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Abstract. Data-driven wake models have recently shown a high accuracy in reproducing wake characteristics
from numerical data sets. This study used wake measurements from a lidar-equipped commercial wind turbine
and inflow measurements from a nearby meteorological mast to validate an interpretable data-driven surrogate
wake model. The trained data-driven model was then compared to a state-of-the-art analytical wake model.
A multi-plane lidar measurement strategy captured the occurrence of the wake curl during yaw misalignment,
which had not yet conclusively been observed in the field. The comparison between the wake models showed that
the available power estimations of a virtual turbine situated four rotor diameters downstream were significantly
more accurate with the data-driven model than with the analytical model. The mean absolute percentage error
was reduced by 19 % to 36 %, depending on the input variables used. Especially under turbine yaw misalignment
and high vertical shear, the data-driven model performed better. Further analysis suggested that the accuracy of
the data-driven model is hardly affected when using only supervisory control and data acquisition (SCADA) data
as input. Although the results are only obtained for a single turbine type, downstream distance and range of yaw
misalignments, the outcome of this study is believed to demonstrate the potential of data-driven wake models.

et al., 2017). Additionally, the implementation of this con-

With the wind energy industry maturing, more focus is be-
ing put on maximizing the power yield of existing assets.
This involves moving away from the traditional, and cur-
rently still standard, greedy control of individual turbines to
an optimization on the wind farm level. In recent years, es-
pecially the wake steering concept has received considerable
attention in the literature; in this concept the turbine is in-
tentionally misaligned with the inflow wind, introducing a
lateral component of the thrust force that deflects the wake
away from a downstream turbine. Many aspects of this strat-
egy have been studied over the years, including the under-
lying physics (e.g., Howland et al., 2016; Bastankhah and
Porté-Agel, 2016) and its characteristics under different at-
mospheric conditions (e.g., Vollmer et al., 2016; Schottler

cept in the field with so-called yaw controllers has received
attention. Such controllers typically include a representation
of the wake in the form of engineering wake models used to
solve the optimization problem, as well as the design of the
yaw controller itself (e.g., wind direction robustness — Rott
et al., 2018; Simley et al., 2020; hysteresis — Kanev, 2020;
and open- versus closed-loop — Doekemeijer et al., 2020;
Howland et al., 2020).

Although a large body of knowledge about the wake steer-
ing concept has been obtained, the industry appears to be hes-
itant to adapt due to the large uncertainties and lack of val-
idation (van Wingerden et al., 2020; Boccolini et al., 2021).
One limitation is the number of field experiments carried out.
Due to the considerable expense and inaccessibility of test
turbines, most research groups revert to high-fidelity simu-

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.




748 B. A. M. Sengers et al.: Validation of an interpretable data-driven wake model

lations or wind tunnel experiments. Although they provide
a higher degree of reproducibility and more flexibility in
choosing the studied scenarios, these experiments take place
in controlled environments and do not fully represent the
complexity of the field. Wake models and yaw controllers are
consequently developed based on data from idealized condi-
tions. Their accuracy in field situations is questionable due
to limited validation, slowing down the adoption by industry.
This uncertainty is amplified by findings that the application
of wake steering can lead to power losses under certain con-
ditions (e.g., Fleming et al., 2020; Doekemeijer et al., 2021).

Several field campaigns have been conducted in recent
years to study wake steering control. In their pioneering
work, Wagenaar et al. (2012) used a scaled wind farm to
demonstrate the concept. Using rear-facing nacelle-mounted
lidars, asymmetries in wake deflection depending on the sign
of the yaw angle were observed for the near wake (Tru-
jillo et al., 2016) and far wake (Bromm et al., 2018). This
asymmetry is also found using numerical tools (e.g., Flem-
ing et al., 2015) and attributed to shear-induced initial wake
deflection (Gebraad et al., 2016) or the Coriolis force (Archer
and Vasel-Be-Hagh, 2019). One prominent aspect associated
with wake steering is the development of the wake curl as ob-
served in numerical and wind tunnel experiments (e.g., How-
land et al., 2016; Vollmer et al., 2016; Hulsman et al., 2022b).
Fleming et al. (2017a) included a short notion that a curled
shape could be observed in the field, while Brugger et al.
(2020) did not find a curled wake in their field experiment.
They argued that the effect of wind veer was too large for
the counter-rotating vortices to generate a curled wake, with
wind veer reported to tilt the wake in one direction (Herges
et al., 2017; Brugger et al., 2019).

Using fixed yaw misalignment angles, Howland et al.
(2019) found statistically significant gains of up to 47 % for
low wind speeds and a certain wind direction in a small wind
farm consisting of six turbines. Ahmad et al. (2019) reported
that wake steering is mainly beneficial in partial wake situa-
tions. Fleming et al. (2021) found an asymmetry of the down-
stream turbine power generation, where gains from correct
steering (wake steered away from turbine) are larger than the
losses from erroneous steering (wake steered into turbine).
They attributed this effect to the added wake recovery in-
duced by the counter-rotating vortices that also generate the
wake curl.

Additionally, several controller test studies have been car-
ried out in which instead of a fixed yaw angle, an optimal yaw
angle is employed based on the inflow conditions. This opti-
mal yaw angle is determined with low-fidelity wake models
which generate discretized lookup tables (LUTs). In a series
of papers from the National Renewable Energy Laboratory
(NREL), different versions of the FLOw Redirection and In-
duction in Steady State (FLORIS; NREL, 2022) framework
have been used to generate these LUTs. In a field campaign
at an offshore wind farm with a turbine spacing of seven
to eight rotor diameters, Fleming et al. (2017b) reported a
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10 % power gain for certain wind directions. Fleming et al.
(2019, 2020) showed results of a field test with closely
spaced turbines with two different versions of FLORIS, both
resulting in a power gain for most conditions but clear power
losses for some wind directions. Lastly, Doekemeijer et al.
(2021) found large power gains of up to 35 % for one wind
direction sector with a two-turbine setup in complex terrain,
but also here large losses were found for other wind direc-
tions.

These studies are pivotal in demonstrating the potential
of wake steering but also indicate that there is a large vari-
ability in its demonstrated effectiveness. Next to atmospheric
inflow conditions, this can be attributed to turbine type, tur-
bine spacing and terrain. Additionally, the choice of yaw con-
troller and accuracy of the wake model used to develop the
LUTs are believed to have an effect.

After the pioneering wake deficit models of Jensen (1983)
and Ainslie (1988), Jimenez et al. (2010) first came up with
a wake deflection model under yaw misalignment. Nowa-
days, most analytical wake models are based on the Gaus-
sian model (Bastankhah and Porté-Agel, 2014, 2016; Niay-
ifar and Porté-Agel, 2016). Combined with the curl wake
model (Martinez-Tossas et al., 2019), the Gaussian—curl hy-
brid (GCH) model (King et al., 2021) prescribes the effect
of counter-rotating vortices generated by turbine yaw mis-
alignment, such as yaw-induced wake recovery, asymmetric
deflection and secondary steering. Lastly, Bastankhah et al.
(2022) presented an analytical way to describe the devel-
opment of the wake curl with downstream distance, and
Bay et al. (2023) tackled “deep array” effects, in which
many wakes interact deep inside a large wind farm, with the
cumulative-curl model.

In addition to these analytical models, data-driven wake
(surrogate) models have received some attention in recent
years. Most use complex neural networks (e.g., Ti et al.,
2020; Renganathan et al., 2022; Purohit et al., 2022; Asmuth
and Korb, 2022) and have shown highly accurate results.
However, these models need lots of training data and have
an extremely low interpretability (black-box models). In an
attempt to overcome this, Sengers et al. (2022) presented an
interpretable Data-driven wAke steeRing surrogaTe model
(DART). Using only linear equations, DART uses inflow and
turbine variables to estimate wake parameters such as deficit,
center location and curl. It has a reduced number of param-
eters and is therefore highly interpretable and needs fewer
training data. In a comparison using large-eddy simulation
(LES) results, Sengers et al. (2022) demonstrated that DART
outperformed the Gaussian and GCH models, especially un-
der stable atmospheric conditions.

As mentioned before, studies validating wake models with
field measurements are rare, especially when yaw misalign-
ments are included, resulting in uncertainties about their ac-
curacy. Moreover, comparisons between analytical and data-
driven models in their abilities to reproduce the character-
istics of wakes observed in the field are done sporadically.
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However, validations with measurements and comparisons
between models are necessary to assess their performance
and provide direction for future work.

The objective of this paper is to use nacelle-based lidar
measurements of the wake of a commercial turbine to vali-
date the DART model and compare its accuracy with that of
the GCH model. To achieve the objective, this study com-
prises three components: (1) to design a scanning strategy
able to capture wake characteristics such as deficit, center
position and curl to accurately reconstruct a vertical cross-
section of the wake; (2) to assess the performance of the
wake models by their ability to estimate the available power
of a virtual downstream turbine observed by the lidar; and
(3) to investigate DART’s performance as a function of data
set size and input variables, including an analysis of whether
the model could operate on supervisory control and data ac-
quisition (SCADA) data alone.

2 Measurement campaign

This section introduces the field experiment carried out
within this study. Section 2.1 describes the measurement site
and general setup. Section 2.2 describes the yaw control ex-
periment. Section 2.3 through 2.7 then discuss the devices,
their measurement strategies and data processing. Especially
in Sect. 2.3 more details are provided, including results from
a preliminary study to determine the scanning strategy of the
nacelle lidar, since the measurements from this device are es-
sential for this study. Lastly, Sect. 2.8 describes how the data
from all devices are used to select 10 min averaged cases con-
sidered in the rest of the study.

2.1 Measurement site

Measurements were carried out in the period of February
through April 2021 as a part of a yaw control field cam-
paign at a slightly hilly onshore site in northeastern Ger-
many located approximately 13.5km from the Baltic Sea;
see also Hulsman et al. (2022a). The layout of the site, in-
cluding the positioning of the measurement equipment, is
shown in Fig. 1. The nacelle of turbine T1 was equipped
with a downstream-facing Leosphere WindCube 200S (serial
no. WLS200S-024) pulsed lidar (Sect. 2.3). T1 was a com-
mercial 3.5 MW enol26 turbine with a hub height of 117 m
and a rotor diameter D of 126 m. The nacelle was further
equipped with a Thies Clima wind vane and cup anemome-
ter (Sect. 2.6), as well as a Trimble SPS three-antenna GNSS
(hereafter called GPS) to measure orientation, tilt and roll
(Sect. 2.7). A second pulsed lidar of the same type (serial no.
WLS200S-023) was installed west of the turbine to measure
inflow profiles (Sect. 2.4). North of this turbine, a meteoro-
logical mast (MM Sect. 2.5) was erected and equipped with
Thies Clima cup anemometers and wind vanes.

Lastly, Fig. 1 shows that a small 6 m high hill 5D upstream
of T1 and a larger 27 m high hill 8 D downstream of T1 were
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exactly in the wind direction sector that was not used due to
the presence of the downstream turbines (see Sect. 2.2). Two
villages with low buildings were located about 1km from
T1, directly upstream for wind directions around § = 265 and
8 = 320°, mainly outside of the studied wind direction sec-
tors. The dominant vegetation in the area is of an agricultural
nature, with patches of trees and bushes between the fields.
These trees could affect the measurements for § ~ 350°, as
noted in Hulsman et al. (2022a) using data from the same
site. This influence was accepted, as omitting this sector
would result in large data losses.

2.2 Yaw control experiment

As these measurements were part of a larger field campaign,
only the wind direction sector § =[268°,360°] U [0°,20°]
could be used for experiments for this study. Unfortunately,
in this sector two smaller turbines (T3 and T4) were located
downstream of the lidar-equipped turbine. For the objectives
of this study, measurements at 4D downstream were tar-
geted. This was to avoid the near wake, as the two investi-
gated wake models fail to represent the non-Gaussian shape
of the wake deficit, and to ensure that the wake curl had de-
veloped. The wind speed reduction due to the induction zone
of T3 at 4.8D (hub height of 103 m and a diameter of 93 m)
was estimated to be on the order of 2 % (estimated with the
vortex sheet theory — Medici et al., 2011) at the targeted dis-
tance of 4D. Although not ideal, no alternative was possible
due to the restrictions of the measurement site, and it was
decided to neglect the effects of this induction zone.

Part of the wind direction sector could not be used due
to the positioning of T4 at 3.2D downstream. To make sure
that the wake was not steered into T4, in the sector § =
[268, 316°] the turbine toggled between target yaw misalign-
ment angles of ¢ = 0° (duration of 30 min) and ¢ = +15°
(duration of 60 min, clockwise rotation looking from above),
steering the wake to the left. Correspondingly, in the sec-
tor § =[316°,360°] U [0°,20°] the turbine toggled between
¢¢ = 0° (30 min) and ¢ = —15° (60 min, counterclockwise
rotation looking from above), steering the wake to the right.
The downside of this approach was that directly comparing
positive and negative yaw angles under similar atmospheric
conditions was not possible. Additionally, more data were
collected in the first sector as this wind direction was more
dominant.

Fixed yaw offsets were applied as this involved minimal
changes to the yaw controller. Besides, a distribution of yaw
misalignments was expected to be obtained due to the imper-
fect tracking of the wind direction by the yaw controller.

2.3 Nacelle lidar

This subsection describes the measurements performed with
the nacelle-mounted lidar. Section 2.3.1 describes the de-
sign of the scanning strategy, including results of a numer-
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Figure 1. Layout of the measurement site with the local topography, relative to mean sea level, indicated in the background. Black markers
indicate turbines, where T1 is equipped with the nacelle lidar. White markers indicate the meteorological mast (MM) and ground-based lidar
(VAD). Shaded areas indicate the wind direction sector with ¢y > 0° (red) and ¢¢ < 0° (yellow) and where wake measurements are assumed
to be disturbed by the downstream turbines (grey). The thick solid black line indicates the measured locations used for analysis. (Source for

topographic map including color bar: topographic-map.com, 2022.)

ical evaluation to determine what trajectory should be imple-
mented in the field. Section 2.3.2 describes the processing,
including filtering, of these data.

2.3.1 Design scanning strategy

A pulsed lidar can be mounted onto the nacelle to sample to
turbine’s wake. When operated with a single plan position
indicator (PPI) scan with an elevation angle of ¢pp; = 0°, the
line-of-sight velocities on a horizontal plane at hub height are
obtained. Although quick, this trajectory only provides data
at one height in the wake. Attempts have been made to cap-
ture information in the vertical plane, such as in Beck and
Kiihn (2019), who proposed a scanning pattern of alternating
PPI and range height indicator (RHI) scans to obtain infor-
mation in both dimensions. However, wake shape deforma-
tions due to wind veer (tilted) or yaw misalignment (curled)
cannot be captured with this scanning strategy. Brugger et al.
(2019, 2020) used nine PPI scans at different elevation an-
gles, allowing the description of non-circular wake shapes in
a vertical plane.

In this paper, their strategy was adopted and evaluated
numerically to gain insights into how the number of PPI
scans and their angular speed (following Carbajo Fuertes and
Porté-Agel, 2018) affect the ability to capture the characteris-
tics of 10 min averaged wake. This exercise used large-eddy
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simulation (LES) results, allowing for a systematic uncer-
tainty analysis of the proposed scanning patterns.

The Parallelized Large-Eddy Simulation Model (PALM;
Maronga et al., 2020) coupled with the aeroelastic code
FAST (Jonkman and Buhl, 2005; Kriiger et al., 2022) repre-
senting the NREL 5 MW turbine (Jonkman et al., 2009) pro-
vides the numerical wind fields. Precursor simulations gener-
ated realistic inflow conditions, after which the main simula-
tions with one turbine were performed. The aeroelastic code
for the turbine installed in the field, as used in Sect. 4.1, was
not yet available during the planning stage of this campaign.
Both turbine T1 and the NREL 5 MW turbine have the same
rotor diameter (126 m) but differ in hub height (117 vs. 90 m)
and aeroelastic properties. It was, however, assumed that at
4D the characteristics of the wakes produced by these tur-
bines are sufficiently similar.

A single turbine with yaw angles of ¢ = {—15,0, 15°} in
a neutral (TI=10.3 %, « = 0.17; see the Appendix for defi-
nitions of abbreviations and symbols used throughout) and a
stable (TI=5.7 % and o = 0.32) boundary layer with a hub
height wind speed U, ~ 8ms~! was simulated. The simula-
tion length was 25 min, of which the first 15 min was omitted
as spin-up and the remaining 10 min was used for analysis.
Synthetic lidar data targeting 4D downstream were subse-
quently generated by employing the lidar simulator LiXim
(Trabucchi, 2019) with an accumulation time of 0.1 s and an
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opening angle of 70°. Temporal averages were taken for all
points in the scanning cycle. The wake composition method,
later described in Sect. 3.1, was used to reconstruct vertical
cross-sections of the wake, from which the available power
P,y could be determined. This estimate is compared to the
reference (subscript ref) 10 min averaged LES data. Used as
a metric is the absolute percentage error (APE) over the six
(two boundary layers times three yaw angles) simulations
calculated with Eq. (1):

P,y — P,
APE[%] _ ‘ av av,ref

- 100, (1)

av,ref

in which P,y = P/Cp = 0.50AU,q with p the air density (as-
sumed to be constant), A the rotor area and Ueq the rotor-
equivalent wind speed. The bar “all” on the far left in Fig. 2
indicates the reconstruction of the wake based on the origi-
nal LES data, hence the error introduced by the composition
method. Further, one, three, five, seven and nine PPI scans
were tested, where the middle scans always targeted hub
height and the outermost scans upper and lower tip height at
4D. Trajectories with an even number of PPI scans were not
tested, as this would remove the scan at hub height that was
needed for another study. Additionally, it is desirable to mea-
sure the largest wake deficit, which is expected to develop
around hub height.

Figure 2 shows that five PPI scans typically hold the high-
est accuracy. Using fewer PPI scans results in inaccurate
estimations of the wake deficit distribution in the vertical,
while using more PPI scans results in long cycles and conse-
quently fewer measurements per observation point. The an-
gular speed wyigar seems to have little effect, except for when
seven PPI scans are used. This is attributed to chance, as too
few cases are studied for the statistics to converge. Gener-
ating more LES results with a wider range of atmospheric
conditions and turbine yaw angles was not possible due to
computational restrictions. While these results are not statis-
tically significant and it can therefore not be claimed that an
“optimal” scanning strategy has been found, this exercise al-
lows for making an informed decision.

It was decided to implement the trajectory showing the
lowest error, hence consisting of five PPI scans with wiigar =
14°s~!. The elevation angles of these scans were ¢pp; =
{—=7.0,-3.5,0.0, 3.5,7.0°}, and the accumulation time used
was 0.1 s. With an opening angle of 70°, the duration of one
PPI scan is 5s. Changing elevation angles takes 1.3 s, and
resetting to the start of the cycle takes 3.5s, adding to 34s
to complete one full cycle. The range gate length was set
to 25 m, corresponding to a pulse duration of 100 ns. Range
gates were defined between 50 and 1340 m with 5 m spacing.
However, in the processing phase only data up to 820 m were
used to avoid the influence of the ground in the PPI scan with
the lowest elevation angle.
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2.3.2 Data processing

Since the performed PPI scans were quite fast with a rela-
tively coarse resolution, all PPI scans with the same eleva-
tion angle in a 10 min window (see Sect. 2.8) were grouped
together to get a better estimate of the measurement distribu-
tion.

Simple filtering based on the -carrier-to-noise ra-
tio (CNR) and line-of-sight velocity (LOS) was per-
formed, where only realistic data with CNR <0dB and
O0ms~! <LOS <20ms™~! were kept. On the remainder,
a Gaussian filter was used, retaining only measurements
within 3 standard deviations of the median CNR and LOS
(99 % confidence interval). This removed outliers due to
hard targets, as illustrated in Fig. 3a.

However, some PPI scans exhibited a LOS—CNR diagram
as illustrated in Fig. 3b, containing many measurements with
high CNR and low LOS values. To filter out these erroneous
measurements, a mean shift clustering algorithm (Fukunaga
and Hostetler, 1975) was employed, as was for instance used
in Wang et al. (2022) as part of data cleaning for power curve
tuning. The algorithm identified clusters in the LOS—-CNR
space and allocated all measurements to any of the clusters
based on the Euclidean distance to the cluster center. Clusters
were then either considered or eliminated based on whether
the location of their center was physically feasible. In the
example in Fig. 3b, the yellow cluster was omitted, since
many points outside the main cluster with high CNR and
low LOS values indicate erroneous measurements. Lastly,
the Gaussian filter based on the 99 % confidence interval was
repeated, as removing one cluster drastically affected the out-
come of this filter.

After filtering, all PPI scans were interpolated to a standard
grid with a resolution of 1.4° (corresponding to the original
resolution) to account for the slightly different azimuth an-
gles between scans as a result of the lidar’s inability to mea-
sure the exact same location each time. Next, the PPI scans
were temporally averaged as long as not more than two data
points within a 10 min window were missing. When more
than 25 % of the measurements were filtered out, as is the
case with Fig. 3b, the averaged PPI scan was removed from
the 10 min window, resulting in fewer than five PPI scans. If
fewer than four averaged PPI scans remained after filtering,
the case was eliminated.

Lastly, the PPI scans’ azimuth and elevation angles were
corrected with the nacelle’s 10 min averaged tilt angle and
misalignment (see Sect. 2.7). The horizontal wind speed was
subsequently computed by correcting the LOS with these az-
imuth and elevation angles.

2.4 Ground-based lidar (VAD)

As shown in Fig. 1, the ground-based lidar was situated
1.85D upstream of the lidar-equipped turbine for § = 281°
to measure profiles of wind speed and direction. The ground-
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Figure 2. Results of the virtual lidar tests. Bars indicate the mean and whiskers the standard deviation of the absolute percentage error (APE)
of available power P,y over six simulations. The number of PPI scans is indicated on the x axis. “all” indicates the use of all numerical data,
hence the error introduced by the composition method. The opaqueness represents the lidar’s angular speed wjjgar-
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Figure 3. Examples of multiple PPI scan filtering in LOS—CNR diagrams in which black markers indicate original data and red markers data
kept after filtering. (a) A textbook case with few outliers that indicate hard targets and (b) a more problematic case in which there are many
corrupted measurements. Here yellow markers indicate a second cluster from which all measurements were omitted. Black crosses indicate

the two cluster centers.

based lidar performs continuous velocity—azimuth display
(VAD) scans at an elevation angle of ¢yap = 75° with an
accumulation time of 0.5 s and an angular speed of 30°s~!.
Also for this lidar, the range gate length was set to 25 m, cor-
responding to a pulse duration of 100 ns. Range gates were
defined between 50 and 840 m with 5 m spacing.

Filtering was done based on the 2D histogram method in-
troduced by Beck and Kiihn (2017), which assumes a nor-
mal distribution of LOS and CNR values. The measured data
points were binned by their LOS and CNR values, and the
number of data points in each bin were counted. Bins having
a count below 10 % of the bin with the highest count were
omitted.

Next, the azimuth angle (6yap) was corrected by means
of a hard-target analysis, such that 8yap = 0° faces north.
To obtain the wind speed components (#, v, w) and conse-
quently the horizontal wind speed and direction, the mea-
surements of each range gate were fitted with the following
sinusoid:

Nz
LOS = ucos(fyap)sin (5 — ¢VAD>

~+ vsin(fyap )sin (% — ¢VAD) + wcos (% — ¢VAD) )]
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Lastly, only when at least 75 % of the data points remained
after filtering and the fitted sinusoid achieved a correlation
coefficient of at least 0.8 (determined empirically), the wind
speed components of a vertical level were retained.

2.5 Met mast

A meteorological (met) mast was positioned 2.7 D upstream
of T1 at § = 350° (Fig. 1). This mast was equipped with cup
anemometers at 116.3 m (hub height, Uy) and 54.2 m (lower
tip height, Uj;) to measure wind speed and shear. Wind vanes
were located at 112.2 m (approximately hub height, ;) and
54.5m (lower tip height, dy;). The highest cup anemometer
was located on the top of the met mast for undisturbed flow
from all directions, whereas the other cup anemometer and
wind vanes had orientations of 315 and 135°, respectively. A
flow distortion due to the tower structure affecting the mea-
surements occurs for wind directions between approximately
310 and 320°, which is not considered in this study (see
Sect. 2.1). The wind directions analyzed here are assumed
to be undisturbed. The cup anemometers and vanes had an
accuracy of 0.2ms~! and 1.5°, respectively. All sensors op-
erated at a sampling frequency of 50 Hz.
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2.6 Wind turbine operational data

SCADA data were collected at the turbine at a frequency of
50Hz. These data contain measurements from the nacelle’s
wind vane ds and cup anemometer Us, as well as power P,
rotor speed w and turbine status, the latter indicating whether
the turbine was operating normally. A standard nacelle trans-
fer function was used by the operator to correct wind speed
measurements for the influence of the rotor.

2.7 GPS

All above-mentioned systems were equipped with a Global
Positioning System (GPS) sensor used for time synchroniza-
tion. Additionally, the nacelle of T1 was equipped with a
three-antenna global navigation satellite system (GNSS) to
measure orientation, roll and tilt. This system was operated
at a sampling frequency of 10 Hz, and its measurements have
a root mean square error of less than 0.1°. This results in a
spatial error of less than 1 m at 4D downstream.

Orientation measurements, averaged to 10 min values to
smooth out high-frequency vibrations, were used to com-
pute the yaw misalignment ¢ of the turbine relative to the
wind direction &, measured at the met mast. These measure-
ments were then used to correct the PPI scans’ azimuth an-
gles. Likewise, 10 min averaged nacelle tilt angles were used
to correct the PPI scans’ elevation angles, but the scans were
not corrected for roll as it was expected to only have a small
influence on the results.

2.8 Selection of data for model evaluation

The measurements were averaged over 10min as is com-
monly done in the wind energy industry. Case selection was
done using the following steps:

1. Within a 10 min window, no yaw maneuver should take
place. A preselection of cases was therefore done purely
based on GPS data. A case was considered when the ori-
entation did not change for at least 12 min, of which the
first 2 min was not considered for analysis because the
wake needed time to reach 4D downstream. In the case
that the orientation did not change for more than 22 min,
the first 2 min was omitted and the remainder was split
into two 10 min windows as far apart as possible.

2. The 10 min averaged U} needed to be between cut-in
and rated wind speed. &, needed to be in the defined sec-
tor (Sect. 2.1) and approximately normally distributed.
This eliminated situations where there is a clear trend in
the wind direction signal.

3. The inflow measured at the met mast should reason-
ably compare to the measurements at the turbine’s na-
celle. The met mast measurements were temporally cor-
rected to match the nacelle signal using Taylor’s hy-
pothesis of frozen turbulence. Next, the two signals
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were compared, where the 10 min averaged wind speed
|Un — Us| < 1ms~! and direction |8, — 8s| < 5°.

4. The profiles from the VAD lidar were used to check
whether the wind speed profiles were approximately
logarithmic, as the effect of low-level jets on the down-
stream wake characteristics is currently not captured by
the wake models and considered out of the scope of this
study.

5. If all checks were passed, all completed cycles within
the defined 10 min window were averaged as described
in Sect. 2.3. After averaging, the PPI scans were inter-
polated to a vertical plane at 4D downstream of the tur-
bine. The wake deficit (Uger) was calculated by subtract-
ing the wake measurements with the inflow profile ob-
tained from the met mast measurements and normalized
by dividing by the hub height wind speed Uy,.

6. Lastly, the 10 min averaged cases were evaluated by the
multiple 1D Gaussian method (see Sect. 3.1). Since the
opening angle of the PPI scans is 70°, it can be expected
that wakes from other turbines are also visible in the
measurements. To prevent using an incorrect wake, the
scans are sliced around the expected location of the con-
sidered wake. Boundaries of these slices are determined
by the maximum wind speeds between the scan’s cen-
ter, corrected for yaw misalignment, and 150 m left and
right of this center. Furthermore, the correlation coeffi-
cient (R) of the Gaussian fit with the wake deficit ob-
servations needed to be higher than 0.85 (empirically
determined) to be considered, removing cases that do
not fulfill the model assumptions of a Gaussian wake
deficit.

This selection procedure resulted in 382 individual 10 min
averaged cases to be used for analysis. Figure 4 displays the
distribution of measured yaw angles during the campaign.
Most measurements were done without yaw misalignment,
since during a part of the campaign the implemented con-
troller had issues and turbine control reverted back to stan-
dard operation. The difference between the number of posi-
tive and negative yaw angles is due to a more dominant wind
direction in the sector containing positive yaw angles.

The solid vertical lines indicate the median yaw angles
per target angle. For greedy control, the median shows a
small bias of ¢ = —0.94°, suggesting a calibration error
of the nacelle’s wind vane. For a target angle ¢; = +15°,
the median achieved ¢ = +11.14°, whereas for ¢, = —15°,
¢ = —13.19° is achieved. These angles are smaller than the
targeted angles, which is due to the wind vane error under
yaw misalignment (Kragh and Fleming, 2012; Simley et al.,
2021a). Figure 5 displays an overview of the inflow condi-
tions measured during these 382 cases. The shear o with a
mean of 0.3 is slightly larger than expected, and the veer do
is smaller than expected, showing a high occurrence of neg-
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Figure 4. Data availability of the 10 min averaged cases as a func-
tion of achieved yaw angle (¢). Colors indicate the targeted ¢y =
—15° (yellow), ¢y = 0° (blue) and ¢ = +15° (red). Solid vertical
lines and accompanying text mark the median of the achieved yaw
angles.

ative values. Regardless, all variables show a range of values
that are physically reasonable.

3 Methods

This section introduces the modeling aspects of this study.
First, Sect. 3.1 summarizes the multiple 1D Gaussian method
used to obtain quantifiable wake characteristics. Section 3.2
discusses what information is used as a reference, and
Sect. 3.3 describes the splitting of the data set into train-
ing and testing subsets. Then, Sect. 3.4 introduces the data-
driven model and Sect. 3.5 briefly introduces the analytical
model used in this study.

3.1 Multiple 1D Gaussian method

The multiple 1D Gaussian method (Sengers et al., 2020) is
utilized to obtain quantifiable wake characteristics, listed in
Table 1. This method fits a 1D Gaussian through the wake
deficit data normalized by the wind speed at hub height
(Ugef/Up) in the horizontal plane for every height level, in
the current study obtained from five consecutive PPI scans.
This results in a set of local wake deficits (amplitude)