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Abstract. Wind farm design and analysis heavily rely on computationally efficient engineering models that
are evaluated many times to find an optimal solution. A recent article compared the state-of-the-art Gauss-curl
hybrid (GCH) model to historical data of three offshore wind farms. Two points of model discrepancy were
identified therein: poor wake predictions for turbines experiencing a lot of wakes and wake interactions between
two turbines over long distances. The present article addresses those two concerns and presents the cumulative-
curl (CC) model. Comparison of the CC model to high-fidelity simulation data and historical data of three
offshore wind farms confirms the improved accuracy of the CC model over the GCH model in situations with
large wake losses and wake recovery over large inter-turbine distances. Additionally, the CC model performs
comparably to the GCH model for single- and fewer-turbine wake interactions, which were already accurately
modeled. Lastly, the CC model has been implemented in a vectorized form, greatly reducing the computation
time for many wind conditions. The CC model now enables reliable simulation studies for both small and large
offshore wind farms at a low computational cost, thereby making it an ideal candidate for wake-steering opti-
mization and layout optimization.

1 Introduction

Computationally efficient engineering models are critical for
the design and analysis of wind farms. In the design of
the wind farm layout or wind farm control strategy, a wake
model is often evaluated many times. Such design processes
require wind farm model evaluations to be completed in un-
der a second for computational tractability, especially when
considering parametric uncertainty, design parameters, and
control settings.

The development of such computationally efficient engi-
neering models has been an active field of interest (e.g.,
Jensen, 1984). One recent model has been the FLOw Redi-
rection and Induction in Steady State (FLORIS) model, de-
veloped by the US National Renewable Energy Labora-
tory (NREL), the Delft University of Technology, and the
University of Colorado Boulder. FLORIS is an open-source
model that has widespread use in the literature: the design
and analysis of wind farm controls (e.g., Fleming et al.,

2017, 2019; Doekemeijer et al., 2021; Campagnolo et al.,
2020), layout optimization (e.g., Stanley et al., 2022), and
coupled control–layout designs (e.g., Gebraad et al., 2017).
FLORIS relies on the Gaussian wake model and the de-
flection model in Bastankhah and Porté-Agel (2016). Re-
cent advances include incorporating the impact of curl into
these models by the introduction of a pair of streamwise
counter-rotating vortices introduced by the yaw misalign-
ment of wake steering (Martínez-Tossas et al., 2019; King
et al., 2021). FLORIS has produced good agreement with
smaller wind farms in the literature (Doekemeijer et al.,
2022). The focus of the FLORIS model has recently ex-
panded to encompass the anticipated deployment of large
offshore wind farms in Europe and the United States. The
National Offshore Wind Research & Development Consor-
tium (NOWRDC) includes incorporating the impact advanc-
ing developments in FLORIS to enhance its validity for large
offshore wind farms and to investigate the combined benefit
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of wind farm control and layout optimization for such wind
farms at several US offshore locations.

To date, two previous studies have investigated the accu-
racy of FLORIS with respect to historical supervisory con-
trol and data acquisition (SCADA) data of offshore wind
farms. Hamilton et al. (2020) compared several combinations
of wake and wake superposition models available within
FLORIS to data from the Lillgrund wind farm. An impor-
tant finding of that study was that accuracy in the leeward
rear of the plant, where many upstream wakes impinge on a
turbine, shows a strong sensitivity to the choice of the super-
position model. They found that a linear wake superposition
approach, rather than the commonly used quadratic superpo-
sition approach, can reduce model error in this case. A sec-
ond finding was that, given Lillgrund’s close spacing, mod-
els that include near-wake modeling such as that of Blondel
and Cathelain (2020) (a super-Gaussian wake model) reduce
error relative to other common wake models. However, the
authors did not find a single set of model choices that con-
sistently improved model accuracy under all wind directions
and wind speeds.

A more recent study by Doekemeijer et al. (2022)
compared the current default Gaussian wake model in
FLORIS v2.4 (described in Sect. 2) to SCADA data from
three offshore wind farms: Anholt, Offshore Windpark
Egmond aan Zee (OWEZ), and Westermost Rough. The
study found that the wake model in general performs well
across the three wind farms when considering the case of
one turbine waking another. These findings are different from
Hamilton et al. (2020), likely because the turbines in the Lill-
grund wind farm are spaced closely to one another. How-
ever, Doekemeijer et al. (2022) do confirm that the wind farm
model underpredicts wake losses in the case of turbines in
the rear of the wind farm, where many wakes overlap and in-
teract. Additionally, the article notes a possibility that wake
losses for turbine pairs separated over a large distance (for
example, > 25 rotor diameters, i.e. > 25D) are underpre-
dicted.

The previously described situation in which many wakes
interact and overlap, often far downstream in a large wind
farm, is sometimes referred to as a “deep array” effect. Wake
and wake combination models that behave well for small
numbers of turbines tend to underforecast total wake losses
at the back of large farms (Nygaard et al., 2020). There are
various proposals in the literature on how to correct for this
discrepancy. Schlez and Neubert (2009) proposed the inclu-
sion of a large-farm model correction to the ambient flow
that is applied on top of the standard turbine wake mod-
els. The authors showed improved model agreement with
SCADA data from the Horns Rev offshore wind farm. Fur-
ther, Gunn et al. (2016) identified issues in the commonly
used wake superposition methods, including the linear, sum-
squared, and largest-deficit approaches. The authors com-
pared the wake-recovery engineering models to computa-
tional fluid dynamics (CFD) simulations and experiments;

they show good agreement in predicting the combined wake
deficit in aligned two-turbine situations. However, under par-
tially offset conditions, the combined wake is underpredicted
by both wake superposition models, and instead, the authors
suggested that a linear (deeper) wake superposition would
be better. The inconsistency in which superposition model
yields the best agreement with data matches the findings in
Hamilton et al. (2020).

These superposition methods, while proposed to conserve
momentum under certain assumptions, are not based in the-
oretical derivations and are more appropriately classified as
empirical relationships, as discussed in Zong and Porté-Agel
(2020). A momentum conserving superposition method is
derived and detailed in Zong and Porté-Agel (2020), show-
ing good improvement over the other methods available in
literature. More recently, Bastankhah et al. (2021) proposed
an analytical solution based on the principle of mass and mo-
mentum conservation that implicitly includes wake superpo-
sition in the calculation of the velocity deficit. This model
is known as the cumulative wake model and in Bastankhah
et al. (2021) is shown to have improvement for predictions of
larger wind farms.

In this paper we present a combined wake deficit, superpo-
sition, and wake deflection model to accommodate the afore-
mentioned discrepancies and yield accurate results for large
offshore wind farms. This new model is a synthesis of several
recently proposed models in the literature. We show that the
model improves predictions of wake losses and wake control
performance with respect to the Gaussian wind farm model
(the default choice in FLORIS v2.4). The objective of this
article is to explain and validate this new fast-running engi-
neering wind farm model for wind farms of up to 100 wind
turbines with respect to CFD and SCADA data of large off-
shore wind farms.

The organization of the paper is as follows: Sect. 2
presents the new engineering wind farm model. The revised
wind farm model is compared to CFD simulation results in
Sect. 3. Section 4 further validates the model by comparing it
to the historical data of three offshore wind farms. The article
is concluded in Sect. 5.

2 Engineering models

In this section we review both the state-of-the-art Gauss-curl
hybrid (GCH) wind farm model (King et al., 2021) and the
novel cumulative-curl (CC) wind farm model proposed in
this paper. Both models are available in the FLORIS soft-
ware framework (National Renewable Energy Laboratory,
2022a). The CC model builds on the GCH model. Section 2.1
presents the GCH model, after which Sect. 2.2 presents the
CC model. Lastly, Sect. 2.3 explains how the parameters in
the CC model are tuned.
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2.1 The Gauss-curl hybrid model

The GCH model was first described in King et al. (2021). It
was described as a combination of the Gaussian model de-
tailed in Bastankhah and Porté-Agel (2014, 2016) and Niay-
ifar and Porté-Agel (2015) with an approximation of the curl
model of wake steering first presented in Martínez-Tossas
et al. (2019).

The GCH model was compared to SCADA data in de-
tail in Doekemeijer et al. (2022). Therein, the authors identi-
fied that the GCH model shows good agreement for smaller
wind farms or wind farm subsets in terms of turbine wake ef-
fects and power production. Two areas for improvement were
model superposition and farms with large distances between
turbines. The CC model, described in the following sections,
aims to resolve these model discrepancies.

2.2 The cumulative-curl model

The CC model combines the existing GCH model with im-
provements proposed in the literature. The cumulative-curl
model builds on the GCH model by the following.

1. Replacing the current near-wake model in GCH with the
model proposed by Blondel and Cathelain (2020). The
near-wake sets the trajectory for the far wake, which
in turn enhances the accuracy of far-wake model pre-
dictions by slowing recovery in the far wake. This pat-
tern fits with the change prescribed in Nygaard et al.
(2020): “the wake expansion is fastest closest to the tur-
bine, where the wake contribution to the turbulence is
largest. Further downstream the wake expansion slows
down, asymptotically reaching a linear expansion at a
constant rate”.

2. Implementing the cumulative model of wind turbine
wakes in wind farms proposed by Bastankhah et al.
(2021) to replace the current Gaussian velocity deficit
model and wake superposition submodels. The model
proposed by Bastankhah et al. (2021) inherently cal-
culates the combined wake effect rather than super-
imposing wakes as in the current GCH model, which
showed limited accuracy in large wind farms (Doeke-
meijer et al., 2022). The CC model still contains the
same deflection model from the GCH model as well as
the secondary steering and yaw-added recovery effects
driven by the counter-rotating vortices generated by yaw
steering.

3. Implementing the model into a vectorized structure; re-
quiring careful considerations of the model equations
to avoid the use of “for” loops over each wind direc-
tion/speed combination; and taking advantage of sin-
gle instruction, multiple data (SIMD). This approach is
significantly faster than more traditional nested loops.
The speed of analytical models is increasingly a piv-
otal factor for use cases such as wind farm design and

online control. The implementation is included in the
FLORIS v3 code, which is fully refactorized around
vectorization and reduced memory overhead (National
Renewable Energy Laboratory, 2022c). FLORIS v3 is
open source and available at National Renewable En-
ergy Laboratory (2022a).

The wake deficit takes the super-Gaussian form proposed in
Blondel and Cathelain (2020), as shown in Eq. (1).

1u

Uh
= Cne

(
−r̃m

2σ2
n

)
(1)

The original cumulative wake model proposed in Bastankhah
et al. (2021) does not include a near-wake model, which
the super-Gaussian form proposed by Blondel and Cathelain
(2020) provides. For this, 1u is the wake velocity deficit,
Uh is the average wind velocity inflow across the current tur-
bine rotor, σn is the wake half-width, n is the index of the
current turbine, r̃ is the radial distance from the wake center
normalized by the wind turbine diameter, andm is the super-
Gaussian order. σn, r̃ , and m are defined as

σn = kx̃+ ε, (2)

r̃ =

√(
y− yi − δy

)2
+ (z− zi)2

D
, (3)

m= af e
(bf x̃)+ cf , (4)

where x̃ is the downstream distance normalized by rotor di-
ameter x̃ = |x−xn|

D
; i is the index of the upstream turbines;

instances of y are the lateral locations; instances of z are
the vertical locations; δy is the lateral wake deflection; k =
asTIbs is the wake expansion parameter; TI is the turbulence
intensity; and as , bs , af , bf , and cf are tuned model param-
eters (for details on tuning the parameters and their default
values, see Cathelain et al., 2020). ε is defined as

ε =
(
cs1Ct,n+ cs2

)
·
√
β, (5)

β = 0.5 ·
1.0+

√
1.0−Ct,n√

1.0−Ct,n
, (6)

where Ct,n is the thrust coefficient of the current turbine and
cs1 and cs2 are both tuned model parameters (for details on
tuning the parameters and their default values, see Cathelain
et al., 2020).

The cumulative wake effect is included by adding the

summation of
n−1∑
i=1

λniCi/Uo into the wake center velocity

deficit Cn of the current turbine n, shown in Eq. (7).
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where λni captures the wake contribution of upstream wind
turbine i on the value of Cn, as described in Bastankhah et al.
(2021). Here, Uo is the freestream velocity, γn is the current
turbine’s yaw angle, and 0 is the gamma function. λni , a1,
and a2 are defined as
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a1 = 2(2/m−1), (9)

a2 = 2(4/m−2). (10)

The same deflection model is used from the GCH model,
which includes secondary steering due to yawed wakes, and
the yaw added recovery effects are also captured when up-
dating the local turbulence intensity (TI) conditions for the
current turbine, as defined in King et al. (2021).

2.3 Model parameters and tuning

In this article, we use the default model parameters for the
GCH model in an approach similar to Doekemeijer et al.
(2022). Because the CC model builds on top of the GCH
model, the overlapping model parameters are unchanged.
The model parameters new to the CC model are tuned to CFD
data, of which the results are presented in Sect. 3.

In addition to the inherent model parameters, the wind
farm model has two input parameters that have a dominat-
ing effect on the wake depth. The first input parameter is the
TI of the ambient flow. TI has a linear effect on the wake
spread and an inverse effect on the wake depth. Ideally, the
TI in the CC model would be assigned according to an ex-
ternal physical measurement of the amount of turbulence in
the flow, such as from a lidar or meteorological mast. How-
ever, literature suggests that TI may insufficiently represent
the degree of wake recovery in the wind farm (Doekemeijer
et al., 2020). Therefore, the practice to date has been to select
a data- and time-invariant value for the TI that, on average,
best aligns with historical data. We continue that practice in
this article. More complex methods, such as partitioning by
stability as in Ruisi and Bossanyi (2019), are reserved for
future investigation and refinement.

The second input parameter is the wind direction variabil-
ity, which defines the standard deviation of the probability
distribution of the inflow wind direction over the averaging

period. We classify this parameter as a tuning parameter that
should capture measurement uncertainty, natural variations
in the wind direction, the effect of time averaging in the his-
torical data, and the inherent slowness of the turbine yaw
controllers. This approach is similar to those of Gaumond
et al. (2013) and Doekemeijer et al. (2022), and we use a
value of 3◦ as in Doekemeijer et al. (2022).

3 SOWFA analysis

Our analysis of the FLORIS improvements is a two-step pro-
cess. In the first step, outlined in this section, the CC wind
farm model from Sect. 2 is compared against wind farm
flow data from a large-eddy simulation (LES) code called
SOWFA (Simulator fOr Wind Farm Applications), devel-
oped at NREL (Churchfield et al., 2012b, a; Churchfield
and Lee, 2014). Several model parameters specific to the
CC model were tuned using data from these simulations. The
second step will be a comparison of the CC model against
SCADA data, to be presented in Sect. 4.

3.1 About SOWFA and configuration

SOWFA is a wind energy microscale flow solver that uses
LES as its turbulence treatment technique such that the solver
directly resolves the larger, energy-containing, turbulent flow
scales and models the effects of the unresolved turbulent flow
scales. LES is the highest-fidelity flow modeling technique
currently feasible with today’s high-performance computing
systems for atmospheric flows. LES is a well-proven tech-
nique first applied to atmospheric flows nearly 6 decades
ago by researchers including Smagorinsky (1963) and Lilly
(1962).

SOWFA is built upon the popular, open-source, freely
available OpenFOAM (Open-source Field Operation And
Manipulation) CFD toolkit (OpenFOAM, 2022). SOWFA
solves the governing equations of fluid flow using the Boussi-
nesq buoyancy approximation in which density is treated as
constant everywhere but in the buoyancy term of the mo-
mentum equation, where it is a function of virtual poten-
tial temperature (i.e., temperature with the effects of tem-
perature change due to compression/expansion with altitude
pressure change removed, which is useful for understanding
atmospheric stability). The effects of Earth’s curvature and
rotation are included through a Coriolis term. Surface mo-
mentum and heat fluxes are modeled using Monin–Obukhov
scaling laws. Wind turbines are represented through actuator
lines or disks (in this work, we only use disks), which ap-
ply body forces to the flow along lines approximating each
blade or over the rotor-swept area, respectively. These body
forces approximate the sectional aerodynamic in- and out-of-
plane forces applied to the flow by the wind turbine blades.
The actuator turbine models are coupled to the NREL Open-
FAST wind turbine structural–aerodynamics–servodynamic
simulator (OpenFAST, 2010).

Wind Energ. Sci., 8, 401–419, 2023 https://doi.org/10.5194/wes-8-401-2023



C. J. Bay et al.: Addressing deep array effects 405

Simulations are run in two stages. In the first stage, of-
ten termed as the “precursor”, the computational domain
(roughly 10 km× 5 km horizontally and 3 km tall with 10 m
resolution in each direction within the boundary layer) is lat-
erally periodic and the flow is allowed to cycle through the
domain for 21 600 s (6 h of simulation time), during which
a realistic turbulent atmospheric boundary layer forms and
evolves. In this stage, no turbines are simulated, and turbu-
lent boundary data are collected during each time step (rang-
ing from 0.3 to 1 s, depending on flow speed) once the flow
is fully developed (we typically ran the simulation for 6 h
before collecting 2 h of boundary data). Precursor simula-
tions represent different atmospheric conditions, which can
be played through wind farm simulations.

In the second step, the domain is no longer fully laterally
periodic. The inflow boundary condition is Dirichlet, using
the saved time-varying turbulent boundary data, whereas the
outflow side becomes an open boundary. The remaining two
lateral sides remain periodic. Actuator disks are placed in
the flow to produce wake effects. The first 20 min of these
simulations are disregarded because wakes are propagating
through the domain and are not fully developed. The prob-
lems solved in this work typically required the use of hun-
dreds to more than 1000 Intel Skylake compute cores of
NREL’s Hewlett-Packard high-performance computing sys-
tem, Eagle.

This work was undertaken within the NOWRDC project
“Wind Farm Control and Layout Optimization for US Off-
shore Wind Farms”, which seeks to investigate the value
of wind farm control and layout optimization for potential
US offshore wind energy locations. Additionally, the project
examines EU sites where historical SCADA data are avail-
able for model validation (to be considered in Sect. 4). With
that in mind, we simulated US sites in the Atlantic (Vine-
yard), the Pacific (Humboldt), and around Hawaii and an
EU North Sea site (Anholt).

To simulate specific days with specific conditions at these
sites, we used SOWFA’s mesoscale–microscale coupling ca-
pability. With that capability, we can influence the microscale
using mesoscale (i.e., regional-scale) weather data. In this
case, the mesoscale weather data for US sites were provided
from hindcasts performed using the Weather Research and
Forecasting (WRF) mesoscale weather model developed by
the National Center for Atmospheric Research. This cou-
pling capability enhances the typical precursor step by pro-
viding a background driving force that drives the horizon-
tally averaged LES velocity and potential temperature solu-
tion toward the vertical profiles provided by WRF at the lo-
cation of interest (Allaerts et al., 2020). The resolved turbu-
lence then naturally reacts to these time-evolving background
mean conditions/forcings. Multiple WRF data sets covering
both summer and winter were selected for each US site and
one of the EU sites (Anholt), and then LESs driven by each
of those WRF data sets were performed. The simulations
covered the full range of atmospheric stability and turbu-

lence strength. For the EU site, similar data were obtained
from the New European Wind Atlas (NEWA, https://map.
neweuropeanwindatlas.eu/, last access: 12 February 2022).

We also use WRF to provide annual wind roses and es-
timate turbulence intensity for each site, which is important
for the comparison to SCADA data. WRF does not directly
report turbulence intensity but instead reports turbulent ki-
netic energy (TKE). TI is then estimated using the following
equation:

TI=
√

TKE · 1.07/wspd, (11)

where TKE is turbulent kinetic energy and wspd is the wind
speed. The coefficient 1.07 is based on experiments in homo-
geneous shear flow performed at NREL.

Table 1 presents a subset of the 23 precursor simulations
that were performed. In the table TI represents the ambient
turbulence intensity as estimated via Eq. (11) using the TKE
from WRF/NEWA. WD SD represents the standard devia-
tion of the ambient wind direction impinging the wind farm
in degrees. Note that wind direction is not exactly 270◦ (left
to right) at the wind turbine hub height. From the original full
set, this subset of six was selected for full wind farm simula-
tion and analysis. The precursors that were omitted for analy-
sis were removed due to issues caused by their high degree of
atmospheric stability (cases with strong negative surface heat
flux). Two main issues were at play. The first issue is that the
flow laminarized in some cases, producing turbulence lev-
els much lower than those predicted by the corresponding
WRF simulations. Laminarization of the flow under very sta-
ble conditions is a known LES challenge, and without real-
world observational data, the LES results are questionable.
Because WRF does not resolve any turbulence in the atmo-
spheric boundary layer but instead completely models it with
a planetary boundary layer turbulence model, trust in WRF’s
turbulence predictions is also questionable. Therefore, we
did not include the cases with large turbulence disagreement
between WRF and SOWFA. The second issue was that in
some of the stable cases, atmospheric gravity waves formed.
Atmospheric gravity waves are three-dimensional internal
waves in the air caused by a vertical perturbation to stably
stratified (in terms of density) flow. Wind turbines can be
the disturbance that spawns these waves. In many of these
cases, gravity waves formed above the wind farm or some-
times were trapped within a near-surface, very stable layer.
Although these may well be physically realistic effects, grav-
ity waves reflect off of computational domain boundaries and
can pollute the flow with spurious reflections and amplifica-
tions. Our relatively low level of experience in properly treat-
ing these effects and the fact that these effects are beyond the
scope of model improvements considered in this work led
us to disregard cases involving atmospheric gravity waves.
However, these cases also made us much more aware that
gravity-wave effects on wind farms may be significant and
should be studied in the future. Moreover, their effects should
be considered future additions to engineering wind farm flow
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Table 1. Summary of the SOWFA precursor simulations used in the
full wind farm simulations.

Precursor Wind Wind Wind TI WD SD
farm speed direction (%) (◦)

(m s−1) (◦)

ah_3 Anholt 9.0 269.9 6.5 % 1.1
ah_4 Anholt 8.6 269.8 6.5 % 1.4
ah_5 Anholt 8.6 269.9 7.3 % 1.2
ha_1 Hawaii 9.2 269.9 6.3 % 2.1
ha_2 Hawaii 8.8 270.0 7.1 % 4.3
hb_4 Humboldt 8.9 269.9 5.1 % 1.3

models, including FLORIS. Thus, the remaining six precur-
sor simulations, while varying in turbulence level, represent
only cases with a near-neutral to positive surface heat flux at
the time of data sampling. It is important to note that nearly
all of these cases are transient, and many, even though un-
stable at the time of interest, transitioned from a stable state
earlier in the simulation. LES of the realistic, transient atmo-
sphere is new to wind farm control research.

The precursors were generated to control for the wind di-
rection at a height of 120 m (the hub height of the Interna-
tional Energy Agency Wind Technology Collaboration Pro-
gramme 10 MW reference turbine). However, due to veer that
occurs in the precursors, the wind direction can vary slightly
at heights other than 120 m. The column for wind direction
in Table 1 captures this variation at 90 m (the hub height of
the NREL 5 MW turbine) and is accounted for in the simula-
tions.

Full wind farm simulations are run for a range of wind
turbine yaw angles and lateral turbine locations, the latter
to provide more realizations of the same flow for more con-
verged flow statistics. In further analysis, the first 1200 s of
the simulation results are omitted because they relate to wake
development and start-up effects. This value was chosen
based on the calculation of approximately how long it would
take the wake of a wind turbine to propagate at freestream
velocity (approximately 8.5 m s−1) through the entire do-
main (10 km streamwise). The remaining simulation output
is time-averaged over 2400 s to obtain a steady-state repre-
sentation of the wind turbine and farm performance. Using
the time-averaged cubed wind speed field (as opposed to the
cube of the time-averaged wind speed field) over the entire
simulation domain, a virtual turbine can be placed at differ-
ent locations downstream to estimate an expected power pro-
duction if a turbine had been placed at that location. This ap-
proach was validated by comparing such a hypothetical tur-
bine’s power production to the power production of an actual
turbine at the same location in the SOWFA simulation.

3.2 Single-wake analysis

The first set of wind farm simulations in SOWFA analyze the
wake of a single turbine. For each SOWFA precursor simu-
lation in Table 1, wind farm simulations of a single NREL
5 MW reference turbine are run (Jonkman et al., 2009).

3.2.1 Wake recovery

As the accuracy of wind farm models is strongly connected
to the accuracy of their wake-recovery submodel, this com-
ponent is addressed first. Figure 1 compares the power pro-
duction of a hypothetical downstream turbine at various dis-
tances behind an upstream turbine. To determine the effec-
tive rotor velocity at the different locations downstream, an
average velocity of the points within the hypothetical down-
stream turbine’s rotor area is computed for both SOWFA and
the analytical models. In these simulations, the upstream tur-
bine is aligned with the flow, and thus wake steering is not
yet considered. The TI assumed in the GCH and CC mod-
els was selected to yield perfect agreement with SOWFA at a
7D distance downstream. This method was chosen to ensure
good wake deficit predictions at a distance downstream that
is similar to relative distances between turbines in offshore
wind farms due to the significant impact that TI can have on
analytical models. Also, the previous Gaussian model’s pre-
dictions had trouble giving good predictions on either side
of this downstream distance of 7D when tuned, for example
at 5 and 10D. The 7D value was chosen to show that the
new model’s predictions are improved overall at other dis-
tances compared to the old model. The default wake-added
turbulence model in FLORIS, Crespo-Hernández, is used for
the FLORIS simulations, with tuned parameter values as de-
fined in the cumulative-curl input file in the FLORIS exam-
ples folders. For reference, those values are ti_initital= 0.01,
ti_constant= 0.9, ti_ai= 0.83, and ti_downstream=−0.25.
A log-law approximation of shear was applied to the back-
ground inflow using the default settings in FLORIS to ap-
proximate the shear that develops in the SOWFA simulations.
Proceeding downstream from 7D, Fig. 1 shows that the wake
recovery in the GCH model is overestimated with respect to
SOWFA, while the new CC model shows better agreement.
Note that there is still an error in the very near-wake region,
but the CC model matches much better in the medium to far-
wake regions where other turbines will most likely exist. The
focus of this effort was to specifically improve the accuracy
of the wake model in the far-wake region, and additional im-
provement of the near-wake deficit prediction is left for fu-
ture work. This trend of slower wake recovery at large down-
stream distances is supported in the literature (Nygaard et al.,
2020).

The improvement of the CC model over the GCH model
is largely attributable to the inclusion of the near-wake pa-
rameterization of the super-Gaussian model, based on the
work of Blondel and Cathelain (2020). This parameterization
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Figure 1. Power production of a downstream wind turbine located at various distances behind a yaw-aligned upstream wind turbine for
each precursor described in Table 2. The TI values for both the GCH and CC models were selected to match the wake depth in SOWFA at
7D distance (indicated via a dashed line). Note that empirical results have shown that the GCH model typically overpredicts recovery for
distances> 10D (Doekemeijer et al., 2022).

Table 2. Summary of the tuned turbulence intensity (TI) values
used in the FLORIS simulations.

Precursor Wind farm TI (%)

ah_3 Anholt 8.8 %
ah_4 Anholt 9.3 %
ah_5 Anholt 9.5 %
ha_1 Hawaii 10.5 %
ha_2 Hawaii 14.3 %
hb_4 Humboldt 8.3 %

Figure 2. Absolute error between FLORIS and SOWFA predictions
for the single-turbine wake-recovery characterization. The figure
shows that the error has significantly decreased with the CC model
compared to the GCH model, notably for the far wake.

yields a more gradual recovery following a shallower initial
wake loss which results in an increased error in the near-wake
zones in the 4–7D range for the CC model in comparison to
the GCH model. Figure 2 compares the absolute errors of the
two models across the SOWFA simulations, confirming that
the CC model shows a significantly lower error compared to
the GCH model, notably for the far wake.

3.2.2 Wake steering of a single wake

Because wake steering is a key application of the CC model,
an accurate representation of wake recovery under various
yaw angles is essential. This subsection focuses on the dif-
ferences in the effect of wake steering in the CC and GCH
models. Figure 3 presents the power production of a hypo-
thetical wind turbine at 7D downstream of a yawed upstream
wind turbine. The upstream turbine is yawed for two different
misalignment angles: −25 and +25◦. Generally, the figure
shows that the difference between the CC and GCH models
is small, which is reassuring because the GCH model has pre-
viously shown good agreement in wake-steering experiments
(Fleming et al., 2021). This confirms that the GCH modeling
aspects were correctly integrated into the CC model.

3.3 Farm-scale wake effects

Next, we compare the CC and GCH models to SOWFA sim-
ulations of larger, multi-array wind turbine farms. We con-
sider three farm layouts, depicted in Fig. 4. The wind turbine
model used in these simulations is the NREL 5 MW turbine
from Jonkman et al. (2009). Each of the three wind farms
depicted in Fig. 4 is organized into multiple rows, with each
row containing five turbines spaced 4D apart in the cross-
stream direction. The first wind farm is denoted “Reference
Farm” and comprises seven rows, each spaced 6D apart in
the streamwise direction. The second wind farm is denoted
“Rotated Farm”; it differs from the first farm in that succes-
sive rows are shifted such that the columns of the wind farm
are no longer aligned with the inflow direction. This layout is
comparable to a situation in which the inflow wind direction
creates partial wake overlap on downstream, waked wind tur-
bines. The third wind farm is denoted “Gap Farm” and dif-
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Figure 3. The power production of a hypothetical turbine distance of 7 rotor diameters from an upstream wind turbine. The upstream wind
turbine is misaligned by 25◦ in either direction. The left column of subplots compares a −25◦ (in the clockwise direction) change in yaw
to the aligned case, and the right column displays a +25◦ yaw misalignment (in the counterclockwise direction). The difference between
the CC and GCH models for single-turbine wake steering is small, which is reassuring because the GCH model has previously shown good
agreement with experimental data (Fleming et al., 2021).

fers from the reference wind farm in that the fourth, fifth, and
sixth rows are removed. The removal of rows creates a large
gap in the farm to examine wake recovery over large dis-
tances, for which Doekemeijer et al. (2022) suggested that
the GCH model may show model discrepancies in compari-
son to experimental data.

Figure 5 shows the row-by-row power production for each
of the three wind farms and six precursor simulations, includ-
ing the predicted values according to the CC and GCH mod-
els for each simulation, respectively, with the top row rep-
resenting the simulation results for the Reference Farm, the
middle row representing simulations with the Rotated Farm,
and the bottom row representing simulation results for the
Gap Farm.

First, the simulations of the Reference Farm (Fig. 5, top
row) show excellent agreement between SOWFA and both
the CC and GCH models. This confirms our notion that the

GCH model is accurate for regular wind farms along columns
of turbines. Note that these simulations exclusively represent
simulations with full wake overlap (rather than partial wake
overlap). For these simulations, all three models (SOWFA,
CC, and GCH) show a pattern of significant reductions in
the mean power production from the first to the second row
of wind turbines, with the power production remaining fairly
constant between the second and following rows.

Second, the simulations of the Rotated Farm (Fig. 5,
middle row) show that the power production according to
SOWFA between each wind farm row decreases as we
progress further down the rows. This is in disagreement with
the predictions of the GCH model, which shows a pattern of
constant power production past the second row. On the other
hand, the CC model accurately captures the trend of decreas-
ing power shown in SOWFA. This is because of the inherent
accumulation of upstream wake effects in the CC model, as

Wind Energ. Sci., 8, 401–419, 2023 https://doi.org/10.5194/wes-8-401-2023



C. J. Bay et al.: Addressing deep array effects 409

Figure 4. Wind turbine layouts of the wind farms used to validate the farm-scale effect in the CC model. Note that the units on the axes are
turbine rotor diameters (D) and that axis dimensions match the simulation domain dimensions in SOWFA.

Figure 5. Comparing the power produced by row across farm types and models. Note that the plot points are average power for a row (with
the shaded band indicating confidence interval) and the x axis is the row’s distance downstream from front turbines, in D. Each row of the
plot is a farm type, while each column is a precursor.

opposed to the ad hoc wake superposition used in the GCH
model. Accurately capturing this effect is critical for wind
farm applications, as this situation resembles the issue previ-
ously identified in Doekemeijer et al. (2022). Therein, the au-
thors showed a modeling mismatch between the GCH model
and experimental data in situations where the inflow wind
direction was not aligned with the turbine arrays, yielding
partial wake overlap.

Third, the simulations of the Gap Farm (Fig. 5, bottom
row) show very similar results between the CC and GCH
models across the first three wind turbine rows. Note that
these first three rows are equivalent to the first three rows in
the Reference Farm. Further downstream, however, there is a
large gap with a length of 24D between the third and fourth
row of turbines. Over this gap, the GCH model shows a much
higher wake recovery than SOWFA, which is consistent with
the findings of Doekemeijer et al. (2022) in comparing the
GCH model with experimental data for such large gaps. The

CC model resolves this issue and more accurately captures
the wake recovery over large distances. Nygaard et al. (2020)
suggest that this pattern of recovery is because wake recov-
ery is initially driven by turbine-induced turbulence, causing
significant wake recovery over relatively short distances be-
hind the rotor (up to 10D). For larger distances, the dom-
inant driver of wake recovery becomes ambient turbulence,
which leads to a much slower recovery of the wake. This ef-
fect was not previously addressed in the GCH model and has
now been addressed in the CC model.

3.4 Farm-scale wake steering

The final suite of SOWFA simulations investigate the ef-
fect of wake steering on multi-array wind turbine farms. The
wind farm layouts investigated are the same as those consid-
ered in the previous section, displayed in Fig. 4. The main
purpose of these simulations is to compare the impact of
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Figure 6. Comparing the ratio of the average power produced per wind turbine row (indicated by the point, shading indicating confidence
interval) for the Reference Farm type across precursors when the front row of turbines is changed from aligned to a yaw of +25◦ (counter-
clockwise).

wake steering for larger wind farms and in more realistic
commercial applications.

First, Fig. 6 shows the row-by-row wind turbine power
production for the situation in which the turbines in the first
row are yawed by +25◦ (in the counterclockwise direction),
with, again, the top row of plots referring to the Reference
Farm, the middle row referring to the Rotated Farm, and the
bottom row of plots referring to the Gap Farm. This figure
shows that there is good agreement between SOWFA and
both the GCH and CC models for the first two rows of wind
turbines. Furthermore, both the GCH and CC models show
a tendency to overestimate the impact of wake steering on
the third row, yet the CC model outperforms the GCH model
in all situations. The benefit of the CC model over the GCH
model is most notable in the Reference Farm and the Gap
Farm.

Second, Fig. 7 presents the simulation results for the Ref-
erence Farm when a pattern of yaw angles is applied. This
pattern assumes a large yaw misalignment angle for the first
row of turbines, which then decreases linearly to zero for
the last row of wind turbines. Specifically, the first turbine
is yawed 30◦, and then each turbine is yawed 5◦ less, down
to 0◦ for the last turbine. Due to high-computing facility re-
source limitations, these simulations were not performed for
the Rotated and Gap farms. Figure 7 shows that the GCH
model has a tendency to overestimate the wake losses at
downstream turbines, while the CC model more typically un-
derestimates the wake losses. Also note that all models show
a consistent increase in power production for all but the first
row.

3.5 Discussion

Reflecting on the validation results in this section more
closely, we find that both the GCH model and CC model
do well for nominal and wake-steering operation in situa-
tions of full wake overlap and regularly spaced wind farms.
Furthermore, the CC model much better represents wake re-
covery under partial wake overlap and in irregularly spaced
wind farms. When applying a pattern of decreasing yaw an-
gles per row, the CC model seems to underpredict the power
lift from wake steering compared to the SOWFA data. This
wake steering strategy and its effects on the CC model will
be considered in future work.

4 Model validation: comparison to historical SCADA
data of three offshore wind farms

Now that fundamental components of the new CC model
have been compared to high-fidelity simulation data in
Sect. 3, the model is next compared to historical SCADA
data.

4.1 Description of wind farms

The wind farms considered are three large offshore wind
farms located in the North Sea in Europe: the Anholt, OWEZ,
and Westermost Rough wind farms. The analysis in this ar-
ticle is predominantly a continuation of Doekemeijer et al.
(2022), who compared the GCH model to the same historical
data. The layouts of the three farms are illustrated in Fig. 8.
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Figure 7. Comparing the ratio of the average power produced per wind turbine row (average indicated by the point, shading indicating
confidence interval) for the Reference Farm type across precursors when applying a pattern of decreasing yaw angles per row starting at 30◦

and going to 0◦ by increments of 5◦.

The historical data for the wind farms were provided
by the wind farm owners – Ørsted and Shell. Each of the
SCADA data sets was postprocessed to remove measurement
outliers and sensor-stuck faults. Furthermore, each turbine’s
nacelle heading was calibrated to true north by aligning the
simulated energy ratios from FLORIS with the SCADA-
based energy ratios. More details on the postprocessing can
be found in Doekemeijer et al. (2022) and in the accompany-
ing FLORIS-based Analysis for SCADA data (FLASC) soft-
ware repository (National Renewable Energy Laboratory,
2022b).

Further, Doekemeijer et al. (2022) assumed a fixed value
for the ambient turbulence intensity of 6 % and an ambient
wind direction standard deviation of 3◦ in their analysis. In
this article, we follow the same assumption for the ambient
wind direction standard deviation but instead base the values
for the ambient turbulence intensity on the WRF simulations
described in Sect. 3. The ambient turbulence intensity values
for each site are computed for four wind direction sectors, as
notable differences can be expected from coastal effects and
neighboring farms. The estimated turbulence intensities from
WRF for each farm are displayed in Fig. 9.

Out of the three offshore wind farms, the Westermost
Rough wind farm shows the lowest ambient turbulence ac-
cording to WRF. For all three farms, winds from the south
are expected to be paired with the lowest ambient turbulence
intensity.

Finally, Doekemeijer et al. (2022) largely rely on energy
ratio as a validation metric. The energy ratio represents the
power production of a turbine in comparison to an unwaked
turbine and thereby represents the degree of wake losses for
a single wind turbine. For a more exact definition of the en-
ergy ratio, see Doekemeijer et al. (2022). Similar to Doeke-
meijer et al. (2022), for the analysis in this article we reduce
the data set to ambient wind speeds of 6–10 m s−1 because
wake losses are most prominent in this range, thus yielding
the most informative energy ratio curves.

4.2 Single-array wind farm analysis

In this paper we reapply the analysis methods described in
Doekemeijer et al. (2022). One primary analysis method
therein is to calculate the energy ratios of an aligned array
of a subset of wind turbines in the wind farm. In this single-
array analysis, the energy ratio of each turbine in the array
relative to the upstream-most turbine for a narrow sector of
wind directions (±7.5◦ around the wind direction that causes
full wake overlap, i.e., perfectly aligns the turbine array) is
calculated and compared. The energy ratio curves for four
different turbine arrays are presented in Fig. 10.

Through such turbine-array analyses, Doekemeijer et al.
(2022) found that the GCH model agrees well with the
SCADA data for turbine arrays on the perimeter of the wind
farms. The GCH model showed larger divergence for turbine
arrays centrally positioned in the wind farm, whereas the
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Figure 8. Layouts of the three offshore wind farms of which the SCADA data are compared to the CC and GCH wind farm models.
Illustration taken from Doekemeijer et al. (2022) with permission.

Figure 9. Average ambient turbulence intensity (TI) based on New
European Wind Atlas (https://map.neweuropeanwindatlas.eu/, last
access: 12 February 2022) mesoscale simulations for the three Eu-
ropean offshore wind farms. Note that TI is approximated from tur-
bulent kinetic energy using Eq. (11).

CC model is expected to improve matching in these cases.
This is confirmed by Fig. 10. The CC model shows deeper
losses for turbines central to the Anholt wind farm (bottom
two subplots) while not performing notably worse for tur-
bines on the outer perimeters of the Anholt wind farm (top
two subplots).

While insightful, this single-array analysis approach has
relatively large uncertainty bounds. The energy ratios are cal-
culated based on a single reference turbine, the most up-
stream wind turbine. Additionally, it only considers a 15◦

wind direction sector to calculate a single energy ratio for
every wind turbine, but there may be significant variations in
the turbine’s power production across different wind direc-
tions in this sector. Therefore, we consider a second method-

ology in alignment with the approach in Doekemeijer et al.
(2022).

4.3 Wind-farm-wide analysis

A secondary analysis method to compare model predictions
with SCADA data is done by calculating the energy ratio
of a single turbine across the entire wind rose. The energy
ratio curves across the entire wind rose are computed us-
ing the same methods as Doekemeijer et al. (2022). The
energy ratio of this turbine is now normalized to all tur-
bines operating in freestream (and is thus wind-direction-
dependent) within a 5 km radius for the OWEZ and West-
ermost Rough wind farms. Due to the size of the Anholt
wind farm, the freestream turbines are defined as the five
freestream-operating turbines closest to the turbine for which
we are calculating the energy ratio. The use of multiple
reference turbines significantly reduces the uncertainty of
the found energy ratios and generally provides energy ratio
curves more in line with the model predictions. Addition-
ally, these energy ratios across the wind rose are calculated
for two different wind direction binning widths: 3 and 30◦.
The two bin sizes have different advantages. The energy ra-
tios calculated using 3◦ binning provide a higher resolution
of the wake effects, and therefore single-wake profiles are
more visible. The disadvantage of such a narrow bin width
is that it increases the sensitivity of the energy ratio to mea-
surement noise and specific model choices (i.e., the choice of
standard deviation on the inflow wind direction, which is 3◦
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Figure 10. Ratio of energy produced by wind turbines in a row with respect to the energy produced by the first turbine in the row. The
energy ratios are normalized to the most upstream wind turbine in the row. The wind direction used to bin the data is assumed to be equal
to the nacelle heading of the most upstream wind turbine. The four turbine arrays considered are all from the Anholt wind farm, which is an
excellent candidate for these validation studies because of its sheer size (111 wind turbines). The layout of the Anholt farm is shown on the
right of each plot, with the turbine IDs highlighted for each case.

as discussed in Sect. 4.1). The energy ratios with 30◦ binning
represent a wider-perspective energy ratio (i.e., generalized
wake loss for a larger wind direction sector), which is essen-
tially insensitive to the choice of wind direction variability
and less sensitive to the underlying uncertainty in wind di-
rection measurements.

The energy ratios across the wind rose are calculated for a
set of handpicked wind turbines, similar to Doekemeijer et al.
(2022). The wind turbine cases shown are primarily selected
via the following criteria:

– The turbine of interest and several neighboring turbines
have a consistent northing calibration throughout the en-

tire data set (i.e., the definition of true north does not
change). This means their wind direction measurements
can be used to derive which turbines are in freestream.

– The turbine is in a relative position such that it is some-
times behind a single turbine or a single column and at
other times in the wake of a larger cluster of turbines.
This provides a sufficient diversity in the energy ratio
curve to validate the CC model over a wide range of
wake scenarios and operating conditions.

– The energy ratio curves do not include values greater
than 1. A value higher than 1 likely indicates artifacts in
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Figure 11. Energy ratio versus wind direction for Turbine 17, located in the northwest of the Westermost Rough wind farm. The reference
turbines to which the energy ratio is normalized are the turbines that are both operating in freestream flow and within a 5 km radius of
Turbine 17. The reference wind direction is determined by the nacelle headings from turbines directly neighboring Turbine 17.

Figure 12. Energy ratio versus wind direction for Turbine 14, located in the south of the Westermost Rough wind farm. The reference
turbines to which the energy ratio is normalized are the turbines that are both operating in freestream flow and within a 5 km radius of
Turbine 14. The reference wind direction is determined by the nacelle headings from turbines directly neighboring Turbine 14.

the turbine performance curves or points toward another
oddity in the comparison. In Doekemeijer et al. (2022),
a part of these energy ratios were shown to be due to het-
erogeneity in the ambient wind speed; however, the con-
sideration of heterogeneous effects is outside the scope
of this work.

4.3.1 The Westermost Rough offshore wind farm

The first analysis concerns the Westermost Rough offshore
wind farm. This wind farm is expected to experience the
lowest ambient turbulence and therefore higher wake losses
(Fig. 9). Westermost Rough is also unique in that it features
a gap in the center of the farm, similar to the Gap Farm dis-
cussed in Sect. 3. It therefore makes an excellent candidate
to validate the CC model for large inter-turbine spacing.

The energy ratio curves of Turbines 17 and 14 across the
entire wind rose and their relative position in the farm are
presented in Figs. 11 and 12. These turbines are positioned on

the north and south side of the farm, respectively. The agree-
ment of the CC and GCH models with the SCADA data is
shown. For the directions in which the wake losses are from
a single or small number of turbines, the GCH and CC mod-
els predict nearly identical energy ratios, and both agree very
well with the historical data. The GCH and CC models di-
verge for wind directions in which many, nonaligned tur-
bines are upstream of the considered turbine (southeast for
the turbine in Fig. 11 and north for the turbine in Fig. 12).
The CC model significantly outperforms the GCH model for
these deeper-wake-loss situations and generally agrees very
well with the historical data.

4.3.2 The Anholt offshore wind farm

The second wind farm considered is the Anholt offshore
wind farm off the coast of Denmark. With 111 turbines it
is by far the largest wind farm of the three considered in this
article. The size of this wind farm makes it an excellent con-
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Figure 13. Energy ratio versus wind direction for a turbine located in the southeast region of the Anholt wind farm. The reference turbines
to which the energy ratio is normalized are the five closest wind turbines that are operating in freestream flow. The reference wind direction
is determined by the nacelle headings from turbines directly neighboring Turbine 86.

Figure 14. Energy ratio versus wind direction for Turbine 51, located in the center of the Anholt wind farm. The reference turbines to
which the energy ratio is normalized are the five closest wind turbines that are operating in freestream flow. The reference wind direction is
determined by the nacelle headings from turbines directly neighboring Turbine 51.

dition to validate the deep array effects identified in Sect. 3.
In the simulation studies of Sect. 3, it was suggested that tur-
bines on the perimeter of the farm are modeled accurately in
the GCH model but that the wake recovery is overestimated
for turbines central in a farm. This notion is now further as-
sessed using the historical data of the Anholt offshore wind
farm.

Figure 13 presents the energy ratio curve across the wind
rose for Turbine 86, located in the southeast corner of the
farm. An energy ratio curve pattern similar to what was ob-
served for Westermost Rough can be viewed. At a wind di-
rection of 120◦, Turbine 86 is waked by a single neighbor-
ing turbine, and the GCH and CC models perform equiva-
lently well. Both yield accurate predictions compared to the
SCADA data. Further, for a direction such as 310◦, where the
turbine is located far downstream near the rear of the large
farm, the energy ratios for the CC model outperform those

for the GCH model, notably for the 30◦ binning. The im-
provement is stark: the energy ratio of 0.58 for the CC model
is much closer to the observed SCADA value versus the en-
ergy ratio of 0.75 predicted by the GCH model.

Figure 14 represents the energy ratio curve for Turbine 51,
located in the center of the farm. Important to note is that
for wind coming from the west and east, the number of up-
stream turbines is smaller, so conditions are more like those
for smaller wind farms. The GCH and CC models show simi-
lar energy ratios for the wake losses in the direction of 60 and
270◦, where the farm is “thin” and there are relatively few
wake interactions. The two models significantly diverge for
wind directions near 0 and 180◦, in which there is signifi-
cant wake overlap and large arrays of turbines waking one
another. Observing Fig. 14, it can be said that in general the
CC model outperforms the GCH model, notably in situations
with deeper wake losses.
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Figure 15. Energy ratio versus wind direction for a turbine located in the southeast region of the OWEZ wind farm. Note there is a lack of
data for wind directions less than 150◦, potentially explaining the larger mismatch for the wake centered at 140◦. The reference turbines to
which the energy ratio is normalized are the turbines that are both operating in freestream flow and within a 5 km radius of Turbine 22. The
reference wind direction is determined by the nacelle headings from turbines directly neighboring Turbine 22.

4.3.3 The OWEZ offshore wind farm

The third and final wind farm considered is the OWEZ wind
farm, located off the coast of the Netherlands. This wind
farm is older, and the historical data typically show more
measurement outliers and erratic behavior. However, since
it has a very representative layout, it is an excellent candi-
date for a generalized evaluation of the model. The energy
ratio curve for Turbine 22 is presented in Fig. 15. In this
figure, we again find excellent agreement with the SCADA
data for single-turbine wake interactions for both the CC and
GCH models, and the two models hardly differ from one an-
other. Further, for multiple-turbine wake interactions when
winds come from the northwest, deep-array-type conditions
become apparent. For this direction, the CC model shows
better agreement than the GCH model with the historical
data. Interesting to note is the situation at a wind direction of
320◦. Here, Turbines 27 through 21 perfectly align and cause
full wake overlap. This is especially clear for the energy ra-
tios with 3◦ binning. The simulation results from Sect. 3 sug-
gested that both the GCH and CC models should yield accu-
rate predictions for these situations, which is confirmed by
Fig. 15.

4.4 Discussion

The results in this section demonstrate that the CC model
performs comparably to the GCH wind farm model under
single- and fewer-turbine wake interactions and significantly
outperforms the GCH model for effects commonly seen in
larger wind farms. The two effects specifically addressed
through the CC model are (1) larger wake losses deep in a
wind farm and (2) deeper and more persistent wake losses
over longer distances behind a wind turbine.

5 Conclusions

This work presented the new cumulative-curl (CC) model,
building on the previous Gauss-curl hybrid (GCH) model
(King et al., 2021) and integrating near-wake calculations
from Blondel and Cathelain (2020) and the cumulative
wake effects determined by Bastankhah et al. (2021). The
CC model increases accuracy in the wake and power predic-
tion of larger wind farms, particularly in situations of many
partial wakes and large downstream distances behind tur-
bines, while maintaining the full-wake and small-farm accu-
racy of previous models. Model accuracy was demonstrated
against both high-fidelity large-eddy simulations and histori-
cal data from physical wind plants. The CC model is able to
accurately predict farm performance in both yawed and non-
yawed operational strategies. Additionally, the CC model
was implemented in a vectorized framework to reduce the
computational cost of calculating wake effects over many
wind conditions. As such, the CC model now enables more
reliable simulation studies for both small and large offshore
wind farms, and with the low computational cost involved,
the CC model makes an ideal candidate for wake-steering
and layout optimization.

Future work includes adding additional aerodynamic ef-
fects not explicitly captured in the CC model. For example,
wind farm blockage can occur in large wind farms. Large
farms create a pressure field in front of the farm, most no-
tably at the turbines in the middle of the upstream row, that
decreases the wind speed at those turbines compared to the
ambient flow. This shows up as a heterogeneity in the inflow
wind speed across the upstream row of turbines. Beyond cal-
culating blockage, heterogeneous inflow is another effect to
be captured. As mentioned, heterogeneous wind directions
and wind speeds can occur not only from wind farm block-
age but also from nearby wind farms and from coastal ef-
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fects. Such heterogeneity effects are particularly noticeable
for very large offshore wind farms such as the Anholt wind
farm, which is over 10 km long in its dominant direction.
While the effects of blockage or neighboring farms are not
inherently included in the CC model, the model does allow
for different ambient wind speeds to be simulated across the
wind farm. Thus, if one can derive the subsequent effects of
blockage, the CC model can include its effects. For this rea-
son, heterogeneity and blockage effects are not considered an
important model flaw currently but rather a matter of appro-
priate model usage. Lastly, the consideration of flow acceler-
ation, or speedups, which can occur around corners of wind
farms and between rows where parallel wakes diffuse later-
ally and squeeze the flow, would further improve the overall
prediction capabilities of the CC model.
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