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Abstract. Uncertainty quantification of long-term modeled wind speed is essential to ensure stakeholders can
best leverage wind resource numerical data sets. Offshore, this need is even stronger given the limited availability
of observations of wind speed at heights relevant for wind energy purposes and the resulting heavier relative
weight of numerical data sets for wind energy planning and operational projects. In this analysis, we consider
the National Renewable Energy Laboratory’s 21-year updated numerical offshore data set for the US East Coast
and provide a methodological framework to leverage both floating lidar and near-surface buoy observations in
the region to quantify uncertainty in the modeled hub-height wind resource. We first show how using a numerical
ensemble to quantify the uncertainty in modeled wind speed is insufficient to fully capture the model deviation
from real-world observations. Next, we train and validate a random forest to vertically extrapolate near-surface
wind speed to hub height using the available short-term lidar data sets in the region. We then apply this model
to vertically extrapolate the long-term near-surface buoy wind speed observations to hub height so that they can
be directly compared to the long-term numerical data set. We find that the mean 21-year uncertainty in 140 m
hourly average wind speed is slightly lower than 3ms~! (roughly 30 % of the mean observed wind speed) across
the considered region. Atmospheric stability is strictly connected to the modeled wind speed uncertainty, with
stable conditions associated with an uncertainty which is, on average, about 20 % larger than the overall mean

uncertainty.
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1 Introduction

The offshore wind energy industry has been growing at an
unprecedented pace worldwide (Musial et al., 2022). While
the United States currently only has 42 MW of installed off-
shore wind capacity (Global Wind Energy Council, 2023),
many more turbines are planned to be built in the coming
years, with a target of at least 30 GW of installed capacity
by 2030 (US White House Briefing Room, 2021). With a to-
tal offshore technical resource potential thought to be about
twice the current national energy demand (Musial et al.,
2016), offshore wind energy represents a valuable clean
source of energy to meet future needs. Such growth requires
the existence of accurate long-term wind resource data sets to
help interested stakeholders in their preconstruction energy
evaluations (Brower, 2012). Given the technical, logistical,
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and economical challenges in deploying instruments capable
of characterizing the offshore wind resource at heights rel-
evant for wind energy purposes, numerical weather predic-
tion (NWP) models are often used to provide a continuous
(in space and time), high-resolution wind resource assess-
ment. The National Renewable Energy Laboratory (NREL)
recently released a state-of-the-art offshore wind resource as-
sessment product based on 21-year-long simulations using
the Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2019) for all US offshore waters. This updated
data set is intended to replace the offshore component of the
WIND Toolkit (Draxl et al., 2015).

Given the high stakes at play connected to the planned
future growth of offshore wind energy, it is essential that
data sets such as NREL’s quantify and communicate the
uncertainty that comes with the modeled wind resource. In
fact, previous studies showed how even a small uncertainty
change in the modeled mean wind speed translates into an
almost double uncertainty for the long-term prediction of the
annual energy production of a wind plant (Johnson et al.,
2008; White, 2008; Holstag, 2013; AWS Truepower, 2014),
which is associated with significantly higher interest rates for
new wind project financing.

A somewhat conventional approach to quantify uncer-
tainty from NWP models is to consider the variability of
the quantity of interest — in our case wind speed — across
a number of numerical ensemble members, which are differ-
ent realizations of the numerical model obtained by tweaking
the numerical model setup. Many different setup choices can
affect the wind speed predicted by an NWP model: which
planetary boundary layer (PBL) scheme to adapt in the sim-
ulations (Ruiz et al., 2010; Carvalho et al., 2014a; Hahmann
et al., 2015; Olsen et al., 2017), which large-scale atmo-
spheric product to use to force the model runs (Carvalho
et al., 2014b; Siuta et al., 2017), the model horizontal res-
olution (Hahmann et al., 2015; Olsen et al., 2017), the model
spin-up time (Hahmann et al., 2015), and data assimilation
techniques (Ulazia et al., 2016) are some of the main con-
tributing factors to wind speed variability across different
model runs. Running a numerical ensemble can quantify
an ensemble-derived uncertainty, and Bodini et al. (2021)
showed how using machine learning approaches can reduce
the temporal extent of the computationally expensive ensem-
ble runs necessary to quantify this type of uncertainty (called
“boundary condition and parametric uncertainty” in their ar-
ticle) over a long-term period.

However, quantifying only the uncertainty connected to
the possible choices in model setup presents several limi-
tations. In fact, the magnitude of the uncertainty that can
be quantified from the NWP ensemble variability is strictly
connected to the limited number of choices sampled within
the considered model setups. NWP model ensembles tend
to lead to an underdispersive behavior (Buizza et al., 2008;
Alessandrini et al., 2013), so that only a limited component
of the actual wind speed error with respect to observations
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can be quantified from them. The proper, full uncertainty
in NWP-model-predicted wind speed can only be quantified
when leveraging direct observations of the wind resource,
concurrent with the modeled period. In this ideal scenario,
the residuals between modeled and observed wind speed can
be calculated, and the model error can be quantified both in
terms of its bias (i.e., the mean of the residuals) and uncer-
tainty (or, in simple terms that are refined later in the paper,
the standard deviation of the residuals).

It is important to remember that, while observational data
sets are essential for a proper quantification of numerical un-
certainty, they also come with their own uncertainty, which
should therefore be considered in the overall numerical
uncertainty quantification. Observational uncertainty stems
from a variety of factors (Yan et al., 2022). The size and rep-
resentativeness of the available observations is a primary fac-
tor to keep in mind, especially when less than 1 year of data
are available for use, and the seasonal cycle of atmospheric
variables cannot be accurately captured. Also, observations
come with inherent instrumental uncertainty, whose general
guidelines are well described in the ISO Guide to the Ex-
pression of Uncertainty in Measurement (JCGM 100:2008,
2008Db, a), often referred to as “GUM”. Specific considera-
tions will then apply for each specific instrument, so that for
example lidars will have different uncertainties compared to
traditional anemometers.

In our analysis, we present and validate a novel method-
ology to assess long-term (in our case, 21 years) uncertainty
quantification for modeled wind speed in the mid-Atlantic
region of the United States by leveraging available observa-
tions of offshore wind. While in our analysis we focus on the
US mid-Atlantic domain, the methodology could be applied
in other offshore regions as well. In Sect. 2 we describe our
long-term WRF simulations and the lidar and buoy observa-
tions that we leverage to assess uncertainty in the modeled
data set. In Sect. 3 we present our proposed methodology
to assess long-term uncertainty in modeled wind speed by
comparing it with vertically extrapolated observed winds. In
Sect. 4 we dive deeper into the already mentioned topic of
using numerical ensembles to quantify uncertainty and pro-
vide a demonstration of the limits of such an approach. We
accurately validate our uncertainty quantification approach in
Sect. 5, present the main results of our long-term uncertainty
quantification (in terms of uncertainty in hourly average wind
speed) in Sect. 6, and conclude our analysis in Sect. 7.

2 Data

2.1 Numerical data

We use NREL's WRF-modeled long-term wind speed data
in the mid-Atlantic region (Bodini et al., 2020). The model is
run from January 2000 to December 2020, at 2 km horizontal
resolution, 5 min temporal resolution, with nine vertical lev-
els in the lowest 200 m, using the model setup illustrated in
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Table 1. Key attributes of the 21-year WRF simulations used in this study.

Feature Specification

WREF version 42.1

Grid spacing 6km, 2 km (nested)
Output time resolution 5 min

Vertical levels 61

12, 34, 52, 69, 86, 107, 134, 165, 200
ERA-5 reanalysis (Hersbach et al., 2020)

Near-surface-level heights (m)
Atmospheric forcing

Planetary boundary layer scheme
Land surface model
Microphysics

Longwave radiation

Shortwave radiation
Topographic database

Land-use data

Cumulus parameterization

Sea surface temperature product

Noah (Ek et al., 2003)
Ferrier (Schoenberg Ferrier, 1994)

Rapid radiative transfer model

Mellor—Yamada—Nakanishi—Niino level 2.5 (Nakanishi and Niino, 2009)

Rapid radiative transfer model (Mlawer et al., 1997)

Global multiresolution terrain elevation data from the US Geological Survey and National Geospatial-Intelligence Agency
Moderate Resolution Imaging Spectroradiometer 30 s (Justice et al., 2002)

Kain—Fritsch (6 km domain) (Kain and Fritsch, 1993)

Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) (Donlon et al., 2012)

detail in Table 1. Multiple model setups (obtained by tweak-
ing the reanalysis forcing, PBL scheme, sea surface tempera-
ture (SST) product, and land surface model) were considered,
and the model setup described here was chosen, as it best
validated against available lidar observations in the region
(Pronk et al., 2022). The WRF simulations are run separately
for each month and then concatenated into a single, 21-year
time series at each location. We use a 2 d spin-up period at
the beginning of each simulated month (e.g., July simula-
tions started on 29 June) to allow the model to develop suffi-
ciently from the initial conditions and stabilize. We apply at-
mospheric spectral nudging to the outer domain every 6 h and
find that the accuracy of simulated winds is not impacted by
the length of the 1-month simulation periods (i.e., the model
errors at the beginning of each month are not lower than at
the end of the month, on average).

2.2 Observations

An ideal uncertainty quantification over the 21-year extent of
our offshore wind resource numerical data set would require
concurrent 21-year time series of observed winds at a height
relevant for wind energy purposes and at as many locations
as possible within the modeled domain. In reality, such ex-
tensive observations do not exist. We therefore consider two
sets of observations and apply a machine-learning-based ap-
proach to leverage the advantages of each. On one hand, we
use lidar observations in the region, which provide measure-
ments at hub height but only over a handful of months. On
the other hand, we consider observations from National Data
Buoy Center (NDBC) buoys, which are available over much
longer time periods but only provide observations close to
the sea surface.

2.2.1 Lidar observations

We consider four sets of lidar measurements taken from three
lidars in the region (Fig. 1).
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— The New York State Energy Research and Develop-
ment Authority (NYSERDA) EO5 north data set (Ocean-
Tech Services/DNV GL, 2020), collected by a ZephIR
ZX300M unit, from 12 August 2019 to 19 September
2021. Most observations from the lidar and other in-
struments on the lidar buoy are provided as 10 min av-
erages, after proprietary quality checks are applied to
the data. We use wind speed and wind direction, which
are available at 3.1 m and then every 20 m from 20 to
200 ma.s.l., and air temperature. Sea surface tempera-
ture is provided as hourly average values.

— The NYSERDA EO06 south data set, collected by a sec-
ond ZephlR ZX300M unit, from 4 September 2019 to
27 March 2022. The same data considerations listed
above for the E0O5 instrument apply to this unit as well.
For this unit, data availability statistics, as defined by
the proprietary quality controls applied to the instru-
ment, were released and show that the lidar data avail-
ability decreases with height from 83 % to 76 %, while
near-surface measurements have an availability greater
than 96 %.

— The Atlantic Shores consortium 06 data set, collected
by a third ZephIR ZX300M unit, from 26 February 2020
to 14 May 2021. Data (wind speed and wind direction
profiles, air temperature, and sea surface temperature)
are available at a 10 min resolution. Wind speed and
direction data are provided at 4.1 m, all 20 m intervals
from 40 to 200, and 250 ma.s.I..

— The Atlantic Shores consortium 04 data set, collected by
the same unit, which was moved to a different location
and recorded data from 14 May 2021 to 6 March 2022,
with the same data specifications as the other Atlantic
Shores data set.

Some of the considered floating lidar platforms were not
operational for part of their overall deployment period. Fig-
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Figure 1. Map of the observational data sets used in the analysis. Lidar locations are shown as diamonds, NDBC buoys are shown as dots.
Wind lease areas are shown in white and wind planning areas in gray. The distance between the two NYSERDA lidars is about 75 km, the
two Atlantic Shores lidars are about 20km from each other, and finally the distance between the NYSERDA EO5 and Atlantic Shores 04

lidars is about 145 km.

Table 2. Mean 140 m mean speed from the four lidar data sets (after
all the quality checks described in Sect. 2.2.1 were applied).

Lidar Mean 140 m wind speed (m g1 )
NYSERDA EO5 north 9.38
NYSERDA E06 south 9.99
Atlantic Shores 04 9.44
Atlantic Shores 06 9.69

ure 2 shows the monthly coverage for each buoy. For all li-
dars, we calculate hourly averages of all the relevant vari-
ables. If a variable is missing from some 10min periods,
the hourly average value is still calculated using the avail-
able data within that 60 min period. We kept only hourly
time stamps where hourly average values of 140m wind
speed, near-surface wind speed, near-surface wind direction,
air temperature, and sea surface temperature were all avail-
able. Table 2 shows the mean 140 m wind speed from the
four lidar data sets, calculated using the selected time stamps
as described here.

2.2.2 NDBC buoy observations

Finally, we consider long-term near-surface observations
from eight buoys managed by the NDBC (locations in
Fig. 1). At each buoy, we consider observations of air and sea
surface temperatures, as well as wind speed and direction.
Table 3 shows the heights at which each variable is recorded.

Wind Energ. Sci., 8, 607-620, 2023

Table 3. List of NDBC buoys used in this analysis.

Name Wind Air Sea surface Period of
speed  temperature temperature record
height height height (meters used

(meters (meters below water
above above line)
water water
line) line)

44008 4.1 3.7 1.5 2000-2020

44009 3.8 34 2.0 2000-2020

44017 4.1 3.7 1.5 2002-2020

44018 4.1 3.7 1.5 2002-2020

44020 4.1 3.7 1.5 2009-2020

44025 4.1 3.7 1.5 2000-2020

44065 4.1 3.7 1.5 2008-2020

44066 4.1 3.7 1.5 2009-2020

One buoy (ID 44009) provides observations at slightly differ-
ent heights than all the other buoys, but we determined that
this minor difference would have a minimal impact on our
results. Whenever available, we take data from the full 21-
year period that is modeled in our WREF runs. If the full 21-
year period is not available, we consider observations from
the start of each buoy’s period of record to the end of 2020.
Data are provided at 10 min resolution for the most recent
years and 1 h resolution for the first few years at the begin-
ning of the century. To be consistent, we calculate 1h av-
erages across the whole 21-year period. As done for the li-
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Figure 2. Data availability chart for the four lidar data sets. We
kept only hourly time stamps for which we could calculate hourly
average values for all the variables considered in this analysis, as
detailed in the text.

dar data, if a variable is missing from some 10 min intervals,
the hourly average value is still calculated using the avail-
able data within that 60 min period. Only hourly time stamps
where we have valid hourly average values for all the relevant
variables are kept for the analysis.

3 Methods

To be able to leverage the long-term time series of the NDBC
buoys for an uncertainty quantification that is relevant to off-
shore wind energy purposes, the buoy observations need to
be vertically extrapolated to a height of interest for com-
mercial wind energy development. Several techniques exist
to vertically extrapolate wind speeds. Traditional approaches
include using a power law relationship (Peterson and Hen-
nessey Jr, 1978) or a logarithmic profile more firmly based on
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Table 4. Algorithm hyperparameters considered for the random for-
est, their sampled values in the cross validation, and chosen value
in the final version of the model used in Sect. 6.

Hyperparameter Sampled  Selected

values value
Number of estimators 10-20 16
Maximum depth 1-10 9
Maximum number of features 1-10 8
Minimum number of samples to split 2-11 10
Minimum number of samples for a leaf 1-15 6

the Monin—Obukhov similarity theory (Monin and Obukhov,
1954). However, recent research has shown how machine-
learning-based techniques outperform these conventional ex-
trapolation approaches, both onshore (Vassallo et al., 2020;
Bodini and Optis, 2020b, a) and offshore (Optis et al., 2021).

3.1 Machine learning algorithm for wind speed vertical
extrapolation

We use a random forest machine learning model, a robust
ensemble regression algorithm that has been successfully
applied to similar applications. In this work, we use the
RandomForestRegressor module in Python’s scikit-learn (Pe-
dregosa et al., 2011). Additional details on random forests
can be found in machine learning textbooks (e.g., Hastie
et al., 2005). We train the regression model to predict hourly
average wind speed at 140 m. We use the following observed
variables as inputs to the model, all as hourly averages:

near-surface wind speed;

near-surface wind direction;!

air temperature;

sea surface temperature;

difference between air temperature and SST;

time of day;1
— month.

We use a 5-fold cross validation, where we build the test-
ing set using a consecutive 20 % of the observations from
each calendar month in the period of record to ensure that
the learning algorithm can be (trained and) tested on a set of

ITo preserve the cyclical nature of this variable, we calculate
and include as inputs its sine and cosine. We note that both sine
and cosine are needed to identify a specific value of the cyclical
variable, because each value of sine only (or cosine only) is linked
to two different values of the cyclical variable. For example, the
sine of wind direction is 0 for both 90 and 270°, but once their
(different) cosines are introduced as well, the two can be identified
in a univocal way.

Wind Energ. Sci., 8, 607-620, 2023
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data that captures the seasonal variability at each site well.
Also, we consider the hyperparameter ranges shown in Ta-
ble 4 and sample 20 randomly selected combinations of them
during the cross-validation process. The combination of hy-
perparameters that leads to the lowest root-mean-square error
(RMSE) between the observed and random-forest-predicted
140 m wind speed is selected and used in the final model. We
note that the range of hyperparameters used limits the com-
plexity of the random forest and the computational resources
needed to train the model. We tested using a larger forest with
deeper trees, but that led to overfitting the available training
data.

The chosen splitting approach in the cross validation en-
sures that short-term autocorrelation in the data does not arti-
ficially increase the measured skill of the algorithm (as would
happen if training and testing data sets were randomly cho-
sen without imposing a consecutive data requirement). How-
ever, potential lag correlation in the data could still play a
role. Therefore, we tested whether using a single, consecu-
tive 20 % of the data for testing leads to significantly different
results in terms of model accuracy. We tested this on the two
NYSERDA lidars (because they both span a period of record
longer than 1 year and therefore can still capture a full sea-
sonal cycle in their training phase even when a single 20 %
of the data is kept aside for testing) and found no significant
difference in the model performance.

3.2 Uncertainty quantification

As detailed in Sects. 5 and 6, we apply the random forest al-
gorithm to vertically extrapolate wind speed up to 140 m at
the location of the eight NDBC buoys. To assess the uncer-
tainty in WRF-modeled long-term wind speed at each buoy
location, we first calculate the time series of the residuals be-
tween 140 m modeled winds and 140 m extrapolated winds.
Then, we calculate the average and the standard deviation of
each residual time series, which represent the bias and un-
certainty components of the model error at each location, re-
spectively. Next, we compare the biases across all the mea-
surement locations (in our case, the eight buoys).

— If the standard deviation of the biases is smaller than the
typical single-site uncertainty (i.e., the average of each
site’s standard deviation of the residuals), then the latter
is a good measure of the model uncertainty.

— If the standard deviation of the biases exceeds the typ-
ical single-site uncertainty, then the model uncertainty
is dominated by the unpredictable bias and can be esti-
mated from the standard deviation of the biases itself.

Finally, when estimating model uncertainty from measure-
ments, it is important to remember that the measurements
themselves have an uncertainty. In our case, we need to
consider both the actual instrumental uncertainty (oops) and
the uncertainty connected to the fact that the WRF-modeled
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wind speed will not be compared to directly observed wind
speed but rather to wind speed that has been vertically ex-
trapolated from near-surface observations, using a less-than-
perfect algorithm, which was trained at sites different from
the ones it is being applied to (onr). Both of these uncer-
tainty components are passed on to the model. For simplic-
ity, we assume that all three components are not correlated
with each other, and we add oo and oy in quadrature to
the model uncertainty owrr estimated using the steps above
to obtain a total uncertainty quantification (JCGM 100:2008,
2008b):

_ [ 2 2 2
Otot = 1/ OWRFE T Ogbs T OML- (D

As detailed in the following sections, we use constant val-
ues across the whole considered region for both the instru-
mental uncertainty oops and the extrapolation-related uncer-
tainty opp. This means that these two uncertainty compo-
nents will not directly consider the fact that the data set the
WRF-modeled hub-height wind speed will be compared to
has gradually lower quality as we move away from the lidars
used to train the extrapolation algorithm. Therefore, this as-
pect is folded into the uncertainty quantified by owrp, which
therefore assumes a larger connotation compared to the pure
WRF model uncertainty: in fact, only if the WRF-modeled
wind speed was compared to the frue hub-height wind speed,
would owgr be a pure quantification of only the uncertainty
in numerically modeling hub-height winds. Therefore, while
for this proof-of-concept analysis the assumption of uncor-
related uncertainty components can be considered as suf-
ficiently reasonable, and therefore Eq. (1) justified, future
follow-up analyses could explore the potential correlation be-
tween different uncertainty sources to further refine the quan-
tification approach we use here.

4 Limits of using an ensemble-based approach for
uncertainty quantification

Before diving deep into the uncertainty quantification using
the approach outlined in the previous section, we are inter-
ested in confirming the limitations of using an ensemble-
derived uncertainty as a way to fully capture an NWP model
uncertainty, as discussed in the introduction. To do so, we run
a 1-year (September 2019 to August 2020) WRF ensemble
across the mid-Atlantic region and calculate the (temporal)
mean of the modeled 140 m wind speed standard deviation
calculated across the ensemble at each time stamp at the lo-
cation of the two NYSERDA lidars. These values quantify, in
a rather simple yet often used fashion that neglects any cor-
relation among the ensemble members, the model ensemble-
derived uncertainty at the two lidar locations. We then com-
pare these values with the total model uncertainty, calculated
using Eq. (1). We compute owRrr as the standard deviation of
the 1-year time series of the residuals between 140 m wind
speed from the main WREF run (i.e., the one with the setup
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used for the full 21-year period) and concurrent observations
from the two NYSERDA lidars. We assume the uncertainty
in the lidar observations oops to be 3 % of the reported li-
dar 140 m wind speed across the considered period follow-
ing what was reported in the NYSERDA lidar documen-
tation (OceanTech Services/DNV GL, 2020) and therefore
equal to 0.31 ms~ L, Finally, in this case, oy, = 0 because
we are not applying any vertical extrapolation approach. We
perform both calculations from hourly average time series of
modeled and observed wind speed.

For this exercise, we consider 16 ensemble members, ob-
tained by considering all the possible combinations of setups
resulting from the following four variations.

— Reanalysis forcing. We consider the state-of-the-art
ERAS5 reanalysis product developed by the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) (Hersbach et al., 2020) and the Modern-Era
Retrospective analysis for Research and Applications,
Version 2 (MERRA-2) (Gelaro et al., 2017), developed
by the National Aeronautics and Space Administration
(NASA). Both of these reanalysis products have been
widely used in applications related to wind energy and
represent the most advanced reanalysis products avail-
able to date.

— Planetary boundary layer scheme. We consider the
Mellor—Yamada—Nakanishi—Niino (MYNN) (Nakan-
ishi and Niino, 2009) and the Yonsei University (YSU)
(Hong et al., 2006) PBL schemes. These two models are
widely considered the two most popular PBL schemes
in WRE, especially when considering wind-related ap-
plications: YSU was used in the WIND Toolkit (Draxl
etal., 2015), and MYNN was used in the New European
Wind Atlas (Hahmann et al., 2020; Dorenkdmper et al.,
2020).

— Sea surface temperature product. We consider the Op-
erational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) data set produced by the UK Met Office (Don-
lon et al., 2012) and the National Centers for Environ-
mental Prediction (NCEP) real-time global (RTG) SST
product (Grumbine, 2020).

— Land surface model (LSM). We consider the Noah LSM
and the updated Noah-Multiparameterization (Noah-
MP) LSM (Niu et al., 2011).

Table 5 summarizes the result of this comparison. We find
that, while the ensemble-derived uncertainty at either lidar is
lower than 1 ms~! (roughly equal to 10 % of the mean ob-
served 140 m wind speed; see Table 2), the actual model un-
certainty is instead closer to 2ms~! (roughly equal to 20 %
of the mean observed 140 m wind speed). This comparison
clearly confirms how an NWP model’s uncertainty quantified
from the variability across a numerical ensemble can only
quantify a limited component of the full model uncertainty —
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Table 5. Comparison between ensemble-derived uncertainty and
total model uncertainty in 140 m wind speed at the locations of the
two NYSERDA lidars.

Lidar Ensemble-based WRF Total
uncertainty uncertainty model
(ms™ 1 ) (ms™ 1 ) uncertainty
(ms™1)
NYSERDA EO05 0.95 1.90 1.93
NYSERDA E06 0.96 1.84 1.87

Table 6. Comparison of training and testing RMSE (in modeling
hourly average wind speed at 140 m) at the four lidar data sets.

Lidar data set Training  Testing
RMSE RMSE
(ms™!)  (ms™h
NYSERDA E05 1.09 1.14
NYSERDA E06 1.21 1.18
Atlantic Shores 04 1.17 1.22
Atlantic Shores 06 1.27 1.33

in our specific case for hub-height wind speed — with a rela-
tive difference of about 50 %.

5 Machine learning wind speed vertical
extrapolation validation

Given the inappropriate uncertainty quantification resulting
from a numerical ensemble, we are now ready to start work-
ing on our machine learning vertical extrapolation approach
to be able to apply our proposed pipeline for a broader un-
certainty quantification. For the long-term uncertainty quan-
tification, the random forest algorithm needs to be applied
at each buoy location to derive a long-term time series of
extrapolated winds, which will be compared to the WREF-
modeled wind resource. However, before doing so, the re-
gression model first needs to be trained at the floating lidar
sites so that it can learn how to model hub-height wind speed
in the region from a set of near-surface data. Also, the gener-
alization skill of the model needs to be quantified, as a proper
uncertainty quantification needs to also account for the un-
certainty of the approach used to obtain the observation-
based long-term time series of hub-height winds at each buoy
location.

First, we verify that the learning algorithm we have chosen
does not overfit the data. To do so, we compare the training
and testing RMSE at the four lidar data sets in Table 6. The
fact we do not systematically see significantly larger testing
RMSE confirms that the random forest does not overfit the
data at any of the lidar sites, so that we can continue in our
validation by assessing its generalization skills.
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Figure 3. Testing root-mean-square error (in ms~ 1) in predicting
hourly average wind speed at 140 ma.s.1. for the different lidar data
sets, as a function of the data set used to train the random forest.

We validate the machine learning extrapolation model us-
ing a “round-robin” approach. In fact, it is neither fair nor
practically useful to assess the skill of the regression algo-
rithm when it is trained and tested at the same lidar location,
as that is not our actual application of the model. Instead, one
should assess the performance of the extrapolation approach
when the random forest is trained at one lidar and then used
to extrapolate wind speed at a different lidar, where the model
has no prior knowledge (or, better yet, limited prior knowl-
edge since the training site is still in the vicinity) of the wind
conditions at the site. Figure 3 shows the result of such a
round-robin validation; we compare the RMSE of the ran-
dom forest using all possible combinations of training and
testing lidar data sets.

Overall, we find that the random forest provides accurate
results, with RMSE always equal to or lower than 1.51 ms~!.
Also, we see that the model generalizes well when compar-
ing the RMSE obtained under a round-robin scenario to the
RMSE values found when using the same site for training
and testing; on average, we find a 13 % increase in RMSE
compared to the same-site scenario. Notably, for the two NY-
SERDA lidars, which have the longest period of record, we
find very little degradation in performance when the random
forest is trained at one lidar and then tested at the other one,
which is about 75 km away. To better visualize the good per-
formance of the extrapolation model, Fig. 4 shows an ex-
ample of a scatter plot of observed and machine-learning-
predicted hub-height winds when the random forest is trained
at the NYSERDA EO06 south lidar and applied at Atlantic
Shores 06. The quantiles in the plot help visualize how the
extrapolation model slightly overpredicts 140 m wind speed
for low wind speeds and slightly underpredicts it for high
wind speeds.

When interpreting these results, it is important to also con-
sider the correlation existing between the considered data
sets. In fact, the R? coefficient between observed hourly av-
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Figure 4. Scatter plot of observed and machine-learning-predicted
140 m hourly average wind speed at the Atlantic Shores 06 lidar
when the learning algorithm is trained at the NYSERDA E06 south
lidar. The color shades show density of the data, with darker colors
indicating regions with more data. The black dots compare quantiles
of the two samples.

erage 140m wind speed from the closest pairs of lidars is
quite high. For example, R? =0.84 when considering the
NYSERDA EO5 and EO06 lidars (about 75km from each
other), and R? = 0.88 between the NYSERDA E06 and At-
lantic Shores 06 lidars (about 55 km from each other). These
values drop significantly when considering larger distances,
so that we have R? = 0.55 between the observations of the
NYSERDA EO5 and Atlantic Shores 04 lidars, which are
over 145 km apart. Finally, it is important to remember that
the Atlantic Shores 04 and 06 lidars do not have any over-
lapping time in their periods of record, so that their time se-
ries can be considered independent from each other. Given
these considerations, it is reasonable to expect that the exist-
ing correlations between the data sets have an impact on the
good generalization skills found here, but only up to a certain
level. For example, the remarkably strong generalization skill
found between the two NYSERDA lidars is likely connected
to a combination of their long period of record and strong
autocorrelation. On the other hand, the random forest still
performs well when trained and tested at lidars over 140 km
apart (the NYSERDA EO5 and Atlantic Shores 04 lidars) and
even when trained and tested at two lidars (Atlantic Shores 04
and 06) with no overlapping period of record. Therefore,
while numbers in Fig. 3 are not immune from existing cor-
relations, the overall good generalization performance of the
extrapolation algorithm in the relatively limited geographical
region considered in our analysis is confirmed.

The application of the random forest model also allows
for a quantification of the relative importance of the various
input variables used to feed the model. Table 7 shows the fea-
ture importance at the Atlantic Shores 06 lidar site. With no
surprise, we find that wind speed close to the surface is the
most influential variable, followed by the difference between
air temperature and sea surface temperature, which is a proxy
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Table 7. Predictor importance for the random forest used to extrap-
olate winds at 140 ma.s.l. at lidar Atlantic Shores 06.

Predictor Relative
importance

(%)

Near-surface wind speed 75.7
Near-surface air temperature 0.6
Sine of near-surface wind direction 0.7
Cosine of near-surface wind direction 1.4
Sine of time of day 1.2
Cosine of time of day 0.3
Sine of month 0.2
Cosine of month 0.2
Sea surface temperature (SST) 0.6
Difference between near-surface air 19.1

temperature and SST

for atmospheric stability. Similar results are observed at the
other lidar sites (not shown). We note that a proper feature
importance quantification would require all input variables to
be uncorrelated, which is not the case in our analysis. There-
fore, the results should be considered as qualitative and in-
terpreted given the correlation existing between some of the
input variables. For example, if the difference between air
temperature and SST was not included as input, it is reason-
able to expect that the relative importance of air temperature
and SST would increase.

The fact that only two of the variables used as inputs to the
random forest have a relatively large importance introduces
the question of whether a simpler algorithm could be used
to vertically extrapolate wind speeds. We test this aspect by
considering two additional algorithm setups (for simplicity,
we only consider the same-site approach) and summarize our
results in Table 8.

— First, we test whether a comparable model accuracy can
be achieved when considering a random forest that uses
only the two most important variables (near-surface
wind speed and difference between air temperature and
SST) as inputs. We use the same range of hyperparam-
eter and cross-validation setup used in the main analy-
sis. We find that while the model does not overfit the
data in a significant way, it has lower skills, with test-
ing RMSE values between 0.15-0.40 ms~! larger than
what is found with the original random forest setup (Ta-
ble 6).

— Next, we test whether using a simpler regression algo-
rithm with the whole set of input variables considered
in the original random forest can lead to a comparable
skill. We consider a multivariate linear regression and
use a ridge algorithm (Hoerl and Kennard, 1970) (Ridge
in Python’s library scikit-learn) to constrain the mul-
tivariate regression. We use the same cross-validation
setup used in the main analysis, with the only hyper-
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Table 8. Comparison of training and testing RMSE (in modeling
hourly average wind speed at 140 m) at the four lidar data sets when
using a random forest with a reduced number of input variables and
amultivariate linear regression with the whole set of input variables.

. Random forest with | Multivariate linear
Lidar data set . .
two inputs regression

Training  Testing | Training  Testing

RMSE RMSE RMSE RMSE

ms~h  (ms7H | ms7h  (ms7h
NYSERDA EO05 1.32 1.29 1.75 1.77
NYSERDA E06 1.32 1.40 1.87 1.80
Atlantic Shores 04 1.47 1.55 1.77 1.85
Atlantic Shores 06 1.55 1.72 2.08 1.88

parameter (o) for the algorithm sampled between 0.1
and 10. We find that the model does not overfit the
data, but it does provide significantly worse extrapo-
lated winds, with RMSE values over 0.5ms™! larger
than what is found with the original random forest setup.

Therefore, we conclude that the random forest model con-
sidered in the main analysis is an appropriate choice given
the complexity of the task of wind speed vertical extrapola-
tion, despite the limited number of variables showing large
values of relative importance (likely due to some correlation
effects, as described above). Finally, we note that several con-
straints have been applied to the complexity of the random
forest used in the main analysis, in terms of the hyperparam-
eters listed in Table 4, so that the training of the model can
be easily completed on a personal computer and only takes a
few minutes.

6 Modeled long-term wind resource uncertainty
quantification

After properly validating and assessing the generalization
skills of the machine-learning-based vertical extrapolation
model by leveraging the short-term lidar data, we can now
apply it to extrapolate the long-term observations collected
by the NDBC buoys. To do so, we train a random forest us-
ing all the lidar data sets combined to optimize the amount
of training data for the model (the hyperparameters selected
for this final model are listed in the leftmost column in Ta-
ble 4) and then apply the trained model at each buoy location.
We then compare the long-term extrapolated winds against
the WRF-modeled data at 140 ma.s.1. (results at one buoy in
Fig. 5) at each NDBC buoy location.

We finally compute the modeled wind speed uncertainty,
following the steps detailed in Sect. 3.2. Table 9 shows bias
and uncertainty values calculated as mean and standard devi-
ation of the (up to) 21-year time series of residuals between
modeled and extrapolated 140 m wind speed at each NDBC
buoy location. We find very small biases (always smaller
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Figure 5. Scatter plot of 21-year WRF-modeled and machine-
learning-predicted 140 m hourly average wind speed at the loca-
tion of the 44025 NDBC buoy. The color shades show density of
the data, with darker colors indicating regions with more data. The
black dots compare quantiles of the two samples.

Table 9. Twenty-year model bias and model uncertainty in
140 m wind speed at the location of the NDBC buoys considered
in this study.

NDBC buoy Bias WRF Total
(ms™1) uncertainty  uncertainty
(m sfl) (m sfl)
44008 0.38 2.66 3.00
44009 0.12 2.60 2.96
44017 0.15 2.50 2.87
44018 0.22 3.59 3.86
44020 0.29 2.65 2.99
44025 —0.06 2.52 2.89
44065 0.17 2.63 2.99
44066 0.11 2.46 2.84

than 0.4 ms~! in either direction) across all buoy locations.
Therefore, the uncertainty in the modeled wind speed can be
quantified from the single-site WRF uncertainty values owgrr
shown in the table. To these numbers, we add in quadrature
a quantification of the uncertainty in the observations (oops)
and of the machine learning model used to vertically ex-
trapolate the buoy data (o). Once again, following the li-
dar uncertainty assessment in OceanTech Services/DNV GL
(2020), we consider ogps = 0.29 m g1 (which is slightly dif-
ferent from what was used in Sect. 4 because this time we
are calculating the mean wind speed over the full period of
record of all lidar data sets). We quantify the extrapolation
model uncertainty in terms of the mean RMSE obtained un-
der all the site combinations considered in the round-robin
validation (i.e., the mean of all the off-diagonal values in the
matrix in Fig. 3) so that oy = 1.38 ms ™!,

We find that at all but one buoy, the total uncertainty
in modeled 140 m wind speed is equal to or slightly lower
than 3 ms~! (roughly equal to 30 % of the mean 140 m wind
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speed; see Table 2). The uncertainty increases as the distance
from the lidars, used to train the machine learning model, in-
creases. As discussed in Sect. 3.2, this aspect is directly vis-
ible in the owgrp uncertainty component. Specifically, buoy
44018 has the largest uncertainty, which is consistent with
this buoy being separated from all the lidars by Cape Cod; it
is reasonable to expect that the atmospheric conditions at this
buoy site are considerably different from what was used to
train the machine learning model. Also, we note how the to-
tal uncertainty values obtained here are about 1 ms~! higher
than what was found from the short-term direct compari-
son between lidar observations and WRF-modeled data in
Sect. 4. While the impact of different lengths of analysis can-
not be ruled out, this comparison shows how having access to
the long-term lidar observations would be extremely benefi-
cial in allowing a more direct quantification (leading to lower
values) of the model uncertainty for long-term wind resource
assessment purposes.

Finally, we focus on the variability of the quantified uncer-
tainty and segregate results by time of day (09:00-16:00 LT
(local time) vs. 21:00-04:00LT), season (June, July, Au-
gust vs. December, January, February), wind direction (180-
270° vs. 270-360°, which are the two dominant wind direc-
tion regimes in the region (Pronk et al., 2022)), and atmo-
spheric stability conditions (quantified in terms of the mod-
eled inverse Obukhov length L~! at 2 ma.s.l., where we sim-
ply consider stable conditions for L~' > 0m™! and unstable
conditions for L~! <0Om™!). We summarize our results in
the box plots in Fig. 6. The largest difference in modeled
wind speed uncertainty is for stable conditions, which are
generally more challenging to model compared to unstable
conditions. Pronk et al. (2022) showed that stable conditions
in this region are dominant in the summer, and Bodini et al.
(2019) showed that southwesterly winds are dominant in the
summer months. In fact, we find a larger wind speed uncer-
tainty for southwesterly winds and in the summer (although
winter shows a significant scatter among the buoys). Finally,
nighttime uncertainty is larger than daytime, although the
difference between the two is limited.

7 Conclusions

The National Renewable Energy Laboratory has released a
state-of-the-art 21-year wind resource assessment product
for all the offshore regions in the United States. Because of
its numerical nature, this data set has inherent uncertainty,
the quantification of which is of primary importance for
stakeholders aiming to use this data set to contribute to off-
shore wind energy growth. In our analysis, we have shown
the limits of quantifying model uncertainty in terms of the
variability of a model ensemble, which in our case captured
only roughly half of the total model uncertainty. Instead, we
recommend leveraging observations to fully capture NWP
model uncertainty. In the absence of long-term observed
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Figure 6. Box plot showing how the modeled 140 m wind speed
uncertainty varies as a function of wind direction, time of day, sea-
son, and atmospheric stability conditions. For each buoy location,
results are expressed as percent difference from the mean uncer-
tainty values (rightmost column in Table 9).

wind speeds at hub height, we have proposed a methodologi-
cal pipeline to vertically extrapolate near-surface winds from
long-term buoy observations using machine learning. We
adopt a random forest model using a number of atmospheric
variables measured near the surface as inputs to the regres-
sion algorithm. Our approach was well validated across the
mid-Atlantic region, and we showed that using a significantly
simpler model (either in terms of the regression algorithm
itself or the number of input variables used) would signif-
icantly reduce the accuracy of the extrapolated winds. The
total model uncertainty we observed in hub-height hourly
wind speed was, on average, just below 3ms~! (about 30 %
of the mean observed winds). This number is not negligible,
especially considering that wind turbine power production is
roughly related to the cube of wind speed, but several oppor-
tunities exist to reduce this uncertainty in the future.

This analysis is one of many examples of the synergy be-
tween NWP models and observations, which points to the
multiple interconnections between the two. A larger number
of long-term observations are needed to both quantify and,
in the long term, reduce the inherent uncertainty of numer-
ical models. In fact, we observe that the uncertainty in the
modeled data increases as we move away from the observa-
tional data sets used to train the machine learning algorithm.
Having a larger number of sites with available hub-height
observations covering a variety of atmospheric conditions
would allow for the machine learning model to more accu-
rately represent hub-height conditions across a wider region.
In this context, the sharing of additional proprietary obser-
vational data sets should be considered, and the long-term
advantages resulting from better numerical modeling should
be kept in mind when assessing the overall balance between
costs and benefits of such data-sharing initiatives. In the fu-
ture, the choice of the learning algorithm as well as of the
input variables can be explored in more detail, for example
by testing a larger number of regression models than consid-
ered here. Also, a similar analysis can be performed for other
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offshore regions where both a long-term numerical wind re-
source assessment product and enough observations to assess
uncertainty are available.

Data availability. NREL’s long-term wind resource data
sets can be found at https://doi.org/10.25984/1821404
(Bodini et al., 2020). The WRF namelist is stored at
https://doi.org/10.5281/zenodo.7814365 (Bodini and  Optis,
2023). NDBC buoy observations can be downloaded from
https://www.ndbc.noaa.gov (National Data Buoy Center, 2023).
Observations from the NYSERDA floating lidars can be accessed
at https://oswbuoysny.resourcepanorama.dnvgl.com (OceanTech
Services/DNV GL, 2020). Atlantic Shores lidar observations can
be downloaded from https://erddap.maracoos.org/erddap/tabledap/
AtlanticShores_ ASOW-4_wind.html (MARACOOS, 2023a) and
https://erddap.maracoos.org/erddap/tabledap/AtlanticShores_
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