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Abstract. A simple analytical vortex model is presented and used to study an idealized wind turbine rotor in
uniform and sheared inflow, respectively. Our model predicts that 1D momentum theory should be applied locally
when modelling a non-uniformly loaded rotor in a sheared inflow. Hence the maximum local power coefficient
(expressed with respect to the local, upstream velocity) of an ideal rotor is not affected by the presence of shear.
We study the interaction between the wake vorticity generated by the rotor and the wind shear vorticity and find
that their mutual interaction results in no net generation of axial vorticity: the wake effects and the shear effects
exactly cancel each other out. This means that there are no resulting cross-shear-induced velocities and therefore
also no cross-shear deflection of the wake in this model.

1 Introduction

The atmospheric shear layer significantly affects the power
production and loads of wind turbines, and it is therefore es-
sential to accurately model wind turbines under sheared in-
flow. However, recent validation studies by Boorsma et al.
(2023) have shown that state-of-the-art models show some
significant deficiencies in modelling wind turbine perfor-
mances under wind shear conditions. Madsen et al. (2012)
simulated a wind turbine operating under strong-shear condi-
tions using different blade element momentum (BEM)-based
models and compared the results to the ones obtained with
more advanced tools. The authors concluded that for the sim-
ulation of wind turbines under sheared inflow, BEM-based
formulations need to be expressed using local relations; that
is, the local induction factor needs to be defined using the
local free-stream velocity. Furthermore, they compared the
power obtained in sheared and non-sheared inflows for iden-
tical velocities at hub height. The authors found that, in most
cases, a lower power production was obtained in sheared in-
flow compared to cases without shear, in spite of the total
available power in the incoming wind being higher for the
shear case. They explained this with the fact that, over most

of a revolution period, the turbine blades operate away from
their optimal conditions when the inflow is non-uniform.

Shen et al. (2011) and Sezer-Uzol and Uzol (2013) used
free-vortex-wake models to simulate a horizontal axis wind
turbine in sheared inflow and also found that the power out-
put in that case is lower than in uniform inflow.

However, the computational fluid dynamics (CFD) simu-
lations conducted by Zahle and Sørensen (2010), which were
also included in the work by Madsen et al. (2012), indi-
cated that the power production was increased when oper-
ating in shear with a proportion that can be largely explained
by the increase in available power in the upstream flow. By
analysing the local power coefficient (expressed with respect
to the local, upstream velocity), they observed higher effi-
ciencies on the lower half of the rotor, which was explained
by differences in the local angle of attack and tip speed ratio
between the lower and upper half of the rotor. A similar ef-
fect was found in the analytical model by Magnusson (1999)
although he did not investigate the effect of shear on the total
power of the turbine. The simulations by Zahle and Sørensen
(2010) furthermore showed that the flow field upstream of the
rotor had a significant downward velocity component, caus-
ing high-velocity air from higher altitudes to flow through the
lower half of the rotor. It was argued that this phenomenon
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could also play a role in the increased power production at
the lower part of the rotor disc. Another effect observed from
their simulations is the asymmetric development of the wake
due to the interaction of wake rotation and shear, which in
effect led to a different loading on the blade when pointing
to the left than when pointing to the right.

Chamorro and Arndt (2013) derived a simple analytical
correction for the maximum efficiency of an ideal wind tur-
bine rotor in non-uniform inflow which accounts for the non-
uniform velocity through the so-called Boussinesq and Cori-
olis correction factors. Their study revealed that the max-
imum power of a turbine in a typical neutrally stratified
boundary layer may increase by between 1 %–2 %. However,
a closer inspection of their work reveals that the predicted
power increase is in fact exactly equal to the increase in avail-
able power in the inflow. Therefore, they essentially show
that the maximum power coefficient based on the available
power in the incoming wind is unchanged for rotors in shear.

Micallef et al. (2010) modelled a wind turbine wake in
sheared inflow using oblique vortex rings and obtained an an-
alytical solution for the wake deflection. The ring inclination
induces a vertical velocity component, and the model there-
fore predicts an upward deflection of the wake. This result
agrees with predictions obtained using various free-vortex
tools (Sezer-Uzol and Uzol, 2013; Grasso, 2010). Branlard
et al. (2015) showed that the non-physical upward deflection
of the wake observed in earlier studies using vortex meth-
ods is caused by neglecting the vorticity imposed by the in-
flow shear. They proposed both a frozen and an unfrozen in-
flow shear model to avoid the upward deflection. In both ap-
proaches the velocity and vorticity is split into a prescribed
part due to inflow shear and a varying part due to, for exam-
ple, inflow turbulence or wakes. This split of scales is similar
to that proposed by Troldborg et al. (2014) in their simpli-
fied CFD-based model of the atmospheric boundary layer.
In the frozen approach it is then assumed that the additional
vorticity imposed by the varying part does not affect the pre-
scribed field, whereas a full interaction is allowed in the un-
frozen approach. They implemented the two methods in a
vortex particle solver and used them together with an actu-
ator disc model to simulate the wake of turbine in sheared
and turbulent inflow. They showed that the frozen approach
reduced the non-physical upward wake motion and removed
it completely when using the unfrozen approach.

Ramos-García et al. (2018) proposed a prescribed
velocity–vorticity atmospheric boundary layer model and
implemented it in the vortex solver MIRAS. They used the
model together with a lifting line method to simulate the
wake of a wind turbine in different sheared and turbulent in-
flows. Similarly to the work of Branlard et al. (2015), they
showed that by properly accounting for the shear’s contribu-
tion to vortex stretching and convection, the upward deflec-
tion of the wake was removed. Besides performing thorough
investigations of the wake, they also studied the impact of
shear and turbulence on the power and loads. They found

that the power output of the turbine was augmented slightly
with increasing shear.

The above literature review shows that the influence of
wind shear on wind turbine rotors is not fully understood
and that there is no clear consensus on, for example, its im-
pact on power production. In this paper, we derive an analyt-
ical, vortex-based model of an idealized wind turbine rotor
to study its operation in sheared inflow and thereby explain
some of the main mechanisms at play.

2 A simple vortex rotor model including shear

The model presented in the following is an extension of work
presented by Øye (Madsen et al., 2006; Øye, 1990) and Bran-
lard and Gaunaa (2015). They both modelled an idealized
wind turbine with an infinite number of blades located in a
uniform steady inflow. However, whereas Øye assumed the
blade circulation to be uniform, Branlard and Gaunaa (2015)
allowed it to vary radially in their model. In the present treat-
ment, the blade circulation may vary in both the radial and
the azimuthal direction. The loading at each specific position
on the disc is, however, constant in time. For further simpli-
fication, we restrict ourselves to the idealized case where the
rotational speed tends to infinity. Therefore, wake rotational
effects are absent and the situation is similar to the classical
1D momentum results (Betz, 1920; Lanchester, 1915). Two
other simplifying assumptions, which open up for a simple
analytical treatment of the problem, is to neglect wake ex-
pansion and to assume that the convection velocity of the
wake vorticity is constant and determined using the condi-
tions in the far wake. These assumptions were initially pro-
posed by Øye (1990), who showed that the results for a uni-
formly loaded actuator disc in uniform inflow with these as-
sumptions are identical to 1D momentum theory. Finally, we
only consider cases where the incoming wind is parallel to
the axis of rotation and where the rotor blades are straight
and perpendicular to the rotor axis.

2.1 Basic relations

2.1.1 Rotor loads

Our simplified rotor model is derived under the potential-
flow assumptions (incompressible, irrotational and inviscid
flow), which physically corresponds to low Mach numbers
and high Reynolds numbers. We neglect the effects of drag
on the rotor performance.1 The local forces per unit span, at
a given radial location of the blade, are therefore obtained
using the Kutta–Joukowski relation:

f b = ρV rel×0b, (1)

where 0b is the bound circulation distributed and directed
along the blade, V rel is the relative velocity of a blade ele-

1The effect of profile drag can be added as a post-processing
step; see for instance Branlard (2017).
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ment, and ρ is the air density. The notations are illustrated
in Fig. 1. Please note that in the following we use bold italic
letters to represent vectors and non-bold letters to represent
scalar values and length of vectors. Polar coordinates (r,θ,z)
are used, where the unit vector ẑ is normal to the disc and par-
allel to the main flow; r̂ is along the blade; and the tangential
vector, θ̂ , is along the direction of rotation. The relative ve-
locity is formed by the local free-stream velocity, V0, which
may vary in space; the induced velocity, W ; and the relative
rotational speed of the element, −�r , where � is the rotor
rotational velocity and r is the radius of the element. The
relative velocity is V rel = (V0+Wz)ẑ+ (−�r +Wθ )θ̂ , and
the bound circulation associated with one blade is 0b = 0br̂ .
The total bound circulation of the rotor at a given radial lo-
cation of the disc is 0 =Nb0b, where Nb is the number of
blades. The force from all blades on the annulus of the rotor
at radius r and radial width dr is Nbf b(r)dr , and hence the
local forces per unit area on the rotor disc becomes

F =

FrFθ
Fz

= Nbf bdr
2πrdr

=
ρ0�

2π

 0
(V0+Wz)/(�r)

1−Wθ/(�r)

 , (2)

where Fr , Fθ and Fz are the polar components of the local
forces per unit area. Introducing the local thrust coefficient,
Ct, based on local free-stream velocity and local disc load,
we obtain the following expression from the axial-force com-
ponent of Eq. (2):

Ct =
Fz

0.5ρV 2
0
=
0�

πV 2
0

(
1−

Wθ

�r

)
. (3)

Letting the tip speed ratio (�R/V0, where R is the radius
of the disc) go to infinity while retaining a finite value for
the product 0� shows that 0 tends to zero. This corresponds
to tangentially induced velocities, Wθ , also tending to zero
(Branlard and Gaunaa, 2016). Equation (3) therefore reduces
to

Ct =
0�

πV 2
0
. (4)

Since the local power production per area on the rotor is p =
Fθ�r , we get

p =
dP
dA
=
ρ0�

2π
(V0+Wz). (5)

The local power coefficient is obtained from Eq. (5):

Cp =
p

0.5ρV 3
0
=
0�

πV 2
0

(
1+

Wz

V0

)
. (6)

In terms of the local axial induction factor a =−Wz/V0, we
get by use of Eq. (4)

Cp = Ct(1− a), (7)

which corresponds exactly to classical 1D momentum the-
ory (Glauert, 1963).

Figure 1. Cross-section of blade element showing velocity and
force vectors. The blade is pointing out of the paper, and the consid-
ered cross-section is located at the origin of the coordinate system.

In the case where the bound circulation is allowed to vary
not only as a function of the radius, r , but also as a function of
the azimuth location, θ , it is noted that the local thrust coeffi-
cient, Eq. (4), and the local power coefficient, Eq. (6) (and/or
Eq. 7), remain unchanged. In this more general loading case,
it is noted that the physical interpretation of the local quan-
tity 0(r,θ ) is the amount of bound blade/rotor circulation that
passes the rotor disc location (r,θ ) during one revolution of
the rotor. It is noted that the local 0(r,θ ) is not equal to the
azimuthal sum of the bound vortex strengths at radius r: no
azimuthal averaging is required to obtain the local 0(r,θ ).
The general local definition of 0 is used in the remainder of
this work.

2.1.2 Wake vorticity

In order to determine the velocity at the rotor disc and in the
wake of the disc, the strength of the trailed and shed vortex
sheets downstream of the disc is needed. To do this, we will
be using the following result, which is proven in Appendix A
and illustrated in Fig. 2:

For an infinitely long extruded surface of constant-
strength tangential vorticity, γ = d0/dz, the induc-
tion in the direction of the extrusion axis (z) is γ
on the inside and zero on the outside of the sur-
face irrespective of its cross-sectional shape. Due
to the symmetric properties of vortices, the axial
induction at the ending plane of a corresponding
half-infinite extruded vortex surface is γ /2.

According to Helmholtz’s first law, all vortex lines must
form closed loops, extend to infinity or start/end at solid
boundaries. Therefore, any change in bound vorticity in the
radial direction causes vorticity to be trailed into the wake
from the rotor, while variations in the bound vorticity in the
tangential direction result in vorticity shed into the wake (see
Figs. 3 and 4, where a discrete representation of the circu-
lation is used for a finite tip speed ratio to simplify the dis-
cussion). It is shown in Appendix B that if the local bound
vorticity 0 on the blade changes from position i to j on the
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Figure 2. Sketch of velocity field induced by an infinitely long ex-
truded surface of tangential vortex density γ .

rotor, the strength of the trailed and/or shed vorticity is given
by

γi−j =
∂0b

∂z
=
10�

2πż
. (8)

Here 10 denotes the difference in local bound circulation
between locations i and j , and ż is the transport velocity of
the vorticity sheet in the axial direction. From Eq. (8), it is
clear that to determine the strength of the trailed and shed
vortex sheets, the convection velocity ż is needed. This con-
vection velocity is the mean of the velocities on each side
(above and below) of the vortex sheet. In order to simplify
the present model, we adopt a generalization of what was
shown by Øye (1990) to give good results: a vortex sheet
is convected with a constant velocity which is the mean of
the velocity on each side of the sheet far downstream of the
rotor. Given two regions i and j , the convection velocity is
therefore ż= (Vwi +Vwj )/2, where Vwi and Vwj are the ve-
locities on each side of the vorticity sheet far downstream of
the rotor.

Using this assumption together with Eqs. (4) and (8), the
strength of the vorticity sheet released into the wake as a con-
sequence of a local change in loading between two regions i
and j on the disc can be expressed as follows:

γi−j =
(0j −0i)�

2πż
=

CtjV
2
0j −CtiV

2
0i

Vwj +Vwi
, (9)

where Cti and Ctj denote the local thrust coefficient of the
two regions, respectively, and V0i and V0j are their corre-
sponding local free-stream velocities.

3 Application of model

3.1 Uniformly loaded rotor in uniform inflow

In this section, we consider a uniformly loaded rotor in uni-
form inflow. In this case, all the bound vorticity of the disc
is trailed from the edge of the disc, and thus the vorticity re-
leased into the wake is distributed on a cylinder as sketched

in Fig. 5. The strength of the released vorticity sheet, γ0−1, is
determined from Eq. (9) and using the assumptions described
in Sect. 2.1.2:

γ0−1 =
Ct1V

2
01

Vw1 +Vw0

=
CTV

2
∞

2V∞− γ0−1
, (10)

where Ct1 = CT is the thrust coefficient of the disc, V01 =

V∞ is the free-stream velocity and the subscript 0− 1 in-
dicates that the vorticity is released between the wake (re-
gion 1) and the exterior (region 0). Solving for γ0−1 yields

γ0−1 = V∞
(
1−

√
1−CT

)
. (11)

The rotor disc is at the ending plane of a half-infinite vor-
tex cylinder and thus as described in Sect. 2.1.2; the axial ve-
locity here is V∞−γ0−1/2= V∞(1−a), where a is the axial
induction factor. Therefore γ0−1 = 2aV∞, and from Eq. (11),
we get

CT = 4a(1− a), (12)

Vw = V∞− γ0−1 = V∞
√

1−CT = V∞ (1− 2a) , (13)

where Vw is the velocity in the far wake.
Equations (12) and (7) show that the present model and

classical 1D momentum theory give identical results. This
is consistent with the conclusion drawn by Øye (1990) and
shows that the crude approximations made herein are essen-
tially not worse than the assumptions made in 1D momentum
theory.

3.2 Non-uniformly loaded rotor in uniform flow

In this section, we apply the model to a non-uniformly loaded
rotor in uniform flow. For simplicity we consider a case
where two different load levels are present: Ct1 in the lower
half of the rotor disc and Ct2 in the upper half; see Fig. 6. We
start by assuming that the axial velocity in the far wake (and
therefore also at the rotor disc) is constant in each of the two
regions and then later check whether this assumption leads
to inconsistencies.

If the axial velocity in each of the far-wake regions is con-
stant, its value should be as in the uniformly loaded case,
since at the outer edge, the local conditions are as in the uni-
formly loaded case. Thus, the far-wake velocity in each re-
gion would be given by Eq. (13) and the strength of the sheet
released between the two regions would be given by Eq. (9);
i.e.

γ2−1 =
Ct1V

2
∞−Ct2V

2
∞

V∞
√

1−Ct1 +V∞
√

1−Ct2

= V∞
(√

1−Ct2 −
√

1−Ct1
)
. (14)

In order to have a constant velocity in the wake of each zone,
this vortex sheet strength should, according to the behaviour
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Figure 3. (a) Sketch of vorticity trailed from a blade section, when the bound vorticity changes by d0b = 0bj −0bi in the radial direction.
(b) Close view of the blade section showing the definition of d0b.

Figure 4. (a) Sketch of vorticity shed from a blade section, when
the bound vorticity changes in the tangential direction. (b, c) Close
view of the blade section at two successive time instances, showing
the definition of d0b.

Figure 5. Schematic view of a uniformly loaded disc in a uniform
inflow.

Figure 6. Schematic view of a non-uniformly loaded disc in a uni-
form inflow.

of extruded vortex surfaces (Sect. 2.1.2), be equal to the dif-
ference in the “outer” vortex sheet strengths of each zone.
From Eq. (11) the difference in sheet strengths between the
regions from 1 and 2 to the exterior is

γ0−1− γ0−2 = V∞
(√

1−Ct2 −
√

1−Ct1
)
. (15)

This is exactly equal to Eq. (14). If the assumption of a con-
stant velocity in each of the two zones were incorrect, this
would not have been the case. The arguments used in the
derivation above also hold in the general case with more than
two different load regions including cases where one load re-
gion is fully enclosed in other load regions. Therefore, the
present model predicts that any stream element behaves lo-
cally as predicted by 1D momentum theory. This is in agree-
ment with the result presented by Johnson (2013) and Bran-
lard and Gaunaa (2015) and consistent with the derivation
of the classical axisymmetric blade element theory, where
the annular stream tubes are assumed to be independent of
each other. However, the present model goes further as it in-
dicates both radial and tangential independence of the indi-
vidual stream elements. Thus, while one might expect that
more air would flow through a lightly loaded part of a non-
uniformly loaded rotor in uniform inflow, the present model
predicts that this is not the case. Otherwise, the axial velocity
(and hence power production; see Eq. 6) on the lighter loaded
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Figure 7. Schematic view of a non-uniformly loaded disc in a step
shear generated by introducing an infinite vorticity sheet of strength
γs in the horizontal plane through the rotor centre.

part of the disc would be higher than what is expected from
1D momentum results.

3.3 Non-uniformly loaded rotor in a step shear

We now consider a non-uniformly loaded rotor in a planar
step-shear inflow, as illustrated in Fig. 7. A 3D sketch of
the case is shown in Fig. 8, which outlines the different vor-
tex strength contributions. For simplicity, we assume that the
rotor has a constant loading of Ct1 below the step and an-
other constant loading of Ct2 above the step. A step shear
can be obtained by adding an infinite planar vortex sheet
and a uniform flow. Note that such a sheet is consistent with
Helmholtz’s theorem because it starts and ends at infinity. If
γs denotes the shear sheet strength and V∞ denotes the uni-
form free-stream speed, we get the following far-field, up-
stream inflow velocities:

V0(y,z=−∞)=

{
V01 = V∞− γs/2 for y < 0,

V02 = V∞+ γs/2 for y ≥ 0,
(16)

where y denotes the height above the shear vorticity sheet.
The main effect of the rotor is to change the axial velocity of
the flow and hence also the convection velocity of the shear
sheet in the wake.

Due to steady-state conditions, the transport of circulation
through any point in the shear plane is equal to that far up-
stream:

γsV∞ = γs,wż, (17)

where ż= (Vw2 +Vw1 )/2 is the mean of the far-wake veloc-
ities on each side of the shear vorticity layer and γs,w is the
intensity of the shear vorticity sheet in the wake. Thus, for a
wind turbine the intensity of the shear vorticity sheet is ef-
fectively increased in the wake because the axial velocity is
lower than in the free stream.

For convenience, the intensity of the shear vorticity sheet
in the wake is split as follows:

γs,w = γs+1γs, (18)

where γs is responsible for the effective backbone velocity
(Eq. 16) and 1γs is the additional induced part due to the
changed velocity in the wake.

In order to check whether our model is also consistent with
1D momentum theory in the sheared inflow case, we proceed
as in the previous section and assume that the induced veloc-
ities in each region are constant and see whether this leads to
any inconsistencies.

If the axial velocity in each of the far-wake regions is con-
stant, it should be determined from Eq. (13), where now the
local backbone free-stream velocity has to be used.

Vwi = V0i
√

1−Cti = V0i (1− 2ai) , (19)

where index i = 1 and i = 2 refer to the two regions, respec-
tively, and where we have introduced the local induction fac-
tor for region i:

ai =
1
2

(
1−

√
1−Cti

)
. (20)

Inserting Eq. (19) into Eq. (9) yields the following expres-
sions for the strength of the vortex sheets released from the
rotor:

γ0−1 =
Ct1V01

2− 2a1
= V01

(
1−

√
1−Ct1

)
, (21)

γ0−2 =
Ct2V02

2− 2a2
= V02

(
1−

√
1−Ct2

)
, (22)

γ2−1 =
Ct1V

2
01
−Ct2V

2
02

V01 (1− 2a1)+V02 (1− 2a2)
. (23)

Similarly, by inserting Eq. (19) into Eq. (17) and using
Eq. (18), we get the following expression for the additional
induced shear vorticity:

1γs = γs

(
2V∞

V02 (1− 2a2)+V01 (1− 2a1)
− 1

)
. (24)

In the far wake, the intensity of the vortex sheet separating
the upper and lower part of the wake is

γ2−1,total = γ2−1+1γs. (25)

Inserting Eqs. (23) and (24) into Eq. (25) and rewriting using
Eq. (19) yields

γ2−1,total = V02

√
1−Ct2 −V01

√
1−Ct1 − γs. (26)

From the basic behaviour of extruded vortex surfaces
(Sect. 2.1.2), we know that in order to have a constant in-
duced velocity in the wakes of each of the zones, the total
vortex sheet strength between the lower and upper zones is
equal to the difference in the outer vortex sheet strengths of
each zone. From Eqs. (21) and (22) we get

γ0−1− γ0−2 = V01

(
1−

√
1−Ct1

)
−V02

(
1−

√
1−Ct2

)
= V02

√
1−Ct2 −V01

√
1−Ct1 − γs. (27)

As seen, Eqs. (27) and (26) are identical. Therefore, the ini-
tial assumption of a uniform far-wake velocity in each region
was correct.
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Figure 8. A 3D sketch of a non-uniformly loaded disc in a step shear with illustration of the deformation of wake and shear vorticity sheets:
(a) deformation of wake vortex rings and (b) deformation of the vortex filaments which are responsible for the step shear.

The reason why there is no local effect of the shear is that
the effect of the changed convection velocity of the wake vor-
ticity (ż), at the shear intersection, is exactly counterweighed
by the induced shear vorticity (Eq. 24).

From Eqs. (20) and (7) we get the local thrust and power
coefficient:

Cti = 4ai (1− ai) , (28)

Cpi = 4ai(1− ai)2, (29)

which are identical to the classical result from 1D momentum
theory. In analogy with the arguments given in the previous
section, we conclude that local 1D momentum theory is valid
for any load distribution and any 1D shear, under the assump-
tions made in this work. This is an important result to keep
in mind when developing additions to BEM models to make
them able to perform sensibly in shear, since it shows that
such models should be based on local quantities and avoid
adopting concepts such as average disc load/induction or av-
erage annulus load/induction.

3.4 Formation of cross-shear-induced velocities

A basic property of vortex filaments in inviscid flow is that
they cannot end in the fluid, and therefore both the wake and
shear vorticity sheets are deformed under the influence of ve-
locity gradients. This is illustrated in Fig. 8, which is a 3D
sketch of the same non-uniformly loaded disc in a step shear
as was considered in Sect. 3.3. Figure 8a sketches the shape
of the individual wake vortex rings at the position of the rotor
and in the wake, respectively. As a consequence of the shear
and/or the difference in loading between the two regions of
the rotor, the outer part of the vortex rings moves with an-
other velocity compared to the part at their intersection, and
therefore the vortex rings will be increasingly stretched with
downstream position.

The stretching of the shear vorticity sheet is illustrated in
Fig. 8b. Upstream of the rotor the entire span of the infinitely
long shear layer vortex filaments is convected with the same
velocity, and therefore the vortex filaments remain straight
here. Downstream of the rotor, they will be deformed at the
wake edges because of the difference in velocity inside and
outside of the wake.

Due to the stretching of the wake and shear layer vorticity
sheets, axial vorticity is formed at the intersection between
the shear vorticity layer and the edges of the wake. How-
ever, from Fig. 8 it is evident that axial vorticity is generated
in opposing directions: the upper-wake vortex rings are re-
sponsible for producing axial vorticity in the flow direction,
whereas the opposite is true for the lower-wake vortex rings
and the shear layer vorticity sheets. Nevertheless, if there is
a net production of axial vorticity in one direction, this will
induce a velocity component perpendicular to the flow direc-
tion. This in turn will cause the shear layer and wake vor-
ticity sheets to be deflected in the direction perpendicular to
the flow direction and thus result in different velocities on
the rotor than would have been the case if the axial vortic-
ity production had been neglected. In the following we will
therefore use our model to calculate the total axial vorticity
produced by the interaction of the wake and the shear.

3.4.1 Axial vorticity from wake–shear interaction

The axial vorticity at a given streamwise position z can be
calculated by considering the conservation of vorticity for an
infinitesimal cylindrical control volume enclosing the junc-
tion between the wake border and the shear sheet layer from
0 to z as shown in Fig. 9. Since all vortex filaments form
closed loops or start and end at infinity, it is clear that the to-
tal flux of γ through this control volume is zero. Therefore,
the axial vorticity through the end faces of the control vol-
ume is in balance with the vorticity through its sides. Thus,
the axial vorticity can be determined by integrating the vor-
ticity entering and exiting the sides of the control volume
from 0 to z.

The contribution from the wake stretching is then

0z,wake =

z∫
0

(γ0−2− γ0−1+ γ2−1)dz, (30)

where γ0−1, γ0−2 and γ2−1 are the strength of the vortic-
ity sheets released from the rotor and are determined from
Eqs. (21)–(23).
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Figure 9. (a) A 3D sketch of the control volume used for computing the axial vorticity. (b, c) Front view with outline of the tangential
vorticity stemming from the wake (b) and shear (c).

The corresponding contribution from the deformation of
the shear layer vorticity sheet is

0z,shear(z)=

z∫
0

(
γs,w− γs

)
dz=

z∫
0

1γsdz, (31)

where 1γs is defined in Eq. (24).
From Eqs. (26) and (27) we know that

γ2−1+1γs = γ0−1− γ0−2. (32)

From Eq. (32) it is clear that Eqs. (30) and (31) exactly bal-
ance each other out, and therefore there is no net produc-
tion of axial vorticity, which means that the present model
predicts that there is no vertical movement of the wake and
hence also no change in the power coefficient for a non-
uniformly loaded rotor in sheared inflow. Note that the re-
sult of no net production of axial vorticity is general, which
means that it also holds in the case without shear.

4 Discussion

In the following we will relate the results of our model to the
findings of the aforementioned literature.

The conclusion that the power coefficient (defined in terms
of the actual available power) of an idealized rotor is unal-
tered by the presence of a 1D shear is in agreement with the
CFD simulation by Zahle and Sørensen (2010) as well as
the work by Chamorro and Arndt (2013). However, in con-
trast to the latter study, we do not assume self-similarity be-
tween the velocity profiles far upstream and downstream in
order to arrive at this result. Furthermore, our conclusion is
based on a generic study, whereas the simulations by Zahle
and Sørensen (2010) were carried out on a specific rotor, and
hence it is unknown to what extent their findings depend on
the rotor and operational conditions used.

Since our model does not predict any formation of axial
vorticity, it also does not predict a vertical deflection of the
wake, which is in agreement with the studies by Branlard et

al. (2015) and Ramos-García et al. (2018). In the CFD simu-
lation by Zahle and Sørensen (2010), this effect is implicitly
included, and the downward velocity component that they
observe upstream of the rotor is an indication that axial vor-
ticity is in fact generated in the wake. This suggests that an
ideal rotor might actually get a higher power coefficient in
sheared inflow. The production of axial vorticity could be in-
cluded in our model by assuming the transport velocity of the
wake vorticity changes gradually from its value at the disc to
that in the far wake. The absence of vertical motion of the
wake as predicted by our method is in agreement with what
would be found from a momentum analysis of the same sit-
uation: there are no vertical forces acting from the rotor on
the flow2, and therefore a control volume analysis of momen-
tum conservation would show no vertical displacement of the
wake.

Our model is based on several simplifying assumptions as
outlined in Sect. 2, and the above findings should of course
be seen in this light. Most of the assumptions made about
the rotor are fairly standard for engineering analyses, and
we do not expect that a more advanced rotor representation
would change the overall findings of our model. Neverthe-
less, a consequence of assuming an infinite tip speed ratio
is that rotational effects are neglected, and hence any impact
of asymmetric development of the wake in sheared inflow
is disregarded by our model. The effect of a finite tip speed
for axisymmetrically loaded rotors in uniform inflow was as-
sessed in Branlard and Gaunaa (2016) using a model based
on the same building blocks as the present work. This work
showed that the effect of the finite tip speed ratio is a second-
order effect for tip speed ratios typically used in modern wind
turbines. Therefore, we expect that the impact of neglecting
rotational effects is small for moderately sheared inflow and
typical tip speed ratios of wind turbines.

2Equation (2) show that for a finite thrust force, the tangential
forces from the rotor on the flow tend to zero as the rotational speed
tends to infinity.
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On the other hand, out of the assumptions made about the
flow, e.g. incompressible potential flow, no wake expansion
and constant transport velocity of wake vorticity, the latter
two are obviously questionable. In reality the wake is clearly
expanding and the transport velocity of the wake vorticity
will be faster in the near wake than in the far wake. Thus, on
their own these two assumptions are bad and lead to poor pre-
dictions. However, when used together the two assumptions
lead to predictions that are consistent with 1D momentum
theory. The reason for this is that while neglecting wake ex-
pansion leads to an underprediction of the induction in the
rotor plane (Øye, 1990), the opposite is true when assuming
a constant transport velocity of wake vorticity, and thereby
the two assumptions counteract each other. The agreement
with 1D momentum theory indicates that our model is of the
same order of fidelity as those typically used in BEM models.
However, our model gives another perspective and is devel-
oped for non-uniform inflow, and thereby it can be used to
gain insight and guide future development of BEM models
to correctly cope with sheared inflow.

5 Conclusions

We presented a simple analytical model based on inviscid
vortex theory and applied it to model a rotor in uniform and
non-uniform inflow.

Even though the model is based on a number of crude as-
sumptions such as neglecting wake expansion and using a
wake convection that is constant along each emission loca-
tion, we showed that the model gives results that are identi-
cal to classical 1D momentum theory when applied to a uni-
formly loaded rotor operating in uniform inflow.

The application of the model to a non-uniformly loaded
rotor operating in uniform inflow showed that any stream el-
ement through the rotor disc behaves locally as predicted by
1D momentum theory. Consequently, the model predicts that
the stream elements through the disc are both radially and
tangentially independent of each other.

For a non-uniformly loaded rotor operating in non-
uniform inflow, our model predicts that the results from 1D
momentum theory can be applied locally. Therefore, when
the power coefficient is defined using the local free-stream
velocity, we found that the power coefficient of an ideal rotor
is unaltered by the presence of shear.

These findings indicate that the effects of shear and un-
even loading in BEM-based codes should be treated in a local
sense and that concepts such as average disc/annulus loading
and induction should be avoided.

Finally, by studying the inherent deformation of the wake
vorticity sheet and the wind shear vorticity sheet, we con-
cluded that there is no net generation of axial vorticity. The
effects of the deformation of the rotor wake vorticity due to
the shear and effects of the deformation of the shear vortic-
ity due to the rotor exactly cancel each other out. This means

that there are no resulting cross-shear-induced velocities and
therefore also no cross-shear deflection of the wake.

The result that the production of axial vorticity due to the
deformation of the wake and shear vorticity cancelling each
other out indicates that this effect has to be included in free-
wake-vortex models. Omission of the effect of the deforma-
tion of the vorticity that creates the shear will result in a non-
physical upward motion of the wind turbine wake in free-
vortex models.

Appendix A: Induction of an infinitely long extruded
surface of tangential vorticity

Consider an infinitely long extruded surface of tangential
vorticity γ , which is aligned with the z axis and has an ar-
bitrary cross-section; see Fig. A1. In the following we will
show that this extruded vortex surface induces a velocity in
the z direction of Wz = γ on the inside and zero on the out-
side of the surface.

The proof is carried out in steps by proving the following
five statements:

1. The vortex surface only induces velocity in the z direc-
tion; i.e. W =Wz(r,θ,z).

2. The velocity is constant along z; i.e. Wz =Wz(r,θ ).

3. The velocity inside and outside of the surface is constant
and equal to Wz =Wz,in and Wz =Wz,out, respectively.

4. The outside velocity is Wz,out = 0.

5. The velocity inside of the surface is Wz,in =−γ .

To prove the first statement, consider Fig. A2, which shows
a lateral cut of the surface. By virtue of the Biot–Savart law,
the velocity induced in a point P by a segment of the vortex
surface is

dW i =
γ dz
4π

dsθ ×pi
|pi |

3 , (A1)

where i = {1,2}, pi is the vector from the segment to P and
dsθ is an infinitesimal vector in the azimuth direction.

Now consider two segments on the vortex surface, which
as shown in Fig. A2 are located at the same azimuth position,
θ , but are located 1z and −1z, respectively, from P . Due
to symmetry, the radial velocities induced by these two seg-
ments cancel each other out. This holds true for any choice
of azimuth position and ±1z, and therefore it follows that
the total induction of the vortex surface is in the z direction
only. This can also be obtained by noting that each z plane is
a plane of symmetry for the vorticity distribution so that the
velocity has to be orthogonal to these planes.

The second statement follows from the invariance of the
problem in the z direction, which implies that there is no de-
pendence with respect to the variable z and the derivatives in
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Figure A1. Sketch of an infinitely long extruded surface of tangen-
tial vortex density γ with an arbitrary cross-section.

Figure A2. A 2D cut of the extruded vortex surface with definition
of vectors p1 and p2.

the z direction are zero. This could have also been used to
directly prove the first statement in the plane z= 0.

The third statement is proven by introducing a rectangular
control surface as shown in Fig. A3. The length of the rectan-
gle is denoted1z, and its radial extent is from r1 to r2. Since
the induction is only in the z direction, the circulation around
the rectangle is

0 = (Wz(r2,θ )−Wz(r1,θ ))1z. (A2)

If the rectangle does not cross the vortex surface, then the
circulation around the rectangle is zero. Thus it follows that
Wz(r2,θ )=Wz(r1,θ )=Wz,out(θ ) for r2 > r1 > rc, whereas
Wz(r2,θ )=Wz(r1,θ )=Wz,in(θ ) if rs > r2 > r1.

The fourth statement follows by letting r2 go towards in-
finity where the induction from the vortex surface is 0; i.e.
Wz,out = 0.

The fifth statement is proven by determining the circula-
tion around the rectangular control surface when it is cross-
ing the vortex surface and utilizing that Wz,out = 0; i.e.

0 =Wz,in1z⇔Wz,in =−γ. (A3)

The induced velocity is thus independent of θ .

Appendix B: Detailed derivation of Eq. (8)

In order to derive Eq. (8), we use the assumption of a constant
convection velocity of the vorticity surface in the longitudi-
nal direction, denoted by ż.

Figure A3. A 2D cut of the vortex surface with definition of rect-
angular control surface.

First we consider the case where the jump in the local
bound circulation occurs in the radial direction, as shown
schematically in Fig. 3. The time it takes for the rotor to
perform one revolution is T = 2π/�. In this time span the
amount of bound circulation passing zones i and j is the lo-
cal 0i and 0j , respectively. The corresponding amount of
circulation trailed between i and j in this time span is thus
10 = 0j−0i . During one rotor revolution, the trailed circu-
lation is convected1z= żT = 2πż/� in the axial direction.
Since the trailed vorticity is emitted at a constant rate in the
intersection between i and j and the orientation of the trailed
vorticity for tip speed ratios tending to infinity is practically
parallel to the rotor plane, we get that the sheet strength of
the azimuthally directed trailed vorticity between sections i
and j is

γtrailed =
10

1z
=
10�

2πż
. (B1)

Now we proceed to consider the case where the jump in
bound circulation occur in the tangential direction, as shown
in Fig. 4. The arguments in this case are analogue to the pre-
vious case. In this case 10 = 0j −0i is the shed circulation
at the i–j border intersection during the time span of one ro-
tor revolution (any circulation not carried onto zone j must
be trailed due to Helmholtz’s law). Since the time span for
rotor revolution is the same as before, we arrive at an analo-
gous result:

γshed =
10

1z
=
10�

2πż
. (B2)

From the derivations it is evident that the relations for the
sheet vorticity strength in both the radial and the tangential
bound circulation change cases are identical. It can therefore
be generally stated that the vorticity emitted at the border
between two zones of different local bound circulation (or
local thrust coefficients) is

γ =
10�

2πż
. (B3)
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