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Abstract. Microscale flow descriptions are often given in terms of mean quantities, turbulent kinetic energy,
and/or stresses. Those metrics, while valuable, give limited information about turbulent eddies and coherent
turbulent structures. This work investigates the structure of an atmospheric boundary layer using coherence and
correlation in space and time with a range of separation distances. We calculate spatial correlations over entire
planes of velocity fluctuations, from which we can evaluate the correlation along different directions at different
spacings. Similarly, coherence of the three velocity components over separations in the three directions is also
investigated. We apply these analyses to a mesoscale–microscale coupled scenario with time-varying conditions
and examine nuances in spatial correlations that are often overlooked. Through these analyses and results, this
work highlights important differences observed in terms of coherence when comparing large-eddy simulation
data to simpler models and suggests ways to improve these simpler models. We note that such differences are
important for disciplines like wind energy structural dynamic analysis, in which blade loading and fatigue depend
strongly on the structure of the turbulence. We emphasize the additional wealth of data that can be provided by
typical atmospheric boundary layer large-eddy simulation when correlation and coherence analysis is included,
and we also state the limitations of large-eddy simulation data, which inherently truncate the smaller scales of
turbulence.

1 Introduction

Offshore deployment of wind farms offers a new set of chal-
lenges. As wind turbines increase in rotor diameter, it be-
comes increasingly important to characterize the flows these
large turbines will experience. Knowing how the flow struc-
tures evolve over the increased geographic extent of wind
plants is relevant to turbine and wind plant design. In fact,
a better understanding of atmospheric and wind farm flow
physics has been identified as one of the grand challenges in
wind energy research (Veers et al., 2019), noting the coupling
between mesoscale and microscale flows.

Descriptions of the microscale flow, or the turbulent flow
of the atmospheric boundary layer, are usually given in terms
of integral flow characteristics, such as statistics of mean and
turbulent quantities. Such metrics, while valuable (e.g., see
Robertson et al., 2018), provide limited information about
the spatial or temporal structure of turbulent eddies and how

they change as background atmospheric conditions and sta-
bility change. Space–time correlation and coherence provide
the necessary base for understanding the relation between
spatial and temporal scales of motion. The correlations quan-
tify how the fluctuations at one location relate to those at a
different location or how fluctuations at a point are related
in time. Coherence is similar but compares the two points
in the frequency domain rather than comparing the values in
the time domain. Together, these quantities describe impor-
tant characteristics of turbulent flow structure across spatial
and temporal scales.

The turbulence models suggested by the international
wind turbine design standards (IEC 61400-1, 2019) to pre-
dict mechanical loads contain mathematical descriptions of
spatial coherence. One of the two models, which will be
discussed in detail in this work, includes exponential-based
equations that impose coherence on a flow based on spectral
content descriptions. Accurately capturing how coherences
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vary with different model parameters, such as separation dis-
tance, and change with different velocity components can
better inform and improve models. The base of the suggested
model goes back to the original exponential decay coherence
formulation of Davenport (1961), which states that the coher-
ence spectrum γ of the streamwise turbulent component u is
given by

γ = exp
(
−Cuz δzf

U

)
, (1)

where Cuz is an empirical decay coefficient, δz is the vertical
separation distance, f is the frequency, and U is the mean
wind speed. Davenport’s model, however, fails to account for
the reduction in coherence at low frequencies and large sepa-
ration distances. While in the original formulation the decay
coefficient does not depend on the separation distance, it was
later found that the dependency was necessary for vertical
and lateral separations (Simiu and Scanlan, 1996; Saranya-
soontorn et al., 2004; Bowen et al., 1983; Sacré and Delau-
nay, 1992; Cheynet et al., 2017b).

Davenport’s model assumptions were also found to be
invalid in situations where the separation distance is large
with respect to the length scale of the turbulence (Kristensen
and Jensen, 1979; Mann et al., 1991). Based on Davenport’s
model, Kaimal’s spectrum with the exponential-coherence
model (Kaimal et al., 1972; Thresher et al., 1981) addressed
shortcomings related to the invalidity of Davenport’s model
in these situations. An additional term involves the ratio of
the separation distance to a coherence scale parameter Lc.
This extra term allowed for the reduction in coherence levels
at zero frequency as the separation distance increases. The
final equation will be given later and discussed in more de-
tail. Such improvement eventually became one of the recom-
mended models in the mentioned International Electrotech-
nical Commission (IEC) guidelines (IEC 61400-1, 2019).
The other model suggested in the standard is Mann’s spectral
turbulence model (Mann, 1994, 1998). The Mann model, on
the other hand, is based on the von Kármán (1948) model and
assumes that an isotropic energy spectrum is distorted by a
linearized mean velocity shear, providing one-point spectra,
cross-spectra, and the coherence of the three components. In
this work, we will focus on Kaimal’s model with the expo-
nential decay from Davenport’s model.

The use of models suggested by the IEC standards can
result in an overestimation of fatigue loads (Holtslag et al.,
2016). The same study, however, noted that the primary
sources of fatigue loads, the wind shear and turbulence lev-
els, can vary significantly depending on the stability state.
While the IEC-suggested models were developed for neu-
trally stratified flows, such stability is often not the norm.
The effect of stability on loads has also been studied in Sathe
and Bierbooms (2007) and Sathe et al. (2013) by the use of
Mann’s model with the Monin–Obukhov length. While tur-
bulence and shear, separately, cause different loads on the
blades, tower, and rotor, it was noted that the IEC standards

are very conservative regarding the definition of wind shear
and turbulence, which results in a significant overestimation
of the loads (the authors note up to 96 %) when compared to
loads obtained when using wind conditions specific to a site
of interest. Note that the standard is of a conservative nature
by design.

Understanding how the coherence changes with varying
conditions is important. Recent studies have assessed the ef-
fects of coherence functions on loads of offshore wind tur-
bine blades (Doubrawa et al., 2019; Nybø et al., 2020). The
impact of coherence functions has also been noted in other
studies (Kelley et al., 2005; Kelley, 2011). Prior work fo-
cused on offshore flows, either by showing the coherence
levels of such flows alone (Naito, 1983) or by establishing
comparisons between observed data to the Kaimal and Mann
spectral models (Cheynet et al., 2017a). Often, all three com-
ponents of the turbulence vector are analyzed, adding to the
prior studies that only considered the streamwise component
(e.g., Eidsvik, 1985; Andersen and Løvseth, 2006). Unfor-
tunately, usually only vertical separation is studied, given
limited instruments arranged in a tower. Most of these stud-
ies found that coherence levels based on observations at an
offshore environment are higher than those computed by
the spectral models. Cheynet et al. (2018), however, found
good agreement between exponential-coherence models and
observations under near-neutral conditions at sea for the
streamwise component.

Coherence is also studied in the context of dynamic wake
meandering. It has been reported that immersing wind tur-
bines in a flow field created by synthetic turbulence genera-
tors (e.g., TurbSim; Kelley and Jonkman, 2005) can result
in significantly different wake meandering behavior (Wise
and Bachynski, 2019, 2020; Shaler et al., 2019). The dif-
ferences in wake meandering appear when the flow field
is created by applying coherence only in the streamwise
component, rather than in all components, when compared
to wake characteristics obtained using turbulence-resolving
large-eddy simulation tools. Some of these differences in-
clude negligible lateral wake meandering in cases without the
application of lateral and vertical coherence, estimated from
tracking the center of the wake laterally. As mentioned, the
IEC standard only specifies the coherence of the streamwise
component in the vertical and lateral directions. The scales of
interest for dynamic wake meandering are different that those
scales that are known to impact loads and blade fatigue.

Obtaining the field data required to gain a comprehen-
sive picture of the coherence and correlation of the flow can
be challenging – especially with lateral coherence. Meteo-
rological masts are typically deployed in isolation or with
spacing that is much larger than the size of background tur-
bulent structures such that the fluctuations are decorrelated
between the meteorological masts. It is worth noting, how-
ever, that instruments such as sonic anemometers and scan-
ning Doppler lidars have been mounted on bridges in coastal
areas, allowing for a relatively successful study of lateral co-
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herence (Kristensen and Jensen, 1979; Cheynet et al., 2016).
Nonetheless, computational models, especially a turbulence-
resolving large-eddy simulation (LES), are particularly well
suited for the task because data can be collected anywhere in
the flow field at high frequency. Prior work used LES (Sim-
ley et al., 2016; Berg et al., 2016; Lukassen et al., 2018;
Doubrawa et al., 2019; Nybø et al., 2020) to assess coherence
in the flow and to compare with models, and in general it was
found that the buoyancy effects affect shear and turbulence
levels, which has a direct effect on the coherent structures.
Both the Mann and the Kaimal models with Davenport’s ex-
ponential decay model, in their original form as suggested by
the IEC standard, do not explicit account for potential tem-
perature stratification and resulting buoyancy effects present
in the atmosphere.

In this work we employ LES to compute the flow field
within the atmospheric boundary layer and use the generated
data to investigate the correlations and coherence present in
all components of the turbulence and how they vary over time
with varying atmospheric conditions. In particular, the mi-
croscale simulations are performed with mesoscale forcing
so that regional-scale weather variations in the wind speed,
direction, shear, and surface heat flux are introduced into the
microscale domain. The goal is to highlight the additional
information that can be obtained with LES, show how it re-
lates to simple models, and note shortcomings that can ben-
efit from further LES studies.

2 Methodology

2.1 Numerical setup

The simulations are executed using the Simulator for Wind
Farm Applications (SOWFA) (Churchfield et al., 2012), an
LES code designed for atmospheric and wind energy appli-
cations. The simulation is done on a laterally periodic do-
main. The domain extends for 3 km in both horizontal direc-
tions and 1 km vertically and has a uniform grid resolution
of 10 m. The microscale mean profiles of velocity and poten-
tial temperature are driven toward mesoscale mean profiles as
computed by the Weather Research and Forecasting (WRF)
numerical weather prediction tool through a profile assimila-
tion technique (Allaerts et al., 2020). The conditions investi-
gated are given in the next subsection. The code is executed
with second-order-accurate schemes in space and time. The
time step is chosen so that the Courant number does not ex-
ceed 0.75. A turbulence “spin-up” time is considered prior
to the window of interest and ignored in the analysis. A dif-
ferentiating aspect of this work is that the analysis is carried
out on transient background conditions, driven by mesoscale
mean quantities.

We note that the domain extent implicitly limits the maxi-
mum correlation and coherence distance, as well as the max-
imum integral length scale that the simulation is able to cap-
ture. However, investigations with larger domain sizes indi-

Figure 1. Overview of the region around the alpha ventus FINO1
tower. Figure (in German) from Wikimedia Commons, distributed
under a CC BY-SA 3.0 license.

cated that 3 km is well suited for the flow field observed dur-
ing the period of interest.

2.2 Scenario investigated

The focus of this work is a 4 h period in the North Sea off
the German coast near the Netherlands at the FINO1 atmo-
spheric measurement platform (see Fig. 1). The wind during
the period of interest is predominantly from the northwest,
so from the open sea.

The period of interest spans from 01:00 to 05:00 local
time (in the morning) on 16 May 2010. The stability state
over most of the period is slightly convective. We performed
mesoscale-driven LES of the flow in the vicinity of FINO1
during the time period of interest. The overall background
conditions are shown in Fig. 2. While we allow the condi-
tions to change, the period of interest was picked because of
the relatively small change in wind direction and wind speed.
The goal was to have the flow mostly from the offshore en-
vironment, rather than influenced by the nearby land. High-
frequency sonic anemometer data at the FINO1 tower were
available at 40, 60, and 80 m a.s.l. (above sea level) (approx-
imately). Unless otherwise noted, the comparisons with LES
are made using observation data at 80 m a.s.l.

Turbulence intensity levels of the microscale LES fol-
lowed the levels observed in the FINO1 platform well, as
shown in Fig. 2c. A difference in both wind direction and
wind speed can be observed in Fig. 2a and b. The microscale
does not receive any information from the observations but
rather from the mesoscale, which means the microscale will
inherit any errors from the mesoscale, and the microscale
mean quantities will only be as accurate as the mesoscale.
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Figure 2. Mean background conditions during the period of interest compared to observation data and the mesoscale solution used to drive
the microscale LES. (a) Wind speed, (b) wind direction, and (c) turbulence intensity at 80 m and (d) wind shear exponent.

Note that turbulence is not resolved at mesoscale resolutions,
as reflected in Fig. 2c. The mesoscale coupling provides in-
formation on mean profiles, resulting in similar shear his-
tories. Shear information is not explicitly passed from the
mesoscale to the microscale. The shear exponent value in
Fig. 2d was calculated using a logarithmic curve fit on the
bottom 500 m of the boundary layer. Nonetheless, by allow-
ing for the shear levels to fluctuate from that implicitly given
by the mesoscale, the microscale was able to capture the ap-
propriate level of turbulence of that captured by instruments
at sea.

The velocity spectra, in Fig. 3, show the differences be-
tween the small-scale turbulence resolved by LES and that
measured at FINO1 for the first hour and the last hour of
the period of interest. There is a good match between LES
and observation data before the drop-off in resolved content
by LES. The drop-off in energy for the LES occurs between
0.1 and 0.2 Hz, a result of its inability to capture such fre-
quencies due to grid size limitations and mean wind speeds
over the interval. The energy content of the LES is slightly
higher than the content of the observation dataset for the last
hour of the period at the low-frequency range, possibly a re-
sult of a delay of the LES turbulence to react to the slight
ramp-down event that started at 04:00Z (Fig. 2a), thus still
exhibiting higher levels of turbulence intensity (Fig. 2c). The
velocity spectra are obtained using Welch’s algorithm with
an overlapping (50 %) 15 min Hamming window. No signif-
icant differences were observed by using a Hann window.

2.3 Turbulence spatial correlation

The correlation coefficient Rij between two points x and x+

r , where r is a separation vector, is given by

Rij (x,r, t)=

〈
u2
jui(x+ r, t)uj (x, t)

〉
√〈
u2
ju

2
i (x+ r, t)

〉√〈
u2
j (x, t)

〉 , (2)

where ui denotes the zero-mean turbulent fluctuations and
the angled brackets denote an ensemble average of real-
izations. Here we focus on autocorrelations (i.e., i = j ).
Throughout this work, we define u= u1 as the streamwise
component, v = u2 as the cross-stream component, and w =
u3 as the vertical component of the flow. For clarity, when
speaking of velocity components, we refer to “streamwise”
and “cross-stream” components. However, when speaking of
the directionality of separation vector, we refer to “along-
wind” and “crosswind” directions.

The idea is to perform two-point correlation computations
with respect to a fixed point. We vary the second point so
that the turbulence over a plane covering the computational
domain is correlated with the fixed point. The result is a map
of the correlation coefficients over this plane. This is use-
ful in assessing how the turbulence evolves and allows us to
obtain correlation coefficients between two points arbitrarily
spaced apart. For a horizontal plane at reference height (e.g.,
80 m), we start by saving horizontal slices at 1 Hz from the
LES for postprocessing. Picking the central point as the ref-
erence point (r = 0), we expect (by definition) the correlation
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Figure 3. Comparison of power spectra of the three turbulence components (a, d) u, (b, e) v, and (c, f)w for (a–c) the first hour and (d–f) the
last hour of the period of interest at 80 m using 15 min Hamming windows.

to be exactly 1 at this central point with an exponential de-
cay with increasing r. The domain size allows us to perform
correlations with |r| ≤ 1.5 km.

The procedure is to apply Eq. (2) to all points on the
plane with respect to a central point for each snapshot.
Time averaging replaces ensemble averaging, but because the
mesoscale conditions vary in time, a temporal average over
the whole interval is not performed. Instead, shorter time-
averaging windows are used over which mesoscale condi-
tions change relatively little. From a study on window size
and overlap, we found that a 15 min window with 10 min
overlap provided (i) enough data for smooth converged statis-
tics, (ii) a short enough interval such that mean conditions
did not change appreciably, and (iii) a large enough inter-
val to accommodate large timescale features. A goal of this
analysis is to see how the correlation coefficients change with
evolving conditions and not necessarily to capture short, in-
stantaneous transients.

It is important to highlight the assumptions and limitations
so far. In choosing the grid resolution, a bound on the small-
est resolved scales is imposed, which for this type of numer-
ical method is 4–5 times the grid resolution (Pope, 2001,
p. 574). In choosing a domain extent, a limit on the largest
scales is also imposed. Domain sizes, though, are usually
much larger than the largest scales of interest. We assume
horizontal homogeneity due to the choice of periodic lateral
boundaries on the case setup.

2.4 Turbulence coherence over arbitrary separations

Knowing the integral length scales present in the flow, we
compute a related but different statistic, coherence, with sep-
aration distances on the same order of magnitude. Here we
focus on coherence magnitude, which we will simply refer
to as “coherence”. It is the normalization of the magnitude of
the cross-spectra of velocity fluctuations. In other words, it
describes the correlation between two time series as a func-

tion of frequency but does not give information about the
phase. The square of coherence magnitude between two sig-
nals i and j is defined as

γ 2
ij (f )=

∣∣Sij (f )
∣∣2

Sii(f )Sjj (f )
, (3)

where Sii and Sjj are the power spectral density of signals i
and j and Sij is the cross-power spectral density between i
and j . The two signals are of individual components of the
three-dimensional velocity vector U = (u,v,w) and are often
given in terms of along-wind, crosswind, or vertical separa-
tion distance δ. The type of coherence is given by the di-
rection of the separation. For instance, the along-wind co-
herence of the streamwise component is given by γ 2

uu,long,
where the two time series are of streamwise velocity at two
locations separated by distance δ in the along-wind direction.

Coherence and correlation give similar information, but
they differ in a few ways. Correlation shows how two quan-
tities are related in physical space or time and can vary
from−1 to 1. For example, if two sinusoidal signals are iden-
tical in amplitude and frequency but have a phase lag at a
certain separation distance, the correlation can lie anywhere
between −1 and 1 depending on the phasing. For instance,
for a separation that aligns maxima with minima, the corre-
lation will become anticorrelated with a value of −1. On the
other hand, coherence magnitude ranges from 0 to 1 and is
not as sensitive to the phase lag because it uses cross-spectra
magnitude. Two identical but phase-lagged sinusoidal signals
will have a coherence of 1 at only the frequency of the sine
wave (the other frequencies would be undefined due to zero
spectral information and the definition, Eq. 3). Although this
work focuses on coherence magnitude, one can also exam-
ine the real and imaginary part of the coherence, which are
termed “co-coherence” and “quad-coherence”, respectively.
While coherence magnitude is a measure of the consistency
of a phase relationship in the data, it does not have informa-
tion on what that phase relationship is – such information can
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be obtained by individual examination of co-coherence and
quad-coherence separately.

The Kaimal spectrum model with the exponential decay
coherence model, suggested by the IEC standards, is only
defined in the crosswind and vertical directions. An improve-
ment to Davenport’s exponential model given in Eq. (1),
Kaimal’s model introduces an additional term that is a func-
tion of the separation distance δ and a coherence scale pa-
rameter Lc. For the streamwise component of the velocity
at two points, vertically or laterally separated by distance δ,
with mean wind speed U , the coherence model reads

γ 2
uulat,vert

(f,δ)= exp

−a
√(

f δ

U

)2

+

(
bδ

Lc

)2
 , (4)

where a and b are tuning parameters. The IEC standards rec-
ommend a = 12 and b = 0.12. Lc is given as 8.131, where
31 is a longitudinal scale parameter constant at 42 m for hub
heights above 60 m.

Another common model for coherence adopted by the IEC
guidelines is the Mann (1998) model. Both the Kaimal and
Mann models are based on spectral methods. While the Mann
model is based more on physics and is a function of param-
eters used to define the spectral tensor, the Kaimal model is
based more on empirical formulations and less on physics.
While they are computationally inexpensive and useful in the
design process, they have two main limitations. First, in some
cases, when the flow field as computed by these models is
used to drive load calculations, the results can be different
from one model to another (Eliassen and Obhrai, 2016), re-
sulting in inconsistencies in load estimations. A second lim-
itation of the models is that atmospheric stability is not con-
sidered, as neutral stratification provided a sufficient descrip-
tion of the turbulence for load estimation purposes at the time
the models were developed.

To add longitudinal separation and to overcome the atmo-
spheric stability limitation, studies have proposed more com-
plex models for longitudinal coherence. For example, adding
longitudinal separation, Simley and Pao (2015) suggested

γ 2
uulong

(f,δ)= exp

−(a1
σ

U
+ a2

)√√√√(f δ
U

)2

+

(
b1δ

L
b2
c

)2
, (5)

where σ is the standard deviation of the wind speed; Lc is
a measure of the integral length scale; and a1, a2, b1, and
b2 are empirical constants adjusted using LES. In general, a
number of exponential forms of the correlation decay have
been proposed. For more information, the interested reader
should see the review by Martin et al. (2015).

As mentioned, an accurate modeling of coherence is an
important task. An increase in coherence has been shown
to increase the loads (Eliassen et al., 2015). The study of
wind-induced response of wind turbines can be traced back
to Davenport (1962) with the development of the buffeting

theory, which allowed for coherence and one-point velocity
spectra to be used to predict the dynamic response of wind-
sensitive slender structures. Nowadays, more complex sim-
ulation tools for wind energy applications such as load es-
timation and thus design of wind turbines often follow IEC
standards, which suggest Eq. (4) for the streamwise velocity,
thus neglecting the other components as well as the longitu-
dinal separations. Prior work focused on observation data has
investigated other components in other separations (Saranya-
soontorn et al., 2004).

The estimation procedure for coherence and some results
are presented in Sect. 3.2. As shown earlier in Fig. 3, the
highest frequency properly resolved by the LES given the
grid resolution is approximately 10−1 Hz. Due to this rec-
ognized inability of our current setup to capture higher-
frequency phenomena, our focus will be at the low-frequency
range of f < 0.15 Hz, which corresponds to approximately
the rotational frequency of large offshore wind turbines.

3 Results

3.1 Correlation results

Performing the steps outlined in Sect. 2.3 on the whole do-
main results in few realizations and noisy results. Keeping
the largest scales of interest in mind, we leverage horizon-
tal homogeneity and use spatial averaging as ensemble av-
erages. Thus we split the domain into smaller subdomains
and perform local spatial-correlation analysis. For this sub-
domain analysis, the correlation between all locations within
a subdomain and its central point is established. Figure 4
shows the correlations for the three components of turbu-
lence on a 3× 3 grid of 1× 1 km subdomains. This strategy
allows for more averaging and smoother statistics; however,
it imposes a tighter limit on the largest scales. The afore-
mentioned temporal windowing imposes another limit on the
largest timescale captured. The limit on the timescale is not
relevant for this problem, but it is worth mentioning. Fig-
ure 4 shows an average over the whole 4 h period of inter-
est – the intent of this figure is to illustrate the process and
not directly obtain data from it. The general wind direction
(roughly southeast; see Fig. 2) can be qualitatively observed
in the correlation of the streamwise component.

The spatial average of the subdomains shown in Fig. 4 can
be obtained for each 15 min window separately. A single in-
terval is shown next in Fig. 5 for illustration purposes. Note
the axis limits and overall domain size after the ensemble av-
erage. The figure includes arrows indicating the mean wind
direction over the interval. From this point forward, all re-
sults are related to the correlation analysis performed using
the 3× 3 grid of 1× 1 km subdomains.

The results of this analysis show what is often intuitive by
looking at typical boundary layer flow fields: the turbulent
structure of the streamwise component of the turbulence is
“stretched” in the along-wind direction, whereas structures
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Figure 4. Contour plots of spatial correlation for the three turbulence components for the split-domain approach. Nine domains organized
in a 3× 3 grid are used. The goal is to have more realizations for an ensemble average. For each panel, a spatial average is shown in Fig. 5.
The general wind direction, towards the southeast, can be observed in the streamwise component.

Figure 5. Contour plots of the spatio-temporal average of spatial correlation for the three turbulence components for the 15 min interval
starting at 2:40Z. The interval-mean along-wind and crosswind directions are indicated by the black and magenta arrows, respectively. The
spatial correlation of the streamwise component is stretched in the direction of the wind (mostly towards the southeast, black arrow), while
other components show no clear preferential direction.

formed by the other components are much more isotropic.
The behavior of the streamwise component is very different
in the crosswind versus the along-wind direction: within a
relatively short distance, it becomes decorrelated and then
slightly anticorrelated, meaning that one should expect alter-
nating patterns of along-wind elongated structures contain-
ing streamwise velocity excesses arranged next to deficits.
This spatio-temporal correlation analysis shows similar re-
sults to that of Lukassen et al. (2018).

Because we compute autocorrelation maps for each over-
lapping time window within the analysis period, we can ob-
serve how turbulence autocorrelation varies as flow condi-
tions change. Although the contour maps are very informa-
tive, we sought ways to reduce the information they contain
to quantities of interest that we can track versus time. As
a first step, for each 1 Hz snapshot of each 15 min interval,
we sample autocorrelation coefficient values from the con-
tour maps over along-wind- and crosswind-oriented lines that
pass through the central point (see black and magenta arrows
in Fig. 5, which indicate the direction of these lines). These
lines are constant for each interval and represent the mean
wind direction within that interval. The resulting curves for
each snapshot are averaged in time and represent the corre-
lation coefficient in the along-wind and crosswind direction
of that interval. The resulting curves of correlation coeffi-

cients versus along-wind or crosswind distance are shown in
Fig. 6 for the streamwise component of the flow. In this fig-
ure, each light-blue curve comes from the ensemble average
at each time interval of 15 min. The red curve is the average
of all the individual 15 min curves. The red curve is com-
puted in order to establish a more direct comparison with
observation data over the entire period of interest, as will be
discussed later. By definition in Eq. (2), the correlation coef-
ficients are 1 at zero separation. The more gradual decay of
the correlation coefficient with along-wind versus crosswind
distance is clear. The autocorrelation of streamwise velocity
fluctuation drops to effectively 0 within 150 m in the cross-
stream direction. However, in the along-wind direction, the
correlation coefficient decay to 0 is not fully captured over
the half-length of the subdomain, even though the decorre-
lation length scale can be seen to be around 400–450 m for
some of the time intervals.

In the above spatial autocorrelation analysis, we exam-
ined spatial correlations where the separation vector is purely
horizontal. The FINO1 data investigated come from a sin-
gle meteorological mast that only contains vertical spacings
between measurement points. To this end, we compute tem-
poral autocorrelations of the streamwise component of the
observation data in order to compare it to the spatial correla-
tions, using
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Figure 6. Correlation coefficients from Fig. 5 in the along-wind and crosswind directions for the streamwise component. Each blue curve
represents a 15 min interval, whereas the red curve is the mean over the time period of interest.

Rij (x,τ )=

〈
u2
jui (x, t0+ τ )uj (x, t0)

〉
√〈
u2
ju

2
i (x, t0+ τ )

〉√〈
u2
j (x, t0)

〉 , (6)

where τ is a separation in time. We transform between spatial
separation and temporal separation in the along-wind direc-
tion by assuming the turbulence is frozen and advecting with
the mean wind (Taylor, 1938).

To test the frozen turbulence assumption more definitively,
we compute and compare the temporal correlation in the field
and LES data. The results are shown in Fig. 7. Figure 7a
shows temporal autocorrelations of the streamwise compo-
nent of the velocity of the observed data, obtained at 80 m. In
Fig. 7a–c, each lightly shaded curve represents the correla-
tions of a 15 min interval, whereas the darkly shaded curves
are the average of the light curves, representing the aver-
age of the full 4 h period of interest. Note that in Fig. 7a,
the individual curves are rather noisy. Therefore, to obtain
some sort of ensemble average, we perform an average over
the whole period. This average, indicated by the dark shade,
can be compared with LES results. In Fig. 7b, we show the
temporal autocorrelations of the streamwise velocity compo-
nents collected from nine virtual meteorological masts in the
LES, so this is directly analogous to the observation results
from Fig. 7a. In Fig. 7c, we show the correlation presented
prior in Fig. 6 along the mean wind direction, converted to
the time domain using Taylor’s hypothesis. Because of the
spatial subdomain size and the mean advection speed, the
maximum time separation computed is about 36 s. The reach
of this curve is a direct result of splitting the domain. Finally,
Fig. 7d shows the mean results (dark shade) of Fig. 7a–c to-
gether for ease of comparison. Based on this exercise, not-
ing the good match between the red and green curves, we
conclude that frozen turbulence appears to be a reasonable
assumption and that it can be used to transform between spa-
tial and temporal correlations. We note a mismatch between
curves based on observed data versus LES in low values of
time separation (from 0 to 10 s). This mismatch is possibly
caused by the inability of the LES to resolve turbulence be-
low its spatial and temporal filter scale.

The integral length scales of the streamwise component
in the along-wind direction Lxu and crosswind direction Lyu
are obtained by integration of the spatial-correlation curves
presented in Fig. 6. The results are shown in Fig. 8a, where
integration is carried out until the correlation drops to 0.05
(value suggested by Flay and Stevenson, 1988, and used by
others such as Tian et al., 2018). The same process is per-
formed with the integration of the temporal-autocorrelation
curves to obtain the integral timescale. Again, we may use
Taylor’s assumption to transform between the integral time
and length scales, which was used to produce Fig. 8b. In
canonical LES studies, stationary mesoscale conditions are
usually the focus. Here, with mesoscale coupling and vary-
ing mesoscale conditions, we are able to study the effect
of mesoscale transients on turbulence. In the conditions in-
vestigated in this work and as shown in Fig. 8, the integral
length scale in the along-wind direction Lxu mostly fluctuates
between 110 and 150 m. In comparison, the integral length
scale of the streamwise component in the crosswind direc-
tion Lyu is about 3 to 4 times smaller than in the along-wind
direction.

3.2 Coherence results

For vertically separated pairs of turbulence fluctuations, we
sampled a vertical plane along the domain. For longitudinal
and lateral separations, we use the same horizontal plane as
the prior analysis. Interpolation is not needed for the verti-
cally separated coherence, but it is needed within grid points
for longitudinal and lateral separation. It is challenging to
have grid points that are aligned with the wind direction be-
cause of the changing wind conditions.

The time series during the period of interest is not station-
ary; thus the spectra and subsequently the coherences are cal-
culated using smaller intervals. The sample results shown in
this section were obtained with 1 h of data, using 50 % over-
lapping 15 min windows multiplied by the Hann function.

Figure 9 shows the curves obtained when focusing on the
low-frequency range for the first hour of the interval of in-
terest. There is no recommendation by the IEC standards
for longitudinally separated points, so comparisons with the
Simley and Pao (2015) model are presented for the stream-
wise velocity component, where it is defined.
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Figure 7. Comparison of spatial correlation and temporal autocorrelation of the streamwise component of the velocity from LES with
field data. Each lightly shaded curve represents one 15 min interval; the dark-shaded curve is the average of the light curves. (a) Temporal
autocorrelation of single-mast observation data obtained at 80 m. (b) Temporal autocorrelation of nine virtual meteorological masts from
LES. (c) Spatial-correlation results from LES transformed to the time domain. (d) Comparison of the mean curves of each panel.

Figure 8. Integral scales variation in the 4 h period of interest from LES. (a) Integral length scale of the streamwise component of the
turbulence u for the along-wind direction (Lxu) and crosswind direction (Lyu); (b) along-wind integral timescale calculated separately from
spatial-correlation and temporal-autocorrelation data.

All three components show a high value of coherence at
a relatively wide range of frequencies. The results match the
stability state correction proposed by Simley and Pao (2015)
well. The results shown for the streamwise component of
longitudinally separated points are also similar to those ob-
tained using lidar data (Debnath et al., 2020), where, for a
case with about 140 m length scale, the drop-off occurred at
around 0.1–0.2 Hz. No model is available for the other com-
ponents.

Coherence of longitudinally separated points is not as im-
portant as laterally and vertically separated points from a
wind turbine design point of view. While the high levels of
coherence in the longitudinal direction are a well-known fact,
it is still nonetheless relevant to the quantification of the lon-
gitudinal coherence. Performing this analysis on longitudi-
nal separation is relevant in the context of wind turbine con-
trol, where control strategies based on inflow preview require
knowledge of the evolution of the turbulence in the longitu-
dinal direction, as it approaches the rotor. Some studies have
looked exclusively at longitudinal coherence with controls,
rather than loads, in mind (see Schlipf et al., 2013, 2015, as
well as the aforementioned studies of Simley and Pao, 2015,
and Debnath et al., 2020).

Coherence of the components of the turbulence separated
laterally are shown in Fig. 10 for selected separation dis-

tances. Where Kaimal’s model with Davenport’s exponen-
tial decay is defined, comparisons are provided. The IEC-
recommended model overestimates the coherence in the fre-
quency range investigated. The coherence values for later-
ally separated points (Fig. 10) are significantly lower than
those encountered in longitudinally separated points (Fig. 9),
as expected. The lateral, as well as vertical, coherence may
impact turbine loads, especially as wind turbine rotors be-
come larger. For lower lateral separation values, the coher-
ence drops at very low frequencies. In fact, it has been long
known that the coherence does not approach 1 as frequencies
approach 0 (Kristensen and Jensen, 1979; Saranyasoontorn
et al., 2004). The results are consistent with those found by
Bardal and Sætran (2016), where it was noted that given the
same separation, lateral coherence is “significantly” smaller
than longitudinal coherence. At higher frequencies, the com-
puted curves do not converge to 0, which stems from the fact
that the coherence definition (Eq. 3) used here is a biased
estimator (Kristensen and Kirkegaard, 1986; Mann, 1994),
although the lack of convergence towards 0 has also been at-
tributed to numerical noise in the work of Shaler et al. (2019).

The coherence for separations in the vertical direction is
shown next in Fig. 11, with comparisons of Kaimal’s spec-
trum with Davenport’s exponential-coherence model. In this
case, the separation value is given relative to a measurement
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Figure 9. Coherence of the three turbulence components (a) u, (b) v, and (c) w separated longitudinally. Also shown is Simley’s model
(Eq. 5). Note the logarithmic scale of the x axis.

Figure 10. Coherence of the three turbulence components (a) u, (b) v, and (c) w separated laterally. Dash-dotted curves shown are obtained
from the IEC-recommended Kaimal spectrum with the exponential-coherence model, where defined.

point at 80 m. We acknowledge that 80 m is too low for typ-
ical and next-generation offshore wind turbine hub heights
– this reference point was chosen due to the data availabil-
ity of the FINO1 research platform equipment. We use the
term “negative separation” to indicate vertical separation di-
rectionality. Although using a negative-separation distance
in a coherence model would be nonphysical, we emphasize
that here negative separation means that one measurement
point is below the reference point located at 80 m. The other
curves presented with positive separation means they were
computed with the pair of points consisting of the reference
point at 80 m and the second point being above the refer-
ence by the separation distance. The plots show a faster de-
cay in the coherence of the streamwise component than in
the other components, as well as a slight overprediction by
Kaimal’s spectrum with the exponential-coherence model.
The vertical component decays the slowest with vertical sep-
aration. The results are consistent with prior investigations
by Saranyasoontorn et al. (2004) on much smaller separation
distances. A small asymmetry between positive and negative
separations is observed and can be a result of the fact that the
largest eddies present an increase with height. Interestingly,
for the vertical component, the negative separations result
in stronger coherence decay with increasing frequency than
the corresponding positive separations. Comparing the same
separation magnitudes (the pairs of separations 20 and −20
and 40 and −40), we note an asymmetry effect that appears
to increase as the separation distance gets larger. This asym-
metry effect has been first noted and modeled in the work of
Bowen et al. (1983) and further investigated and improved
in Cheynet (2018), which essentially takes the two heights

into account, rather than just a separation distance, while also
accounting for the nonunity at zero frequency. We note that
curves related to 20 m separation distance are shown for il-
lustration and should not be deemed well resolved, as such
separation includes only two LES grid points, and, because
of that, we isolate the curves related to a separation of 40 m
in Fig. 12 for ease of comparison. Finally, the vertical coher-
ence of the v and w components does not approach 1 as the
frequency tends to 0. In similar observations, Naito (1983)
attributed the cause to be due to the fact that these com-
ponents rarely include long-period fluctuations in the sur-
face layer. Nonetheless, as mentioned before, Kristensen and
Jensen (1979) point out that the coherence is not unity be-
cause the separation distance is not negligible when com-
pared to typical length scales of turbulence.

One interesting aspect of the IEC standard when it
comes to recommendations of the Kaimal spectrum with the
exponential-coherence model is that no distinction is made
between lateral and vertical coherences. This is an impor-
tant aspect that is not often investigated by the literature. We
show in Fig. 12 only the curves related to a separation of
40 m in both the lateral and vertical direction, alongside the
Kaimal spectrum with the exponential-coherence model pre-
diction for the same separation. The intention here is to high-
light that the levels of coherence can be substantially differ-
ent depending on the direction and component of the flow.
As we have previously mentioned, coherences in the v and
w components are needed for realistic wake meandering pre-
dictions.

To assess if the LES results are within what one would
expect, we compare two of the vertical separation curves to
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Figure 11. Coherence of the three turbulence components (a) u, (b) v, and (c)w separated vertically with respect to 80 m. Negative separation
means that one of the points is below 80 m. Note the asymmetry shown by the same separation in different directions. Dash-dotted curves
shown are obtained from the IEC-recommended Kaimal spectrum with the exponential-coherence model, where defined.

Figure 12. Comparison of lateral and vertical coherences related to separations of 40 m. Negative separation means one point is below the
reference point located at 80 m, while positive separation means the second point is above the reference point.

the observed data. The observation data were available at
three heights, thus allowing for two different separation dis-
tances with respect to the reference height of 80 m to be an-
alyzed. Figure 13 shows the result. Note that the prior com-
ment about 20 m separation also applies here, as it consti-
tutes only two LES grid points and thus results encompass
a greater uncertainty. For the streamwise component there is
a good match, with the observation data following the LES
much better than Kaimal’s model. The rather noisy nature
of the observations curve is due to single-mast data. For the
cross-stream and vertical components, the general trends and
decay rate are also captured. We point out, nonetheless, that
a model based on LES data could provide more informa-
tion than no model at all. The present study suggests that,
if considering vertical coherence over large separation dis-
tances, it might be important to consider the aforementioned
asymmetry effect. With large separation distances, relevant
for tall, large offshore wind turbines, the overall distance to
the sea (or ground) level can lead to different characteristics
in coherence (as shown in Fig. 11c). For example, the co-
herence between points at 40 and 120 m a.s.l. is unlikely to
be the same as the coherence between points located at 120
and 200 m a.s.l., even though they are separated by the same
distance.

An advantage of using large-eddy simulation to obtain co-
herence is that we are able to perform the same analysis for
an arbitrary separation distance. Some curves obtained at dis-
crete separation values have been presented, but in Fig. 14 we
show a contour plot of the same quantities for all separation
distances. Although this figure also shows very small sepa-
rations, we remind the reader that the values in such regions

are not well resolved because the finest computational grid
resolution is 10 m. The goal here is to point out an advan-
tage of numerical models over field observations in that data
can be sampled at virtually any location. Without that abil-
ity, we could not create the complete maps of coherence and
correlations shown in Figs. 5 and 14.

Figure 14 summarizes the importance of modeling all
three components of the turbulence. Perhaps not surprisingly,
the highest coherence occurs for the component of turbulence
in the same direction as the separation direction (diagonal
panels). The coherence of large separation distances does not
approach 1 as the frequency tends to 0, as reported in the lit-
erature (e.g., Doubrawa et al., 2019).

3.3 Cross-coherence

We calculate cross-coherences uv, uw, and vw, with each
obtained from two distinct components of the turbulence at
zero separation (same point). For the calculation of cross-
coherences shown here, we select points that lie on the plane
80 m above ground level and perform the computation. For
each point, cross-coherences are calculated, and then an en-
semble average is computed using all the individual cross-
coherences. The results for the first hour of the interval are
shown in Fig. 15.

Cross-coherence is not usually considered in preliminary
design and load analysis of new wind turbines. The isotropic
von Kármán model (von Kármán, 1948) considers all of
them to be 0, due to the isotropy assumptions and lack of
shear consideration. The Mann uniform shear model consid-
ers only uw coherence to be a nonzero value. This is what
we observe in the cross-coherence shown in Fig. 15. The
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Figure 13. Comparison of coherence related to observed data for three turbulence components (a) u, (b) v, and (c) w of the wind speed
separated vertically with respect to 80 m. Negative separation means one point is below the reference point located at 80 m, while positive
separation means the second point is above the reference point. Dash-dotted curves shown are obtained from the IEC-recommended Kaimal
spectrum with the exponential-coherence model, where defined.

Figure 14. Contour of the coherence for all components of the turbulence, along all three separation directions, over a continuous range of
separation distances. The diagonal panes are the component in the same direction of the separation.

Figure 15. Mean cross-coherence for points at a plane at 80 m.

largest cross-coherence is found between the streamwise and
vertical components, while significant correlation exists nei-
ther between the streamwise and cross-stream turbulent com-
ponents nor between the cross-stream and vertical compo-
nents (ignoring numerical noise). These findings are consis-
tent with those from Saranyasoontorn et al. (2004) and the
aforementioned study by Mann (1994). The uw coherence is

related to the friction velocity and, therefore, affected by the
wind shear. This study adds to the study of Saranyasoontorn
et al. (2004) by pointing out that it might be relevant to ac-
count for the effect of uw coherence when generating inflow
with the goal of load analysis.

4 Discussion

The analysis procedure outlined in this study is general and
can be applied to any LES solution of the atmospheric bound-
ary layer. The curves obtained through the analysis can then
be used to inform a synthetic turbulence generator such as
TurbSim (Kelley and Jonkman, 2005). TurbSim has the op-
tion to generate synthetic inflow following the Kaimal spec-
trum model with the exponential decay coherence, options
that may be readily extended to use coherence characteristics
obtained from a high-fidelity solution. Future work should
further study the variation in coherence curves of each com-
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ponent for any arbitrary separation distance given varying at-
mospheric conditions, which will produce a set of coherence
curves for each component and separation direction. The ad-
ditional curves can be used to derive curves for intermediate
conditions that were not explicitly simulated. Ultimately, this
would enable LES-informed time series of turbulence to be
generated for any condition using synthetic turbulence gen-
erators. Prior studies such as Simley and Pao (2015) looked
at canonical stable and unstable conditions in an LES setting,
while others such as Cheynet (2018) (and references therein)
looked at continuous data for an offshore case but only for
a limited set of separation distances and for the streamwise
component. More accurate time series of the turbulence can
improve the representation of design load conditions that are
used for load estimations in lower-fidelity wind turbine de-
sign codes. The ultimate impact is the ability to obtain less
conservative, site-specific designs, relying less on simplified
models like that of Kaimal with Davenport exponential de-
cay, one of the suggested models the current IEC standards
is based on. It is also worth noting that wind turbine design
is not the only discipline that can benefit from more accu-
rate coherence estimations. Longitudinal and lateral coher-
ence are relevant in the control of wind turbines and wind
farms. Longitudinal coherence affects feed-forward control
(e.g., Simley and Pao, 2015; Schlipf et al., 2013; Debnath
et al., 2020), while lateral coherence is important for dynamic
wake meandering studies and can affect the efficacy of wake
tracking and wake steering (e.g., Wise and Bachynski, 2020;
Shaler et al., 2019).

The coherence magnitude is given by the cross-spectra
normalized by the autospectra of the individual components
of the turbulence. The coupled effects of the different com-
ponents of the turbulence are expressed in the cross-spectra
term. From a statistical perspective, the information con-
tained in the coherence fully defines two-point, second-order
statistics of random fields. Therefore, all the second-order
dynamic properties are contained in these quantities and can
be used to generate a field that is consistent with those prop-
erties. We emphasize that these are the quantities that dom-
inate the dynamic response of a system like a wind turbine
rotor.

The asymmetry aspect inherent to the study of vertical
coherence is captured in this work, adding to the body of
literature. In close relationship with the prior points raised
in this section, the variation in such an asymmetry effect
given different stability states, as well as how that further
affects the loads and fatigue characteristics, is an important
topic. While out of scope of the current analysis, we note that
the mesoscale coupled LES setups presented here are more
realistic than the standard “canonical” setups and enable
the investigation of coherence effects in site- and weather-
condition-specific situations.

It is also important to note the grid spacing used in this
work and the final applicability of such a model on modern
large, flexible rotors. The 10 m resolution limits the scale of

the resolved turbulence and frequency of the computed co-
herence. For instance, resolving turbulent structures at 20 m
separation can be relevant near the tip of the blade, and, at
the current grid spacing, 20 m separation results are not reli-
able. The general analysis applied to simulations with higher
spatial resolution would allow for much more detailed inves-
tigations of the coherence in all three components, informing
both how we model and measure turbulence. This realization
certainly drives the authors’ decision-making about LES res-
olution in their future work.

A higher spatial resolution would also push the cutoff
frequency higher than the 0.15 Hz shown here and provide
insight into higher-frequency, smaller-scale turbulence. The
procedure is also suitable for modeling turbine–turbine inter-
actions in a wind farm setting. For example, considering a
row of turbines, one could process the data following the co-
herence analysis presented here and come up with simple an-
alytical models that could potentially include the wake of tur-
bines within the farm. Ultimately, such models can be used
within other simulation tools for loads and fatigue. Some
of these other simulation tools are lower in fidelity than an
LES approach and run much faster, allowing for efficient
and robust iterative design of wind turbines. Some of these
tools include OpenFAST and FAST.Farm (Jonkman et al.,
2017). Flow fields generated using stochastic tools with LES-
informed coherence characteristics can be further used for
wind farm analysis in, e.g., FAST.Farm, which would ulti-
mately result in better estimates of loads and wind turbine
array efficiency.

Another interesting application of the analysis routine out-
lined is its use in the assessment of whether or not the re-
solved turbulence has reached a “fully developed” stage.
Consider the common situation in which a wind farm LES
is set up with inflow without grid-scale-resolved turbulence.
For example, some researchers apply inflow to their LES
that comes from a mesoscale weather model which does not
explicitly resolve turbulence. Such an LES setup exhibits a
fetch region, in which both resolved and modeled turbulent
quantities must undergo a transient to a fully developed state.
The length of this spatial fetch region is often determined
by visual inspection of the flow field and, more quantita-
tively, using power spectral density. The correlation analysis
of streamwise and lateral flow presented here can be used as
another metric to quantify when a fully developed state has
been reached and to help determine the fetch region extent.

5 Concluding remarks

This work highlights the utility of computing turbulence
correlations and coherence using turbulence-resolving LES
data. Coherence of the v and w components along all three
directions does not appear to be negligible, but the Kaimal
model with Davenport’s exponential coherence – the basis
for one of the models suggested by the IEC standards – is
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only defined for the u component. This missing information
that is essential to creating coherent synthetic turbulence may
be filled in by knowledge gained through LES.

We showed that evolving conditions can change the way
the flow is presented in terms of both integral scales and co-
herence levels. For the period investigated, when the wind
shear remained relatively constant with an exponent of 0.1–
0.15, our analysis indicates that frozen turbulence appears
to be a suitable assumption when correlations are the main
metric under investigation. The coherence decay, however,
is faster in some components and directions than others. This
suggests that given high coherence for eddies of certain sizes,
the turbulence can be considered frozen, while the same may
not be true for eddy sizes corresponding to values of low co-
herence. The variation in coherence decay among the dif-
ferent directions and components of the wind speed can be
significant. This is an important aspect of some flows that
may be overlooked by simplified studies where single-point,
first-order metrics (e.g., turbulent kinetic energy) are high-
lighted. A better understanding of the spatial structure of the
turbulence under different conditions can improve turbulence
models that are used for load calculations. A higher confi-
dence in the estimations from such models could result in
better estimates of blade fatigue life. We also note that a more
accurate representation of coherence characteristics is useful
for other areas such as the modeling of wake meandering and
inflow-preview-based control strategies.

This work demonstrates the wealth of additional informa-
tion that can be gathered from a typical atmospheric LES
and outlines the numerical limitations that need to be con-
sidered when using LES data. State-of-the-art atmospheric
simulation capabilities are continuing to evolve, and com-
plex, large scenarios are now more routine practice. Some of
these complex scenarios include realistic weather conditions
such as full diurnal cycles, frontal passages, and low-level
jets, among others. With the rapid adoption of GPU-based
LES codes, we are headed into ever faster, higher-resolution
workflows. Quantities such as correlation, integral scales, co-
herence, and cross-spectral information are not often com-
puted and discussed in typical atmospheric and wind plant
studies. We therefore have an opportunity to develop new in-
sights from site- and condition-specific studies without any
additional computational expense and to advance the state of
the science in characterizing the atmospheric boundary layer
and modeling turbulence.
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