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Abstract. Understanding wind turbine wake recovery is important for developing models of wind turbine in-
teraction employed in the design of energy-efficient wind farm layouts. Wake recovery is often assumed or
explained to be a shear-driven process; however, this is generally not accurate. In this work we show that wind
turbine wakes recover mainly due to the divergence (lateral and vertical gradients) of Reynolds shear stresses,
which transport momentum from the freestream towards the wake center. The wake recovery mechanisms are
illustrated using a simple analytic model and results of large-eddy simulation.

1 Introduction

Wind turbine wakes can cause energy losses in wind farms
and increase blade fatigue loads. Hence, understanding wind
turbine wakes is important for designing energy-efficient
wind farm layouts. Wake recovery is the process describing
the flow’s return to an undisturbed state via turbulent mixing.
The wind energy science community (including the main au-
thor of the present work) often refers to the shear at the wake
edges as the main driver behind the wake recovery, as the
production of the turbulent kinetic energy depends on the
square of the mean shear (van der Laan, 2014; Porté-Agel
et al., 2020). Other authors have analyzed the mean kinetic
energy budget of a wind farm using wind tunnel measure-
ments (Cal et al., 2010; Newman et al., 2014) and large-eddy
simulations (LES, e.g., Calaf et al., 2010; Andersen et al.,
2017); they concluded that the vertical shear stress compo-
nent of the Reynolds stress is the main driver behind energy
transport of the freestream into the wake. Meyers and Mene-
veau (2013) computed transport tubes of the streamwise mo-
mentum and energy in wind farms using LES and showed
that the energy is transported sideways and top-down, where
the dominant direction depends on the turbine lateral spac-
ing. While the shear and the vertical Reynolds stresses are
indeed important, they are not the precise reason why wake
recovery occurs, since the Reynolds-averaged Navier–Stokes

(RANS) equation for streamwise momentum includes gradi-
ents of Reynolds stresses (stress divergence) that cause tur-
bulent mixing. If a Reynolds stress is represented by a veloc-
ity gradient following the hypothesis of Boussinesq (1897),
then it becomes clear that the gradient of the shear is re-
sponsible for wake recovery and not the shear or Reynolds
stresses themselves. This brief communication is meant to
clarify the main mechanisms behind wake recovery, through
use of a simple illustrative model of the far wake (Sect. 2)
and by analyzing LES results (Sect. 3) to confirm the trends
of the simple model.

2 A simple illustrative model of far-wake recovery

The wind turbine wake can be split into near- and far-wake
regions (Vermeer et al., 2003). The near wake is a result of
the wind turbine blade forces, and it is characterized by com-
plex vortex structures that break down into smaller turbulent
eddies further downstream. The near-wake velocity deficit
is mainly a footprint of the wind turbine thrust force dis-
tribution, and it diffuses downstream in a smoother velocity
deficit profile. We define the far wake as the region where
the mean velocity deficit has become self-similar. In other
words, the far wake has forgotten how it was generated, and
only information of the total wind turbine extracted momen-

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



248 M. P. van der Laan et al.: A clarification of wake recovery mechanisms

tum is known. We derive a simple model for the far wake
with the aim of creating an illustrative example of the main
wake recovery mechanism. The model is not meant to be
used for the prediction of a wind turbine wake flow. We start
with the Reynolds-averaged Navier–Stokes (RANS) momen-
tum equation for incompressible and high-Reynolds-number
flow, for the streamwise direction:

DU
Dt
=−

1
ρ

∂P

∂x
−
∂u′u′

∂x
−
∂u′v′

∂y
−
∂u′w′

∂z
+ f, (1)

where U is the mean streamwise velocity, ρ is the air den-
sity, P is the mean pressure, f is the wind turbine thrust
force that we choose to represent by an actuator disk (AD)
model (Réthoré et al., 2014), t is the time, and xj = (x,y,z)
are the streamwise, lateral, and vertical coordinates. The nor-
mal Reynolds stress u′u′ and the shear Reynolds stresses u′v′
and u′w′ need to be modeled; we apply the well-known hy-
pothesis of (Boussinesq, 1897):
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with k as the turbulent kinetic energy that can be absorbed in
the pressure and νT as the eddy viscosity. In the latter two ex-
pressions, we will neglect the ∂/∂x contributions to simplify
the illustrative model.

Around the AD, a strong adverse pressure gradient is
present that reduces the streamwise velocity upstream and
downstream of the rotor. In the absence of the Reynolds
stresses, one can derive the well-known 1D (axial) momen-
tum solution for the streamwise velocity at the AD and at
the far wake (Sørensen, 2016). The latter can be written as a
velocity deficit, 1U , and can be related to the thrust coeffi-
cient,CT:1U/UH = 1−

√
1−CT, withUH as the freestream

velocity. In a turbulent flow, the divergence of the Reynolds
stress tensor recovers the streamwise velocity back to the
freestream velocity. The 1D momentum solution for the ve-
locity deficit can be seen as the maximum deficit that one
could obtain in turbulent flow of an AD.

It can be shown that for zero pressure gradient and a con-
stant eddy viscosity, the far-wake velocity deficit is self-
similar and can be modeled by a Gaussian function, as
shown by Pope (2000). Bastankhah and Porté-Agel (2014)
and Xie and Archer (2015) used wind tunnel measurements
and large-eddy simulations of a wind turbine wake to show
that the far-wake velocity deficit can indeed be approximated
by a Gaussian function:

1Uwake(y,z)=1Umax exp

[
−
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2σ 2

]
, (3)

where1Umax is the maximum deficit that is normally a func-
tion of the downstream distance but can be considered a con-
stant for fixed downstream position x, zH is the wind turbine
hub height, and σ is the spatial scale (standard deviation) of
the Gaussian wake profile. We model the far-wake velocity
as a combination of a Gaussian velocity deficit and a loga-
rithmic inflow similar to Bastankhah et al. (2021):
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where Uin(z) represents a neutral atmospheric surface layer
with u∗ as the friction velocity and z0 as the roughness
length. The shear stresses and their contribution to the mo-
mentum equation (known as stress divergence) become
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Here, we have assumed that the eddy viscosity is unaffected
by the wake and equal to the logarithmic inflow: νT = u∗κz
by assuming a neutral atmospheric surface layer to be valid.
This is a strong assumption and does not hold for non-neutral
atmospheric conditions and for tall wind turbines that may
operate beyond the surface layer. The assumption of a lin-
ear inflow eddy viscosity is the same as assuming a constant
eddy viscosity in the far wake in order to derive a 1D Gaus-
sian profile as a function of y, for each height z. The eddy vis-
cosity of a real wind turbine far wake is expected to be non-
uniform; RANS simulations of a single wind turbine wake
typically show a Gaussian-like lateral eddy viscosity profile
with its maximum in the wake center. Townsend (1949), Jo-
hansson et al. (2003), and Cafiero et al. (2020) have proposed
modified Gaussian velocity deficit profiles to better match
measured far-wake results of a circular cylinder, an axisym-
metric wake of a disk, and an axisymmetric wake of a plate,
respectively, in order to account for the effect of non-uniform
eddy viscosity on the self-similar velocity deficit. It should
be noted that these measurements were performed for low-
Reynolds numbers that are 3 orders of magnitude lower than
that of utility-scale wind turbines (using D = 100 m), which
makes their conclusions not directly applicable to our flow
of interest. Therefore, RANS simulations of a single utility-
scale wind turbine are performed in Appendix A. The RANS
simulations indicate that the wake-generated eddy viscosity
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has a minor impact on the far-wake velocity deficit shape.
The assumed Gaussian velocity profile of the simple model
also results in self-similar shear stresses and stress diver-
gence terms. Johansson et al. (2003) argued that higher-order
velocity moments of an axisymmetric wake can be shown
to develop downstream over large distances and continue to
contain information of the near wake. It remains unclear if
this conclusion can be applied to a utility-scale wind turbine
wake due to the mismatch in Reynolds number.

Using the normalized coordinates ỹ = y/D and z̃= (z−
zH)/D, along with the four normalized parameters1Ũmax =

1Umax/UH, σ̃ = σ/D, z̃H = zH/D, and z̃0 = zH/z0, the
streamwise velocity, shear stresses, and stress divergence
terms can be written in a dimensionless form:

g (ỹ, z̃)≡
1Uwake
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+z̃2)/2σ̃ 2

, (9)
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− g (ỹ, z̃) , (10)

f ′α (ỹ, z̃)≡
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ỹ2

σ̃ 2 δ2α +

[
z̃

z̃+ z̃H
−
z̃2

σ̃ 2

]
δ3α

)
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with u′u′α in =−δ3αu
2
∗ as the inflow shear stress and δiα as

the Kronecker delta. In addition, the Greek index α is used to
show that summation is not performed over the indices and
will be used throughout this article.

The results of the far-wake model are depicted in Fig. 1,
in terms of normalized streamwise velocity, f ; normalized
Reynolds shear stresses, f ′α; and normalized Reynolds stress
divergence, f ′′α , as a function of the lateral (α = 2) and verti-
cal distance (α = 3). Note that the prime indicates the deriva-
tive of f times a normalization factor, i.e., f ′α 6= ∂f/∂xα . The
results in Fig. 1 are made with1Ũmax = 0.4, which could re-
flect a certain downstream distance, although the overall be-
havior is not influenced by 1Ũmax. Figure 1a shows the first
and second derivatives of the wake deficit that represent the
negative shear stress−u′v′ and stress divergence−∂u′v′/∂y.
The stress divergence is negative at the wake edges and posi-
tive at the wake center, which shows how momentum outside
the wake is transported to the wake center; this is the main
mechanism for (far) wake recovery. A similar observation
can be made in the vertical wake recovery depicted in Fig. 1b;
however, more momentum from above is transported to the
center with respect to the bottom due to the eddy viscosity of
the logarithmic inflow that increases linearly with height. It
can easily be shown that the integral of the negative stress di-
vergence (depicted by the red areas in Fig. 1a) is equal to the
integral of the positive stress divergence (depicted by the blue

Figure 1. Gaussian velocity wake deficit, negative shear stress,
and stress divergence using 1Ũmax = 0.4, σ̃ = 0.35, z̃H = 1, and
z̃0 = 104. (a) Lateral wake recovery at hub height. (b) Vertical wake
recovery at the rotor center. Black-filled rectangle indicates the rotor
area.

area in Fig. 1a). This must hold, because stress divergence is
momentum transport and should not result in a loss or gain
of total momentum. The same balance of stress divergence is
present in the vertical wake recovery depicted in Fig. 1b. The
amount of lateral U -momentum transfer, Mlateral, and verti-
cal U -momentum transfer at the bottom, Mvertical,b, and top
of the wake, Mvertical,t, can be quantified by the bottom and
top peaks of u′v′ and u′w′, respectively; since we can write

Mlateral =

y−∫
−∞
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dy+
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dz=−u′w′|z+ − u

2
∗, (14)

where y− and y+ are the lateral locations of the peaks in u′v′,
and z− and z+ are the vertical locations of the bottom and
the top peaks in u′w′, respectively. For the analytic model,
we have y− =−σ , y+ = σ , and z− and z+ are solutions of
the cubic equation 2(z/zH)− (z/zH)[(z− zH)/σ ]2 = 1; see
Eqs. (7) and (8). The analytical model predicts that the mo-
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Figure 2. Wake recovery in terms of stress divergence from an LES single wake simulation. (a–c) Lateral wake recovery at hub height.
(d–f) Vertical wake recovery at y = 0.

mentum transfer from above is larger than the momentum
transfer from below, as shown by the peak values of u′w′
in Fig. 1, i.e., Mvertical,t >Mvertical,b. Calaf et al. (2010) per-
formed a related analysis on a large wind farm LES data set
by integrating the horizontally averaged vertical kinetic en-
ergy flux over the rotor area; the obtained result was shown
to be in order of the power extracted by wind turbines.

The fact that wake recovery requires a change of shear also
becomes clear when considering a homogeneous shear flow
(Pope, 2000), a temperature diffusion equation, or the Ekman
spiral; these examples are further discussed in Appendix B.

3 Wake recovery in a large-eddy simulation

The wake recovery in terms of the stress divergence of u′u′α
is post-processed from an LES of a single wind turbine wake
in a neutral pressure-driven atmospheric boundary layer. The
LES is the same as used by Hornshøj-Møller et al. (2021);
numerical details can be found in Abkar and Porté-Agel
(2015). The wind turbine represents a Vestas V80 wind tur-
bine that has a rotor diameter and hub height of 80 and 70 m,
respectively. The wind turbine forces are modeled as an AD
and has an effective thrust coefficient of 0.77. The inflow
wind speed and total turbulence intensity at hub height are
8.0 m s−1 and 5.7 %, respectively.

Figure 2 shows the normal, lateral, and vertical stress di-
vergence that contribute to the streamwise momentum equa-
tion at hub height and at a vertical plane through the rotor
center. The normal stress divergence has the largest (nega-
tive) values in the near wake (Fig. 2a and d) but is about 5
times smaller than the shear stress divergence based on vol-
umetric integrals of the three streamwise stress divergence
terms:

Mα =

∫
V

∣∣∣∣∣∂u′u′α∂xα

∣∣∣∣∣dV, (15)

where V is a box around the wind turbine located at
(x,y,z)= (0,0,zH) with dimensions−2≤ x/D ≤ 20,−2≤

y/D ≤ 2, and 0≤ (z−zH)/D ≤ 3.125. We obtainM2/M1 =

5.5, M3/M1 = 5.1. Hence, the LES data show that it is
mainly the shear stress divergence that leads to wake re-
covery by bringing momentum from the freestream into the
wake center (best visible in Fig. 2b and f). The shear stress
divergence represents wake meandering and turbulent cross
diffusion, which is slightly larger in the lateral direction com-
pared to the vertical direction due to the ground (M3/M2 =

0.93), although the atmospheric conditions and presence of
neighboring wind turbines may influence the dominant di-
rection of wake recovery. The normal stress divergence rep-
resents the streamwise back-and-forth movement of the wake
and streamwise turbulent diffusion, which is much less com-
pared to the lateral and vertical wake recovery.

The LES-based lateral and vertical wake recovery is de-
picted in Fig. 3, at three different downstream locations:
x/D = 2.5, 5, and 7.5. Results of the streamwise veloc-
ity, negative shear stress, and shear stress divergence are
shown; they are normalized in the same way as performed
for the analytical far-wake model as defined by Eqs. (10)–
(12) and depicted in Fig. 3. The normalized standard devi-
ation, σ̃ , used for normalization of the shear stress and its
divergence is obtained by a Gaussian fit with the velocity
deficit at each downstream location (σ̃ = 0.37, 0.39, 0.45 and
σ̃ = 0.36, 0.37, 0.44 for the lateral and vertical wake recov-
ery at x/D = 2.5, 5 and 7.5, respectively). Furthermore, we
have used u∗ = 0.333 m s−1 and UH = 8.0 m s−1. A similar
behavior of the LES-derived velocity deficit, shear stresses,
and the stress divergence is obtained at x/D = 5 and 7.5
compared to the analytic far-wake model, as depicted in
Fig. 1. As discussed previously, the lateral wake recovery is
slightly stronger than the vertical wake recovery; the latter is
stronger at the top of the wake with respect to the bottom of
the wake, as expected and predicted by the simple far-wake
model. The results in the near wake (x/D = 2.5) are different
in LES, as also expected, where the wake center momentum
gain has a double bell shape due to the more complex shear
stress profile.
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Figure 3. Normalized profiles of streamwise velocity, negative shear stress, and shear stress divergence from a single wake LES.

The fact that the normal stress divergence is an order of
magnitude smaller than the combination of lateral and ver-
tical shear stress divergence indicates that RANS turbulence
model closures do not need to model the anisotropy of the
normal Reynolds stresses if the velocity deficit is the only
quantity of interest. This implies that one could rely on the
isotropic hypothesis of Boussinesq (1897), as long as the tur-
bulence model is able to predict correct shear stresses and
give realizable Reynolds stresses – for example by using a
flow-dependent eddy viscosity coefficient that limits the tur-
bulence length scale (van der Laan and Andersen, 2018).
Whether this also applies in stratified atmospheric conditions
is a subject for further studies.

4 Conclusions

The main mechanisms of wake recovery are explained by
the stress divergence, considering both a Gaussian-based an-
alytical far-wake model and LES of a single wind turbine
in neutral atmospheric conditions. The LES data show that
the divergence of the lateral and vertical shear stresses com-
bined are an order of magnitude larger than the divergence
of the normal stresses; i.e., ∂u′v′/∂y and ∂u′w′/∂z – and not
simply “shear” – are the main contributors to wake recovery.
The analytical model qualitatively captures the behavior of
the stress divergence observed in the far wake of the LES
results, which shows that the second derivatives ∂2U/∂y2

and ∂2U/∂z2 induce wake recovery. This also indicates that
RANS turbulence model closures only need to be able to
model the shear stresses accurately if the velocity deficit is
the sole quantity of interest.

Appendix A: Influence of non-uniform eddy viscosity
on a single wind turbine wake in RANS

The simple far-wake model of Sect. 2 has been derived using
a constant eddy viscosity, while a real wind turbine far wake
is expected to result in non-uniform eddy viscosity. In order
to quantify the impact of this assumption, two RANS simula-
tions of a single wind turbine are employed based on Case 5
of van der Laan et al. (2015b). In this previous work, the
turbulence was modeled by the k–ε–fP model (van der Laan
et al., 2015b), the wind turbine forces were represented by an
actuator disk (CT = 0.79), and the inflow was a logarithmic
surface layer (using a turbulence intensity at hub height of
4 %). The numerical setup of the present study is the same as
performed in previous work (van der Laan et al., 2015b) with
a number of modifications. First of all, a longer and wider re-
fined domain around the wind turbine is used (y =±4D in
the lateral direction and 35D downstream in the streamwise
direction) in order to resolve the wake up to x/D = 30. In
addition, a uniform inflow is applied, and the ground (mod-
eled as a rough wall boundary condition) is removed by using
the same cell distribution and periodic boundary conditions
for the vertical coordinate as is used for the lateral coordi-
nate. Finally, the inflow eddy viscosity is uniform and set
equal to the hub height eddy viscosity of a logarithmic in-
flow; it is maintained by using ambient k and ε source terms
in the k and ε transport equations similar to van der Laan
et al. (2015a).
The removal of the ground decreases the velocity deficit, be-
cause the wake recovery is enhanced; however, the latter is
necessary for modeling a uniform inflow eddy viscosity. One
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Figure A1. Velocity deficit (a–c) and eddy viscosity (d–f) of a single wind turbine simulated in RANS.

Figure A2. Self-similarity of the velocity deficit of a single wind
turbine wake in RANS.

RANS simulation is employed with this setup and represents
a variable eddy viscosity case. A second RANS simulation
is performed by prescribing the eddy viscosity equal to the
inflow in the entire domain, which means that the wind tur-
bine does not change the eddy viscosity in the wake. This
represents a constant eddy viscosity case, as assumed for the
simple far-wake model of Sect. 2. The second RANS simula-
tion is equivalent to a laminar wind turbine wake simulation
without a turbulence model by setting a low-Reynolds num-
ber of Re =DUH /νT . Figure A1 depicts the velocity deficit
(Fig. A1a–c) and eddy viscosity (Fig. A1d–f) at hub height
of both RANS simulations for three downstream distances
(x/D = 7.5, 15, 30). As expected, a larger velocity deficit
for the constant eddy viscosity RANS simulation is obtained
compared to the velocity deficit of a RANS

simulation with a variable eddy viscosity. However, our fo-
cus in Fig. A1 is the Gaussian functions that have been fitted
to the velocity deficits. Figure A1a shows that the velocity
deficit of the constant eddy viscosity simulation compares
better with a Gaussian function with respect to the velocity
deficit of the variable eddy viscosity simulation, although the
differences of the latter are small (mainly visible at the wake
center (y = 0) and at the wake edges). This deviation reduces
further downstream as shown in Fig. A1b and c. The results
in Fig. A1a–c are also depicted in Fig. A2 in a form where
the self-similarity of the velocity deficit of the two RANS
simulations can be compared. Here, y1/2 represents the half
wake width of the velocity deficit, which is the lateral lo-
cation at which half the velocity deficit is obtained. We ob-
tain similar trends as found by Bastankhah and Porté-Agel
(2014) and Cafiero et al. (2020), where results of LES and
wind tunnel measurements of a wake also indicated smaller
tails of the far-wake velocity deficit compared to a Gaussian
function. The RANS results presented here suggest that a
variable eddy viscosity could be an explanation similar to
Cafiero et al. (2020). One other explanation of why results of
LES and measurements predict smaller tails could be related
to the number of data necessary to obtain converged statis-
tics, which becomes more demanding at the wake edges fur-
ther downstream. It should be noted that the deviation of the
RANS simulated velocity deficits with the Gaussian function
using a variable eddy viscosity, as presented in Figs. A1 and
A2, can be dependent on the chosen turbulence model. The
employed turbulence model was developed to obtain accu-
rate velocity deficits compared to LES (van der Laan et al.,
2015b) but does not guarantee accurate results for the eddy
viscosity.
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Appendix B: Other examples of stress divergence

Section 2 showed how the stress divergence, i.e., the gradient
of the shear within a Boussinesq/eddy viscosity framework,
“recovers” a wind turbine wake. This becomes more clear
when considering a hypothetical flow that includes a con-
stant shear and a constant eddy viscosity in space, without
a pressure gradient, since in this case the right-hand side of
the momentum equation will be zero, and the shear will not
recover to a uniform flow. This flow is also known as a homo-
geneous shear flow (Pope, 2000), and it is often used to test
turbulence model equations without the influence of an ac-
tive momentum equation. A homogeneous shear flow case is
analogous to modeling an initial constant temperature gradi-
ent, dT/dz, with a simple heat diffusion equation using bot-
tom, z1, and top, z2, boundary conditions that set fixed low
and high temperature values, T1 and T2, respectively; since
the heat diffusion equation would also be in balance in this
case:

∂T

∂t
= k

∂2T

∂z2 = 0,

T1 ≡ T |z=z1 ,

T2 ≡ T |z=z2 ,

T |t=0 =
T2− T1

z2− z1
(z− z1)+ T1, (B1)

with T (t,z) as the temperature as a function of time t and
spatial variable z and k as the diffusivity constant.

Another well-known example where the role of stress di-
vergence becomes clear is the Ekman spiral (Ekman, 1905),
which is an analytic solution of the Ekman equations (often
written in complex form) that describe a boundary layer pro-
file including Coriolis forces using a constant eddy viscosity:

νT
d2Ŵ

dz2 = ifcŴ ,

Ŵ (z= 0)=−UG− iVG,

Ŵ (z=∞)= 0; (B2)

the complex velocity vector is Ŵ = U −UG+ i(V −VG),
where i ≡

√
−1. UG and VG are the streamwise and lateral

geostrophic wind speed components, respectively, and fc is
the Coriolis parameter. The well-known Ekman solution can
then be written as

Ŵ =− (UG+ iVG)e[−(i+1)γ z], (B3)

with γ =
√
fc/(2νT ). If the wind direction is set to be zero

at z= 0 by using UG =−VG and a positive fc, then the in-
tegral of the streamwise velocity profile minus the (constant)
streamwise geostrophic wind speed, UG, is zero (Wyngaard,
2010):

Figure B1. Stress divergence in an Ekman spiral.

ξ=∞∫
ξ=0

U −UG

UG
dξ =

ξ=∞∫
ξ=0

e−ξ (sinξ − cosξ )dξ = 0, (B4)

with ξ = γ z. This integral is depicted in Fig. B1 and is sim-
ilar to the integral of stress divergence shown in Fig. 1. The
horizontal dashed lines in Fig. B1 depict transitions between
momentum loss and gain located at γ z= π/4+nπ , with n as
a positive integer.
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