞∫
−∞

dt

T
√
T
=

[
2(2ct + b)

q
√
T

∣∣∣∣∞
−∞

]
, (A4)

where T = a+ bt + ct2 and q = 4ac− b2. Now,

a = x2
+ (y− η)2,

b = 0,
c = 1,

q = 4(x2
+ (y− η)2)),

T = x2
+ (y− η)2

+ t2.

We integrate Eq. (A3):

p =−
1

4π

b∫
−b

1pdη
[
x

2(2ct + b)

q
√
T

∣∣∣∣∞
−∞

]
, (A5)

p =−
1

4π

b∫
−b

1pdη
[
x

4t
4[x2
+ (y− η)2

]√
(x− ξ )2+ (y− η)2+ t2

∣∣∣∣∞
−∞

]
,

(A6)

p =−
1

4π

b∫
−b

1pdη
[

x

[x2+ (y− η)2]

+
x

[(x− ξ )2+ (y− η)2]

]
, (A7)

p =−
1

2π

b∫
−b

1p
x

x2+ (y− η)2 dη. (A8)

Appendix B: Derivation of the velocity component wy

The starting point is Eq. (12) with the volume forces fy,gy =
0:

∂wy

∂x
=−

∂p

∂y
(B1)

and thus

wy =

x∫
−∞

∂wy

∂x
dx =−

x∫
−∞

∂py

∂y
dx. (B2)

We differentiate the pressure Eq. (A8) with respect to y:

∂p

∂y
=−

1
2π

1∫
−1

1p
−2(y− η)x
x2+ (y− η)2 dη. (B3)

Inserting Eq. (B3) into Eq. (B2) gives

wy =
1

2π

1∫
−1

2(y− η)1pdη

x∫
−∞

x

x2+ (y− η)2 dx. (B4)

For the integration of the last integral in Eq. (B4) we note
the integral is of the type (113) in the handbook of Rumble
(2023):∫
t

T
=

2a+ bt
qT

−
b

q

∫
dt
T
, (B5)

where

T = a+ bt + ct2.

We have

T = t2+ (y− η)2,

a = (y− η)2,

b = 0,
c = 1,

q = 4ac− b2
= 4(y− η)2,

wy =
1

2π

1∫
−1

2(y− η)1pdη · [
2a)
qT
]

∣∣∣∣x
−∞

=
1

2π

1∫
−1

2(y− η)1pdη

·
2(y− η)2

(4(y− η)2)(x2+ (y− η)2)
, (B6)

wy =
1

2π

1∫
−1

1p
(y− η)

(x2+ (y− η)2)
dη. (B7)
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Appendix C: Derivation of the pressure function for
constant loading

The pressure function has in Eq. (A8) been derived to

p =−
1

2π

1∫
−1

1p
x

x2+ (y− η)2 dη. (C1)

When the loading 1p is constant, we can derive the ana-
lytical solution for the pressure.

The integral is of the type (107) in the handbook of Rum-
ble (2023):∫

dt
T
=

2
√
q

arctan
2ct + b
√
q

, (C2)

where

T = a+ bt + ct2.

We have

T = t2− 2yt + (x2
+ y2),

a = x2
+ y2,

b =−2y,
c = 1,

q = 4ac− b2
= 4(x2

+ y2)− (−2y)2,
√
q = 2x,

p =−
1

2π
x1p

[
2

2x
arctan

(
2t − 2y)

2x

)]∣∣∣∣1
−1

=−
1

2π
x1p

[
2

2x
arctan

(
2− 2y

2x

)
− arctan

(
−2− 2y

2x

)]
, (C3)

p =−
1

2π
1p

[
arctan

(
1− y
x

)
+ arctan

(
1+ y
x

)]
. (C4)

Appendix D: Derivation of wy for a constant loading

wy has in Eq. (24) been derived to

wy =
1

2π

1∫
−1

1p
y− η

x2+ (y− η)2 dη. (D1)

The integrals are of the type (112) in the handbook of
Rumble (2023),

−

∫
dt · t
T
=−

1
2c

lnT +
b

2c

∫
dt
T
, (D2)

and (107)

y

∫
dt
T
, (D3)

where

T = a+ bt + ct2

and

T = t2− 2yt + (x2
+ y2),

a = x2
+ y2,

b =−2y,
c = 1,

q = 4ac− b2
= 4(x2

+ y2)− (−2y)2
= 4x2,

√
q = 2x.

We first notice that the last integral in Eq. (B6) cancels out
the integral in Eq. (D3), as we have

b

2c

∫
dt
T
=
−2y

2

∫
dt
T
=−y

∫
dt
T
. (D4)

For the other integral in Eq. (B6), when inserting into
Eq. (D1), we have

wy =−
1

2π
1p

[
1
2

ln(t2− 2yt + (x2
+ y2))

]∣∣∣∣1
−1
=> , (D5)

wy =
1

4π
1p[ln(1− 2y+ (x2

+ y2))

− ln(1+ 2y+ (x2
+ y2))] => , (D6)

wy =−
1

4π
1p

[
ln
(
x2
+ (y+ η)2

x2+ (y− η)2

)]
. (D7)
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Appendix E

Table E1. List of symbols.

Nomenclature

a axial induction factor
al axial induction factor related to the 2Dl model
am axial induction factor in momentum theory
b half width of the 2-D actuator disc
c chord
Cd sectional drag coefficient
Cl sectional lift coefficient
CQ rotor torque coefficient
CT thrust coefficient
CTl thrust coefficient related to the 2Dl model
CTm thrust coefficient related to the momentum theory
Cx projection of Cl and Cd tangential to the rotor plane
Cy projection of Cl and Cd perpendicular to the rotor plane
fx body force in x direction non-dimensional with ρV 3

fy body force in y direction non-dimensional with ρV 3

gx induced body force in x direction non-dimensional with ρV 3

gy induced body force in x direction non-dimensional with ρV 3

p pressure non-dimensional with ρV 2

NB number of blades
r radial position
T thrust
vn normal velocity perpendicular to AD non-dimensional with V
vt tangential-induced velocity non-dimensional with V
vx velocity component in x direction non-dimensional with V
vy velocity component in y direction non-dimensional with V
V free-stream velocity
Vr relative velocity at blade section
wx induced velocity component in x direction non-dimensional with V
wy induced velocity component in y direction non-dimensional with V
x,y,z space coordinates non-dimensional with b and with x in stream-wise direction

Greek letters

1p pressure jump over the AD and non-dimensional with ρV 2

ρ air density
ϕ inflow angle
2 yaw angle
ξ,η,ζ supplementary non-dimensional space coordinates aligned with x,y,z

Abbreviations

AD actuator disc
2Dl linear analytical solution/model of the 2-D AD flow
AC actuator cylinder
AS actuator surface
BEM blade element momentum
CFD computational fluid dynamics
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