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Abstract. This paper describes a method to identify the heterogenous flow characteristics that develop within
a wind farm in its interaction with the atmospheric boundary layer. The whole farm is used as a distributed
sensor, which gauges through its wind turbines the flow field developing within its boundaries. The proposed
method is based on augmenting an engineering wake model with an unknown correction field, which results in
a hybrid (grey-box) model. Operational SCADA (supervisory control and data acquisition) data are then used
to simultaneously learn the parameters that describe the correction field and to tune the ones of the engineering
wake model. The resulting monolithic maximum likelihood estimation is in general ill-conditioned because of
the collinearity and low observability of the redundant parameters. This problem is solved by a singular value
decomposition, which discards parameter combinations that are not identifiable given the informational content
of the dataset and solves only for the identifiable ones.

The farm-as-a-sensor approach is demonstrated on two wind plants with very different characteristics: a rela-
tively small onshore farm at a site with moderate terrain complexity and a large offshore one in close proximity
to the coastline. In both cases, the data-driven correction and tuning of the grey-box model results in much im-
proved prediction capabilities. The identified flow fields reveal the presence of significant terrain-induced effects
in the onshore case and of large direction and ambient-condition-dependent intra-plant effects in the offshore one.
Analysis of the coordinate transformation and mode shapes generated by the singular value decomposition help
explain relevant characteristics of the solution, as well as couplings among modeling parameters. Computational
fluid dynamics (CFD) simulations are used for confirming the plausibility of the identified flow fields.

1 Introduction

Understanding and modeling wind farm flows is one of the
key grand challenges facing wind energy science (Veers
et al., 2019). The problem is extremely complex because
wind farm flows are driven by a number of interconnected
physical phenomena, which are not only difficult to model
but also in part still poorly understood.

Within this very wide field, the present work tries to ex-
plore the idea of using the whole wind plant as a distributed
sensor that, interacting with the atmospheric boundary layer,
responds to it and, consequently, effectively measures the
flow developing within its own boundaries. Exploiting this

idea, can data from a wind plant be used to detect significant
features in the flow, in support of an improved understanding
of key driving phenomena? Can the same data be leveraged
to derive more accurate flow models? Finally, how can the
knowledge already encapsulated in existing models be com-
bined with the information contained in the data?

These questions are explored here in relation to engineer-
ing wake models.

1.1 Engineering wake models and their limitations

Within the plethora of wind farm flow models that have
been developed, engineering wake models have carved an ex-
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tremely successful niche for themselves at the lower end of
the fidelity spectrum. In fact, they now support a wide range
of use cases, from wind plant design to wind farm flow con-
trol (Meyers et al., 2022). Engineering wake model suites,
like for example FLORIS (FLOw Redirection and Induction
in Steady State) (NREL, 2021) and PyWake (Pedersen et al.,
2019), are based on the bottom-up concept of superimposing
relatively simple flow elements, such as wake deficit, wake-
added turbulence, wake deflection, and wake combination.
The success of engineering wake models is due to their mod-
ularity, which allows for a rapid uptake of any new improve-
ment to the individual submodels, but also due to their speed,
which is key in supporting repetitive tasks such as design,
control, uncertainty quantification, and others.

However, like all models, engineering wake models are not
an exact copy of reality and are unable to precisely match
field measurements. For example, the comprehensive survey
of Lee and Fields (2021) showed that, although modeling
techniques have greatly improved in recent years, inaccura-
cies in the estimation of the turbine inflow speed are still the
largest contributor to the uncertainty in yield assessments.

A first reason for the mismatch between predictions and
reality is the unsuitable calibration of the model parame-
ters. For example, wake recovery is affected by atmospheric
conditions and terrain roughness (Abkar et al., 2016; Wu
and Porté-Agel, 2012), which depend on location and on
time (for example, because of seasonal vegetation changes).
Therefore, default standard values of the parameters describ-
ing recovery might not be appropriate for a specific site nor
for a specific time at that site.

Additionally, engineering wake models approximate (but
do not exactly resolve) only some (but not all) physical pro-
cesses that take place in and around a wind plant.

For example, the influence of terrain orography is difficult
to capture for onshore wind farms, and high-fidelity models
may be necessary to adequately resolve all flow effects (for
example, see Berg et al., 2011, for the Bolund site and Palma
et al., 2020, for the Perdigão site). Neglecting terrain effects
can indeed increase the uncertainty of predictions generated
by engineering models (Fleming et al., 2019; Doekemeijer
et al., 2021). FLORIS, which is the software framework used
in this work, currently does not include a terrain flow model
but offers the possibility of interpolating a set of wind speeds
provided at different locations, for example obtained from
met masts (Farrell et al., 2021). However, even with the inclu-
sion of this heterogeneous background flow, the model still
assumes wakes to follow the ground contour and neglects
the fact that terrain features may induce pressure gradients,
local deviations of wake trajectories, changes in dissipation
rate, flow separations, and other effects (Porté-Agel et al.,
2020; Politis et al., 2012; Castellani et al., 2017). Terrain
and ground roughness can also affect offshore sites. For ex-
ample, a Doppler radar deployed at the Westermost Rough
wind farm (Nygaard and Newcombe, 2018) and computa-
tional fluid dynamics (CFD) simulations at Anholt (van der

Laan et al., 2017) revealed the development of heterogeneous
flow fields caused by the influence of the neighboring coast-
lines.

The interaction of a wind farm with the atmospheric
boundary layer (ABL) is another extremely complex process,
which has not yet always been properly accounted for in en-
gineering models. In general, several flow regions can be dis-
tinguished around and within a wind farm (Porté-Agel et al.,
2020). Upstream, the induction zone is a region of decreasing
flow speed, causing a phenomenon termed “blockage” (Wu
and Porté-Agel, 2017; Segalini and Dahlberg, 2020), which
has been observed through production data (Bleeg et al.,
2018) and by long-range lidar measurements (Schneemann
et al., 2021). Efforts at modeling this effect include the ag-
gregation of individual turbine induction zone models (Ny-
gaard et al., 2020; Branlard et al., 2020) and the use of the
linearized Navier–Stokes equations (Segalini, 2021). Mov-
ing further downstream, an internal boundary layer starts
growing over the turbines. If the farm is deep enough in the
streamwise direction, the flow may reach a fully developed
state, sometimes referred to as the “deep-array” condition
(Calaf et al., 2010). In the fully developed region, momen-
tum is only replenished by the vertical transport from the free
atmosphere flowing above the farm. Theoretical models for
an asymptotic flow regime have been developed under the
assumption of an infinitely large wind farm (Frandsen et al.,
2006). However, it is not clear at which distance from the
leading edge a fully developed flow regime is reached (Wu
and Porté-Agel, 2017); additionally, models typically assume
a regular wind farm layout, a condition that is rarely met in
practice. The flow has complex features not only within the
wind plant but also at its perimeter. In fact, the flow has been
reported to accelerate as it turns around the edges of a wind
farm (Mitraszewski et al., 2013). Furthermore, CFD stud-
ies suggest that wind farms – similarly to hills, mountains,
and other large orographic features – could generate gravity
waves, which might not only affect the flow high above the
turbines but also cause a redistribution of the available wind
resource within the plant (Allaerts and Meyers, 2018). All
of these phenomena appear to be strongly dependent on the
ABL height and on atmospheric stability, with stable condi-
tions typically amplifying their effects (Wu and Porté-Agel,
2017; Schneemann et al., 2021).

Yet another poorly understood and modeled effect is the
way wakes interact, mix, and merge together. Current mod-
els range from simple superposition laws, e.g., the sum of
squares freestream superposition (SOSFS) method (Katic
et al., 1986) or the freestream linear superposition (FLS) one
(Lissaman, 1979); to more sophisticated physics-based com-
bination models (Zong and Porté-Agel, 2020; Bastankhah
et al., 2021); and to methods that describe how wakes merge
with the background flow (Lanzilao and Meyers, 2022). De-
spite these advances, new modeling proposals will take time
for validation and adoption, while the simple SOSFS and
FLS superposition laws are still heavily relied on. In con-

Wind Energ. Sci., 8, 691–723, 2023 https://doi.org/10.5194/wes-8-691-2023



R. Braunbehrens et al.: The wind farm as a sensor 693

ditions where many wake interactions take place, such mod-
els can have a substantial influence on the results (Hamilton
et al., 2020).

1.2 Improvement to engineering models by data-driven
tuning and learning

There are three main approaches to deal with the deficiencies
of current engineering wake models.

The first is to eliminate the resolved part of the model
altogether and use a black box to learn the complete sys-
tem behavior from data. Indeed, data-driven machine learn-
ing methods are a growing trend in many fields, including
fluid mechanics (Brunton et al., 2020). Wind energy appli-
cations are no exception to this trend: for example, Göçmen
and Giebel (2018) and Bleeg (2020) have proposed black-
box farm flow models based on neural networks. While this
approach seems appealing at first sight, it also neglects the
large body of knowledge and experience already encapsu-
lated in existing models. Additionally, trying to distill new
understanding and physical insight from black boxes is in
general not a trivial task. More importantly, one should never
forget that the data informational content always caps what a
purely date-driven model can deliver: what is not in the data,
can never be learned. As a consequence, large amounts of
data are typically necessary to derive useful models.

The second approach is to improve a (white) model by tun-
ing its parameters. For example, van Beek et al. (2021) tuned
the parameters of the FLORIS model using operational data,
which resulted in a substantial error reduction. However, tun-
ing the resolved physics in a model when relevant unresolved
phenomena are present may lead to nonphysical results. In
this sense, one should be wary of approaches that only tune
the parameters of an existing model, unless one can guaran-
tee that there are no relevant missing physical effects in that
model. As previously argued, this is typically not the case
with present engineering wake models.

The third possible approach is to directly acknowledge the
hybrid nature of the problem. This means augmenting the re-
solved model with parametric corrections that represent the
unmodeled physics, resulting in the so-called grey-box ap-
proach. Data are used to tune the parameters of the resolved
model and to learn the ones of the corrections. These two pro-
cesses of tuning and learning are clearly intimately linked,
and should be conducted simultaneously. In the framework
of wind farm flows, the approach of simultaneous tuning and
learning (STL) was first proposed by Schreiber et al. (2020a).
The concept was demonstrated by augmenting the FLORIS
wake model (NREL, 2021; Fleming et al., 2020) with vari-
ous “surgical” ad hoc corrections, designed to represent non-
uniform inflow, secondary steering, and other unmodeled ef-
fects. The method has since been applied also to a wind tun-
nel study (Campagnolo et al., 2022) and to a joint flow model
comparison (Göçmen et al., 2022). The resulting – possibly
highly redundant – parameter estimation problem was solved

using a maximum likelihood approach based on the singu-
lar value decomposition (SVD). The role of this decompo-
sition is to map the original correlated and redundant physi-
cal parameters into uncorrelated ones. This simplifies the un-
derstanding of which parameters can be identified based on
the informational content of the data and which are undis-
cernible. Once the visible parameters are identified, they are
transformed back into the physical ones through the inverse
map.

In the present paper, the STL approach is extended by
augmenting a wake model with a heterogeneous background
flow, which can be considered a correction to the normally
assumed uniform ambient flow. In this way, the whole wind
plant becomes a distributed sensor that “feels” the flow that
develops within its boundaries; this has suggested the name
of “farm as a sensor” to this approach. The similar concept
of the “the turbine as a sensor” has been developed by the
senior author and his collaborators, where a wind turbine is
turned into a sensor that “feels” the inflow at its rotor disk;
interested readers can refer to Kim et al. (2023), Bertelè et al.
(2017), Schreiber et al. (2020b), and Bertelè et al. (2021) and
references therein.

The paper is organized as follows. Section 2 describes
the wind farm flow model (Sect. 2.1), its parameterization
(Sect. 2.2), and the identification technique used to tune
and learn the free model parameters from operational data
(Sect. 2.3). Section 3 describes the application to an onshore
wind farm at a site of moderate complexity (Sect. 3.1) and to
a large offshore plant (Sect. 3.2). Finally, Sect. 4 reports the
main findings of this work and provides an outlook towards
further future developments.

2 Methods

2.1 Wind farm flow

2.1.1 Temporal decomposition

Within a wind plant, the scalar wind speed field U at some
reference height can be decomposed in the time domain as

U = Ū + Ũ +U ′. (1)

The term Ū represents a constant-in-time component. The
term Ũ accounts for the slow temporal variability caused by
changes in ambient conditions and in the turbine set points,
as well as their advection downstream throughout the plant.
Finally, the term U ′ accounts for fast fluctuations caused by
turbulence.

Engineering models such as FLORIS (NREL, 2021) pro-
vide only for a steady-state (as opposed to time-resolved)
representation of a turbulent wake immersed in a turbulent
flow. Nonetheless, it is important to realize that the long-term
effects of U ′ are indeed included in such models. In fact, the
wake geometry in the model is represented by an “average”
path and shape, observed over a long-enough period of time.
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In this way, the wake model implicitly includes the effects
of meandering caused by turbulent fluctuations in the wind
field. Additionally, the model accounts for the effects of both
the local ambient and wake-added turbulence intensity (TI),
denoted I = SD(U ′)/Ū , which affects the behavior (and es-
pecially the recovery) of the wake. The inclusion of these
effects in the model also helps clarify the split between the
slow scales Ũ and the fast scales U ′ and provides guidelines
on where in the frequency spectrum one ends and the other
one begins. In fact, a wake model is calibrated by fitting it to
observations that have been averaged over a certain window
of time (typically, equal to 10 min). Consequently, Ũ rep-
resents all the slower timescales that have not already been
taken into account by this time averaging. Such scales are ne-
glected in a steady-state model and explicitly considered in a
dynamic one (e.g., see the FLORIDyn dynamic wake model;
Gebraad and van Wingerden, 2014).

This work considers the steady-state behavior of wind
plants for given ambient and operating conditions. Conse-
quently, the wind field model includes only the component Ū
(which, as just argued, implicitly includes the effects of the
turbulent component U ′), whereas Ũ is neglected. For nota-
tion simplicity, in the following the bar notation is dropped
and the steady state wind field is simply denoted U .

2.1.2 Causal decomposition

The wind speed field can be causally decomposed as

U = Uamb+1Uwake+1Uamb↔wake. (2)

The first term Uamb represents the undisturbed ambient flow
at the site, in the absence of the wind turbines and their in-
duced effects. This component of the flow depends on the
state of the ABL and on the surface conditions, the latter in-
cluding the effects of local orography (onshore) and of local
roughness (caused by vegetation and small-scale terrain fea-
tures in the onshore case and by sea state in the offshore one).
This distinction of surface causal effects can also be seen as
a further scale decomposition, the largest spatial scales being
attributed to orography and the smallest ones to roughness.

The second term 1Uwake represents the change in speed
caused by wakes, as modeled by FLORIS or similar models.
This flow component depends on the state of the ABL, on the
local ambient conditions at each turbine (including the possi-
ble presence of wakes released by upstream machines), and
on the turbine characteristics and their operating set points.

The third and last term 1Uamb↔wake represents the inter-
action between the undisturbed ambient flow and the one
generated by the turbines, and it can be further decomposed
as

1Uamb↔wake =1Uamb→wake+1Uwake→amb. (3)

The term 1Uamb→wake accounts for the effects of the ambi-
ent background flow on the wake. It should be noted that

several of these effects are already included by design in
engineering wake models: for example, ambient turbulence
intensity (Bastankhah and Porté-Agel, 2014), vertical shear,
and veer (Sezer-Uzol and Uzol, 2013) are known to affect the
wake characteristics, and their modeling approximations are
included in FLORIS (NREL, 2021). Hence, all of these ef-
fects, as well as possible future refinements designed to bet-
ter reflect the influence of the characteristics of the ABL on
wake behavior, already appear in the term 1Uwake. There-
fore, the term 1Uamb→wake is tasked here with represent-
ing only the modifications to the wake trajectory and shape
caused by the heterogeneity of the ambient flow (Bossanyi,
2018) and by terrain orography and roughness changes (Poli-
tis et al., 2012). These phenomena affect the behavior of
wakes not only parallel to the terrain but also in the vertical
direction. Indeed, wind tunnel (Hyvärinen et al., 2018) and
large-eddy simulation (LES) (Wise et al., 2022; Shamsoddin
and Porté-Agel, 2018) studies show that wakes only partially
follow the terrain contour, as they tend to separate from it on
the leeward side of a hilltop (Shamsoddin and Porté-Agel,
2018) and in unstable atmospheric conditions (Wise et al.,
2022). In the present study, these complex effects are ne-
glected, and wakes simply follow the ground contour. Con-
sequently, the term1Uamb→wake is dropped from the discus-
sion. However, when models for these effects finally become
available, their presence will not alter the rest of the present
formulation.

The term1Uwake→amb represents the effects caused by the
plant, i.e., the turbines and their wakes, on the ambient undis-
turbed flow. These include both intra-plant (array) effects
(which, for example, cause the average flow to slow down
within the plant (Calaf et al., 2010) and to locally accelerate
in between turbines (McTavish et al., 2015)) and extra-plant
effects (which cause the growth of a boundary layer over the
plant and result in blockage (Porté-Agel et al., 2020) and lo-
cal edge effects (Mitraszewski et al., 2012)).

In summary, the causal decomposition of the flow speed
expressed by Eq. (2) can be re-written as

U = U0+1Uwake+1U. (4)

The first term U0 is the average uniform (i.e., spatially con-
stant) wind speed. The second term 1Uwake represents the
wake deficit model, as implemented in FLORIS or similar
tools. The third term is a heterogeneous correction that is
written as

1U =1Uamb+1Uwake→amb, (5)

where 1Uamb accounts for ambient surface-induced effects
and 1Uwake→amb for the effects of the turbines and wakes
on the ambient flow. In this paper, both of these causes are
aggregated into one single correction term 1U . Disentan-
gling these two effects should in principle be possible by us-
ing suitable datasets, as only the latter depends on the turbine
operating conditions.
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A similar causal decomposition is assumed for wind direc-
tion 0 and for turbulence intensity I . In fact, for both of these
flow characteristics similar arguments apply, as both can ex-
hibit a heterogeneous behavior induced by surface effects
and by the interaction of the flow with the turbines and their
wakes. Hence, noting a generic field as F (where F = U ,
F = 0, or F = I ), the assumed causal model is written as

F = F0+1Fwake+1F. (6)

For given ambient and operating conditions, F0 is a site-
average (i.e., spatially constant) flow condition (either speed,
direction, or turbulence intensity). 1Fwake is the wake
model; at present, in addition to the speed deficit, FLORIS
includes secondary steering for F = 0 and wake-added TI
for F = I . Finally, 1F is a heterogeneous (spatially vari-
able) correction field. When considering the wind direction
field, i.e., F = 0, the correction needs to be applied in a cir-
cular manner with modulus 360◦.

The functional dependency of the heterogeneous correc-
tion term 1F is assumed to be in the form

1F =1F (A0,Q) , (7)

where A= (U,0,I,L)T is a vector of ambient state vari-
ables, L is the Obukhov length, subscript (·)0 indicates an
average (spatially constant) quantity, andQ represents a spa-
tial location. Hence, the correction term 1F depends on the
following.

– The site-average ambient conditions (A0). In fact, dif-
ferent wind speeds, directions, turbulence intensities,
and stability characteristics induce different interactions
of the ambient flow with the surface and the plant.

– The spatial position (Q). Surface conditions (includ-
ing both orographic and roughness effects) and plant-
induced phenomena are typically heterogeneous.

– The turbine set points. However, it should be noted that
this dependency is already implicitly taken into account
by the dependency of1F onA0 andQ because turbine
set points depend on local ambient conditions. An extra
parameter could be used to account for different operat-
ing modes (for example, a quiet mode for nighttime op-
eration), but it is neglected for simplicity here and also
because it is not used in the application examples.

2.2 Model parameterization

It is the primary goal of this paper to present a method for
computing a best estimate of the flow fields expressed by
Eq. (6), based on operational data. For given ambient con-
ditions F0, this requires first expressing the terms 1F and
1Fwake in terms of free parameters (which is discussed in
Sect. 2.2.1 and 2.2.2, respectively) and then estimating the
values of such parameters based on an optimality criterion,

using available field measurements (which is explained in
Sect. 2.3). In principle, the identification should ensure the
satisfaction of fluid conservation properties for the resulting
field expressed by Eq. (6); such constraints are, however, ne-
glected in the present implementation. Once the values of
the parameters have been computed, the resulting identified
model can be used for performing new predictions in support
of various use cases.

2.2.1 Heterogeneous flow parameterization

The spatial heterogeneity of field 1F over the farm area is
discretized using a 2D mesh, where the value of the field
at a generic point Q is obtained by interpolating discrete
nodal values pF through assumed shape functions n(Q). No-
tice that this implies that the site is assumed to be flat, con-
sistently with the current FLORIS model; as a result, the
speedup, for example, caused by a hill is represented as a
patch of increased velocity. The 2D spatial interpolation is
expanded in additional 1D dimensions to capture the influ-
ence of the environmental conditionsA0. For example, when
considering the effects of ambient wind direction variabil-
ity (00), the range of wind directions is discretized into a
desired number of nodal direction values, and assumed 1D
shape functions are used to interpolate such values. This re-
sults in a different set of spatial speed nodes for each wind
directional node, creating a 3D interpolation of flow speed
accounting for spatial position and wind direction. This de-
pendency of the interpolating functions on space and ambient
conditions is expressed in symbols as n(A0,Q). Terrain and
plant-induced effects can generate different heterogeneities
in the speed, direction, and turbulence intensity fields. Hence,
different meshes with different resolutions and node loca-
tions can in principle be used for each one of the three fields.

The parameterization of the 1F field can be written as

1F (A0,Q)= nT (A0,Q)pF. (8)

The spatial dependency of 1F is implemented in FLORIS
through the heterogeneous flow functionality introduced in
Farrell et al. (2021).

Alternatively, the heterogeneous field 1F can also be de-
fined as

1F (A0,Q)=1FNP (A0,Q)+nT (A0,Q)pF. (9)

Here, the first term is a non-parametric (i.e., which will not
be identified) heterogenous flow field. This term could be ob-
tained from on-site measurements (Farrell et al., 2021) or,
as shown later on in Sect. 3.1.6, from over-the-terrain CFD
simulations. When this term is used, the parametric term
nT(A0,Q)pF, instead of being charged with the modeling of
the complete heterogeneity of the flow, has the role of mod-
eling only differences between the non-parametric flow field
and the actual one. The inclusion of the non-parametric term
might have two beneficial effects on the identification: first,
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it reduces the magnitude of the heterogeneity that has to be
learned from data, and, second, it provides a non-uniform ini-
tial guess for the identification algorithm, possibly easing its
convergence.

2.2.2 Wake model parameterization

The 1Fwake component of the flow is computed through the
FLORIS engineering wake model (NREL, 2021). The ve-
locity deficit 1Uwake is modeled with the kinematic Gaus-
sian model by Bastankhah and Porté-Agel (2014). Wakes
are combined with the SOSFS method (Katic et al., 1986)
in Sect. 3.1 and with FLS (Lissaman, 1979) and SOSFS
in Sect. 3.2. Wake-added turbulence 1Iwake is considered
through the Crespo and Hernandez (1996) turbulence model.

In general, FLORIS and similar models are characterized
by the following functional dependency:

1Fwake =1Fwake (A0,Q,k) , (10)

where k represents a vector of model-specific parame-
ters (NREL, 2021). Following Schreiber et al. (2020a), the
model-specific parameters are not tuned directly; rather, the
baseline value (denoted kinit) of one parameter is added to an
unknown calibration term (denoted pk), i.e.,

k = kinit+pk. (11)

All calibration parameters pk are collected in the vector of
the to-be-tuned parameters pW. Examples of the parameters
and their changes caused by calibration are given later on
(see Table 2 in Sect. 3.1.3 and Table 5 in Sect. 3.2.5).

Notice that, in addition to the “native” parameters of the
FLORIS model, additional extra parameters can be used to
augment the model with ad hoc correction terms. Schreiber
et al. (2020a) used this technique to target specific deficien-
cies in the model. For example, the baseline wake model was
augmented with a local wind direction term to account for
secondary steering, which was not natively implemented at
the time in FLORIS. Similarly, Campagnolo et al. (2022) in-
troduced a correction to the power loss model for yawed con-
ditions.

2.3 SVD-supported identification

Stacking the parameters for the heterogeneous flow correc-
tion and the parameters for wake model tuning, the final vec-
tor of the to-be-identified parameters is

p =


pU
p0
pI
pW

 . (12)

Notice that one single parameter vector is defined, compris-
ing both the parameters that define the unknown heteroge-
nous flow and the ones that tune the wake model. This means

that the learning of the heterogeneous flow is performed si-
multaneously to wake model tuning. In fact, if one were to
estimate the two components 1F and 1Fwake one after the
other, any error committed in the estimation of the first would
affect the second, and the results would be sequence depen-
dent. Since this cannot be, given that both terms eventually
contribute to the fields F , the two terms need to be estimated
simultaneously.

Following a classical approach (Jategaonkar, 2006), a like-
lihood function is used to express the probability that a given
set of noisy observations can be explained by a specific set of
parameters. The parameter identification problem is then cast
as the maximization of this likelihood function. This prob-
lem, however, is very likely ill posed. First, it is uncertain if
all parameters are really observable given the existing mea-
surements. Additionally, the parameters might not all be in-
dependent of each other, resulting in similar effects on the
solution.

This dilemma is overcome by performing the identifica-
tion through a singular value decomposition (SVD). The
SVD-supported identification approach is general and can
be applied to various problems: for example, Bottasso et al.
(2014) used it for identifying airfoil polars and Schreiber
et al. (2020a) for learning unrepresented effects in a wind
farm flow model. The main idea behind this method is to map
the original physical parameters into uncorrelated ones, using
a linear rotational transformation of the problem unknowns
computed through the SVD. Examination of the new set of
parameters reveals the ones that are identifiable – because
they have an acceptably low variance – and the ones that are
not – because their variance is excessively large. Only the
former parameters are retained in the process, and, once they
have been identified, they are mapped back through the in-
verse transformation, recovering a solution in terms of the
original physical parameters. Since many practical identifi-
cation problems are nonlinear, this linear transformation of
the unknowns is applied iteratively until convergence. This
method has the advantage of working well even in the pres-
ence of unobservable or collinear parameters simply because
only the visible ones are retained in the process. Additionally,
an inspection of the transformation that maps the original
into the uncorrelated parameters reveals useful insight into
the interdependencies among parameters; an example of such
an analysis is given later on in Sect. 3.1.4. For a complete
derivation of the method, the reader is referred to Schreiber
et al. (2020a), whereas here only a synthetic description is
provided.

A steady wind farm flow model can be written as the fol-
lowing nonlinear functional expression:

y = f(p,A), (13)

where y indicates a vector of model outputs for which corre-
sponding measurements z are available. In the present work,
these quantities are represented by the power outputs of Nt
wind turbines in a wind plant; however, the definition of the
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outputs is clearly problem dependent, so other measurements
– when available – could be readily used. The inevitable dis-
crepancy between measurements z and model outputs y is
captured by the residual, which is defined as

r = z− y. (14)

Given a set of N observations {z1, z2, . . ., zN }, the likeli-
hood function (Jategaonkar, 2006) is

J (p)=
(

(2π )Ntdet
(

R−1
))−N/2

exp

(
1
2

N∑
i=1

rT
i Rr i

)
, (15)

where R is the measurement noise covariance matrix. The
maximum likelihood estimate (MLE) of the parameters is
obtained by minimizing the negative logarithm of Eq. (15),
i.e.,

pMLE = arg minp − lnJ (p). (16)

The observability of the parameters can be gauged by the
inverse of the Fisher information matrix E ∈ RNp×Np , which
is defined as (Jategaonkar, 2006)

E−1
=

[
N∑
i=1

wi

[
∂yi

∂p

]T

R−1
[
∂yi

∂p

]]−1

= P. (17)

Factors wi express an optional relative weight wi/
N∑
j=1

wj

that can be attributed to an observation to boost its presence
in the dataset, for example because it occurs multiple times
(Karampatziakis and Langford, 2010).

An important result of MLE theory is that the ith diagonal
element of P provides a lower bound (called Cramér–Rao
bound) on the variance of the corresponding estimated pa-
rameter, while correlations among different parameters are
captured by the off-diagonal terms (Jategaonkar, 2006). This
highlights what is indeed the main problem of a naive for-
mulation of the identification problem cast in terms of the
original physical parameters p: even if a parameter has a
high variance, typically it cannot be eliminated because of
its (in general) non-negligible couplings to other parameters.
This problem is solved when the SVD is used to diagonalize
the inverse Fisher matrix P by a linear transformation of the
unknowns. Since the transformed parameters are now uncor-
related, parameters that have a high variance – i.e., that are
not visible given the available set of measurements – can be
readily eliminated. The diagonalization of the inverse Fisher
matrix is obtained by first factorizing it as E=MTM, where
factor M ∈ RNtN×Np is

M=


√
w1R−1/2 ∂y1

∂p
√
w2R−1/2 ∂y2

∂p
...

√
wNR−1/2 ∂yN

∂p

 . (18)

This matrix can now be decomposed by the SVD (Wall et al.,
2003) through numerically efficient algorithms (Harris et al.,
2020) in the product:

M= U6VT, (19)

where the columns of U ∈ RNtN×NtN and V ∈ RNp×Np are,
respectively, the left and right singular vectors of M. The
matrix of left singular vectors U expresses the relative impor-
tance of the individual observations, while the matrix of right
singular vectors V carries information on the correlation of
the parameters. Matrix 6 = [S,0]T contains the singular val-
ues si , which are sorted in descending order in the diagonal
matrix S ∈ RNt×Nt . By combining Eq. (19) and the factor-
ization of E, the eigendecomposition of the inverse Fisher
matrix can now be written as

P= VS−2VT, (20)

i.e., the columns of V are the eigenvectors of P, whereas the
entries of S−2 are its eigenvalues. This suggests a transforma-
tion of the original parameters p, which are rotated through
matrix V to yield a new set of parameters θ , i.e.,

θ = VTp. (21)

Crucially, the covariance of the new parameters is now S−2,
which by definition is a diagonal matrix. Consequently, the
new parameters are statistically decoupled. Their respective
variance s−2

i is readily obtained by the corresponding ele-
ment in S. The Cramér–Rao bound (Jategaonkar, 2006) on
the variance of the MLE estimates of the transformed param-
eters θMLE is

S−2
≤ Var(θMLE− θ true) , (22)

where θ true are the true (but clearly unknown) parameters.
Therefore, a small singular value si corresponds to a large
uncertainty in the estimate of the corresponding transformed
parameter.

This important result is used to set an observability thresh-
old σ 2

t , which defines the highest acceptable variance: ev-
ery parameter with a variance above the threshold is deemed
unobservable. This condition is enforced by retaining in the
identification a transformed parameters i only if it satisfies
the condition

s−2
i ≤ σ

2
t . (23)

This leads to a partitioning of the parameter vector θ
into identifiable (denoted with the subscript ID) and non-
identifiable (denoted with the subscript NID) sets, i.e., θ =
[θT

ID,θ
T
NID]

T, which induces a corresponding partitioning of
the transformation matrix V= [VID,VNID] (and, clearly, also
of U). The MLE identification is then performed for the sole
identifiable parameters θ ID. At the end of the convergence
process, the orthogonal parameters are mapped back to the
physical ones using

p ≈ VIDθ ID. (24)
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Choosing a lower threshold implies that fewer parameters
are deemed trustworthy and are retained in the solution; this
might reduce the quality of the solution if meaningful terms
are discarded, but it will also reduce the computational cost
and will typically ease convergence. On the other hand, pick-
ing a higher threshold has the opposite effect.

For guiding the solution, it is useful to enforce bounds on
the parameters in the form plb ≤ p ≤ pub. Additionally, to
improve conditioning, it is advisable to scale each parameter
pi with its respective bounds as

p̂i =
pi −

(
piub +pilb

)
/2(

piub −pilb
)
/2

, (25)

so that −1≤ p̂i ≤ 1.

3 Results

The result section is divided in two parts, each examining
a specific site. The Sedini and Anholt wind farms represent
a typical mid-size onshore and large offshore case, respec-
tively. These two plants are characterized by different wind
climates and dominating flow effects, whose very distinct
features are useful for assessing the generality of the pro-
posed STL method. Furthermore, the quality and quantity
of SCADA (supervisory control and data acquisition) data
typically differ from site to site on account of different tur-
bine types, acquisition systems, sampling frequencies, fail-
ure rates, miscalibration of sensors, and several other effects;
here again, the use of different plants can help verify the ro-
bustness of a method that operates based on operational data
of such variable quality and quantity. An overview of some
key characteristics of the two wind plants is provided in Ta-
ble 1, while Fig. 1 shows their layouts side by side, illustrat-
ing their typical spacings and overall size.

The Sedini wind farm is located in the north of Sardinia,
a large island off the western coast of Italy. A subgroup of
turbines was the subject of a wind farm flow control test
campaign, using both wake steering and axial induction con-
trol. Because of this previous activity, the behavior of the
farm had been already examined with different wake mod-
els (Bossanyi and Ruisi, 2021; Doekemeijer et al., 2021). At
this site, the terrain is complex, both outside and within the
boundaries of the wind plant, vegetation is present, and the
turbines are of two different types and heights, all character-
istics that make the Sedini wind plant a challenging onshore
test case. The farm is designed for minimum wake losses in
the prevalent (westerly) wind direction, and significant wake
effects are only expected for specific turbines. In addition to
the layout, Fig. 1a shows also the grid of flow correction
nodes, which was based, for simplicity, on a regular mesh.
Node spacing was adjusted to capture the most relevant ter-
rain effects.

The Anholt offshore wind farm is located about 20 km east
of the Danish coast in the Kattegat, a shallow sea between

Figure 1. Layout and flow correction grid for the Sedini (a) and
Anholt (b) wind farms. The symbol DS stands for the rotor diam-
eter at Sedini and DA for the diameter at Anholt, whose respective
values are given in Table 1. The two figures are at the same scale in
terms of diameters, i.e., 1DS on the left panel has the same length
as 1DA on the right one. At the same kilometer scale, the Sedini
farm looks much smaller than the Anholt one because DA�DS.

the Jutland peninsula and the west cost of Sweden. The pres-
ence of the Jutland coastline influences the western inflow to
the farm, creating a gradient that was already investigated by
van der Laan et al. (2017), Peña et al. (2018), and Doekemei-
jer et al. (2022). Given the absence of the small-scale oro-
graphic effects present at Sedini, a coarser grid of flow cor-
rection nodes was chosen in this case. On the other hand, this
large array with numerous wake interactions is an interesting
test case for the presence of significant intra- and extra-plant
effects (Nygaard, 2014).

3.1 The Sedini wind farm

3.1.1 Site overview, dataset analysis, and preprocessing

Figure 2 shows a more detailed layout of the plant, including
the turbine identifiers and a colormap of the terrain elevation.
The behavior of the plant is investigated for the main, west-
ern wind sector between 245 and 310◦. From these direc-
tions, the farm is only two rows deep, and the heterogeneous
correction of Eq. (5) is expected to be dominated by the term
1Famb. The goal of the present test case is therefore to show
the ability of the proposed method of learning the orography-
induced inhomogeneities of the intra-plant flow purely from
the available SCADA data.

For this study, SCADA data at 10 min sampling frequency
were made available for the years 2015 and 2016, whereas
meteorological mast measurements were made available for
the years 2008–2010. Since the two time periods do not over-
lap, the mast data were used only to analyze the general cli-
mate at the site (Kern et al., 2017).
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Table 1. Comparison of the main characteristics of the Sedini and Anholt wind farms.

Name Turbine Installed Rated Diameter Hub Farm size Typical
model units power [MW] [m] height [m] N–S×W–E [km] spacing [D]

Sedini GE1.5s/GE1.5sle 36/7 1.5/1.5 70.5/77 65/80 3× 2 2.3–9
Anholt SWT 3.6-120 111 3.6 120 81.6 22× 12 5–10

Figure 2. Layout of the Sedini wind farm. The colormap shows
the height difference with respect to the average terrain elevation.
A bold identifier indicates turbines used to determine the average
wind direction 00. For an exemplary wind direction of 270◦, free-
stream turbines are marked with a red circle. The wind rose shows
the frequency of 00 over the period of time analyzed in the present
study. The met mast is indicated by the symbol ∗.

The data were first cleaned of entries where turbines
were not reporting to the acquisition system. Next, for every
timestamp, the average wind direction 00 was determined
from the yaw readings of selected “sensing” turbines. This
required a careful correction of the readings, since yaw sen-
sors were observed to be significantly affected by biases and
drifts. These effects were mitigated by exploiting wake inter-
actions among turbines. In fact, biases were eliminated by
looking at the minima of the power ratio between neigh-
boring waked/waking turbines as functions of wind direc-
tion and comparing them with the interactional directions
expected from the farm layout. Drifts were eliminated by
observing the shift over time of these minima and remov-
ing them from the time series. Notwithstanding these correc-
tions, since the yaw readings of some turbines appeared to be
quite unreliable, only a cluster of eight machines was finally
used to determine the wind direction.

Because short-term fluctuations F̃ are neglected in this
work, data preprocessing was performed to obtain binned
observations dominated by the steady component F , accord-
ing to the methods described by Schreiber et al. (2018). To
omit short-term propagation effects, a stationary filter was

applied to the data streams. Similarly to Hansen et al. (2012),
a data point was discarded if the wind direction change ex-
ceeded ±2.5◦ compared to the previous 10 min value. The
wind speed measured by the nacelle anemometers exhib-
ited significant discrepancies among neighboring turbines,
indicating possible miscalibrations. This problem was solved
by computing a rotor equivalent wind speed (REWS) from
the power curve, following the approach already used by
Schreiber et al. (2018) on the same dataset; this is clearly
only possible between cut-in and rated wind speed (i.e., be-
tween 4 and 13 m s−1 for the GE1.5s). The ambient wind
speed U0 = 〈UFS〉 was determined by averaging the REWS
of turbines operating in free stream. The determination of
whether a turbine is in free stream or not was based on the
prediction of the plant flow model by first guessing the wind
speed and then iterating. The seven turbines of type GE1.5sle
(whose identifiers in Fig. 2 contain the letter “E”) were not
used for determining the wind speed; since they are charac-
terized by a taller hub height than the other ones, this would
have required the use of the vertical shear, introducing further
uncertainties.

Additional ambient conditions such as TI, shear, and den-
sity – although certainly significant for wake behavior and
turbine performance and loading – cannot be typically de-
rived in a straightforward manner exclusively from the tur-
bine SCADA data. Göçmen and Giebel (2016) and Mit-
telmeier et al. (2017) proposed methods to deduce TI and
density from SCADA data, but unfortunately the necessary
channels were not available in the present case. This prob-
lem was solved by the inspection of the met-mast recordings,
which suggested that TI and shear are strongly dominated by
the diurnal cycle at this site. Based on this indication, the
dataset was split in daytime and nighttime regimes, based
on the local time of sunset and sunrise (Beauducel, 2022).
The diurnal characteristic values were derived from historical
met-mast readings. For daytime conditions the shear was set
to α0 = 0.09 and the TI to I0 = 0.15, whereas for the night-
time case the values α0 = 0.18 and I0 = 0.125 were used. An
analysis of the met-mast data revealed also that, for the west-
erly 245–310◦ sector of interest for this study, TI and shear
exhibit only a very modest variability with wind direction;
this, on other hand, is in general not the case when consid-
ering the whole wind rose because of the different direction-
dependent land and sea fetches. Density was set to the con-
stant average value ρ0 = 1.177 kg m−3. After filtering, the re-
maining 2102 timestamps were grouped and averaged in day
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Figure 3. Likelihood cost function J (solid red line) and number of
retained parameters NID (dashed blue line) as functions of σ 2

t .

and night bins of width equal to 5◦ for wind direction and
2 ms−1 for wind speed, resulting in N = 36 observations.
Half of the bins were picked randomly to form the training
dataset, whilst the other half were reserved for testing.

3.1.2 STL parameter identification

The output vector y (see Eq. 13) was defined as the normal-
ized generated power of every turbine, i.e.,

y =
1
Pref

 PWT1
...

PWT43

 , (26)

where Pref = 1.5 MW is the rated power of the GE turbines.
Power was calculated in 1◦ wide direction steps, eventually
averaging the results over each 5◦ bin sector.

The STL parameter vector p was defined as follows.

– For the data-driven learning of the heterogeneous back-
ground velocity 1U =1USTL, a north-oriented, reg-
ular mesh of 5× 7 flow correction nodes was super-
imposed onto the farm (see Fig. 3a). The node spac-
ing is 470 m and 450 m in the eastern and northern di-
rections, respectively. It was verified that a finer spa-
tial discretization did not improve the quality of the re-
sults. An additional discretization of the environmen-
tal conditions A0 (see Eq. 7) was performed only for
wind direction. To this end, a second set of nodes
was placed every 15◦, i.e., for the distinct values 00 ∈

[255, 270, 285, 300]◦. Results indicated that the rel-
ative correction 1U/U0 does not change significantly
depending on wind speed. This suggests that the ter-
rain flow is Reynolds independent, as often assumed in
over-the-terrain CFD application (van der Laan et al.,
2020). Therefore, each nodal correction parameter pU,i
was treated as a non-dimensional speedup factor, inde-
pendently of the inflow wind speed. To accommodate
this change, Eq. (4) was re-written as

U = U0

(
1+1Û

)
+1Uwake, (27)

where 1Û =1U/U0 is now a relative correction. The
term I0 was also found to have no significant influ-
ence on the results and was therefore omitted from the

dependencies of the flow speedup. According to these
choices, the heterogeneous background velocity was
discretized using 140 unknown nodal values pU . The
relative speedup bounds were set to ±0.3, i.e., the cor-
rections can change the reference speed by ±30 %.

– Although orography-induced effects may in principle
result in the heterogeneity of the wind direction at a site,
such an effect could not be observed at Sedini based on
the available dataset. On the other hand, a global cor-
rection of the wind direction proved to be necessary and
very beneficial for the quality of the results. This was
achieved by using a single correction node p0 in Eq. (8),
without any assumed dependency on A0. This resulted
in a shift in the wind direction, constant throughout the
entire farm area and independent of the ambient condi-
tions, which was learned from the operational data of
the turbines. It was not possible to clarify with certainty
the root reason for this offset, which is probably due to
some problem with the yaw sensors.

– The identification of a heterogeneous TI field 1I was
omitted because the available SCADA data did not con-
tain 10 min power min and max values (sometimes used
as a proxy for TI (Mittelmeier et al., 2017)) nor other
information that could be used for this purpose.

– The wake model behavior is captured by the wake pa-
rameter vector pW, which includes the four velocity pa-
rameters α, β, ka , and kb, and the four turbulence pa-
rameters Iconstant, Iai, Iinitial, and Idownstream. The wake
model parameters were tuned within the range ±kinit,
simultaneously to the learning of the flow correction pa-
rameters pU and p0 .

These choices led to the definition of the unknown parameter
vector p = [pU ,p0,pW]

T, resulting in a total of Np = 149
to-be-identified parameters.

The error covariance matrix was assumed to be known
a priori and diagonal, i.e., Ri,j = σ 2

mδi,j , where δi,j is the
Kronecker delta. This assumption can be eliminated by esti-
mating the covariance from the residuals and iterating until
convergence (Jategaonkar, 2006), although this did not sig-
nificantly improve the results in the present case. The cost
function expressed by Eq. (15) was selected as

J (p)=
1
2

N∑
i=1

wir
T
i Rr i, (28)

where the factorswi are proportional to the number of 10 min
observations within each bin in order to weight their par-
ticipation based on the number of samples that they con-
tain. The solution procedure was based on first applying
the SVD, thereby recasting the STL parameters into the or-
thogonal set θ . After discarding the orthogonal parameters
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whose variance fell above the observability threshold, the op-
timization was run with the sequential least squares program-
ming (SLSQP) minimization algorithm, as implemented in
the SciPy library (Virtanen et al., 2020). This process was re-
peated multiple times (three in the two examples below) to
ensure convergence, as expressed by changes in the singular
values si .

The choice of the observability threshold σ 2
t for the or-

thogonal parameters was based on an analysis of its effects
on the likelihood cost function J and number of retained
parameters NID. The results are shown in Fig. 3, which re-
ports J (with a solid red line) and NID (with a dashed blue
line) as functions of σ 2

t . As expected, an increasing threshold
has the effect of retaining a larger number of parameters in
the identification. This leads to an improvement in the likeli-
hood function, but it also comes with an increased computa-
tional cost. In fact, the execution time was about [1, 6, 12] h
for σ 2

t = [0.016, 0.01, 0.02], respectively, on a 2019 Intel®

Core™ i7-9700 CPU desktop. However, it should be noted
that processing time is not a very meaningful metric because
the present code was not optimized for speed and processing
power improves rapidly over time, quickly rendering execu-
tion times obsolete. Figure 3 also shows that the J vs. σ 2

t
curve exhibits a “knee” around the values 0.02–0.03: below
these values small increments of σ 2

t lead to large reductions
in J , whereas above only very marginal further improve-
ments are possible. This indicates that the additional param-
eters that are retained in the solution in reality do not carry
any significant additional informational content. The results
discussed in the following correspond to the case σ 2

t = 0.01,
although nearly identical conclusions are obtained for the
looser values around and after the curve knee.

Figure 4 shows the distribution of the variance of the or-
thogonal parameters, i.e., the squared inverse of the singular
values, before the third and last run of the MLE algorithm. Of
the 149 orthogonal parameters, NID = 94 had a variance be-
low the threshold and were retained in the optimization; the
number of retained parameters was constant throughout the
iterations. The same figure shows that 24 parameters exhibit
extremely high variances. These parameters are associated
with flow correction nodes that lie outside of the perimeter
of the farm; since the identification process is purely driven
by data that are co-located with the turbines, the parameters
associated with these farm-external nodes carry very little in-
formation and hence have very high variance. The informa-
tional content of the retained singular values can be estimated

as φ =
NID∑
i=1
s2
i /

Np∑
i=1
s2
i = 97 % (Jolliffe and Cadima, 2016).

3.1.3 Results for wind direction correction and wake
model tuning

As previously mentioned, the wind direction was corrected
over the entire domain by the value 10 = 5.6◦, suggesting
that the average yaw sensor readings are affected by an off-

Figure 4. Variance of all orthogonal parameters θ1–149 before the
last MLE. Only 94 parameters were retained in the identification,
whereas the others above the variance threshold (indicated with a
dashed black line) were discarded.

set. The exact reason for such a large difference could not
be ascertained and might be due to a combination of factors,
including the small number of turbines with acceptable yaw
signals (just eight), possible miscalibrations of the sensors,
and the manually performed correction of drift and biases
based on wake interactions. In this sense, the ability of the
STL approach of automatically finding the optimal correc-
tion appears to be very useful, since sensor biases – espe-
cially in the yaw drives – are a common challenge (Bromm
et al., 2018).

Table 2 reports the results of the wake model tuning.
According to Eq. (11), the initial baseline values kinit are
summed to their respective correction parameters pk to yield
the final, tuned model parameters k. The extent of the near-
wake region is determined by α and β, while ka and kb model
the wake expansion in the far region (Bastankhah and Porté-
Agel, 2016). Examining the relative parameter changes, re-
ported in the last row of the table, it appears that α – which
models the influence of turbulence intensity on the down-
stream extension of the near wake – is the term that changed
the most. With the present tuning, for an ambient I0 = 0.14,
the near wake is 28 % shorter than with the initial baseline
values. With an earlier start of decay, the far wake deficit
is reduced. As a result, a downstream turbine operating at
about 3D (the typical distance for the Sedini farm) pro-
duces 42 % more power, thereby significantly decreasing the
wake losses predicted by the baseline tuning. Furthermore,
the wakes have a higher sensitivity to the different day and
night ambient turbulence intensity than before. On the other
hand, tuning led to an only marginal increase in the added
turbulence model.

3.1.4 Orthogonal decomposition

An examination of the rotation matrix V can give some use-
ful insight into the relative importance and correlation of the
physical parameters. For a simpler visualization, the large
V ∈ RNp×Np matrix was condensed in a way that tries to cap-
ture the effects of the various types of corrections. Accord-
ing to Eq. (12), the overall parameter vector p is obtained
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Table 2. Results of the wake model tuning, with the initial baseline parameters kinit, the identified values of the additive corrections pk , and
the final tuned parameters k. The last row reports the relative change from kinit to k.

α β ka kb Iconstant Iai Iinitial Idownstream

kinit 0.58 0.077 0.38 0.004 0.9 0.75 0.5 −0.25
pk 0.28 0.010 0.0 0.0 0.0 0.03 0.0 −0.015
k 0.86 0.087 0.38 0.004 0.9 0.78 0.5 −0.34
± 48 % 13 % – – – 4 % – −5 %

Figure 5. Matrix V of reduced singular vectors, ordered by the corresponding orthogonal parameters θ1–149. The reduced vectors are
obtained by taking the root sum of squares of the rows of each row-block partition (corresponding to each different parameter type). The
different colors represent the different correction categories: wind speed correction (red), wind direction correction (blue), and wake model
tuning (green). The dashed black line indicates the cutoff at i = 94, corresponding to the observability threshold σt (see Fig. 4).

by stacking the different correction parameter vectors, which
induces an identical row-block partitioning of V, i.e.,

V=

VU
V0
VW

=


VU255◦
...

VU300◦

V0
VW

 . (29)

In the third term of the previous expression, VU has been fur-
ther partitioned by the directional bins. By definition, each
singular vector, i.e., each column vi of matrix V, has unit
length, i.e., |vi | = 1. A visual representation of the matrix
that captures the overall contribution of each parameter type
was obtained by taking the root sum of squares of each row-
block partition. The resulting reduced matrix is visualized in
Fig. 5, where the columns are sorted in descending order of
the associated singular values. The vertical dashed line rep-
resents the cutoff at 94 retained parameters (generated by
the observability threshold), which divides VID and VNID,
i.e., the identifiable from the non-identifiable orthogonal pa-
rameters.

Inspection of the reduced matrix suggests a few obser-
vations. First, the directional correction p0 , which applies
a constant offset throughout the farm, is almost exclusively
contained in the first singular vector. Since this bias affects
every turbine over the entire dataset, it has a prominent posi-

tion in the decomposition and is essentially uncoupled from
the other parameters. The wake model tuning parameters ap-
pear immediately behind the wind direction in the ranking,
and they are also highly uncoupled from the rest. An exami-
nation of the individual rows of this block (not visible in the
figure) shows that the largest contributions come from the ka
and α parameters, as already shown in Table 2. The observ-
ability of these parameters improved by introducing the day
and night variability in I0, as previously explained. Finally,
the appearance of velocity corrections in the singular vec-
tors seems related not only to the heterogeneity of the flow
but also to the number of available observations. In fact, the
largest number of data points is available around 270 and
285◦, whereas data are more sparse around 300◦, which re-
sults in flow correction parameters with lower observability.

To better understand the nature of the corrections 1U , the
singular vectors can be mapped to the farm domain via their
shape functions. This is obtained by combining Eq. (8) with
Eq. (24) to yield

1U = nTpU ≈ n
TVU,IDθ ID =9

T
U θ ID, (30)

where 9 is the matrix of eigenshapes (Bottasso et al., 2014).
To facilitate the visualization of the eigenshapes, the dis-
cussion is restricted to the small sector of 285◦± 10◦. Fig-
ure 6 shows the relative decrease in the cost function (eval-
uated only in the subsector of 285◦± 10◦), when activating
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Figure 6. Decrease in the normalized subsector cost function when activating one orthogonal parameter at a time in the sequence θ1–94. The
red-shaded areas represent the flow speedup corrections that contribute the most to the error reduction. The corresponding eigenshapes are
visualized in Fig. 7.

Figure 7. Dominating eigenshapes of the flow corrections 1U in the 285◦± 10◦ sector. With increasing counter i (i.e., singular value),
corrections become more fragmented, i.e., spatially localized.

one orthogonal parameter at a time. As already stated, the
first reduction (blue shade in the figure) can be attributed al-
most exclusively to the directional correction p0 . Likewise,
the second orthogonal parameter contains mostly corrections
to the wake model (green shade). The parameters appearing
after the wake model corrections are associated with flow
speed corrections. For this subsector, parameters θ4–6 and
θ11 are the most effective ones in reducing the cost function.
They account for ca. 41 % of the final cost function improve-
ment and, therefore, are responsible for removing the largest
heterogeneous flow discrepancies. An inspection of Fig. 5
shows that, for the row corresponding to pU,285◦ , the indices
of these parameters are indeed associated with a large contri-
bution to the matrix of singular vectors. The cost function
is essentially flat for the orthogonal parameters associated
with directions outside of the subsector. For example, this
is clearly the case for θ7–10 (corresponding to pU,255◦ ).

Figure 7 finally shows the red-shaded eigenshapes i = 4–
6, 11 superimposed onto the farm map. In addition to these
dominating modes, the figure also reports the lowest flow-
related eigenshape (corresponding to i = 3), although its cost
function improvement is only modest (see Fig. 6). Each
eigenshape is multiplied by the sign of the corresponding or-
thogonal parameter, i.e.,

ψ i = v
T
i nsign(θi) , (31)

to show speedup and slowdown corrections in a consistent
manner.

The first eigenshape, Fig. 7a, represents a roughly north–
south speed change. Comparing this plot to the terrain map
of Fig. 2 shows that the ground elevation in the northern part
of the farm is lower than in the south. As elevated regions
generally induce higher velocities, this lowest mode captures
this prominent orographic effect of the site. The higher-order
eigenshapes become increasingly fragmented and seem to
model specific localized terrain features. For example, ψ4
(see Fig. 7b) captures the very prominent hill in the middle
of the western row.

3.1.5 Plausibility check via CFD

The corrections identified by the proposed method describe
a direction-dependent heterogeneous flow field that very sig-
nificantly improves the matching of the FLORIS model pre-
dictions with measured operational data. However, is this
identified flow field a reasonable approximation of the true
flow over the terrain at this site, or is it just a mathemati-
cal correction that happens to improve the results? A defini-
tive answer to this question is probably difficult to give with
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the limited data and information available. However, a qual-
itative and quantitative verification of the plausibility of the
data-learned field can be obtained by comparing it with an
independent CFD simulation of the flow over the terrain.

To perform this plausibility check, Reynolds-averaged
Navier–Stokes (RANS) simulations were conducted for
the values 00 ∈ [255, 270, 285, 300]◦ without the turbines
and in neutral atmospheric conditions. The resulting flow
fields represent direction-dependent steady-state heteroge-
neous flows over the terrain, which can be directly compared
with the data-driven learned corrections. In principle, the lat-
ter also contain intra-plant effects induced by the turbines,
which are not present in the former; however, as mentioned
in Sect. 3.1.1, given the small streamwise extent of the Sedini
farm for this sector, 1Uwake→amb effects are probably very
small and hence negligible. As previously stated, the flow is
assumed to be Reynolds-independent, and corrections are ex-
pressed in the form of non-dimensional speedup factors. The
absolute velocity field was extracted from the computed flow
field at hub height (65 m) and then normalized by the average
speed at the free-stream turbine locations. A more complete
description of the setup of the RANS simulations is provided
in Appendix A. Clearly, the CFD results should not be con-
sidered a ground truth, since no measurement of the actual
flow is available.

To quantify the similarity between the learned and CFD-
computed fields, their spatial correlation is calculated as

%CFD =
cov

(
1ŨSTL(Q)1ŨCFD(Q)

)
√

var
(
1ŨSTL(Q)

)
var
(
1ŨCFD(Q)

) . (32)

Ideally, for a perfect match between learned and simulated
fields, their spatial correlation %CFD should be equal to 1.
Similarly, a terrain correlation measure is defined as

%T =
cov

(
1ŨSTL(Q)h(Q)

)
√

var
(
1ŨSTL(Q)

)
var(h(Q))

, (33)

which attempts to quantify the similarity between the eleva-
tion h and the learned field 1ŨSTL. Ideally, if all speedups
were learned exactly and were only due to the terrain eleva-
tion, %T would be equal to 1. Both correlation coefficients are
given in Table 3 for the four considered wind directions.

Figure 8 shows the learned (left) and CFD-computed
(right) speedup fields for the considered directions of 255,
270, 285, and 300◦. Looking at the figure, it appears that
there is a general agreement on the location of low- and high-
speed regions. This qualitatively similar visual appearance
is confirmed by the quantitative measure provided by the
correlation coefficient %CFD, which is in the range of 0.53–
0.67 for all directions. A comparison with the terrain map of
Fig. 2 shows that elevated and depressed regions of the ter-
rain are coherent with flow speed slowdowns and speedups.

Table 3. Spatial correlation of learned and CFD-computed velocity
speedups (%CFD) and of learned speedups and terrain elevation (%T)
for each considered wind direction.

255◦ 270◦ 285◦ 300◦

%CFD 0.53 0.66 0.64 0.67
%T 0.30 0.60 0.63 0.60

This suggests that the terrain elevation is the main driver of
the identified corrections. The correlation %T between veloc-
ity speedups and terrain elevation confirms this impression,
except for the 255◦ direction. This might be due to the small
number of samples for this direction (see the wind rose in
Fig. 2) and possibly also to the particularly complex orogra-
phy upstream of the farm when the wind blows from 255◦

(see Fig. A1). The STL method seems to estimate more pro-
nounced flow inhomogeneities than CFD. For example, this
can be seen for the hill at the southern end of the farm and
for the lower-speed region in the northern end. Additionally,
the flow pattern in the northern region for the direction of
285◦ (Fig. 8e) corresponds to the correction introduced in
eigenshape i = 11 in Fig. 7e. The CFD simulations further
show some distinct speedup regions in the center of the farm,
which are caused by small hills. For example, for the 255◦

direction, the STL method is probably not resolving all flow
details correctly. This results from the coarse resolution of
the grid and, more importantly, from the distance among tur-
bines – and, thus, from the distance among the measurements
that drive learning – in that area. Furthermore, the extrapo-
lation of the STL results outside of the farm perimeter can-
not work well beyond a short distance because of a lack of
information in the data that drive the learning process. No-
tice, however, that, from the point of view of the quality of
the FLORIS model predictions, the lack of knowledge of the
flow outside of the farm is of no importance as long as the
inflow on the upstream turbines is correctly captured.

3.1.6 Initialization of STL by a CFD-computed field

Corrections can be learned with respect to an initial heteroge-
nous flow field, instead of a uniform one (i.e., utilizing Eq. 9
instead of Eq. 8). To verify whether these better initial con-
ditions can lead to improved results, the RANS CFD simu-
lations were used to initialize the background flow, thereby
providing a non-uniform baseline solution; in this case, the
role of the data-driven corrections is that of compensating
any remaining discrepancies. The CFD-computed speedup
factors for a generic wind direction were obtained by linear
interpolation between the two adjacent simulated directions.
The same definition of the flow correction nodes employed
in the previous case was used here too.

Results indicate that the identified wind direction p0 and
wake pW parameters (see Sect. 3.1.3) were not affected by
the improved initial background flow. Figure 9 shows, for
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Figure 8. Comparison between the learned (a, c, e, f) and CFD-computed (b, d, f, h) speedup factors for directions of 255, 270, 285, and
300◦. The learned results are corrected by the identified directional offset 10.

Figure 9. Initial CFD-computed heterogeneous flow (a), data-driven learned correction field (b), and final resulting flow field (c). All results
are for the 270◦ wind direction.

the 270◦ direction case, the CFD initial baseline solution
(Fig. 9a), the learned corrections (Fig. 9b), and the final het-
erogeneous velocity field (Fig. 9c). The learned corrections
seem in general to increase the initial CFD-computed terrain
inhomogeneities.

As shown in the next section, the use of a CFD-computed
initial flow field offers quantitatively no visible error reduc-
tion for power when compared to the simpler option of start-
ing from an initial uniform background flow. Indeed, the so-
lution shown in Fig. 9c is very similar to the one of Fig. 8c,
while the direction and wake correction parameters are also
essentially identical. As a consequence, the turbine inflows,
where the error is computed, are very similar. However, the

CFD-based approach allows for a finer resolution of the
flow field in between the turbines and externally to the farm
perimeter. In addition, the fact that essentially the same solu-
tion is obtained for very different initial conditions seems to
indicate the absence of distinct local minima, at least for this
case.

3.1.7 Contributors to the error improvement

At the convergence of the estimation process, the remaining
error is defined as

ε =
PSCADA−Pmodel

Prated
, (34)
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Figure 10. Reduction in the overall error by the activation of different correction types (a). Error probability density distribution for different
wind speed ranges (b–d).

Table 4. Four different cases for the analysis of learned corrections
on the power matching error.

1UCFD 1USTL 10 Wake
model
tuning

Baseline – – – –
CFD X – X X
STL – X X X
CFD+STL X X X X

where P is the overall farm power, and the error is calculated
only using the test part of the dataset, i.e., discarding the data
points used for learning. Four cases of increasing complex-
ity were compared, as listed in Table 4. In the baseline case,
the FLORIS model is used without any correction, i.e., using
a homogeneous background flow, no wind direction correc-
tion, and wake-describing parameters sourced from the lit-
erature. In the case labeled “CFD”, the background flow is
the one computed with the RANS model without additional
data-driven corrections; in this case, learning is limited to the
wind direction and the tuning of wake-describing parameters.
In the case labeled “STL”, the initial background flow is uni-
form, and learning is used to compute the full heterogene-
ity of the flow, in addition to direction and wake behavior.
Finally, in the case labeled “CFD+STL”, the initial back-
ground flow is the RANS-computed one, and learning is used
to further correct this already heterogeneous field, in addition
to direction and wake behavior.

Figure 10 gives an overview of the error reduction that
can be achieved compared to the baseline performance. Fig-
ure 10a shows the impact of each different correction type

on the overall error εrms =

√
1/Ntest

∑
ε2
i . For all considered

cases, the addition of a heterogeneous velocity field resulted
in the most substantial error improvement. As expected, the

error for the CFD case is larger than in the cases when the
background flow is learned or corrected; in fact, since the
CFD results are not aware of any on-site measurements, they
are probably not completely accurate and representative of
the actual terrain-induced inhomogeneities. The final error
for the STL and CFD+STL cases is extremely similar, show-
ing that – notwithstanding the different initial conditions –
the solution is essentially the same. The identified directional
offset was similar in all three cases and thus decreased the er-
ror in the same manner. Given the strong effects caused at this
site by the terrain-induced flow heterogeneity and the signif-
icant direction bias, the wake model tuning accounted only
for a relatively small improvement in the error.

Figure 10b through d show the probability distribution
of the errors for three binned wind speed regimes. The
FLORIS baseline model tends to overpredict power produc-
tion for low wind speeds and to underpredict it for high wind
speeds. Using STL, this effect is eliminated, and the error
spread is significantly improved. As already noticed, STL
and CFD+STL cases achieve very similar error distribu-
tions.

Figure 11 (as well as the larger Figs. B1 and B2) gives a
more detailed insight in the learned corrections. The figures
show the 5◦ binned measurements and calculated power per
turbine in the sector of 245–310◦ for the wind speed range of
U0 ∈ [6, 8]m s−1.

Figure 11 focuses on two turbines that clearly highlight
the improvements achieved by learning during daytime op-
eration. In particular, turbine A2-12 (Fig. 11a) experiences
a distinct wake shading by turbine A5-E5 in the direction
range 255–270◦(see the farm layout shown in Fig. 2). The
corrected model matches well the behavior of the measure-
ments, whereas the baseline model is visibly offset on ac-
count of the large wind direction bias.

A similar situation is observed for turbine A1-E7 in the
general overview plot of Fig. B1. Note that the power drops
observed for 00 = 300◦ do not originate from wake interac-
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Figure 11. Normalized measured and calculated power for the two turbines A2-12 (a) and A4-E1 (b) for all 5◦ bins in the investigated
western sector for wind speeds in the range of 6–8 m s−1 during daytime operation. Bins with < 10 observations are not shown. Bins used
for training are marked with a ◦ symbol. The uncertainty band shows the standard deviation in the bins. The baseline results are calculated
without any data-driven corrections.

tions but are due to a low bin average speed U0. In fact, not
many distinct wake interactions are visible in the plot, as the
farm layout was specifically designed for this main wind di-
rection. Some turbines in the western row are even operating
in free-stream conditions over the entire dataset; these ma-
chines are labeled FS in Fig. B1. The effects of the terrain-
induced flow corrections can be clearly appreciated by look-
ing at turbine A5-E5 (Fig. 11b), which is located on a hill that
is about 20 m higher than the average elevation of the farm.
Without the heterogeneous flow model, FLORIS underesti-
mates the power output of this turbine. However, in the STL
case, the hill-induced speedup is captured by the learned cor-
rections. The speedup is also visible at the location of turbine
A5-E5 in Fig. 8.

The color of the frames of each subplot of Figs. B1 and B2
shows the elevation difference1h of the turbine foundations
with respect to the farm average. The power of the turbines
at the lower elevations is mostly overestimated by the base-
line FLORIS, whereas the opposite happens for the turbines
at the higher elevations. The learned corrections compensate
for these terrain-induced effects, leading to a good overall
match throughout the whole plant.

3.2 The Anholt wind farm

3.2.1 Site overview, dataset analysis, and preprocessing

Figure 12b shows the Anholt wind farm, together with its
surrounding coastlines. The farm consists of 111 Siemens
Gamesa SWT 3.6-120 wind turbines, and it is situated about
20 km east of the Jutland peninsula and about 25 km west
of the island of Anholt. The prevailing wind direction at the
site is west–southwest. The farm has an irregular spacing,

varying between 5 and 12 rotor diameters: the turbines form-
ing the farm perimeter have a close spacing of about 5–6D,
whereas the spacing within the farm is larger.

Tuning and learning were performed using the same pro-
cedures as in the Sedini case. However, the two cases are
significantly different, impacting the relative importance of
the heterogeneous corrections terms of Eq. (5).

– Term 1Uamb. The fact that Anholt is an offshore farm
does not mean that terrain effects are absent. On the con-
trary, a terrain and roughness-induced velocity variation
exists, caused by the land upstream of the site (whereas
the effects of changing sea state were not considered).
Hence, a heterogeneous velocity field can be identified
from the turbine operational data. Similarly to the on-
shore case, even here a terrain-only CFD simulation
provides a qualitative solution for verifying the plausi-
bility of the data-driven corrections.

– Term 1Uwake→amb. The much larger streamwise depth
of the farm increases the importance of plant-induced
effects compared to the Sedini case. Such effects are
expected to depend on the stability of the atmosphere
(Porté-Agel et al., 2020), which here was approximately
taken into account by binning based on mesoscale re-
analyses.

Since in this case both correction terms are relevant, it is not a
straightforward task to disentangle the learned plant-induced
corrections 1Uwake→amb from the ambient ones 1Uamb. Al-
though more sophisticated approaches are certainly possible,
here a simple solution was adopted that consists of compar-
ing the non-uniform inflow caused by the coastline with CFD
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Figure 12. Layout of the Anholt wind farm with turbine identifiers and wind direction frequency (a). Location of the site, including the
Jutland peninsula to the west and the island of Anholt to the east (b).

analysis of the site. For brevity, the analysis of the SVD de-
composition performed for Sedini is omitted in this case.

For the present analysis, SCADA data at 10 min sampling
frequency were available from January 2013 until July 2015.
The overall problem setup, solution methods, and data pre-
processing were the same used for the onshore plant, as de-
scribed in Sect. 3.1. In contrast to the Sedini case, however,
the data of the yaw sensors were found to be of a higher
quality and consistency. Consequently, after removing yaw
jumps and offsets, the ambient wind direction 00 was cal-
culated as the mean of the yaw signals across all turbines.
The reference speed was determined by averaging the REWS
of the free-stream turbines, computed from the power curve
like for the previous case. Furthermore, a constant air den-
sity of ρ0 = 1.225 kg m−3 and a vertical wind shear expo-
nent α0 = 0.11 were considered. The wind shear was derived
as the average measured at the lidar buoy for unwaked direc-
tions. Note that, since all turbines have the same hub height,
shear has only a very modest effect on the results. Mesoscale
wind climate simulations of the region were carried out by
Peña et al. (2018) using the Weather Research and Forecast-
ing model (WRF; Skamarock et al., 2008). The results are
in the form of time series of hourly outputs for the years
2013–2015, corresponding to the SCADA time period, with
a horizontal resolution of 2× 2 km, interpolated at the tur-
bine hub height (81.5 m). The simulations do not include the
effects caused by the wind turbines on the boundary layer
(Fitch et al., 2012).

In addition to providing a comparison for learned
coastline-induced effects, the WRF time series were used
to filter the dataset for atmospheric stability. Following
Van Wijk et al. (1990), periods with Obukhov lengths in the
range 0< L≤ 1000 were classified as stable, whereas peri-
ods with −1000≤ L < 0 were labeled as unstable; neutral
conditions were defined for |L|> 1000. Based on these cri-

teria, 22 % of the time stamps were classified as stable and
64 % as unstable; neutral conditions occurred only 7 % of the
time and were therefore not considered further. This domi-
nance of unstable conditions was observed at other Baltic off-
shore farms, e.g., Rødsand (Motta et al., 2005; Archer et al.,
2016).

Unstable and stable observations were separated, creat-
ing two distinct datasets. Since turbulence intensity could
be not inferred from the available SCADA data, it was as-
signed based on stability, using I = 7.5 % for unstable and
I = 5 % for stable conditions; these values are based on met-
mast measurements at the Horns Rev wind farm, as reported
by Hansen et al. (2012). Notice that the diurnal cycle, as uti-
lized at the Sedini site, is not very dominant in offshore con-
ditions (Motta et al., 2005). After filtering, the first dataset
consisted of 17 492 unstable 10 min time stamps and the sec-
ond of 3351 stable ones. Both datasets were grouped and
averaged in direction and speed bins, respectively, of 10◦

and 2 m s−1, resulting in N = 108 observations for both sets.
Half of the bins were picked at random to form the training
dataset, whilst the other half were reserved for testing.

3.2.2 STL parameter identification

The STL parameter vector p was defined as follows.

– Similarly to the Sedini case, the wind speed corrections
were defined as Reynolds-independent speedup factors
1Û , as in Eq. (27), which were discretized over the
wind farm area and as functions of wind direction. For
the spatial discretization, a north-oriented regular mesh
of 4× 6 flow correction nodes was superimposed to the
farm, as shown in Fig. 1b. Given the expected smooth-
ness and relatively large scale of the intra-plant flow fea-
tures, the spacing of the nodes is several times larger
than for the Sedini case, with node-to-node distances of
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4 km in the eastern direction and 4.4 km in the northern
one. A grid size convergence study showed this spacing
to be dense enough to properly resolve the relevant flow
features, while coarse enough for a reasonably fast com-
puting time. Just like for Sedini, wind direction variabil-
ity was taken into account by using a different spatial
set of parameters every 30◦, for 00 ∈ [0, 30, . . ., 330]◦.
These parameters could have been further discretized
in terms of atmospheric stability. However, for practi-
cal and computational reasons, the identification was
instead performed twice, once considering only stable
conditions, and once using only the unstable data points.
As a result, each problem was defined by 24 spatially
distributed speedup parameterspU for 12 different wind
directions, resulting in a total of 288 to-be-identified pa-
rameters.

– For the wind direction, a single parameter p0 was cho-
sen, in order to account for any global offset in the wind
direction. In fact, heterogeneous wind direction fields
over the farm domain were not observable in the avail-
able dataset.

– The wake model tuning parameters pW were chosen as
in the Sedini case, with the exception of the near-wake
parameters α and β, which were omitted on account of
the large turbine spacing.

Based on these choices, the vector of parameters was defined
as p = [pU ,p0,pW]

T, containing a total of Np = 295 free
quantities. The identification was performed with three itera-
tions of orthogonal decomposition followed by MLE. At the
last iteration, 211 and 216 orthogonal parameters were re-
tained for the unstable and stable identifications, respectively.

3.2.3 Coastline effects

The influence of the Danish coastline about 20 km west of
the Anholt wind plant has already been analyzed by Peña
et al. (2018) and van der Laan et al. (2017). In particular,
the former reference investigated the speed gradients that
can be observed for westerly winds, by comparing SCADA
data with WRF simulations. Here, this comparison is in-
stead performed with the heterogeneous corrections learned
by the STL method. To capture only coastline effects, it is
useful to exclude plant-induced effects as much as possible
from the analysis. To this end, the comparison is performed
considering only the front row of turbines for the unstable
dataset, as in this case the term 1Uwake→amb plays a lesser
role. The WRF simulation results were filtered for stability
with the same criteria used for the field data and are denoted
WRFunstab.

Figure 13 shows the WRF-computed speedup field gener-
ated from all situations where the wind direction is 240◦±5◦.
Speedups were computed with respect to the average speed

Figure 13. WRF-computed (Peña et al., 2018) wind speedup field
in proximity to the Anholt site for wind directions of 240◦± 5◦

at hub height in unstable conditions without considering the wind
turbines. The speedup factors refer to the front row average. The
coordinate direction η is always perpendicular to the wind direction,
originating at turbine A01.

measured at the freestream turbines (marked in red), simi-
larly to the STL case. The figure clearly indicates the pres-
ence of a wind speed gradient in the inflow of the wind
farm, resulting from the wake of the Jutland peninsula. For
the wind rotating to the northwest, the wake of the penin-
sula shifts more towards the southern edge of the wind farm,
whereas the opposite happens for wind rotations towards the
southwest.

Figure 14 shows the speedup factors for the western wind
directions of 240, 250, 260, and 270◦. Two sets of speedups
are reported in the figure: the simulated ones, which are la-
beled WRFunstab and were obtained by interpolating the sim-
ulated flow field along the front row of turbines, and the iden-
tified ones, labeled STLunstab and computed by interpolating
the nodal parameters at the turbine positions and wind di-
rection. As expected, for smaller wind direction angles, the
speedups for the southern turbines are below the value of 0,
indicating a decrease in inflow speed caused by the wake of
the peninsula. As the wind rotates to the north, the wake of
the peninsula shifts to the south; eventually, for 270◦, only
the southernmost turbines are affected.

The speedup factors from WRFunstab and STLunstab are
generally in a good agreement. The remaining discrepancies
can be explained as follows.

– The speedup factors for STLunstab were identified for
discrete wind directions at intervals of 30◦. For a given
wind direction, the speedup was then linearly interpo-
lated from the identified discrete values. On the other
hand, SCADA measurements were binned at intervals
of 10◦, which means that the wind direction dependen-
cies of the two sets of results have different resolutions.

– WRF simulations were run without the presence of the
turbines, which therefore cannot include plant-induced
effects. On the other hand, STL results are based on
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Figure 14. Speedup factors at the first row of turbines for westerly winds from 240◦ (a), 250 ◦ (b), 260◦ (c), and 270◦ (d). The coordinate
η is shown in Fig. 13, and the tick positions are proportional to the lateral distance between the turbines, normal to the wind direction.

measured turbine data, which automatically include
such effects.

These results show that the STL method is capable of de-
tecting the inflow heterogeneity at this site. A similar capa-
bility was achieved – albeit in a less general setting than here
– by Schreiber et al. (2020a), introducing an ad hoc correc-
tion field to the inflow of the FLORIS model.

3.2.4 Plant-induced effects

Plant-induced flow effects account for various complex, of-
ten interrelated phenomena. At a macroscopic level, a wind
farm acts similarly to a local patch of increased surface
roughness in its encounter with the atmospheric flow, leading
to the development of an internal boundary layer (Porté-Agel
et al., 2020). Additionally, wind tends to be “blocked”, i.e., to
flow around a farm rather than through it, especially in stable
atmospheric conditions; this may lead to significant speed
drops within the boundaries of the plant, with consequent
power losses (Bleeg et al., 2018). At the same time, as the
flow turns around the obstacle represented by the farm, it may
locally accelerate close to its edges, resulting in increased lo-
cal power outputs (Mitraszewski et al., 2013). In stable con-
ditions, wind plants can act similarly to large orographic fea-
tures such as hills and mountains, resulting in the generation
of gravity waves (Teixeira, 2014). This phenomenon likely
produces pressure changes in front of and within the wind
plant, which can locally negatively or positively affect power
capture (Smith, 2010). Individual wind turbines are also re-

sponsible for local blockage effects: in fact, in regular arrays,
the flow can be channeled in between adjacent rows of tur-
bines, resulting in local streaks of accelerated flow (Abkar
and Porté-Agel, 2013).

The present method employs a correction term
1Uwake→amb to model any flow heterogeneity, irrespective
of its originating phenomenon. Such an approach is general
and capable of very significantly boosting the quality of
the match of the flow model with actual measurements. On
the other hand, the drawback is that it may be difficult to
disentangle one effect from the other. For example, blockage
may affect the production of the turbines, but – presumably
– gravity waves can also affect production. When these
phenomena are present, they will generate a corresponding
background flow in the model that captures such effects.
However, looking at the identified flow field, it might not
be possible to recognize, for example, blockage per se, as
one would also need measurements of the wind speed in
front of the plant, for example from a lidar, a met mast, or
even an isolated upstream wind turbine. In general, multiple
concurrent phenomena can be disentangled only if they are
driven by different sets of parameters and if one has access
to datasets that contain the necessary variability in such
parameters. These two conditions might not always be met,
and in fact they are not in the present case.

The ability to explain the results of data-driven approaches
remains a topic of central importance for future research. A
possible way to address this need is to resort once again to a
grey-box approach by embedding within FLORIS additional
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Figure 15. Learned speedup fields for various wind directions for STLunstab (unstable conditions) and STLstab (stable conditions), showing
different large-scale wind farm effects. The directions 0, 30, 180, and 210◦ exhibit clear edge and wall effects, where the flow locally
accelerates while turning around the farm.

models for blockage, local accelerations, gravity waves, and
other effects, as well as tuning their parameters based on
data, similarly to what is done here for the wake models.
The estimated background flow would at that point represent
corrections to those models and be in charge of accounting
for their deficiencies and any missing physics. This possible
extension of the present formulation is not considered fur-
ther, and the present study is limited to the identification of
a “catch-all” correction term without the pretense of being
able to fully explain what has been identified. Although the
explanation of this term might not be complete, it is still ca-
pable of correcting the baseline FLORIS model, substantially
improving its match with respect to the measurements.

Notwithstanding these limitations of the present study,
an effort was made to pragmatically separate some effects
as much as possible. Specifically, orography-induced effects
were reduced by considering northern and southern wind di-
rections, where the influence of the neighboring coastlines is
minimal. Conveniently, for these wind directions, the Anholt
wind plant presents a significant streamwise depth, which fa-
cilitates the onset of deep-array effects. This agrees with the
findings of Doekemeijer et al. (2022), who – using a uniform
background flow with the baseline FLORIS model – reported
an increased model mismatch from northern and southern di-
rections.

Figure 15 reports the identified speedup fields for the sta-
ble and unstable data subsets. These results suggest the fol-
lowing observations.

First, the wind speed fields that are identified for stable
conditions deviate significantly from those obtained in un-
stable conditions. In fact, the flow field seems to have a
higher degree of heterogeneity in stable conditions, and, as
expected, intra-plant effects appear to be generally more pro-
nounced.

Second, speedups at the edges of the wind farm can be ob-
served for the directions 0, 30, 180, and 210◦. In all these
cases, the flow appears to be locally accelerating while turn-
ing around the obstacle represented by the plant.

Third, there seems to be a streamwise velocity decrease in
the background flow field, especially for stable conditions,
indicating the growth of a fully developed flow region. The
higher mixing promoted by unstable atmospheric conditions
probably induces an entrainment of the higher speed that
flows over and around the array (Porté-Agel et al., 2020), re-
ducing the streamwise deceleration. Due to the lack of mod-
els for comparison, this explanation remains of a speculative
nature. Models for fully developed wind farm flows (Frand-
sen et al., 2006) assume a regular layout, which is not the
case for the Anholt wind plant. Furthermore, they do not pre-
dict the onset distance of a possible deep-array zone.

An additional problem with the interpretation of the results
is due to the fact that the identified flow correction can be af-
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Figure 16. Reduction in the overall error by the activation of different correction types (a). Error probability density distribution for different
wind speed ranges (b, c).

fected by the wake combination scheme. As the number of
wake overlaps grows towards the trailing edge of the farm,
any inaccuracy in the combination model will be amplified
there. The results of the figure were obtained with the FLS
model, which has been reported to more accurately predict
power deep inside the farm (Hamilton et al., 2020). To verify
the sensitivity of the solution to this submodel, the identifi-
cation was repeated with the SOSFS combination, which has
been reported to show an improved accuracy in the entrance
region where few wakes are present but a less precise power
estimation deeper within the farm (Hamilton et al., 2020).
With the SOSFS model the correction patterns had similar
shapes but a more pronounced magnitude deep in the farm
region. Both methods are based on physical arguments and
empirical assumptions, and there is no general agreement on
whether one is superior to the other. Unfortunately, a cor-
relation check through the STL orthogonal components, as
performed in Sect. 3.1.4 for the wake model, is not possible
in this case. In fact, these combination models do not have
tunable parameters; additionally, tuning the wake models af-
fects all turbines, including the ones with no or limited wake
overlaps in the farm entrance region.

These results highlight a problem that deserves attention
and further research. In fact, the approach of adding a back-
ground correction term to the FLORIS model is somewhat
oblivious to the deficiencies of its submodels: for each dif-
ferent wake combination model, a different background flow
field is identified that, in the end, is capable of delivering a
similar good match of the power predictions with the mea-
surements, compensating possible differences in the behav-
ior of the models. While on the one hand this “obliviousness”
is one of the strengths of learning-based data-driven meth-
ods, on the other hand it is clearly also one of their main
weaknesses because it tends to mask possible problems of
the submodels, hindering a full understanding of their true
capabilities.

3.2.5 Contributors to the error improvement

Stability affects not only the identified background flow but
also the simultaneous tuning of the wake model parameters.
For the stable and unstable cases, Table 5 lists the identified
wake parameters and compares them to their default values
(NREL, 2021). Based on the tuned model parameters, a fully
waked turbine at 7D distance produces 1 % more power in
unstable conditions and 7 % in stable conditions when com-
pared to the standard tuning. As previously mentioned, typ-
ical values for turbulence intensity were based on the Horns
Rev farm because the actual values at the Anholt site were
not available. Therefore, these different calibrations could be
due to the STL algorithm adjusting the model to the assigned
values of ambient turbulence.

Next, the performance of the STL method was compared
to the baseline untuned homogeneous-background case, con-
sidering the successive activation of the various correction
terms. Figure 16a shows the reduction in the root mean
square error defined by Eq. (34), suggesting a few interest-
ing observations.

– The initial error for the baseline model is higher in the
stable case than in the unstable one. This is to be ex-
pected, since wake and farm effects are more prominent
in stable atmospheric conditions.

– The flow correction term produces, similarly to the Se-
dini case, the largest contribution to the improvement
in the error. As for Sedini, even here this term contains
clear land-induced effects, generated by the neighbor-
ing coastline. However, even more prominent effects are
driven by the growth of the boundary layer over the farm
because of its relatively large streamwise depth.

– In contrast to the Sedini case, the wind direction correc-
tion p0 plays only a very minor role here. This is due
to the better quality of the yaw signals, which leads to
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Table 5. Results of the wake model tuning, with the initial baseline parameters kinit, the identified values of the additive corrections pk ,
and the final tuned parameters k. The last row reports the relative change from kinit to k. The left subcolumn reports values for STLunstab,
whereas the right values reports those for STLstab.

ka kb Iconstant Iai Iinitial Idownstream

kinit 0.38 0.004 0.8 0.73 0.0325 −0.32
pk 0.02 0.08 −0.001 0.0 0.4 0.1 0.27 −0.01 0.0040 0.0 −0.05 −0.06
k 0.4 0.46 0.003 0.004 1.2 0.9 1.0 0.72 0.0365 0.0325 −0.37 −0.38
± 5 % 21 % −25 % – 50 % 12 % 37 % −1 % 12 % – −16 % −19 %

more reliable wind direction estimates that do not suffer
from a large bias.

Figure 16b and c show the error probability distributions
for the various methods and for two wind speed regimes.
Looking at the baseline cases with no parameter tuning, the
error has a wide spread, and the flow model is mostly over-
predicting wind farm power. Both in the stable and unstable
conditions, tuning and learning were able to eliminate over-
predictions, reducing the spread and centering the distribu-
tions around zero.

4 Conclusions

The present paper has formulated and demonstrated the STL
method, which simultaneously calibrates and augments a
steady-state parametric wind farm flow model; this work ex-
tends an earlier less general formulation first described in
Schreiber et al. (2020a). The approach builds on the vast
body of knowledge and experience embedded in available
engineering wake models. However, it also acknowledges
that any such model will always have limited predictive
accuracy because of modeling approximations and missing
physics. To correct for these deficiencies, a hybrid data-
driven strategy is used in the STL approach, where the base-
line (white) model is augmented with ad hoc (black-box) ex-
tra correction terms. Operational data from the farm are then
used to concurrently tune the parameters of the white model
and estimate the ones of the black one.

A decomposition of the wind farm flow field by tempo-
ral and causal effects forms the basis for the definition of
the extra correction terms, together with their functional de-
pendencies and assumed parametric discretizations. The for-
mulation allows for the first time a two-dimensional hetero-
geneous background flow to be learned directly from opera-
tional data. In this sense, the whole wind farm is used as a
distributed sensor, which detects the development of the flow
within its own boundaries through the response of its wind
turbines (which act as local flow sensors). The learned het-
erogeneous flow is influenced by ambient conditions, terrain
orography, roughness, sea state, and plant-induced effects.
The learned corrections are not limited to wind speed but can
also include heterogeneous wind direction or turbulence in-
tensity fields.

Tuning and learning result in a severely ill-posed identifi-
cation problem because of the collinearity and/or lack of ob-
servability of the redundant unknown parameters. This prob-
lem is solved by an SVD-supported MLE. The SVD effec-
tively performs a generalized modal decomposition of the
whole solution, which includes the coupled effects of the het-
erogeneous flow field and of the other tunable model param-
eters. In this way, combinations of the parameters that are not
visible – given the necessarily limited informational content
of the available dataset – can be readily discarded, whereas
only visible combinations are retained. As a byproduct of this
analysis, the examination of the underlying coordinate trans-
formation and resulting mode shapes can be used to reveal
interesting features of the solution.

The methodology was showcased via two distinct applica-
tions.

For the onshore Sedini farm, the STL revealed the exis-
tence of a heterogeneous wind speed field. Augmenting the
baseline model with this learned background correction, to-
gether with the site-specific tuning of the wake model, re-
sulted in a very significant improvement to the prediction
of power output throughout the farm, even when compared
to the predictions of the ad hoc tuned baseline model. The
learned corrections showed a significant correlation with the
terrain elevation, suggesting that the observed heterogene-
ity of the flow is primarily driven by orographic features of
the site. This was further confirmed by over-the-terrain CFD
simulations, which also showed a good agreement with the
learned corrections. Additionally, the CFD-computed flow
field was used as an initial starting guess for the learned cor-
rection term; this, however, did not significantly change the
results. Furthermore, the STL was able to identify a large
bias in the wind direction presumably due to problems with
the wind turbine yaw encoders.

For the much larger offshore Anholt farm, the STL re-
vealed the existence of gradients in the inflow, as well as
the presence of a strongly direction and stability-dependent
highly heterogeneous intra-plant flow field. Comparison with
WRF simulations confirmed the origin of the inflow gradi-
ents as being caused by the presence of coastlines in close
proximity to the farm, as already observed by other authors.
The intra-plant flow exhibited clear instances of local accel-
erations close to the farm edges, suggesting that the flow is
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“turning” around the obstacle represented by the farm. The
observed intra-plant flow appears to be caused by the growth
of the boundary layer over the farm. The flow appears to
be very significantly influenced by the irregular shape of the
farm and by the spacing of the turbines, which would be dif-
ficult to capture with simplified analytical models. However,
the interpretation of the results was complicated by the ef-
fects caused by the interaction of multiple wakes towards the
farm trailing edge. It was in fact observed that changes to
the wake combination model can affect the identified back-
ground flow. Given the present dataset, it was not possible
to disentangle the two effects, which remains an open prob-
lem that will necessitate further research. Notwithstanding
this limitation, the STL was able to very significantly im-
prove the prediction of power when compared to the tuned
baseline, no matter what wake combination model was used.

Future work can further improve the STL approach.
On the white-box side of the problem, it would be inter-

esting to add the most recent generation of intra-plant ef-
fects. This could help disentangle the causes for the observed
heterogeneous background corrections in large farms. Simi-
larly, one should explore more sophisticated wake combina-
tion models than the ones used here given their significant ef-
fects on the estimated background flow. Models that are para-
metric (i.e., that can be tuned) would be of particular interest
given the “monolithic” parameter estimation performed by
the STL.

On the black-box side of the problem, the use of richer
datasets than the ones used here could really help illuminate
some of the complexities of wind farm flows. For example,
operational data accompanied with information on the am-
bient conditions could help in better discerning the effects
of stability on phenomena such as boundary layer growth,
blockage, gravity waves, and others. Additionally, extra mea-
surements provided on site by met masts and/or long-range
scanning lidars could be fused with the operational data,
boosting the informational content of the dataset. Although
the grey-box nature of the STL method means that the white-
box component can compensate for the lack of information
in the data, it is also true that what is not in the white box
and not in the data can never be correctly represented by the
model. Therefore, future improvements depend to some ex-
tent on the richness and quality of the datasets that will be
available.

Finally, the STL method should be extended to incorpo-
rate unsteady effects by the use of a dynamic version of the
baseline engineering wake model. It is envisioned that the
steady-state STL could be used, as done here, to adapt the
model to represent permanent features of the flow (for exam-
ple, as caused by a hill), whereas the unsteady STL could be
used to render any transient effects (for example, as caused
by the finite-speed propagation downstream of set point or
inflow changes).

Appendix A: CFD simulations of the flow over the
terrain

For the Sedini case, RANS simulations were carried out
in OpenFOAM (v2006, 2023) in neutral atmospheric con-
ditions, with the goals of generating a term of compari-
son for the learned flow corrections (see Sect. 3.1.5) and of
providing a non-uniform initial guess to the STL algorithm
(Sect. 3.1.6).

The learned corrections 1USTL appeared to be indepen-
dent of the inflow wind speed. In accordance with com-
mon practice in industrial applications (van der Laan et al.,
2020), the same Reynolds independence was observed for
the CFD simulations. The relative variation in wind speed at
hub height was computed as

1ÛCFD (A0,Q)=
UCFD−U0,CFD

U0,CFD
. (A1)

The reference speed U0,CFD was obtained as the average
at the free-stream turbine positions, similarly to the field
data case. Due to the Reynolds independence and assump-
tion of neutral conditions, wind direction is the only envi-
ronmental dependency that was considered, i.e., A0 = 00.
One simulation was run for each of the directions 00 ∈

[255, 270, 285, 300]◦.

A1 Domain and mesh generation

A rectangular domain was used because of its simpler mesh
generation and clear identification of inlet and outlet com-
pared to other shapes. For each different wind direction case,
the terrain was rotated to align the domain with the inflow.
Figure A1a shows the domain boundaries and the 2× 3 km
farm located at its center for the 270◦ case. The terrain was
modeled with satellite DEM data (ASTER, 2021) with a 55 m
resolution. A smoothing kernel was applied to the terrain to
promote the progressive growth of a boundary layer down-
stream of the inlet. This was obtained by modifying the ter-
rain elevation (Sørensen et al., 2012) with the following func-
tion:

fk = tanh
[( r
R

)6
]
, (A2)

whereR = 6 km is the radius where the terrain elevation van-
ishes, obtaining the smoothed out domain shown in Fig. A1b.
A domain height of only 3 km was found to be sufficient to
ensure an undisturbed flow at the top of the domain, although
this value is smaller than the one recommended by Sørensen
et al. (2012).

A regular background mesh was generated with the
blockMesh tool that is part of the OpenFOAM distribution.
In the horizontal direction, Nx =Ny = 500 cells were used,
resulting in a resolution of 1x =1y = 40 m. In the vertical
direction, the domain was divided in two parts at a height
of 1 km. The top section had a constant vertical spacing of
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Figure A1. Terrain elevation around the Sedini wind farm (a). The large rectangle shows the CFD domain, whereas the small one shows the
perimeter of the wind farm (visible in b). Terrain elevation after application of the smoothing kernel (b). The panels correspond to the 270◦

wind direction case; for other directions, the computational domain was rotated accordingly.

1ztop = 100 m. In the bottom section, a grading scheme was
used to progressively increase the spacing from1zbott = 5 m
close to the ground to 25 m at the split section. An additional
layer with a thickness of 2.7 m was added to further refine
the region close to the ground, resulting in an average aspect
ratio of the wall-adjacent cells equal to 14.8. Finally, the tool
SnappyHexMesh was used to adapt the≈ 16.5×106 cell grid
to the terrain contour.

A2 Boundary conditions and numerical setup

As simulations were performed only for neutral conditions,
buoyancy effects were not included. Furthermore, Coriolis
effects were also neglected as only the velocity at hub height
is of interest, which is very close to the surface. The k-
ε model was used for turbulent stresses. As suggested by
Richards and Hoxey (1993), the model constant σε was set
to the value of 1.11, which is typical of atmospheric flows,
while the other model parameters were left at their default
values (Launder and Spalding, 1974).

The domain boundary conditions were imposed as fol-
lows. A logarithmic velocity profile was imposed at the inlet,
with a roughness length of z0 = 0.01 – corresponding to open
terrain, as the site has not much vegetation – and a hub-height
speed of Uhh = 8 m s−1. The inlet profiles for turbulent ki-
netic energy kturb, eddy viscosity νT, and dissipation of tur-
bulent kinetic energy εturb were implemented with the ABL
boundary conditions of OpenFOAM version v2006 (Release
Notes v2006, 2020), based on Hargreaves and Wright (2007)
and Yang et al. (2009). No-slip conditions and wall functions
based on Hargreaves and Wright (2007) were used in prox-
imity to the terrain. At the top of the domain, a constant shear
stress was used to drive the flow, while symmetry conditions
were applied to the side walls. At the outlet, the kinematic
pressure was set to zero, while zero gradient conditions were
imposed for all other variables.

A second-order accurate linear discretization scheme was
used for the divergence terms. The problem was solved with
simpleFoam, an implementation of the SIMPLE algorithm.
The setup was first tested in an empty domain, where it was
able to establish an equilibrium ABL with constant veloc-
ity profile from inlet to outlet. Simulations were run with
322 cores and converged after ca. 1200 iterations.

A3 Grid convergence

To investigate grid convergence, the mesh was progressively
coarsened in both the horizontal and vertical directions (in
the latter case, only in the bottom section of the domain), ob-
taining 10 %, 30 %, and 50 % fewer grid points, respectively.
Table A1 lists the defining parameters for the fine and the
coarser domains for the 270◦ direction; similar results were
obtained for the other directions. The average cell height in
the bottom section of the domain is denoted 〈1zbott〉.

Figure A2 shows the average hub-height speed difference
〈εGL,i〉 for the three coarser cases with respect to the fine-
grid solution, where εGL,i = (UGL,base−UGL,i)/UGL,base.
The coarser solution, based on 50 % fewer grid points than
the fine one, differs only by about 4 %. The curve trend in-
dicates that the fine-grid solution can be considered to be at
convergence.
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Table A1. Mesh characteristics for the grid convergence study for the 270◦ direction.

Grid Nx , 1x, Nz 〈1zbott〉 Ngrid
〈
εGL,i

〉
> max(εGL,i) SD(εGL,i)

level Ny 1y (top/ [m] [106
] [%] [%] [%]

[m] bottom)

Fine 500 40 80/20 12.5 16.4 – – –
Coarse 1 450 44.5 72/20 13.3 12.0 0.17 1.6 0.33
Coarse 2 350 57 56/20 17.8 5.9 0.62 2.3 0.45
Coarse 3 250 80 40/20 25 2.3 1.17 4.0 0.74

Figure A2. Average relative difference in hub-height speed for grids of increasing coarseness.
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Appendix B: Results for the Sedini wind plant during
day and nighttime operation

Figure B1. Normalized measured and calculated power for all turbines for all 5◦ bins in the investigated 245–310◦ sector for wind speeds
in the range of 6–8 m s−1 during daytime operation. Bins with < 10 observations are not shown. The uncertainty band indicates the standard
deviation in the bins. 1h is the foundation elevation difference with respect to the farm average, and it is indicated by the color of the frame
of each subplot.
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Figure B2. Normalized measured and calculated power for all 5◦ bins in the investigated 245–310◦ sector for wind speeds in the range of
6–8 ms−1 during nighttime operation.
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Appendix C: Nomenclature

A Vector of ambient state variables
E Fisher matrix
F Flow quantity
h Elevation
I Turbulence intensity
J Cost function
k Wake model parameter
L Obukhov length
M Sensitivity matrix
n Shape function vector
N Number of observations
Nt Number of turbines
Np Number of STL parameters
NID Number of retained (i.e., identified)

orthogonal parameters
p Complete vector of free STL correction

parameters
pF Correction node values to model flow

heterogeneity
pW Correction parameters for wake model

tuning
P Turbine power
P Inverse of the Fisher matrix
Q Spatial position
r Residual between measurement and model

output
R Measurement covariance matrix
s Singular value
S Matrix of singular values
U Wind speed at hub height
U Matrix of left singular vectors
v Right singular vector
V Matrix of right singular vectors
w Measurement weight
y Model output
z Measurement
z0 Roughness length
0 Wind direction
1F Heterogeneous flow quantity correction
ε Error
θ Orthogonal parameter
ρ Density
% Correlation coefficient
σm Measurement variance
σt Observability threshold
9 Matrix of eigenshapes
¯(.) Constant-in-time component
˜(.) Slow component

(.)′ Turbulent (fast) component
(.)0 Site-average quantity
ˆ(.) Scaled quantity
〈.〉 Average operator
ABL Atmospheric boundary layer

FLORIS FLOw Redirection and Induction in
Steady State

FLS Freestream linear superposition
Lidar Light detection and ranging
MLE Maximum likelihood estimation
RANS Reynolds-averaged Navier–Stokes
REWS Rotor-equivalent wind speed
SCADA Supervisory control and data acquisition
SOSFS Sum of squared freestream superposition
STL Simultaneous tuning and learning
SVD Singular value decomposition
TI Turbulence intensity
WRF Weather Research and Forecasting model

Code and data availability. Data of the Sedini wind farm are the
property of Enel Green Power S.p.A. Data of the Anholt wind farm
are the property of Ørsted A/S. All figures and the data used to gen-
erate them can be retrieved in Pickle Python and MATLAB formats
via https://doi.org/10.5281/zenodo.7797769 (Braunbehrens, 2023).
A Python implementation of the STL method can be provided upon
request by contacting the corresponding author.
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