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Abstract. Turbulence intensity (TI) is often used to quantify the strength of turbulence in wind energy appli-
cations and serves as the basis of standards in wind turbine design. Thus, accurately characterizing the spa-
tiotemporal variability in TI should lead to improved predictions of power production. Nevertheless, turbulence
measurements over the ocean are far less prevalent than over land due to challenges in instrumental deploy-
ment, maintenance, and operation. Atmospheric models such as mesoscale (weather prediction) and large-eddy
simulation (LES) models are commonly used in the wind energy industry to assess the spatial variability of
a given site. However, the TI derivation from atmospheric models has not been well examined. An algorithm
is proposed in this study to realize online calculation of TI in the Weather Research and Forecasting (WRF)
model. Simulated TI is divided into two components depending on scale, including sub-grid (parameterized
based on turbulence kinetic energy (TKE)) and grid resolved. The sensitivity of sea surface temperature (SST)
on simulated TI is also tested. An assessment is performed by using observations collected during a field cam-
paign conducted from February to June 2020 near the Woods Hole Oceanographic Institution Martha’s Vineyard
Coastal Observatory. Results show that while simulated TKE is generally smaller than the lidar-observed value,
wind speed bias is usually small. Overall, this leads to a slight underestimation in sub-grid-scale estimated TI.
Improved SST representation subsequently reduces model biases in atmospheric stability as well as wind speed
and sub-grid TI near the hub height. Large TI events in conjunction with mesoscale weather systems observed
during the studied period pose a challenge to accurately estimating TI from models. Due to notable uncertainty
in accurately simulating those events, this suggests summing up sub-grid and resolved TI may not be an ideal
solution. Efforts in further improving skills in simulating mesoscale flow and cloud systems are necessary as the
next steps.

1 Introduction

While the number of wind turbines installed offshore in
US waters is small, it is expected to continuously escalate
for the foreseeable future (Musial et al., 2021). Therefore, it
is critical to accurately simulate the wind resource, as well as
the turbulence, in offshore environments. Wind power gen-
eration is sensitive to atmospheric turbulence in addition to
wind speed (Yang et al., 2017; Berg et al., 2019; Vander-
wende and Lundquist, 2012; St. Martin et al., 2016; Whar-

ton and Lundquist, 2012). Atmospheric turbulence impacts
the loads on the turbine and, ultimately, the life span of the
wind turbine (Mücke et al., 2011). Even in the ambient envi-
ronment without any turbulence, the turbine itself generates
turbulence via its wake (Wu and Porté-Agel, 2012; Brand et
al., 2011; Porté-Agel et al., 2020; Hansen et al., 2012).

Turbulence is generally largest near the surface where
the wind shear and buoyancy are generally largest, and it
is closely connected to stability in the planetary boundary
layer (PBL) (Rodrigo et al., 2015; Bardal et al., 2018; Gar-
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ratt, 1994). Compared to conditions over land, the sea surface
is relatively smooth, leading to smaller amounts of shear-
generated turbulence near the surface. In addition, while the
continental PBL is generally unstable during the day, the di-
urnal variation in marine PBL is not evident but dependent on
the thermal gradient between the sea surface and atmosphere
above. Thus, the atmosphere is generally less turbulent off-
shore than onshore (e.g., Bodini et al., 2020). Nevertheless,
strong turbulence-producing events such as hurricanes, win-
ter storms, and mesoscale convective systems can impact off-
shore wind farms.

In wind energy applications, turbulence is often quan-
tified using turbulence intensity (TI) (Bodini et al., 2020;
Barthelmie et al., 2007), and TI is the basis of standards used
in wind turbine design (e.g., Shaw et al., 1974). Accurately
characterizing the spatiotemporal variability in TI should
lead to improved predictions of power production. Earlier
studies have discussed how TI may influence the power pro-
duction of turbines (Bardal and Sætran, 2017; Kaiser et al.,
2007; Saint-Drenan et al., 2020; Clifton and Wagner, 2014).
It has been shown that power production during periods of
high or low TI can vary by up to 20 % (Lundquist and Clifton,
2012). However, turbulence and stability measurements over
the ocean are made far less frequently than over land as it
is challenging to maintain and operate instruments over the
open ocean for long durations.

Atmospheric models such as weather prediction and large-
eddy simulation (LES) models can potentially bridge this
gap as they can simulate turbulence based on atmospheric
and surface conditions for any region over the globe. While
LES models are too computationally expensive to simulate
long periods of time, mesoscale meteorological models are
much more efficient and can also estimate turbulent prop-
erties such as turbulence kinetic energy (TKE) by applying
an applicable turbulence parameterization. Nevertheless, the
derivation of TI from atmospheric models has rarely been ex-
amined. Since multiple model uncertainties may contribute
to TI bias under various conditions, comprehensive observa-
tional datasets are desired for model validation and to help
quantify the errors.

This study addresses these shortcomings to derive TI from
a mesoscale weather model and access its performance in an
offshore environment. We implement an online calculation
of TI in the standard version of the Weather Research and
Forecasting (WRF) model and complete a quantitative as-
sessment of simulated TI using observations collected during
a field campaign conducted from February to June 2020 near
the Woods Hole Oceanographic Institution (WHOI) Martha’s
Vineyard Coastal Observatory (MVCO). Simulations incor-
porating high-resolution sea surface temperature (SST) are
performed to evaluate the impact of SST on changing the at-
mospheric stability and simulated values of TI.

The paper is organized as follows: observational datasets
used in this study are described in Sect. 2. Details of model
configuration, TI derivations, and experimental design are

provided in Sect. 3. Section 4 covers our primary findings
including (a) wind and turbulence profiles near the sea sur-
face, along with corresponding air–sea temperature differ-
ence; (b) the sensitivity of simulated wind and turbulence to
SST forcing; (c) the relationship between TI and the bulk
Richardson number; and (d) the role of model-resolved TI.
To conclude, a summary and discussion are given in Sect. 5.

2 Observational data

A US Department of Energy (DOE)- and Bureau of Ocean
Energy Management-supported field campaign was con-
ducted from February through June 2020 near the Woods
Hole Oceanographic Institution (WHOI) Martha’s Vineyard
Coastal Observatory (MVCO; Austin et al., 2000) with the
goal of evaluating the performance of DOE’s lidar buoys
(Gorton and Shaw, 2020; Krishnamurthy et al., 2021; Sheri-
dan et al., 2022). The MVCO is a purpose-built facility
for conducting detailed atmospheric and oceanic research.
A major component of the MVCO is the Air-Sea Interac-
tion Tower (ASIT), built near the vicinity of the Rhode Is-
land and Massachusetts wind energy areas (Fig. 1). At the
site, a suite of wind energy specific measurements were
made, including a pair of cup anemometers at the top of the
tower (26 m a.m.s.l. – above mean sea level), a wind vane
at 23 m a.m.s.l., and a WindCube v2 vertically profiling li-
dar (hereafter reference lidar) on the main platform located
13 m a.m.s.l. The centers of the reference lidar range gates
are 53, 60, 80, 90, 100, 120, 140, 160, 180, and 200 m a.m.s.l.
WindCube v2 measures line-of-sight radial velocity sequen-
tially along four cardinal directions, with a zenith angle of
28◦, and a fifth beam is vertically pointed. The temporal res-
olution along each beam direction is 1.25 Hz. A carrier-to-
noise ratio of −23 dB was used to filter the raw radial veloc-
ity measurements. Two DOE buoys equipped with a Doppler
lidar (also a WindCube v2), surface met station, wave sen-
sors, and current profilers were deployed within 200 m of the
ASIT tower (hereafter buoy lidar). With predominant sum-
mer winds from ∼ 250◦ and winter winds from ∼ 320◦, the
configuration of the buoy lidar and ASIT was designed to
minimize wind wakes on the buoys from the tower. The ref-
erence heights of the buoy lidars matched the reference li-
dar heights. In addition, the air temperature at 4 m (using
a Rotronic MP101A sensor) and sea surface temperature
were collected using a YSI thermometer on the buoy lidar
(41.33◦ N, 70.57◦ E and 41.32◦ N, 70.57◦W) and are used to
determine the buoyancy component of local stability. In this
analysis, we use the reference lidar TI calculations for com-
parison to simulated TI, since the buoy induces additional
motion which results in higher uncertainty in TI estimates
(Gottschall et al., 2017; Kelberlau et al., 2020). Additional
research is ongoing to improve TI calculations using buoy
lidar measurements.
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Figure 1. (a) Map depicting the WRF domain used in this study. Red star denotes the location of the MVCO ASIT. Color shading represents
the terrain height in kilometers. (b) Schematics of WHOI’s Air-Sea Interaction Tower (ASIT) including all pertinent elevations and dimen-
sions of the tower structure and fixed metocean sensors. The reference lidar system is located outboard on the platform deck. MLW denotes
mean low water.

TI is defined as the standard deviation of the horizon-
tal wind speed (σU ) divided by the average horizontal wind
speed over a time interval (U ):

TI=
σU

U
, U =

√
u2+ v2. (1)

Horizontal wind vectors (u and v) from the reference lidar
were calculated at ∼ 1 Hz using the raw radial velocity mea-
surements along the cardinal directions. Although the winds
are reconstructed at 1 Hz, the winds are a combined product
of a trailing ∼ 4 s of sampled radial velocity measurements.
Any radial velocity measurement below a −23 dB signal-
to-noise ratio threshold was filtered. The reconstructed 1 Hz
horizontal wind speed measurements are used to calculate TI
from the Doppler lidar as shown in Eq. (1) over 10 min. TKE
is generally estimated as

TKE=
1
2

(
σ 2
u + σ

2
v + σ

2
w

)
, (2)

where σ 2
u , σ 2

v , and σ 2
w are the variances of zonal, meridional,

and vertical wind components, respectively. For 10 min aver-
aged TKE from reference lidar profilers, horizontal velocity
variance was estimated using the 1 Hz u and v components of
velocity, and the vertical velocity variance was estimated us-
ing the lidar central beam staring vertically up (like in Arthur

et al., 2022). Only the measurements with greater than 90 %
data availability over the 10 min averaging periods are used.

3 Model descriptions

3.1 Configuration

The model configuration, including horizontal and vertical
grid spacing, spin-up time and selections of atmospheric,
SST forcing, and PBL and surface layer parameterizations,
can contribute to the uncertainty in simulated offshore wind
(Bodini et al., 2021; Siedersleben et al., 2020; Hahmann
et al., 2015; Chang et al., 2015; Sward et al., 2023; Op-
tis et al., 2021). In this study, the version 4.2 WRF model
is used to simulate offshore near-surface winds. A single
model domain centered on the MVCO site is used that en-
compasses part of the northeastern USA and adjacent oceans
(Fig. 1). The choices of model physics parameterizations for
this study are consistent with the setup for the 20-year wind
resource dataset released by the National Renewable Energy
Laboratory (NREL) (Optis et al., 2020). Optis et al. (2020)
conducted a series of model sensitivity experiments with re-
spect to surface layer and PBL parameterizations, reanalysis
data, and SST forcing. The results of their model assessment
indicated that the largest uncertainty is associated with the
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choice of PBL parameterizations, and the Mellor–Yamada–
Nakanishi–Niino (MYNN) boundary layer parameterization
(Nakanishi and Niino, 2009) generally outperforms the Yon-
sei University (YSU; Hong et al., 2006) scheme off the
east coast of North America. Hence the MYNN boundary
layer parameterization, as well as other parameterizations de-
scribed by Optis et al. (2020), was used for generating the
CA20 dataset as well as our simulations. The model uses a
horizontal grid spacing of 2 km and a stretched vertical co-
ordinate with 60 levels. There are approximately 10 model
levels between the surface and 200 m. The Eta (Ferrier) mi-
crophysics parameterization, MYNN surface layer parame-
terization, Unified Noah Land Surface Model parameteriza-
tion (Chen and Dudhia, 2001), and RRTMG longwave and
shortwave radiation parameterization (Iacono et al., 2008)
are employed. Initial and boundary conditions are taken from
NOAA’s High-Resolution Rapid Refresh (HRRR; Benjamin
et al., 2016) product. The HRRR analysis has several advan-
tages over other coarse-resolution reanalysis products. For
instance, (1) the model core of HRRR, the WRF model, is
identical with what we use in this study; (2) it has a grid spac-
ing of 3 km, which is very close to the grid spacing used here
(2 km) to match the CA20 dataset; and (3) it is constrained
hourly by assimilating radar observations including Doppler
velocity and reflectivity, which reduces the uncertainties in
the prediction of precipitating clouds. All these advantages
would primarily mitigate model uncertainties in part due to
issues in model balance and spin-up.

3.2 Diagnostics of turbulence intensity (TI)

Realistically, observed TI occurs across a range of spatial and
temporal scales. Application of the WRF model leads to an
artificial separation of motions that are explicitly represented
by the model and turbulence treated by the boundary layer
parameterization; thus both grid-resolved and sub-grid mo-
tions can give rise to TI. These two contributions to TI will be
referred to as model-resolved and sub-grid TI, respectively.
A new algorithm is implemented to extract the wind variation
and mean wind speed over a 10 min window, allowing for the
calculation of both sub-grid and model-resolved TI. Since the
three-dimensional components of turbulent wind speed can-
not be obtained through the boundary layer parameterization,
the sub-grid TI is derived by leveraging TKE (Eq. 2) prog-
nosed by the MYNN boundary layer parameterization.

The derivation of TI has been proposed in several stud-
ies including a recent document of Larsén (2022). In this re-
port, the relation between TI and TKE is derived using the
Kaimal boundary layer turbulence model (Kaimal and Finni-
gan, 1994). However, since the TI derivation in that work
divides horizontal wind into along- and cross-turbine wind
components rather than zonal and meridional winds that are
used in WRF, we decided to apply the TI formula used in
Shaw et al. (1974), Wharton and Lunquist (2011), and Bod-
ini et al. (2020):

TI=

√
σ 2
u + σ

2
v

U
. (3)

Our analysis using the lidar-measured wind variances col-
lected at the MVCO ASIT over the study period indicates σ 2

w

(variance of vertical wind) is generally much smaller than σ 2
u

and σ 2
v (Fig. 2a) regardless of stability (Fig. 2b). In most

of the conditions, the fraction of σ 2
w in total wind variance(

σ 2
w

σ 2
u+σ

2
v+σ

2
w

)
is no greater than 0.2 (not shown). Moreover, it

is found that the data points exceeding 0.2 mostly occur dur-
ing neutral conditions, rather than during periods of unstable
conditions, which we would normally expect.

Therefore, Eq. (3) can be approximated by the form of

TI∼=

√
2 ·TKE

U
. (4)

The instantaneous sub-grid TI at any model time step can
then be obtained by a scaling of the mean wind speed in a
10 min window following Eq. (4). A new variable was added
to store the sub-grid TI and to have values written to the WRF
model output files. In addition, the model was also modified
to compute the model-resolved TI by adding calculations of
running means and variances of the horizontal velocity com-
ponents (zonal and meridional) within a 10 min window that
are then used to compute and output the resolved TI. A sum-
mary of the two components of TI from the WRF model is
given in Table 1.

3.3 Experimental design

To facilitate comparison against observations collected dur-
ing the field campaign near the MVCO ASIT, the WRF
model simulations were performed for February through
June of 2020. The “baseline” experiment is a concatenation
of a series of 36 h simulations. Each of these simulations is
initialized at 00:00 UTC and continuously integrated for 36 h.
To avoid model spin-up issues, the first 12 h of each individ-
ual simulation is discarded, and the resulting 24 h results are
retained for the analysis.

Since the near-surface atmospheric stability can strongly
influence turbulence intensity at hub height, the uncer-
tainty in representation of sea surface temperature should
also be considered. Despite the HRRR analysis represent-
ing convective-scale structures better than other coarse-
resolution reanalysis products as mentioned earlier in
Sect. 3.1, it does not provide corresponding SST forcing data.
Therefore, a sensitivity experiment (named “sstupdate” here-
after) is conducted to examine the variability induced by re-
placing the SST forcing in the model.

Note that Optis et al. (2020) used two SST products
including the Operational Sea Surface Temperature and
Ice Analysis (OSTIA, resolution 0.05◦) dataset (Donlon
et al., 2012) and the National Centers for Environmen-

Wind Energ. Sci., 8, 433–448, 2023 https://doi.org/10.5194/wes-8-433-2023



S.-L. Tai et al.: Validation of turbulence intensity as simulated by the Weather Research and Forecasting model 437

Figure 2. The lidar-measured wind variances (σ 2
u , σ 2

v , and σ 2
w) collected at the MVCO ASIT from January to mid-June in 2020. The data

are displayed in the format of (a) power density and (b) the function of the air–sea temperature difference (atmospheric stability).

Table 1. Summary of comparison between two types of TI output from the WRF model.

Sub-grid TI Model-resolved TI

Dynamic scale Turbulence Mesoscale wind fluctuation
Solution in model PBL scheme (MYNN) Resolved wind components√
σ 2
u + σ

2
v TKE (assume σ 2

w is negligible) Variance of u, v in 10 min window
U Mean horizontal wind speed in 10 min window Mean horizontal wind speed in 10 min window

tal Prediction (NCEP) Real-Time Global (RTG) SST prod-
uct (Grumbine, 2020; resolution ∼ 0.083◦). Here, we use
the NASA Jet Propulsion Laboratory (JPL) Level-4 MUR
Global Foundation Sea Surface Temperature Analysis (V4.1,
GHRSST; Chin et al., 2017), which has an even higher spa-
tial resolution (0.01◦) than either OSTIA or NCEP RTG. The
SST analysis product assimilates satellite data with a range
of resolutions including the Moderate Resolution Imaging
Spectroradiometer (MODIS) infrared (1 km), AVHRR in-
frared (5–9 km), microwave (25 km), and in situ measure-
ments (pointwise). The multi-resolution variational anal-
ysis (MRVA) technique is employed to reconstruct fast-
moving fine-scale features as well as to fill the large-scale
data void. Note that since HRRR analysis data do not in-
clude SST, the baseline simulation uses the climatological
SST provided with WRF as its forcing.

4 Results

4.1 Near-sea-surface wind, turbulence, and air–sea
temperature gradient

The simulated wind speed (WSPD), wind direction (WDIR),
TI, TKE, and air–sea temperature gradient (air temperature
at 2 m above the surface (Tair) minus sea surface temper-
ature (SST)) are compared against data measured by the
tower-mounted lidar and buoy deployed at the ASIT site.
We use the air–sea temperature gradient as a proxy for at-

mospheric stability near the sea surface. Negative values in-
dicate unstable (convective) conditions, whereas stable con-
ditions are likely when the temperature gradient is positive.

Here we highlight the comparisons by showing the re-
sults from March and May in 2020 as examples. The pan-
els in Figs. 3 and 4 show a composite month-long compari-
son of near-surface properties between baseline simulations
and the tower-mounted lidar for March and May, respec-
tively. Note the model profiles in the figures only extend to
200 m to match the range of the lidar. The results show the
model reproduces the major “convective” (negative values of
Tair−SST; red patches) events in March. While the simu-
lated TKE is generally smaller than observed, both observa-
tions and simulations have larger TI and TKE during convec-
tive periods, indicating the model’s PBL scheme reacts rea-
sonably well in response to the varied lower boundary con-
ditions. During stable periods (positive values of Tair−SST;
blue patches), simulated TKE and TI decrease dramatically
with height. This indicates there is weak turbulence and lim-
ited vertical mixing in these cases. In addition, the seasonal
variability in the air–sea temperature gradient is evident. For
instance, the convective events in May were much shorter
and weaker than those seen in March. This is most likely
due to more frequent cold-air outbreaks in March than in
late spring. The cold-air outbreaks are likely strongly con-
vective periods due to the advection of cold air over relatively
warm water. Cases with near-zero air–sea temperature gradi-
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ents present a greater challenge as they have less tolerance
in modeling inaccurate air–sea temperature differences and
fluxes within the boundary layer.

To quantify the model performance for the entire period of
study, an assessment of the baseline simulation is carried out
that examines the 80 m TI, TKE, WSPD, and air–sea temper-
ature gradients. Note data points from simulations and obser-
vations are only counted when wind speed is between 5 and
25 m s−1, which is consistent with turbine cut-in and cut-out
wind speeds of commercial wind turbines. Three metrics in-
cluding root mean square error (RMSE), bias, and the cor-
relation coefficient (CC) are computed for each variable and
given in Table 2. The root mean square error (RMSE) mea-
sures how close, on average, the simulated quantities are to
observations.

RMSE=

[
1
n

n∑
i=1

(yi − oi)2

] 1
2

, (5)

where y denotes the simulated result for the variable of inter-
est, o represents the corresponding observation, and n is the
number of data samples. The bias is also known as the mean
prediction error (MPE). It compares the simulated against
observed means of the evaluated dataset:

bias=
1
n

n∑
i=1

(yi − oi) . (6)

The correlation coefficient (CC) is used to determine the
similarity between the simulated and observed data. The
CC value always lies between −1 and +1, representing the
range from dissimilarity to a similar relation.

CC=

n∑
i=1

(yi − y) (oi − o)√
n∑
i=1

(yi − y)2
n∑
i=1

(oi − o)2

y =

n∑
i=1
yi

n
, o=

n∑
i=1
oi

n
(7)

Overall, the WRF model slightly underestimates TI with a
bias of −0.0061 (∼ 5 % relative to mean value) and has a
RMSE of 0.037 (∼ 30 % relative to mean value). The two
main factors in the computation of TI, TKE, and WSPD ex-
hibit notable contrasts in their assessments. While simulated
TKE is underpredicted with a bias of −0.3804 m2 s−2 and
RMSE of 0.914 m2 s−2, WSPD generally agrees well with
lidar observation as demonstrated by a relatively large corre-
lation coefficient (0.83) in comparison to 0.74 for TKE. This
implies that the errors in TI are likely driven by the differ-
ences in TKE as the WSPD is generally well predicted. We
further examine how TI and TKE errors change correspond-
ingly with WSPD as given in Fig. 5. The results confirm

that, in most cases, large TI errors are associated with large
TKE errors and have less dependency on WSPD. Lastly, the
air–sea temperature gradient is reasonably represented with
the highest correlation coefficient of 0.92 among all the vari-
ables.

4.2 Sensitivity of SST forcing on modeled wind and
turbulence

As described in Sect. 3.3, the default SST in the baseline sim-
ulation is replaced by the NASA JPL SST analysis product
(Chin et al., 2017), which has finer-scale features as opposed
to the SST representation in the baseline simulation. This
sensitivity experiment is named sstupdate, and the impacts
of SST forcing are examined in this section.

The same metrics as those used in the previous section
are applied to the sstupdate simulation and given in Table 2.
These indicate the replacement of SST forcing has positive
impacts on all the examined variables. For instance, the CC,
RMSE, and bias for TI as simulated by sstupdate (baseline)
are 0.59 (0.56), 0.035 (0.037), and−0.0023 (−0.0061). Sim-
ilarly, the model skill improves simultaneously with respect
to TKE, WSPD, and Tair−SST. This implies more realis-
tic SST forcing helps in better representing spatiotemporal
evolution of stability and subsequently the surface fluxes.
This then influences turbulent properties within the boundary
layer such as the TKE and WSPD. A comparison of vertical
profiles of TI RMSE between the two simulations (Fig. 6)
further shows that SST representation in the model could af-
fect skill in TI prediction from 60 to 190 m and that error
generally increases with height. WSPD and TKE RMSE pro-
files present similar trends despite the range of improvement
varying with height among the three variables. Redfern et
al. (2023) show that the impact of SST replacement on wind
speed modeling can be seen from 40 to 200 m. Their val-
idation was done by comparing model results against lidar
observations collected at three locations off Atlantic shores
from June to July in 2022.

The probability density functions (PDFs) are given in
Fig. 7 to help describe the similarities of each variable among
the three datasets. Figure 7a shows that the distribution of
observed TI has a wider peak between 0.025 and 0.1 than
the simulated distributions. While the baseline simulation
has more points with smaller TI values (peak around 0.04),
the distributions of TI from the sstupdate show an additional
peak around 0.09 and 0.1, and there are more large values
of TI. The median TI of sstupdate (0.066) is much closer to
observations (0.07) than the baseline (0.057), indicating that
the SST representation has a notable impact on TI simulation.
The individual impact of SST on the TKE, WSPD, and air–
sea temperature difference is displayed in Fig. 7b–d, respec-
tively. The model tends to produce more instances with small
TKE than was observed (0.67; Fig. 7b), and sstupdate (0.4)
has slightly larger median TKE than the baseline (0.377).
Note part of the discrepancy in TKE may be attributed to
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Figure 3. Time–height comparison of wind speed (WSPD), wind direction (WDIR), air–sea temperature gradient (Tair−SST), turbulence
kinetic energy (TKE), and sub-grid turbulence intensity (TI). Results for lidar and buoy observations and baseline simulation during the
period of March are given in (a) and (b), respectively.

varying uncertainty in lidar turbulence retrievals as a func-
tion of atmospheric stability. Sathe et al. (2015) found hub-
height turbulence (∼ 80 m) measured by pulsed Doppler li-
dars could be significantly higher (lower) than what is ob-
served by a sonic anemometer during unstable (stable) at-
mospheric conditions. The PDFs of WSPD in Fig. 7c indi-

cate that while both simulations have relatively large medi-
ans (10.94 and 10.86) compared to the observations (10.31),
the additional SST information used in sstupdate slightly im-
proves the simulations. The overall improvement in WSPD
may be attributed to more accurate representation of stability
because the PDF of the simulated air–sea temperature gradi-
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Figure 4. Similar to Fig. 3, but results for May 2020 are displayed.

ent is improved when applying the improved SST forcing as
shown by Fig. 7d.

Application of the higher-resolution SST impacts the time
of evolution of the winds and turbulence. Figure 8 shows how
the cold bias seen in the SST of baseline simulation is effec-
tively reduced during May 2020, which subsequently fixes
the cold bias in near-surface air temperature. While there are
relatively small differences between the two simulations in

the TKE and WSPD, we do find improvement in TI over
some periods. For example, during 5–8, 13–14, 17–18, and
30–31 May, TI simulated by the sstupdate simulation are
generally higher than what is simulated by the baseline sim-
ulation and closer to the observed values. The correction of
TKE has a larger impact on TI when WSPD is relatively
small (less than 10 m s−1), which can be explained by how
TI is calculated in Eq. (4).
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Figure 5. Scatterplots depicting the relationship between simulated (baseline) WSPD and sub-grid TI with color shadings for representing
80 m TI and TKE errors in (a) and (b), respectively.

Table 2. Metrics including correlation coefficient (CC), root mean square error (RMSE), and bias of 80 m TI, TKE, WSPD, and air–sea
temperature difference are given as computed for baseline and sstupdate simulations.

TI TKE WSPD Tair−SST

baseline sstupdate baseline sstupdate baseline sstupdate baseline sstupdate

CC 0.56 0.59 0.74 0.74 0.83 0.84 0.92 0.94
RMSE 0.037 0.035 0.914 0.886 2.37 2.303 0.921 0.766
Bias −0.0061 −0.0023 −0.3804 −0.3526 0.3737 0.3165 0.3223 0.093

The impact of SST is also examined in the context of
monthly variability. Figure 9 summarizes the metrics cal-
culated for each simulation, variable, and month with the
observational data as reference. The analysis suggests that
the overall performance of the simulated air–sea temperature
gradient (TG) is improved when the higher-resolution SST
forcing is used, and the improvement is more prominent in
the spring months than in February. Despite only slight im-
pact on the correlation for the simulated TG by replacing the
default SST (Fig. 9a), the corresponding RMSE (Fig. 9b) and
bias (Fig. 9c) for the TG are considerably reduced. While a
relatively small positive impact is shown for TKE and wind
speed, the improvement in the bias of TI is prominent, as
shown by the reduced RMSE and bias, particularly for April
and May.

4.3 Relationship between turbulence intensity and the
bulk Richardson number

Many earlier studies showed that the bulk Richardson num-
ber (Rib) may be a good indicator of turbulent conditions
as it considers stability associated with the temperature gra-
dient, as well as the relative contributions of buoyancy and
shear (e.g., Rodrigo et al., 2015; Bardal et al., 2018; Hsu,
1989; Zoumakis and Kelessis, 1991; Hansen et al., 2012).
The equation we use for calculating the Rib is

Rib =
g1θv1z

θv
(
1U2+1V 2

) , (8)

where g denotes gravitational acceleration, 1θv is the vir-
tual potential temperature difference across a vertical layer
of thickness 1z, and 1U and 1V represent the vertical
gradient in horizontal wind components. The virtual poten-
tial temperature gradient (1θv) is computed by using the
air temperature (4 m) and sea surface temperature measure-
ments on the buoy. The vertical gradients of the horizon-
tal wind components (1U and 1V ) are obtained by using
wind measurement at 100 m from the Doppler lidar (DL) and
4 m from the buoy. We also applied a similar approach us-
ing the WRF model output. Note the wind and temperature
gradients are not computed from the same heights, and the
bulk Richardson number calculated here will only be used
to inform stability qualitatively (Howland et al., 2020). Data
for cases where the wind speed was less than 5 m s−1 and
greater than 25 m s−1 have been removed as described ear-
lier. Figure 10a displays the calculated Rib in time series
during February 2020 as an example. It shows that both ex-
periments reproduce the occurrence of observed events with
unstable conditions (large negative Rib values). For instance,
on 14–15 and 19–21 February, the model was able to produce
large TI (over 0.2, Fig. 10d) when the Rib approaches −10
(Fig. 10a).
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Figure 6. RMSE profiles of (a) TI, (b) WSPD, and (c) TKE for baseline (blue) and sstupdate (orange) simulations between 60 and 190 m.

Figure 7. Probability density function (PDF) plots illustrating the results of (a) sub-grid turbulence intensity (TI), (b) turbulence kinetic
energy (TKE), (c) wind speed (WSPD), and (d) air–sea temperature difference among baseline, sstupdate simulations, and observations at
hub height (∼ 80 m) from February to May of 2020. The color-coded median of each dataset is given in each panel.

While simulated results show that the model has good skill
for large-TI (over 0.2) events, there are periods with mod-
erate TI (0.05 to 0.2) where the model misses the observed
peaks as indicated by the green arrows in Fig. 10d. It is found
that in those time periods, the buoyancy component (1θv) is
mostly near zero (neutral conditions) or even positive (sta-
ble), whereas the shear component (1U2

+1V 2) could be
more variable over time, indicating that the model may have
less skill in TI prediction when the buoyant forcing is weak.

To explore how TI can be related to the buoyancy and
shear components of the Rib, TI is mapped in regard to the
two terms (Fig. 11). Figure 11a shows that the observed TI

is generally larger during periods when conditions are un-
stable and that there is a large magnitude of the negative
buoyancy component (SST is larger than air temperature).
This implies that in convective regimes (buoyancy compo-
nent< 0), more vigorous turbulence leads to stronger verti-
cal mixing, which significantly reduces the wind shear. On
the other hand, in stable regimes (buoyancy component> 0),
less turbulent mixing often results in larger values of wind
shear.

Although in general, TI decreases as the buoyancy be-
comes more positive and the atmosphere becomes stable as
identified in the observations and the two WRF model con-
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Figure 8. Time-series display of data from baseline, sstupdate simulations, and corresponding observations for May 2020. From top to
bottom rows, the near-surface air temperature, sea surface temperature, hub-height TKE, WSPD, and TI are displayed.

Figure 9. Metrics of the (a) correlation coefficient between the observations and simulations, (b) root mean square error (RMSE), and
(c) bias for variables – TI, wind speed (WS), TKE, and air–sea temperature gradient (TG) – computed against the observations for each
month between February and May in 2020. The dots with a solid line represent the baseline result. The triangles with a dashed line depict
the corresponding values from the sstupdate simulation.

figurations (Fig. 11a–c), a population of reddish circles (large
values of TI) in the lower-right quadrant of the figure does not
follow this relationship (Fig. 11a). While both simulations
fail to represent these cases (Fig. 11b and c), the fractional
difference in simulated TI between the two simulations in-
dicates that the sstupdate simulation generally has larger TI
than the baseline simulation (Fig. 11d). This can be attributed
to an overall reduction in the cold bias in the baseline sim-
ulation as shown in Fig. 9. Furthermore, a larger fractional
increase in TI is found in the regime where the conditions
are between neutral and slightly stable (buoyancy compo-
nent≥ 0). This is most likely due to the weak negative tem-

perature gradient in the baseline simulation becoming posi-
tive after replacing the SST forcing. Despite the correction,
large TI is rarely simulated in the lower-right regime. This
result is not surprising as the formulation in the MYNN pa-
rameterization does not allow large values of TKE to be di-
agnosed in stable conditions.

The next step was to locate these specific data points in
time by applying thresholds of buoyancy component> 0 K,
shear component< 20.0 m2 s−2, and TI> 0.06 (Fig. 11a). It
is shown that features leading to the large values of TI in
the observation and simulations may not overlap in time as
the model may fail to simulate realistic conditions (Fig. 10e).
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Figure 10. Time-series plots of observed and simulated (a) bulk Richardson number, (b) shear component (m2 s−2), (c) buoyancy com-
ponent (K), and (d) sub-grid turbulence intensity (TI) during February 2020. Green arrows in (d) indicate events with large contrast in TI
between the model and observation. Filtered data points of sub-grid TI by using the thresholds of buoyancy> 0 K, shear< 20.0 m2 s−2, and
TI> 0.06 are denoted in (e). The green line represents the model-resolved TI.

Nevertheless, it is found that many of these cases with a pos-
itive buoyancy component and large TI are aligned with peri-
ods that have notable differences between observed and sim-
ulated TI, as denoted by green arrows in Fig. 10d. Therefore,
we conclude that the underrepresentation of this regime is
likely responsible for the majority of the model bias in TI.

While some of the intermittent turbulent events may cause
the occurrence of large TI under small shear and stable con-
ditions, we find that most of the cases with high levels of TI
in stable conditions and weak shear can be linked to fluctu-
ations in wind speed associated with mesoscale features of
the flow, and they are partially resolved by the mesoscale
model, or for which there are timing errors. In Fig. 10e,
the mesoscale (model-resolved) TI, described in Sect. 3.2,
is denoted by the green line. For the periods such as 3–4,
6–7, and 10–11 February, when the simulated sub-grid TI is
much smaller than that of observations, spikes in mesoscale
(model-resolved) TI have amplitudes similar to the observed

values. This suggests the need to consider both sub-grid and
mesoscale TI when modeling TI derived from a mesoscale at-
mospheric model. Furthermore, the uncertainties in the tim-
ing of simulated mesoscale weather events may lead to no-
table contrasts between the timing of modeled and observed
peaks in TI. This can impact the simulated TI in two ways
as the mesoscale activity not only generates variance in the
winds over larger spatiotemporal scales than the sub-grid tur-
bulence does, but also effectively offsets dynamic and ther-
modynamic conditions near the sea surface in the boundary
layer that influence the simulated sub-grid TI generated by
the boundary layer parameterization. Our analysis demon-
strates the utility of identifying scale-dependent uncertain-
ties in TI modeling, which allows us to isolate the causes of
errors in the simulated TI.

The metrics used in Table 1 are employed again to as-
sess the impact of resolved TI on the TI prediction and
are listed in Table 3. Results indicate that the addition
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Figure 11. Scatterplots mapping the hub-height sub-grid TI in the coordinates of buoyancy (1θv) and shear (1U2
+1V 2) components

for the entire period of study. Results of the (a) observation (OBS), (b) baseline simulation, (c) sstupdate simulation, and (d) percentage of
fractional difference (%) between sstupdate and baseline simulations are displayed. The box marked with a dashed black line in (a) indicates
the regime that is used to extract the data points as shown in Fig. 10e.

of resolved TI reduces the bias for baseline configura-
tion (−0.0061 to 0.0017) but enlarges the bias in the sstup-
date configuration (−0.0023 to 0.0055). Moreover, there is
worse correlation and RMSE when both sub-grid and re-
solved TI are considered. For instance, the correlation co-
efficients are reduced from 0.56 to 0.53 and 0.59 to 0.56 for
baseline and sstupdate configurations, respectively. The ef-
fects of the higher-resolution SST forcing and resolved TI
can lead to an overestimate of the TI, as the bias changes
sign and the RMSE increases slightly compared to the sub-
grid TI only. We suspect that this could be associated with the
uncertainties in simulating mesoscale events as depicted in
Fig. 10e. The events with larger resolved TI are not necessar-
ily coincident with observations, which explains why simply
summing up sub-grid and resolved TI in time may introduce
additional errors into the simulated TI.

5 Summary and conclusion

Algorithms to derive TI are successfully implemented in the
WRF model and tested offshore using a multi-month dataset
collected at the MVCO using a combination of Doppler lidar,
tower, and buoy data. Simulated TI is divided into two com-
ponents depending on scale, comprising sub-grid and grid

Table 3. Metrics including the correlation coefficient (CC), root
mean square error (RMSE), and bias for TI that are computed based
on total (sub-grid and resolved) TI simulated by baseline and sstup-
date simulations.

Baseline sstupdate

CC 0.53 0.56
RMSE 0.039 0.038
Bias 0.0017 0.0055

resolved. To obtain simulated TI, we calculate the square
root of the sum of horizontal wind variances and then divide
this by the mean wind speed over a 10 min window. While
sub-grid TI is diagnosed from parameterized turbulence ki-
netic energy (TKE) through the MYNN PBL parameteriza-
tion, resolved TI is estimated by using the model-resolved
wind variances.

The modeled TI computed over a wide range of atmo-
spheric conditions is analyzed and validated by using a va-
riety of observations collected at the offshore tower at the
MVCO between February and May in 2020. The primary
findings include the following:
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– The model’s PBL scheme reacts reasonably well to
changes in the vertical temperature gradient near the sea
surface despite the fact that the simulated TKE is gen-
erally smaller than what is observed by the lidar, espe-
cially for events with large TKE values.

– The modified WRF model slightly underestimates TI,
and the error is mainly attributed to relatively large neg-
ative bias in TKE as the predicted wind speed generally
agrees with observation.

– The WRF model has difficulty predicting periods of
weak TI due to smaller air–sea temperature differences
and fluxes within the simulated boundary layer.

– Overall cold bias in the SST of baseline simulation is
effectively reduced by substituting it with more accurate
SST forcing. This subsequently reduces model biases
in near-surface air temperature as well as in hub-height
WSPD and TI.

– A regime of large observed values of TI during peri-
ods with positive buoyancy and weak shear is identi-
fied, but the values are not captured by the model. Many
of the events occurred in conjunction with mesoscale
weather systems, but directly summing up sub-grid and
resolved TI does not improve the TI prediction. This
is because the primary source of uncertainty in those
events is caused by the unrealistic representation of
mesoscale weather systems, including timing errors, in
the model.

Our analysis suggests additional model constraints are re-
quired to further improve model representation of TI and
TKE in mesoscale or finer-scale cloud (system) processes.
Approaches that couple mesoscale model with data assimila-
tion techniques to improve skill in the simulated mesoscale
flow features and cloud predictions (Tai et al., 2020, 2021;
Gaudet et al., 2022) could be very beneficial.
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