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Abstract. Variability in wind profiles in both space and time is responsible for fatigue loading in wind turbine
components. Advanced control methods for mitigating structural loading in these components have been pro-
posed in previous works. These also incorporate other objectives like speed and power regulation for above-rated
wind speed operation. In recent years, lifetime control and extension strategies have been proposed to guarantee
power supply and operational reliability of wind turbines. These control strategies typically rely on a fatigue load
evaluation criteria to determine the consumed lifetime of these components, subsequently varying the control set
point to guarantee a desired lifetime of the components. Most of these methods focus on controlling the lifetime
of specific structural components of a wind turbine, typically the rotor blade or tower. Additionally, controllers
are often designed to be valid about specific operating points and hence exhibit deteriorating performance in
varying operating conditions. Therefore, they are not able to guarantee a desired lifetime in varying wind con-
ditions. In this paper an adaptive lifetime control strategy is proposed for controlled aging of rotor blades to
guarantee a desired lifetime while considering damage accumulation level in the tower. The method relies on an
online structural health monitoring system to vary the lifetime controller gains based on a state-of-health (SoH)
measure by considering the desired lifetime at every time step. For demonstration, a 1.5 MW National Renewable
Energy Laboratory (NREL) reference wind turbine is used. The proposed adaptive lifetime controller regulates
structural loading in the rotor blades to guarantee a predefined damage level at the desired lifetime without sac-
rificing the speed regulation performance of the wind turbine. Additionally, a significant reduction in the tower
fatigue damage is observed.

1 Introduction

Growing demand for wind energy has led to the development
of large wind turbines. However, these turbines are less tol-
erant to system performance degradation and faults (Gao and
Liu, 2021). To ensure utility-scale wind turbines operate with
respect to their design lifetime, advanced control strategies
have been developed in recent years to reduce structural load-
ing of blades and the tower. Most of these incorporate addi-
tional objectives such as power optimization and rotor speed

regulation. The objective of the lifetime control of wind tur-
bines using prognostics-based load mitigation strategies has
become more important in recent years. Most of the proposed
methods focus on controlling the lifetime of one structural
component of a wind turbine, typically the rotor blade or the
tower, without considering the fatigue damage level in other
components. These lifetime controllers are also designed to
be valid regarding specific operating points.
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A control strategy for extending the maintenance inter-
val of wind turbine blades under assumed crack initia-
tion, detected using a data filtering algorithm, is proposed
(Beganovic et al., 2015). In Beganovic et al. (2018) and Njiri
et al. (2019), a set of switching controllers with varying de-
grees of load mitigation are engaged sequentially based on
the accumulated damage obtained from an online damage
evaluation model to extend the lifetime of rotor blades. An
adaptive lifetime controller is proposed in Do and Söffker
(2020) to guarantee the desired lifetime of the tower. De-
pending on the damage accumulation and the predicted life-
time provided by an online damage evaluation model, the
weights of the lifetime controller are varied. However, in
Beganovic et al. (2015), Beganovic et al. (2018), Njiri et al.
(2019), and Do and Söffker (2020), fatigue damage is consid-
ered in only one turbine component. The lifetime controllers
used are not adaptive to varying wind conditions. In recent
times, resilient control has been proposed in Acho et al.
(2016), Azizi et al. (2019), El Maati and El Bahir (2020),
and Jain and Yamé (2020) to minimize the effect of unantic-
ipated faults or unexpected dynamics to maintain the opera-
tion of a wind turbine within a limited degradation tolerance
bound. However, resilient control does not address the prob-
lem of controlling life consumption in wind turbine compo-
nents to avoid early fatigue failures. Although new concepts
like operational modal analysis (OMA), which relies on mea-
surement data to analyze vibrating structures, are becoming
the industry standard for condition monitoring and diagno-
sis especially for offshore wind turbines (Kim et al., 2019;
Bajrić et al., 2018; Dong et al., 2018; Pegalajar-Jurado and
Bredmose, 2019), these concepts have yet to be integrated
for prognosis and lifetime control of wind turbines.

In this work an adaptive lifetime control strategy is pro-
posed for controlling the aging of rotor blades to guaran-
tee a desired lifetime while considering damage accumula-
tion level in the tower. A robust disturbance accommodating
control (RDAC) proposed in Do and Söffker (2022) is used
for rotor speed regulation and load mitigation in the tower,
while a prognostics-based adaptive independent pitch control
(aIPC), which adapts to wind speed variation, is used for life-
time control of rotor blades. By monitoring the accumulated
damage using an online structural health evaluation model,
the load mitigation level in the blades is controlled by vary-
ing the control gains in the respective IPC controllers based
on a threshold evaluation of the estimated lifetime. As an im-
provement to the approaches in the aforementioned contri-
butions, the proposed adaptive lifetime control strategy regu-
lates fatigue loading in the rotor blades to reach a predefined
damage limit at the desired lifetime with subsequent reduc-
tion in tower damage accumulation. This is realized with-
out trade-off in speed and power regulation performance. Al-
though the proposed lifetime control strategy is applied to
wind turbine operations in above-rated operation, this con-
cept can be extended for lifetime control in below-rated op-
eration with suitable objectives including reducing structural

loads while ensuring maximum power extraction as proposed
in Do and Söffker (2020).

The paper is organized as follows. In Sect. 2, a theoretical
background on wind turbine health monitoring is given. In
Sect. 3, the design of the primary RDAC for rotor speed reg-
ulation and tower load mitigation, as well as the prognostics-
based aIPC lifetime controller for controlled aging of rotor
blades, is outlined. The proposed prognostics-based adap-
tive lifetime control strategy, which incorporates the primary
and lifetime controllers, as well as an online damage eval-
uation model, is described in Sect. 4. In Sect. 5, simulation
results based on the performance evaluation of the proposed
prognostics-based adaptive lifetime control strategy on a ref-
erence wind turbine are discussed. Lastly, a summary and
conclusions are given in Sect. 6.

2 Wind turbine health monitoring

Wind speed variability subjects wind turbine components
like blades and the tower to cyclic loading. This causes dam-
age to be accumulated in these components over time causing
gradual degradation until failure occurs. Therefore, structural
health monitoring of wind turbines is important in preventing
the occurrence of fatigue failure before reaching the related
design lifetime. Information on the damage evolution in a
component can be utilized as a health indicator for failure
detection, as well as for developing control measures to guar-
antee the desired lifetime. This section outlines the methods
used for estimating the damage accumulation in wind turbine
components.

2.1 Evaluation of damage accumulation

A wind turbine endures varying and complex load conditions
over its lifetime. Fatigue analysis is therefore important in
determining the consumed lifetime of its components. Com-
ponent degradation starts at microscale as micro-cracks re-
sulting from irreversible changes in the microstructure and
propagates gradually until it fails. Assumptions of underly-
ing damage evolution laws are often used to estimate the ac-
tual damage level, as well as to predict the remaining useful
life (RUL) of a component. Component-specific high-cycle
fatigue experiments are used to generate S–N curves (Wöh-
ler curve), which describe the relationship between applied
stress amplitude S and the number of load cycles N that
would cause failure. This forms the basis for the mathemat-
ical relation for fatigue analysis in wind turbine components
expressed as

smN =K, (1)

where s denotes the stress range amplitude andm the Wöhler
exponent (typically 3 for steel materials like the tower and 10
for composites like the blade; Ragan and Manuel, 2007). The
material parameter of fatigue damage at failure K , e.g., ulti-
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Figure 1. Conventional fatigue load estimation (Ragan and Manuel,
2007).

mate tensile strength, is related to the number of load cycles
N .

Wind turbine components are designed for a service life-
time of at least 20 years according to the International Elec-
trotechnical Commission (IEC) standard, with these struc-
tural components facing roughly between 108 and 109 fa-
tigue load cycles (Ziegler et al., 2018). The component life-
time is typically arrived at using the projected number of fa-
tigue cycles and average wind conditions it will encounter
in its lifetime. Additionally, the IEC standard specifies that
a wind turbine component should be designed to maintain
its structural integrity in case it experiences 50-year extreme
wind events during its lifetime.

Fatigue damage in components can be assessed using lin-
ear damage accumulation theory based on Miner’s rule or
nonlinear damage accumulation theories (Yuan et al., 2015).
Due to its simplicity, Miner’s rule (Miner, 1945) is widely
used. Wind speed variability induces a varying-amplitude
load spectrum on wind turbine components. To use Miner’s
rule, the complex spectrum of varying load is often trans-
formed using the rain-flow counting (RFC) algorithm first
proposed by Matsuishi and Endo (1968) into simple uniform
loading, from which stress range histograms can be extracted
and used to assess the accumulated damage. A schematic of
this procedure is shown in Fig. 1.

By combining RFC and Miner’s rule, damage accumula-
tion Dk is calculated as

Dk =

k∑
i=1

di =

k∑
i=1

ni

Ni
=

k∑
i=1

nis
m
i

K
, (2)

where k denotes the total number of related stress range his-
tograms, di the incremental damage at the ith stress range
histogram, ni the number of applied load cycles in each his-
togram bin,Ni the number of cycles to failure at the ith stress
range histogram, and si the applied load amplitude in each
histogram bin. With continual load application, damage in a
component progresses from an undamaged state Dk = 0 to
the point it is considered to have reached its end of life when
the accumulated damageDk = 1. In this case, the component
is considered to have exhausted its structural reserves. Al-
though other cycle counting algorithms including level cross-
ing counting, peak counting, and simple range counting ex-
ist, RFC algorithms are the most widely applied for fatigue
analysis (Musallam and Johnson, 2012).

2.2 Online rain-flow counting

Most standard RFC algorithms generate equivalent load cy-
cles from complex load spectra by pairing local minimum
and maximum points using the three-point counting rule.
Therefore, the entire load history is needed beforehand for
the equivalent cycles to be generated. This process is compu-
tationally inefficient because the algorithm has to process all
the stored loading data. Therefore, standard RFC cannot be
used for real-time monitoring or control of life consumption
of a component (Musallam and Johnson, 2012).

In Musallam and Johnson (2012), a real-time implemen-
tation of the RFC algorithm is proposed. By employing a
three-point counting rule recursively, the extremal points of
time-series loading data are processed and stored in two flex-
ible stacks as they occur to pick out the full and half cy-
cles. For each identified cycle and using Miner’s rule, the
life consumption of a component is then calculated and in-
cremented online. This allows for the online determination
of the consumed life of a component, as well as implementa-
tion of lifetime control. In this paper, the online damage eval-
uation algorithm (Musallam and Johnson, 2012) is adopted
for evaluating the accumulated damage in rotor blades and
the tower. This information is then used to adapt the lifetime
controller to guarantee a predefined service life of the wind
turbine components.

3 Control strategy for load mitigation and speed
regulation

In this paper, the robust disturbance accommodating con-
troller (RDAC) (Do and Söffker, 2022), proposed for rotor
speed regulation and mitigation of tower fore–aft bending
moments, is extended to include an adaptive independent
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Table 1. The 1.5 MW WindPACT reference wind turbine specifica-
tions.

Parameter Value Unit

Rated rotor speed 20.463 rpm
Hub height 84.288 m
Cut-in, rated, cut-out wind speed 4, 12, 25 m s−1

Gearbox ratio 87.965 –
Blade radius 35 m
Rated power 1.5 MW
Blade pitch range 0–90 ◦

Pitch rate 10 ◦ s−1

Optimal tip-speed ratio (λopt) 7.0 –
Maximum power coefficient (Cpmax ) 0.5 –
Optimum pitch angle (βopt) 2.6 ◦

pitch controller (aIPC), which is used as a dynamic lifetime
controller for reducing blade flapwise bending moments in a
wind turbine operating in an above-rated wind speed region.
In this section the description of the reference wind turbine
(RWT) is outlined. Additionally, the description of the adap-
tive robust observer-based controller, which is adapted for
lifetime control, is summarized.

3.1 Wind turbine model description

A 1.5 MW WindPACT reference wind turbine developed by
the National Renewable Energy Laboratory (NREL) (Rinker
and Dykes, 2018), which is available in fatigue, aerodynam-
ics, structures, and turbulence (FAST) design code (Jonkman
and Buhl, 2005), is chosen as the test bed for the design and
simulation of the proposed adaptive lifetime control strat-
egy. This onshore wind turbine model was developed based
on a real-life commercial wind turbine used in the Wind-
PACT program. The specifications of this turbine are sum-
marized in Table 1. It is a three-bladed, upwind, horizontal-
axis wind turbine, having 24 degrees of freedom (DoFs) de-
scribing its flexibility. However, a few DoFs are enabled to
obtain reduced-order linear-time-invariant (LTI) models used
for controller design.

The nonlinear generalized equation of motion for the wind
turbine is expressed as

M(q,u, t)q̈ + f (q, q̇,u,ud, t)= 0, (3)

where M denotes the mass matrix containing inertia and
mass components and f is a nonlinear function of the en-
abled DoFs q and their first derivative q̇, as well as the con-
trol input u, the disturbance input ud, and time t . The nonlin-
ear model Eq. (3) available in FAST is linearized with respect
to an operating point in the above-rated region. By enabling
the DoFs, which capture the most important wind turbine dy-
namics of interest, and specifying the operating point defined
by a constant hub-height wind speed, pitch angle, and rotor

speed, linearization is carried out numerically in FAST yield-
ing periodic (azimuth-dependent) matrices of LTI models.

3.2 Controller for load mitigation and speed regulation

An adaptive robust observer-based controller, which in com-
bination with an online damage evaluation model used for
lifetime control of wind turbine components, is briefly out-
lined.

3.2.1 Robust disturbance accommodating controller

The RDAC, proposed in previous work (Do and Söffker,
2022), is briefly outlined for principal understanding. To ob-
tain an LTI model for controller design while avoiding un-
necessary complexity in the linear model, six DoFs includ-
ing tower fore–aft bending in first mode; drivetrain torsional
displacement; blades 1, 2, and 3 flapwise displacements in
first mode; variable speed generator; and drivetrain rotational
flexibility are chosen. These DoFs capture the most impor-
tant dynamics corresponding to the desired closed-loop per-
formance with respect to load mitigation in wind turbine
blades and the tower, as well as generator speed regulation
assuming also a flexible drivetrain. The linear model is ob-
tained by linearizing the nonlinear model Eq. (1) with re-
spect to an operating point in the above-rated wind speed
region defined by a steady hub-height wind speed of vop =

18 m s−1, a pitch angle of βop = 20◦, and a rotor speed of
ωop = 20.463 rpm. The states x used for controller design are

x =



tower-top fore–aft displacement
drivetrain torsional displacement

blade 1 flapwise displacement
blade 2 flapwise displacement
blade 3 flapwise displacement

generator speed
tower fore–aft velocity

drivetrain torsional velocity
blade 1 flapwise velocity
blade 2 flapwise velocity
blade 3 flapwise velocity


. (4)

The obtained reduced-order LTI model is expressed in
state-space form as

ẋ = Ax+Bu+Bdd

y = Cx, (5)

where A,B,Bd , and C denote the state-space system; u the
control input, which is the collective pitch angle; x the states;
d the wind disturbance; and y the measured outputs, which
include rotor speed and tower-top fore–aft bending moment.

The model Eq. (5) is augmented with a pitch actuator
model, which accounts for the slow pitch actuator dynam-
ics. To counteract wind disturbance effects, the model is ex-
tended with an assumed step disturbance waveform (Wright,
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2003; Wright and Fingersh, 2008), which approximates sud-
den uniform rotor effective wind velocity fluctuations. To
meet the rotor speed regulation objective with zero steady-
state tracking error, the model is further extended with a par-
tial integral action.

To ensure closed-loop system stability, robustness, and op-
timality, a mixed-sensitivity H∞ norm of the closed loop
transfer function is used as a cost function to optimize the
disturbance accommodating controller (DAC) parameters in-
cluding observer gain Lx , state controller Kx , disturbance
rejection controller Kd, and the integral gain Ki in a single
step. The mixed sensitivity H∞ optimization problem is for-
mulated as

R∗ = argmin
R∈R

∥∥∥∥∥∥
W1S

W2RS

W3T

∥∥∥∥∥∥
∞

, (6)

where R∗ denotes the optimized controller and R a set of
controllersR that stabilize the plant. The weighting functions
W1, W2, and W3 are introduced to ensure desired robust per-
formance, while S, RS, and T denote the related sensitivity,
control effort, and complementary sensitivity functions, re-
spectively. The problem to find an optimal RDAC, RDAC∗,
is formulated as

RDAC∗ = argmin
RDAC∈RDAC

‖Gzd(P,RDAC)‖∞, (7)

where RDAC denotes a set of controllers RDAC that stabi-
lize the generalized plant P , and Gzd is the transfer function
from the exogenous inputs d to the controlled outputs z.

Nonsmooth H∞ synthesis proposed in Apkarian and Noll
(2006), used for problems with structural and stability con-
straints, is applied to find an optimal controller RDAC∗ with
robust gains L and K for tower load mitigation and rotor
speed regulation. It is implemented in MATLAB using the
hinfStruct command (Apkarian and Noll, 2017). In Fig. 2
the application of the RDAC to the 1.5 MW NREL RWT is
shown. An actuator transfer function is included in the gener-
alized plant P , to account for the blade pitch actuator dynam-
ics. Hub-height wind disturbance d excites the wind turbine
dynamics in above-rated operation. Measurement outputs in-
cluding rotor speed ω and tower fore–aft bending moment
ζ are fed to the RDAC, which generates a collective pitch
angle β as a control signal for regulating rotor speed at the
rated value and for reducing tower fore–aft bending moment
oscillations. The RDAC is robust against modeling errors
and wind disturbances. The desired trade-off between robust
stability and performance is achieved by choosing suitable
weighting functionsW11,W12, andW2. To effect rotor speed
response and ensure robustness against wind disturbances,
W11 is designed as an inverted low-pass filter. To reduce the
first mode of tower fore–aft oscillation, W12 is designed as
an inverted notch filter centered at 2.56 rad s−1. To reduce
controller activity at high frequencies thereby increasing ro-
bustness, W2 is chosen as the high-pass filter.

Figure 2. RDAC for wind turbines.

Both objectives of rotor speed regulation and tower load
reduction for wind turbines operating in an above-rated wind
speed region are met while ensuring robustness against mod-
eling errors and wind disturbances. However, RDAC∗ is only
valid within its design operating point and suffers perfor-
mance deterioration outside this envelop. Additionally, its
control input signal is a collective pitch angle, hence can-
not be applied for reducing blade oscillations due to vertical
wind shear, which can only be achieved through IPC.

3.2.2 Adaptive independent pitch controller

This controller is desired to counteract periodic aerodynamic
loading of the rotor blades due to vertical wind shear. It is
designed to reduce 1P (once per revolution; 0.333 Hz) blade
flapwise oscillations and is adaptive to change in the oper-
ating point due to horizontal wind speed fluctuations. Five
IPC controllers, each designed to be operational over a par-
ticular wind speed bin in the above-rated wind speed region,
together with a switching mechanism based on the incoming
wind speed, are used to realize aIPC. The linear models, used
for designing respective IPC controllers, are extracted from
the nonlinear wind turbine model Eq. (1) at different operat-
ing points as shown in Table 2. It is important to note that the
steady wind speeds (together with associated pitch angle and
rated rotor speed) are only used to define operating points for
extracting linear state-space models used for designing each
of the IPC controllers. However, a stochastic wind profile is
used for excitation of the closed-loop dynamic response of
the wind turbine. Predefined wind speed bins are only used
for thresholding based on the incoming hub-height stochastic
wind speed to establish the appropriate IPC controller to be
utilized in continuous operation.

To capture the most important dynamics with respect to
blade load mitigation and speed regulation, four DoFs in-
cluding blade flapwise displacement for each blade in the
first mode and variable speed generator are chosen. Corre-
spondingly, seven states x are included in the linear model
used for designing the aIPC controller. To capture periodic-
ity due to vertical wind shear, 24 equispaced azimuth posi-
tions are selected for linearization. To integrate this periodic-
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Table 2. Design operating points for the IPC controllers.

IPC Wind speed bin Steady wind speed Blade pitch angle Rotor speed
controller [m s−1] [m s−1] [◦] [rpm]

1 12–15 14 13.10 20
2 15–17 16 16.75 20
3 17–19 18 19.83 20
4 19–21 20 22.47 20
5 21–25 22 24.84 20

ity in controller design, multi-blade coordinate (MBC) trans-
formation proposed in Bir (2010) is used to transform blade
dynamics from the rotating to the non-rotating frame. The
MBC-transformed reduced-order models are then averaged
to obtain a weakly periodic LTI model described in state-
space form as

ẋ = Ax+Bu+Bdd

y = Cx+ v, (8)

where A,B,Bd , and C denote the state-space system, u=
[1β11β21β3]

T denotes the perturbed independent pitch an-
gles, and d is the wind disturbance. The measurements y,
which include the blade root flapwise bending moment for
each blade, are assumed to be distorted with noise v.

Using a linear quadratic Gaussian (LQG) control method,
Eq. (8) is used to design an observer-based controller. The
full-state feedback controller K is designed using a linear
quadratic regulator (LQR) technique by minimizing the cost
function:

JQR =

∞∫
0

(xTQx+ uTRu)dt, (9)

while solving the algebraic Riccati equation (ARE) AT P +
PA−PBR−1BT P +Q= 0, assuming (A,B) is fully con-
trollable. Here Q and R denote the state and control input
weighting matrices, respectively, whose elements are tuned
to achieve the desired dynamic response with respect to blade
load mitigation and rotor speed regulation, while P is the so-
lution to the ARE. To implement optimal full-state feedback
control u=Kx̂ using estimated states x̂, a Kalman state es-
timator is used to design the observer gain L by minimiz-
ing the state estimation covariance error E((x− x̂)(x− x̂)T ),
while solving the ARE APf +PfA

T
−PfC

TR−1
f CPf +

Qf = 0, assuming (A, C) is fully observable. Here, Qf and
Rf are process disturbance and measurement noise covari-
ance matrices, respectively, while Pf is the solution to the
ARE.

Figure 3 illustrates the implementation of one of the five
IPC controllers. The wind profile d excites the dynamics
of the wind turbine in the above-rated wind speed region.
The perturbed blade root flapwise bending moment measure-

Figure 3. Independent pitch controller.

ments 1y are transformed from the rotating to the fixed co-
ordinate frame of controller design using an inverse MBC
transformation matrix T (ψ)−1, which relies on real-time ro-
tor azimuth angle measurements ψ . The perturbed indepen-
dent pitch angles 1βi are obtained by transforming the con-
trol input u back to the rotating frame using the MBC trans-
formation matrix T (ψ). By summing 1βi and the collective
pitch angle βc from the RDAC, the IPC signal βi is obtained.

The five IPC controllers are designed following this proce-
dure, each at a predefined operating point, to cover the entire
range of operation in the above-rated regime. A switching
mechanism is implemented to activate each controller at a
predefined operating range based on the incoming hub-height
wind speed for system excitation using a stochastic wind pro-
file.

4 Control of wind turbine lifetime: an illustrative
example using the 1.5 MW NREL reference wind
turbine

To control the lifetime consumption in wind turbine
blades, the adaptive robust observer-based controller
(RDAC+aIPC), implemented using two control loops, is
combined with an online damage evaluation model as shown
in Fig. 4. A wind profile excites the wind turbine dynamics in
the above-rated regime. The RDAC (Do and Söffker, 2022),
which is robust against modeling errors generates the pri-
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mary collective pitch controller (CPC) signal for rotor speed
regulation and tower load mitigation, while aIPC is used as
the lifetime controller to dynamically control the damage ac-
cumulation of the rotor blades. The IPC angles are perturbed
with respect to the CPC signal from RDAC, forming the con-
trol input u to the wind turbine.

The blade-root flapwise bending moment measurements y
are logged into memory during simulation. The online dam-
age evaluation model based on the real-time implementation
of the RFC algorithm (Musallam and Johnson, 2012) calcu-
lates the accumulated damage at every time step Dk . The
estimated lifetime of the blade Le used as a state-of-health
(SoH) indicator is calculated as

Le =
Tk

Dk
Dd, (10)

where Tk denotes the current time step, whileDd denotes the
accumulated damage at the design lifetime. At every time
step Tk , the estimated RUL can be calculated as

RUL= Le− Tk = Tk

(
Dd

Dk
− 1

)
. (11)

Based on the threshold evaluation of Le, the load mitiga-
tion level in the respective IPC controllers is controlled by
selecting the appropriate gains L and K every 10 ms, which
is the time interval chosen for lifetime threshold evaluation.
For illustrative purposes a lifetime of 600 s is chosen. Three
threshold levels are set such that if Le is below the lower
limit of the desired lifetime (Le < 580), maximum gains of
respective IPC controllers are selected to increase the blade
load mitigation level. If Le falls within a range of the desired
lifetime (580≤ Le ≥ 620), optimum gains, which strike a
balance between load mitigation and speed regulation, are
selected. On the other hand, if the value of Le is higher than
the desired lifetime (Le > 620) and hence blade load mitiga-
tion level can be compromised, minimum gains are chosen.

It is important to note that two levels of switching are im-
plemented as illustrated in Fig. 5. The first level, used for
switching between different IPC controllers, is defined based
on the incoming hub-height stochastic wind speed. Highly
uncertain wind turbine anemometer measurements should
suffice, as strict accuracy is not required for switching. Pre-
defined wind speed bins are used for thresholding and acti-
vating a suitable IPC controller from the designed bank of
controllers. This ensures that an appropriate IPC controller
is used for the prevailing operating conditions. The second
level of switching relies on a lifetime estimate of the blades
obtained from the online damage evaluation model to adapt
both the full-state feedback gain K and observer gain L of
the IPC controller activated in the first level of switching to
achieve the targeted lifetime. The combined switching con-
stitutes aIPC lifetime control.

5 Results and discussion

This section presents and discusses the simulation results ob-
tained from evaluating the adaptive lifetime control strategy
using the 1.5 MW NREL RWT in FAST design code. Fol-
lowing the IEC 61400-1 recommendation for fatigue load
evaluation, a 600 s stochastic wind profile generated using
TurbSim software (Jonkman and Kilcher, 2012) is used for
closed-loop system excitation. The full-field IEC Kaimal
type A wind profile shown in Fig. 6a has a mean hub-height
wind speed of 18 m s−1, a turbulence intensity of 16 % at
15 m s−1, and vertical wind shear with a power-law exponent
of 0.2. Although such a high wind speed has a low occur-
rence probability, it drives the dynamics of the wind turbine
from near-rated to cut-off wind speeds. Therefore, it is useful
for demonstrating the performance of the proposed control
strategy over a wide range of wind turbine operations. While
blade edgewise (E–W) and tower side–side (S–S) bending
moments contribute to the total fatigue damage of the respec-
tive components, in this contribution, blade flapwise (F–W)
and tower fore–aft (F–A) bending moments are chosen since
they are the main structural loads that drive fatigue damage
of respective components in above-rated turbine operation.
This sufficiently demonstrates the application of lifetime es-
timation of wind turbine components as a state-of-health in-
dicator to establish a trade-off between load mitigation and
speed regulation to guarantee a given damage at a desired
lifetime.

The performance of the lifetime control scheme in dif-
ferent blade load mitigation scenarios is shown in Fig. 6b.
As shown, the adaptive lifetime control strategy controls
the damage accumulation in the blades to reach the prede-
fined damage limit at the desired lifetime of 600 s. While the
control strategy with maximum load mitigation achieves the
same desired result, the lifetime control scheme spreads the
incremental damage accumulation over the entire operation
window by dynamically switching between the different load
mitigation levels.

The baseline controller (without lifetime control) used for
comparisons is RDAC combined with aIPC without lifetime
control, whereby switching in aIPC is only based on incom-
ing wind speed. To evaluate the proposed controller in vary-
ing wind fields, six profiles with mean wind speeds of 18 and
14 m s−1, each having three seeds, are used. The three wind
profiles having a mean wind speed of 18 m s−1 are shown in
Fig. 7a. A comparison in blade F–W bending moment load
mitigation performance is shown in Fig. 7b. On average (for
the three wind fields), an adaptive lifetime controller achieves
a 9.39 % reduction in standard deviation compared with the
baseline controller. Additionally, there is significant reduc-
tion in the accumulated damage as shown in Fig. 7c.

The performance of the adaptive lifetime control strategy
in mitigating tower loads is also evaluated. As illustrated in
Fig. 8a, a significant reduction in tower F–A oscillation is
observed, with the average standard deviation reducing by
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Figure 4. Prognostics-based adaptive lifetime control.

Figure 5. The aIPC switching implementation.

6.58 %. A reduction in tower damage accumulation can be
seen in Fig. 8b. This shows that the lifetime control of blades,
which reduces 1P fatigue loads, leads to reduced damage ac-
cumulation in the tower due to 3P fatigue loads. To evalu-
ate the performance of the proposed lifetime control scheme
in load mitigation in different tower and blade load chan-
nels, damage equivalent load (DEL) analysis is carried out
using MLife software (Hayman, 2012). Based on fatigue
analysis carried out with results obtained using the 10 min
stochastic wind profile shown in Fig. 7a, the lifetime con-
troller reduces DELs in the blade F–W and tower F–A as il-
lustrated in Fig. 8c. No noticeable change in blade E–W DEL
is achieved. However, a slight increase is seen in tower S–S
DEL, which is attributed to a slight increase in pitch activity
for improved load reduction.

Despite the adaptive lifetime controller achieving im-
proved performance in reducing damage accumulation in
both rotor blade and tower, it is important to ascertain that
this does not compromise the speed and power regulation

performance. To illustrate this, the rotor speed and generator
power are evaluated as shown in Fig. 9. With lifetime control,
no notable change is realized with respect to rotor speed reg-
ulation. Although a slight increase of 8.7 % in power standard
deviation is noted, the generated power fluctuates within ac-
ceptable limits. The mean power is identical at 1560.13 and
1559.97 kW for the baseline and lifetime controllers, respec-
tively. Improvement in both load mitigation and rotor speed
regulation is achieved with insignificant additional pitch ac-
tivity as illustrated in Fig. 9c. The average total pitch travel
marginally increases by 0.13 %.

Given that an 18 m s−1 wind field realization has a low oc-
currence probability since wind turbines spend most of the
time operating in near-rated wind conditions, the proposed
adaptive lifetime control strategy is evaluated using a near-
rated wind profile. For this, three IEC type C stochastic wind
field realizations shown in Fig. 10a, each with a mean speed
of 14 m s−1 and a turbulence intensity of 12 % at 15 m s−1,
are used. Fatigue load mitigation performance of the pro-
posed lifetime controller in the blades is evaluated against
the baseline controller as illustrated in Fig. 10b. The lifetime
controller achieves a 10.1 % reduction in standard deviation
in blade F–W bending moment. Additionally, significant re-
duction in the accumulated damage is achieved.

A reduction in tower fore–aft loading and damage accu-
mulation is realized as shown in Fig. 11a. The standard devi-
ation in tower loading is reduced by 11.2 %. Fatigue analysis
is carried out using simulation results based on the wind pro-
files shown in Fig. 10a. As illustrated in Fig. 11c, the adaptive
lifetime controller achieves DEL reduction in all load chan-
nels except the slight increase in tower S–S DEL.

Speed and power regulation performance of the proposed
controller is also evaluated at near-rated wind conditions as
shown in Fig. 12. With lifetime control, improvement is re-
alized in both speed and power regulation, with the stan-
dard deviation in rotor speed and generated power reducing
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Figure 6. Adaptive lifetime control performance.

Figure 7. Blade fatigue load mitigation for 18 m s−1 wind.

by 1.3 % and 1.2 %, respectively. The mean power is identi-
cal at 1553.5 and 1553.73 kW for the baseline and lifetime
controllers, respectively. Improvement in both load mitiga-
tion and speed regulation comes with insignificant additional
pitch activity as illustrated in Fig. 12c. The average total pitch
travel increases slightly by 0.5 %. Therefore, the proposed
adaptive lifetime control strategy performs well in near-rated
wind conditions.

6 Summary and conclusion

In this paper, a prognostics-based adaptive control strategy
for lifetime control of wind turbines is presented. A robust

disturbance accommodating controller (RDAC) designed us-
ing mixed sensitivity H∞ control is used as the primary con-
troller for mitigating tower loads and regulating rotor speed
using a CPC signal. On the other hand, an aIPC controller
designed using the LQG control method is used as a lifetime
controller. The gains of each of its five IPC controllers are
adapted based on the state of health of the rotor blades ob-
tained using an online damage evaluation model to strike a
compromise between lifetime control through load mitiga-
tion and speed regulation.

Through simulation using a 1.5 MW wind turbine model,
it is demonstrated that the adaptive lifetime control strategy
controls the damage accumulation in the blades to guarantee
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Figure 8. Tower fatigue load mitigation and DEL analysis for 18 m s−1 wind.

Figure 9. Speed and power regulation performance and pitch actuator usage for 18 m s−1 wind.
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Figure 10. Blade fatigue load mitigation for 14 m s−1 wind.

Figure 11. Tower fatigue load mitigation and DEL analysis for 14 m s−1 wind.
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Figure 12. Speed and power regulation performance and pitch actuator usage for 14 m s−1 wind.

a given damage limit at the desired lifetime. A reduction in
accumulated damage in the tower is also realized. This can
potentially be used for optimizing maintenance scheduling in
wind farms by synchronizing aging of wind turbine compo-
nents, hence reducing operation and maintenance costs and
increasing operational reliability. Fatigue analysis indicates a
reduction in DELs in most load channels. This improvement
is realized without compromise in the speed and power reg-
ulation performance. The lifetime controller achieves these
results without significant increase in pitch actuator duty cy-
cle. In the future, adaptive lifetime control based on nonlinear
damage accumulation models will be considered. Addition-
ally, the use of new concepts for state-of-health indicators
such as a change in modal parameters for structural health
monitoring will be explored.
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