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Abstract. Wind resource assessment is a crucial step for the development of offshore wind energy. It relies
on the installation of measurement devices, whose placement is an open challenge for developers. Indeed, the
optimal sensor placement for field reconstruction is an open challenge in the field of sparse sampling. As for the
application to offshore wind field reconstruction, no similar study was found, and standard strategies are based on
semi-empirical choices. In this paper, a sparse sampling method using a Gaussian mixture model on numerical
weather prediction data is developed for offshore wind reconstruction. It is applied to France’s main offshore
wind energy development areas: Normandy, southern Brittany and the Mediterranean Sea. The study is based
on 3 years of Météo-France AROME’s data, available through the MeteoNet data set. Using a Gaussian mixture
model for data clustering, it leads to optimal sensor locations with regards to wind field reconstruction error. The
proposed workflow is described and compared to state-of-the-art methods for sparse sampling. It constitutes a
robust yet simple method for the definition of optimal sensor siting for offshore wind field reconstruction. The
described method applied to the study area output sensor arrays of respectively seven, four and four sensors
for Normandy, southern Brittany and the Mediterranean Sea. Those sensor arrays perform approximately 20 %
better than the median Monte Carlo case and more than 30 % better than state-of-the-art methods with regards
to wind field reconstruction error.

1 Introduction

Offshore wind energy is key in the decarbonation of the
global energy production and the reaching of net-zero tar-
gets as developed in Shukla et al. (2022). With 11×106 km2

of territorial waters under French jurisdiction and 20 000 km
of coastline, France has an extensive and windy seafront.
It benefits from the second largest offshore wind potential
in Europe, after the United Kingdom, with up to 80 GW of
foundation-based offshore wind and 140 GW of floating off-
shore wind that could be exploited according to IEA (2019).
Offshore wind can then be a leading sector for the develop-
ment of renewable energies in France. The French roadmap
currently plans 1 GW of tender per year from 2024 onwards
for fixed and floating wind farms. This was confirmed and
reinforced in early 2022, with 40 GW of installed capacity
envisioned by 2050.

During the development phase of a wind project, the wind
resource assessment is a key step to determine its financial
feasibility. It can be carried out with numerical weather pre-
diction (NWP) hindcast data such as WRF (Weather Re-
search and Forecasting model) data. However, field observa-
tions are necessary to estimate the uncertainties of the models
and to assess higher-resolution wind dynamics (Murthy and
Rahi, 2017).

Lidars, standing for light detection and ranging, are remote
sensing devices that measure wind speed using lasers. Float-
ing lidars are certified devices for offshore wind resource
assessment, and they are lidar units integrated onto a stan-
dalone floating structure. These wind sensors offer the po-
tential for reduced costs compared to meteorological masts
(Gottschall et al., 2017); however, they can be expensive to
install and require regular maintenance. Their number and
siting thus need to be optimized in order to compose an op-

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



772 R. Marcille et al.: Gaussian mixture models for the optimal sparse sampling of offshore wind resource

timal network of sensors in an offshore wind development
area. Such networks are expected to capture most of the dom-
inant wind dynamics from a minimum number of sensors.

Numerous efforts have been undertaken in different scien-
tific fields to optimize sparse sensor siting, a combinatorial
problem not solvable by standard approaches such as con-
vex optimization. Sparse sampling is about selecting salient
points in a highly dimensional system. It then requires a di-
mension reduction of the data, such as the use of empirical
orthogonal functions (EOFs). EOF analysis projects the orig-
inal data into an orthogonal basis derived by computing the
eigenvectors of a spatially weighted anomaly covariance ma-
trix. Therefore, EOFs of a space-time physical process can
represent mutually orthogonal space patterns where the data
variance is concentrated, with the first pattern being respon-
sible for the largest part of the variance, the second for the
largest part of the remaining variance and so on. EOFs are
then very useful for the data reduction of any complex data
set such as climate data. By projecting the original data onto
a limited subset of relevant orthogonal vectors, it reduces the
dimensionality of the system and helps explain the variance
of the data. In the past few decades, EOF analyses were used
to study spatiotemporal patterns of climate variability, such
as the North Atlantic Oscillation, the Antarctic Oscillation
and the variability in the Atlantic thermohaline circulation
(e.g., Davis, 1976; Thompson and Wallace, 2000; Hawkins
and Sutton, 2007; Moore et al., 2013).

EOFs are often at the origin of methods employed to de-
termine the optimal sensor locations for signal reconstruc-
tion. In the field of geoscience, Yildirim et al. (2009) em-
ployed simulation results from different regional ocean mod-
els to define an efficient sensor placement. The authors used
the EOF technique to determine the spatial modes of dif-
ferent simulated ocean dynamics systems. The extrema of
the EOF spatial modes were found to be good locations for
sensor placement and accurate field reconstruction. Zhang
and Bellingham (2008) added to the method of empirical or-
thogonal function extrema (EOF extrema) a constraint on the
cross products of EOFs to select the sensor locations and ap-
plied it to Pacific sea surface temperature reconstruction. Us-
ing the same kind of constrained EOF analysis, Castillo and
Messina (2019) proposed a data-driven framework based on
a proper orthogonal decomposition (POD) to determine the
optimal locations for power system oscillation monitoring
and state reconstruction. In this study they selected iteratively
the locations with the highest POD amplitude and the lowest
cross-coupling between the modes. In Yang et al. (2010), the
EOF extrema are used for ocean dynamics reconstruction,
introducing an exclusion volume to avoid redundancy and to
account for gappy data and for uncertainty.

Manohar et al. (2018) proposed a data-driven method
based on a QR pivoting greedy algorithm on a reduced ba-
sis to determine optimal sensor placements for face recogni-
tion, global sea surface temperature and flow reconstruction
around a cylinder. The QR pivoting method decomposes a

matrix into an orthogonal matrix and an upper triangular ma-
trix using column pivoting. By iteratively selecting the col-
umn with the highest two-norm as pivot, this algorithm for
QR factorization is suited for the selection of salient points.
In Clark et al. (2020), the QR pivot decomposition is mod-
ified to include cost constraints and is applied to the same
three data sets. The QR greedy algorithm described in these
studies has been used often in recent studies, showing good
capabilities and being very easily implementable.

Recent studies proposed innovative methods to improve
the capabilities of sparse sampling. To improve the perfor-
mance of the reconstruction, Chepuri and Leus (2014) pro-
posed a method for grid augmentation to allow for continu-
ous sensor placement, off-grid sensor selection and convex
optimization problem formulation. In Mohren et al. (2018),
the authors took inspiration from insects’ neural activation
during flights to derive a sparse sampling method in com-
plex flows to create an encoder for flight mode classification
including both the spatial and temporal dependencies of the
data. In Fukami et al. (2021), the use of Voronoi tessellation,
a method to optimally partition the space into n cells given
n input points using a distance measure d, helps to create
a viable input for super-resolution from sparse sensors us-
ing a convolutional neural network (CNN). This reconstruc-
tion technique is then tested on sea surface temperature re-
construction globally, showing the possibility of using sparse
sampling on very high-dimension problems.

The problematic of optimal sensor placement has also
been investigated for wind energy measurement applications.
Annoni et al. (2018) uses the QR greedy algorithm described
in Manohar et al. (2018) to determine the optimal locations
of sensors to improve the overall estimation precision of the
flow field within a wind farm. In this study, the number of
sensors is directly computed using a user-defined threshold
with regards to reconstruction error. A similar strategy is im-
plemented in this article as presented below. The obtained re-
sults show good performance compared to randomly selected
grid points, with an improvement of 8 % in flow field re-
construction, and demonstrate the interest in applying sparse
sampling methods to the wind energy sector. At even finer
scales, Ali et al. (2021) uses low-dimensional classifiers ap-
plied to the proper orthogonal decomposition of a large eddy
simulation wake simulation to obtain sensor locations for the
reconstruction of wind turbine wakes. Using the method of
sparse sensor placement optimization for classification de-
scribed in Brunton et al. (2016), it shows the interest of sparse
sampling for the control of wind turbines, using a deep learn-
ing algorithm to predict the wake fluctuations from sensor
measurements. Results show that most sensors are placed in
the transition region, and the reconstruction results in a more
than 92 % correlation between predicted and real values.

However, to the best of our knowledge, such methods were
never applied at the regional scale for wind energy resource
assessment. In our opinion this is due to site selection pro-
cedures at the political level that do not necessarily rely on
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wind resource assessment at the regional level, as well as
to smaller required spatial scales at the wind farm devel-
oper level, where only one or two sensors are deployed at
the extremities of the area, assuming spatial representativ-
ity. The application of sparse sampling methodologies to off-
shore wind reconstruction is an addition of this work. Us-
ing NWP spatial wind data as input, the study proposes an
unsupervised clustering framework for the identification of
salient points in the spatial grid, similar to what can be ob-
tain through EOF extrema analysis in Yildirim et al. (2009)
or QR pivoting in Manohar et al. (2018). In the application-
driven experimental setup of this study, the two state-of-the-
art methods fail to capture wind dynamics at the regional
level. Unsupervised clustering automatically discriminates
points that are too similar, making it a good candidate for
sparse sampling in this case, while keeping the whole method
simple and easily implementable.

The objective of the present study is twofold, and the asso-
ciated problematic is formulated as the following – for con-
ducting offshore wind resource assessment of any targeted
area.

1. What is the optimal number of offshore wind sensors to
be deployed to best characterize the wind resource?

2. What is the optimal location of each wind sensor?

The optimal number of sensors refers to a trade-off between
wind field reconstruction accuracy, and overall cost and com-
putational cost. The optimal locations given a certain number
of sensors is the configuration giving the lowest reconstruc-
tion error. The two aspects are presented in this work, though
realistic cost considerations are not covered.

To do so, this paper presents a data-driven method based
on NWP data unsupervised clustering to estimate optimal
sensor locations for offshore wind field reconstruction using
a Gaussian mixture model. It is compared to state-of-the-art
methods used in the above literature (EOF extrema, QR piv-
oting, randomly selected sensors). The method is then im-
plemented in three areas identified for offshore wind energy
development in France. An optimal wind sensor network is
proposed for each area to help in the development of offshore
wind energy in France.

2 Study data set

2.1 Study areas

The three areas investigated in this study are located off the
coast Normandy, off the coast of southern Brittany and in
the Mediterranean Sea, three major development areas for
offshore wind in France with numerous planned offshore
projects, listed in Table 1, with future tender processes for
respectively 1.5 GW of fixed offshore wind and 250 MW and
2×250 MW of floating offshore wind (expected date of com-
missioning in 2030).

Figure 1. Overview of the French coasts with the bathymetry. The
color shading shows the water depth until 150 m. Areas with wa-
ter depths exceeding 150 m are shown in white. Black contours are
used to identified depths of 1000, 2500 and 4500 m. The three study
areas are shown with black rectangles. Each area is presented on
different panels where the locations of the future foundation-based
and floating wind farms are shown with their different stages of de-
velopment. In the main panel, the dashed black lines delimit the
areas covered by the MeteoNet data set.

With water depths not exceeding 50 m (Fig. 1), the area
located off the coast of Normandy area is particularly suit-
able for the deployment of fixed offshore wind farms. Cur-
rent projects will be installed off the coast of Fécamp,
Courseulles-sur-Mer and Dieppe – Le Tréport (Fig. 1). The
total capacity of each wind farm will be 450–500 MW with a
starting date of commissioning expected in 2023–2024 (Ta-
ble 1). In addition, the French Government has recently an-
nounced a new project of a wind farm located 32 km off the
coast of Normandy (Fig. 1). This future wind farm will gen-
erate 1 GW. The starting date of commissioning is expected
by 2028.

The area off the coast of Brittany has water depths of up to
100 m which makes it a very favorable area for the develop-
ment of floating wind farms. The French Government aims
at developing 250 MW of floating wind energy in the area
(Fig. 1).

Because of its very favorable and regular wind regimes
and deep bathymetry, the Mediterranean Sea has significant
wind potential for floating wind energy. This led to the de-
velopment of three pilot floating wind farm projects (Leu-
cate, Gruissan and Provence Grand Large) in the Gulf of
Lion. These projects will rely on three full-scale 8–10 MW
floating turbines, whose generated power will be injected in
the French power grid by 2022–2023 (Table 1). In addition,
two commercial wind farms with a power capacity of over
250 MW each will be in operation by 2029.
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Table 1. Characteristics of the foundation-based (Normandy) and floating (southern Brittany, Mediterranean Sea) future wind farms planned
for the next decade in the study areas (CEREMA, 2022). NA signifies not available.

Areas Wind farm Index in Capacity Number of wind Expected date of
Fig. 1 (MW) turbines commissioning

Normandy Dieppe – Le Tréport 1 496 62 2026
Fécamp 2 497 71 2023
Courseulles-sur-mer 3 448 64 2025
AO4 call for tender 4 1000 NA 2030

Southern Brittany AO5 call for tender 5 250 NA 2025–2030

Mediterranean Faraman – Port-Saint-Louis-du-Rhône 6 24 3 2023
Sea Gruissan 7 30 3 2024

Leucate – Le Barcarès 8 30 3 2024
AO6 call for tender 9 and 10 2× 250 NA 2028–2029

2.2 The MeteoNet data set

MeteoNet is a meteorological data set developed and made
available by Météo-France (Larvor et al., 2020), the French
national meteorological service. The data set contains full
time series of satellite and radar images, NWP models, and
ground observations. The data cover two geographic areas of
550 km× 550 km on the Mediterranean and Brittany coasts
(Fig. 1) and span from 2016 to 2018. Hourly 10 m wind out-
puts of the high-resolution NWP model AROME are avail-
able. AROME has been operational at Météo-France since
December 2008 (Seity et al., 2011). It was designed to im-
prove short-range forecasts of severe events such as intense
Mediterranean precipitations, severe storms, fog or urban
heat during heat waves. The physical parametrizations of
the model come mostly from the Méso-NH research model,
whereas the dynamic core comes from the non-hydrostatic
model ALADIN (Termonia et al., 2018). The resolution of
the AROME grid is 1.3 km. The model is initialized from
data assimilation derived from the ARPEGE-IFS variational
assimilation system (Courtier et al., 1994) and adapted to
AROME’s finer resolution.

For each area of interest, the 10 m zonal (u) and merid-
ional (v) wind speeds are extracted from AROME. The open-
source MeteoNet data set only contains surface parameters
of temperature, humidity, pressure and precipitation, as well
as 10 m wind speed (u10, v10), which are considered in this
study. The assumption is then made that relevant measure-
ment points at 10 m are equally relevant for hub-height esti-
mation, though this assumption should be tested with a suit-
able data set. Since the focus is on offshore wind, grid points
on land were excluded from the analysis. The characteristics
of each area are then the following:

– Normandy – 4272 grid points (∼ 7000 km2);

– Southern Brittany – 1837 grid points (∼ 3000 km2);

– Mediterranean Sea – 3571 grid points (∼ 5800 km2).

A total of 65 d (∼ 6%) of the 3-year data set are unusable
due to largely missing data. The missing data days are similar
for each area and were removed from the analysis.

3 Preliminaries

3.1 Problem statement

The problematic of the presented work is to find D measure-
ment points out of K NWP grid points to minimize the re-
construction error in the offshore wind field. A formalism
for this sparse sampling problem is proposed in this section.

In all that follows, the full state matrix X refers to the con-
catenation of zonal and meridional wind speeds on the K
grid points of the model for all time steps. The list of sensor
locations γ , which is the output of the methods described in
this paper, contains the locations of the D sensors to sample
the offshore wind field. The associated sparse measurement
matrix Yγ corresponds to the measured zonal and meridional
wind speeds at the γ locations for every time step.

The formalism developed in this section is applied to the
MeteoNet data set presented in Sect. 2.2. The data set is split
into a training and a testing period. The training is performed
on two-thirds of the data set, composed of the years 2016
and 2017, while the methods are scored on the year 2018.
By taking an integer number of year, the seasonality bias of
weather data is limited.

3.2 Reduced-order model

The reduced-order model used to decrease the dimen-
sion of the input data is the empirical orthogonal function
(EOF) analysis. Also known as principal component analysis
(PCA), it decomposes the data set into an orthogonal basis.
Practically, it is linked to the singular value decomposition of
a matrix X such that

X= U6VT , (1)
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with 6 a diagonal matrix of positive σk singular values, U a
matrix whose columns are the vectors of the orthogonal basis
and V the weights of the associated vectors.

The singular vectors are orthogonal vectors on which the
variance of the projected data is maximized. The diagonal
elements of 6 are sorted per value and are equal to the per-
centage of variance of the data set explained by each princi-
pal component. The variance explained by the first r EOF is
then∑r

i=1σ
2
i∑K

i σ
2
i

. (2)

The number of EOFs to use in the reduced-order model can
be set so that the variance explained by the reduced basis is
above a certain threshold.

For the study data set, EOFs of zonal and meridional wind
speeds are computed. In the NWP model, the grid points are
strongly correlated spatially; hence, only a low number of
EOFs is needed to describe the vast majority of the data set
variance. The number of EOFs was set to 10 for both the
zonal and meridional components of wind so that the reduced
basis explains more than 95 % of the total variance for the
three areas. The 8r reduced basis is then the concatenation
of the 8r/2u and 8r/2v EOFs for zonal and meridional wind
speeds, with r = 20.

3.3 Sparse sampling

3.3.1 State description

Let us consider a system described by its time-varying state
X(t) that evolves according to unknown nonlinear dynam-
ics. It can be described on an orthogonal basis {φi} (e.g., the
EOF) as

X(t)=
K∑
i=1

ai(t)φi . (3)

To reduce the complexity of the model, the state of the sys-
tem can be approximated using the first r modes:

X(t)≈
r∑
i=1

ai(t)φi = Xr (t)=8ra(t), (4)

where 8r is the reduced basis matrix containing the first r
modes, and ai(t) are the time varying coefficients of the sys-
tem’s state on the reduced basis.

The given system is then sampled according to an index
set γ = [γ1, . . .γD] ∈ [1,K]D , γi 6= γj , which represents the
sensor locations. From this, a sampling matrix is constructed
Cγ ∈ RD×K that extracts theDmeasured locations out of the
K grid points of the full state. The sampling matrix is com-
posed of lines of zero with ones at the sensor locations. With
the canonical basis vectors eγj = (δγj ,k) ∈ RK , the sampling
matrix is

Cγ =
[
eγ1 eγ2 · · · eγD

]T
. (5)

The sparse measurement matrix Yγ is then obtained by mul-
tiplying the full state X by the sampling matrix Cγ :

Yγ (t)= CγX(t). (6)

3.3.2 Full state reconstruction from sparse
measurements

From the sparse measurement matrix, the full state is recon-
structed using the coefficients of the reduced basis. A linear
model is constructed to link the matrix of EOF coefficients,
a, to the sparse measurement matrix Yγ :

a= βYγ + ε, (7)

with ε an additive Gaussian error.
The model fitting is performed on the training split of the

data set. Let Ytrain be the sparse measurement matrix on the
training split and atrain the true coefficients of the full state
on the reduced basis for the training split. Using the ordinary
least squares formula, the β matrix can be estimated as

β̂ = (YTγ ,trainYγ ,train)−1YTγ ,trainatrain. (8)

On the test data set, only the wind speed measurements at
the γ locations are available. The coefficients of the reduced
basis are computed using the least squares matrix estimated
from the training data set:

âγ ,recons = β̂Yγ ,test. (9)

The full state is reconstructed using the reduced basis:

X̂γ ,recons =8
r âγ ,recons. (10)

3.3.3 Reconstruction error

The reconstruction X̂γ ,recons is then compared to the recon-
struction with perfect knowledge about the reduced basis
coefficients Xreal =8

rareal, assuming that the actual coeffi-
cients of the reduced basis are perfectly known.

The reconstruction error associated with the sensor loca-
tions γ is then the root mean squared error in the recon-
structed state:

Eγ ,recons =
1
T

T∑
t=1

√√√√ 1
K

K∑
k=1

(
X̂kγ ,recons(t)−Xkreal(t)

)2
. (11)

The optimization problem that needs to be solved can then
be stated as the minimization of the reconstruction error over
all locations’ combinations γ and number of sensors D:

argmin
γ ,D

Eγ ,recons. (12)
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4 Sparse sampling methods used in this study

In this section, the methods applied for the sparse sam-
pling are described in detail. The novel data-driven method
based on the Gaussian mixture model is presented, together
with the three baselines emerging from the literature review.
These are the random selection of locations (Monte Carlo),
the dominant spatial mode extrema (EOF extrema) and the
QR greedy algorithm (QR pivots). All the methods described
in this section should output a list of sensor locations γ given
a number of sensors D.

4.1 Baseline methods

The selected baseline methods are emerging from the liter-
ature as simple yet efficient methods for sparse sampling in
different situations. They are implemented to compare their
performances with the Gaussian mixture model for this spe-
cific application.

4.1.1 Monte Carlo simulations

The first baseline consists of picking random sensor loca-
tions. For each area and for a number D of sensors ranging
from 1 to 10, a hundred random combinations of locations
γ ∈ PD([1,K]) are considered. For each γ combination of
sensor locations, the reconstruction error is computed. From
this ensemble of simulations, statistics on the reconstruction
error are computed.

The median Monte Carlo scenario for each area and num-
ber of sensors is then considered a benchmark for the study.
It also gives information about the spread in reconstruction
error resulting from all possible combinations.

4.1.2 Dominant spatial mode extrema

In Yildirim et al. (2009), the extrema of the spatial dominant
modes are found to be relevant locations if not optimal for
the reconstruction of the flow field. Those points can be seen
as salient points that best characterize the spatial modes. It
is then intuitive to select those to reconstruct the full state
from the reduced basis. How many extrema are chosen from
each variable and mode is studied specifically in Cohen et al.
(2003); it is empirical and thus case specific.

In the case study of Cohen et al. (2003), the EOF de-
composition gives modes that are highly spatially correlated.
Moreover, in this study, points near the coast are influenced
by the orography and show strong variability. Hence, sorting
the points per coefficient and selecting the N first ones will
lead to the selection of neighboring points and/or irrelevant
coastal points for our performance metric.

The extrema are then chosen manually, as performed in
Yildirim et al. (2009), from the visualization of the first EOF
for both zonal and meridional wind speeds. For each param-
eter and EOF rank, the extrema are selected and discarded if

Figure 2. Selected sensors for the EOF extrema baseline in the
Mediterranean Sea. The EOF coefficients are displayed as back-
ground, and the selected salient points and their associated ranks
are displayed as red dots. The two columns are zonal (u) and merid-
ional (v) wind speed, and the rows correspond to the EOF rank.

redundant (manual process). Then, they are sorted per abso-
lute value and per EOF number for the two parameters.

The selected input points from EOF extrema for the
Mediterranean Sea are shown in Fig. 2. From the first to the
fourth EOFs for zonal and meridional wind speeds, the ex-
trema are selected if they are not too redundant or close to
the coast/border. This unsatisfactory workflow is a way to
ensure minimum relevance for the obtained sensor array.

4.1.3 QR pivots

The QR decomposition of the reduced basis 8r consists in
finding two matrices – orthogonal Q and triangular superior
R – such that

8r =QR. (13)

The Q and R matrices are obtained using the Gram–Schmidt
process (Leon et al., 2013), which consists of iteratively re-
moving each column’s orthogonal projection onto a pivot
column. The QR algorithm can be performed using column
pivoting; i.e., at each iteration, the matrix 8r is multiplied
by a permutation matrix P such that the column taken for
pivoting has the maximum two-norm. The decomposition is
then

8rPT =QR. (14)
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The permutation matrix P is constructed so that the diagonal
elements of R are decreasing. It is applied to the matrix of the
reduced basis to identify pivot locations. It then contains the
ranked index of sensor locations to build the sensor location
list:

γj = Pjj ∀j ∈ [1,D]. (15)

The QR pivot method is described in Manohar et al. (2018)
as a simple yet efficient method for sparse sensor placement.
It is used to determine model-data-driven sensor networks to
reconstruct flow fields for the flow past a cylinder and the sea
surface temperature retrieval, two situations that are analo-
gous to the case study. It is even tuned to include cost con-
straints for the search of Pareto optimal sensor placement in
Clark et al. (2020). For wind field estimation, it was applied
to computational fluid dynamics data in Annoni et al. (2018)
to best reconstruct the flow in a wind farm. All in all, it rep-
resents a simple yet competitive baseline method for spare
sensor placement.

4.2 Gaussian mixture model clustering

The proposed method in this study uses unsupervised cluster-
ing of the data to define sensor locations. Gaussian mixture
models use machine learning to fit multivariate normal dis-
tributions on the data.

4.2.1 Gaussian mixture

A Gaussian mixture model (GMM) is a probabilistic model
for representing normally distributed sub-populations within
an overall population (Reynolds, 2009). Each Gaussian dis-
tribution represents a group of points, i.e., cluster. The model
is a mixture, i.e., superposition, of multivariate Gaussian
components which define a probability distribution p(x) on
the data:

p(x)=
D∑
j=1

πjN (x|µj ,6j ), (16)

πj being the mass of the Gaussian component j , with 0≤
πj ≤ 1 for all j = 1, . . .,D, and

∑D
j=1πj = 1. N (x|µ,6)

being the Gaussian density distribution such that

N (x|µ,6)=
1

√
(2π )rdet(6)

exp
(
−

1
2

(x−µ)T6−1(x−µ)
)
,

(17)

with x being the r-dimensional input vector, µ the r-
dimensional mean vector and 6 (r × r) the covariance ma-
trix.

4.2.2 Expectation–maximization algorithm

The core of the GMM lies within the expectation–
maximization (E-M) algorithm, developed by (Dempster et

al., 1977). It iteratively modifies the model’s parameters to
maximize the log likelihood of the data.

The log likelihood, log(L), of the observations is given by

log(L(π ,µ,6))=
K∑
k=0

log

(
D∑
j=1

πkN (xk|µj ,6j )

)
. (18)

Then the empirical means µj , covariances6j and weights
πj of the different clusters are computed. The weights (mix-
ing coefficients) represent the mass of the different clusters.
The mass of the cluster is the proportion of data points as-
signed to this cluster. For the first iteration, the mean and co-
variance matrices are initialized randomly, and the weights
matrix is equal for each cluster.

The second step of the algorithm is the expectation step,
E-step. The model parameters are updated to increase the log
likelihood of the data. For each data point, xk , the probability
that this point belongs to the cluster, c, is computed such that

rkc =
πcN (xk|µc,6c)∑D
j=1πjN (xk|µj ,6j )

. (19)

The E-step computes those probabilities using the current
estimates of the model’s parameters. In this step, “responsi-
bilities” of the Gaussian distributions are computed. They are
represented by the variables rkc. The responsibility measures
how much the cth Gaussian distribution is responsible for
generating the kth data point using conditional probability.

The third step is the maximization step, M-step. In this
step, the algorithm uses the responsibilities of the Gaussian
distributions (computed in the E-step) to update the estimates
of the model’s parameters. πc, µc and 6c are updated using
the following equations:

πc =

∑K
k=1rkc

K
, (20)

µc =

∑K
k=1rkcxk∑K
k=1rkc

, (21)

6c =

∑K
k=1rkc

(
xk −µc

)2∑K
k=1rkc

. (22)

These updated estimates are used in the next E-step to
compute new responsibilities for the data points. This al-
gorithm is applied iteratively until algorithm convergence,
when the log likelihood of the data is maximized. The strict
monotony of the likelihood in the E-M algorithm is demon-
strated in (Wu, 1983).

4.2.3 Optimal number of clusters

GMM requires the number of clusters in the model to be
imposed as input. The optimum number of clusters can be
defined through the calculation of the Bayesian information
criterion (BIC) score (Schwarz, 1978):

BIC=−2ln(L)+Gln(K), (23)
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with L the maximized value of the likelihood function of the
model, G the number of parameters in the mean vectors and
covariance matrices of the Gaussian components, and K the
number of data points. The BIC score penalizes models that
are too complex to avoid the overfitting of the data set. In this
way, it limits the number of components of the GMM with
the G ln(K) term.

The lower the BIC is, the better the model is. However, the
curve of the BIC score can be monotone, and the identifica-
tion of a minimum, i.e., the optimal number of clusters, can
be difficult. An alternative is the calculation of the gradient
of the BIC score. The identification of the optimal number of
clusters is hence done by the identification of an elbow in the
curve of the gradient of the BIC score. The elbow is often not
directly associated with one single specific number of clus-
ters but rather encompassed two or three possible solutions.
Thus, one can say that the gradient of the BIC score gives
an indication of the range of the optimal number of clusters.
An extra step is required to determine the optimal number of
clusters. In this study, this step is done through the determi-
nation of an error reconstruction threshold of the wind field.
The number of clusters associated with the minimum error is
considered optimal for the GMM.

4.2.4 Implementation for the study case

Figure 3 shows the workflow in this study. A two-
dimensional data set composed ofK = 3571 grid points with
20 EOF features is used to feed the GMM. The 20 features
are composed of the first 10 EOFs of zonal and meridional
velocities. The clustering is then optimized spatially, so the
entries (the grid points) are assigned to clusters based on their
features (their coefficients on the first 20 EOFs). The output
of the model is then a list of labels for each grid point, creat-
ing spatial clusters in the study areas.

The GMM procedure will find clusters of grid points that
are correlated in the reduced basis. The centroids of the clus-
ters, i.e., the point of maximum likelihood for a given cluster,
are then chosen to be sensor locations, as they are the most
representative points of the clusters:

γj = argmaxxN (x|µj ,6j ) ∀j ∈ [1,D]. (24)

5 Results

In this section, the methods presented in Sect. 4 are imple-
mented in the three identified areas (Mediterranean Sea, Nor-
mandy and southern Brittany) and compared with respect to
the wind field reconstruction error. A method for the selec-
tion of an optimal number of sensors is described, and the
suggested sensor locations for the three areas are given.

5.1 Optimal number of sensors

The number of sensors to place on the grid is an input of the
GMM. The BIC score described in Sect. 4.2.3 computes a

trade-off between the likelihood of the obtained distribution
and the complexity of the model. Being sensible to the like-
lihood of the model and to its complexity, it is usually used
to determine the number of clusters for the GMM by find-
ing its minimum. However, there is no guarantee that there
will be a minimum BIC score corresponding to an optimal
number of clusters, and there is no guarantee that this num-
ber of clusters is actually optimal for the considered metric.
Indeed, this metric is a heuristic criterion to hint at the trade-
off between accuracy and complexity to avoid overfitting. If
there is no minimum to the BIC score, one can look for an
elbow in the BIC score’s gradient, showing a number of clus-
ters after which the marginal gain of BIC score is no longer
significant. In this study, the BIC score showed no minimum
up to 50 clusters, so its gradient was studied. However, this
technique is not very accurate, and the results should be inter-
preted carefully. For example, the knee identification is very
dependent on the cut-in and cut-out of the curve for the defi-
nitions of the asymptotes. Furthermore, the GMM results are
dependent on the initialization of the algorithm. As shown in
Fig. 4, the obtained optimal number of sensors can range be-
tween four and seven, though it shows clear convergence for
a number of clusters above 10. The gradient of BIC score was
computed for 20 random GMM initializations for the three
areas, and the mean gradient was plotted as the dashed line,
with its 95 % confidence interval as the envelope. The BIC
score was normalized to compare the three areas together.
Similar trends can be observed, with stronger gradients in
the Mediterranean Sea for the first clusters showing a bigger
underlying complexity. For southern Brittany, the associated
uncertainty is bigger, showing a weaker global minimum for
the expectation maximization.

While the BIC score gives an indication of the range of op-
timal number of clusters, it does not necessarily translate into
an equivalent reconstruction for the wind fields. Although the
clustering itself might find an optimum of five clusters for
the Mediterranean Sea, this can lead to a much higher recon-
struction error than for the other areas as illustrated in Fig. 5a.
In particular for the Mediterranean Sea, the considered re-
gion is wider with several different wind regimes, which im-
plies a higher variability. It then seems natural that more sen-
sors than other areas would be needed to reach the same error
level. Furthermore, the uncertainty about the optimal number
of sensors shows an underlying property of these spatiotem-
poral data which has strong correlations between points and
for which clusters are not well separated. All in all, there is
a need to cross-validate the computation of the optimal num-
ber of sensors. It is then proposed to validate the number of
sensors from the computation of the reconstruction error. Ex-
ploring the range of the number of clusters obtained through
the BIC score gradient, the final number of sensors is chosen
using a reconstruction error threshold.

To compare the three areas which have different wind
regimes, the error threshold is defined as the reconstruction
error in the normalized wind (normalized root mean squared

Wind Energ. Sci., 8, 771–786, 2023 https://doi.org/10.5194/wes-8-771-2023



R. Marcille et al.: Gaussian mixture models for the optimal sparse sampling of offshore wind resource 779

Figure 3. Schematic of the clustering procedure of wind data using Gaussian mixture models. It is illustrated for the unsupervised clustering
of the Mediterranean Sea wind field.

Figure 4. The gradient of normalized BIC score is shown for the three areas for a number of clusters ranging from 1 to 15. The curves’
envelopes are the 95 % confidence interval obtained from 25 different initializations of the GMM training. The determination of an optimal
number of sensors from these curves is uncertain, ranging from four to six for the Mediterranean Sea (shaded area), four to five for Normandy
and four to seven for southern Brittany.

error or N-RMSE). The optimal number of clusters is then
computed as the minimal number of clusters required to re-
construct 75 % of the map with an error lower than the thresh-
old.

It is then up to the final user to define an empirical er-
ror threshold to derive the optimal scenario. As shown in
Fig. 5a, while the BIC score gradient curves are similar for
the three areas, the normalized reconstruction error is signifi-
cantly higher for the Mediterranean Sea for the same number
of input points, thus necessitating a higher number of clus-
ters to reach 75 % of the map under threshold. The thresh-
old of 0.2 for the normalized reconstruction error is shown
in Fig. 5b. It results in coherent results with regards to the
BIC score analysis. The final numbers of clusters are then
four each for Normandy and southern Brittany and seven for
the Mediterranean Sea. This workflow for the definition of

the optimal number of sensors ensures similar performance
between the three areas.

5.2 Clustering-derived sensor performance

The sensor locations for the base case scenario with the opti-
mal number of sensors of four each for Normandy and south-
ern Brittany and seven for the Mediterranean Sea are then
computed for the three areas for the four methods: Monte
Carlo, QR pivoting, EOF extrema and GMM.

The obtained sensor locations are displayed in Fig. 6 as
red dots. It can be visually noted that the sensor array de-
rived from the GMM method (second row) is more evenly
distributed than the benchmark sensor arrays. QR pivots’ lo-
cations (third row) are concentrated near the coast or at the
maps’ limits, and so are EOF extrema (fourth row). It shows
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Figure 5. The computation of the proportion of the map under a certain error threshold for the three areas and 20 different GMM initializa-
tions allows for the selection of the optimal number of sensors as the minimum number of sensors required to reach 75 % of the map under
threshold (a). The obtained reconstruction error map with the threshold contour shown illustrates the selection on the Mediterranean Sea (b).

how the GMM method allows for homogeneous sampling of
the area, while benchmark methods tend to give too much
weight to coastal and bordering points. This can be either ar-
tificial, due to spatial discontinuity at the limits of the maps,
or because of the orographic impact of the coast. Indeed,
the wind near the coast shows more variability, and while
those points are contained in wider spatial structures in the
GMM, they can be considered salient points in the QR piv-
oting method or in the EOF extrema.

The resulting reconstruction at different time steps is il-
lustrated as background for the three areas and four methods
in Fig. 6. The first row is the reference case, reconstructed
with perfect knowledge about the 20 EOF coefficients (EOF
reference). For the Mediterranean Sea, this specific time step
shows a combined Mistral and Tramontane winds blowing
in the Mediterranean Sea. It is a complex and standard sit-
uation with different wind regimes: strong offshore winds
in the north and west of the Gulf and southeastern winds in
the eastern extremity. It can be noted that the GMM method
correctly reproduces the intensity of those three phenomena,
while other techniques tend to overestimate or underestimate
their effects.

For Normandy, the benchmark sensor arrays are largely
off target in this specific case, predicting little to no wind
offshore due to their exclusive coastal sampling, while the
GMM method better captures both the coastal low winds and
offshore wind cell.

For southern Brittany, the effects of the sensor array is less
clear, possibly explained by the smaller area or by a sim-
pler wind regime. However, the GMM method still performs
largely better in terms of reconstruction error and wind pat-
terns than benchmark methods.

Three different metrics are computed for the optimal sce-
narios for the three areas and are displayed in Table 2. Along
with the reconstruction error described in Sect. 3.3.3, the er-
rors in the reconstructed mean and maximum wind speed
are displayed. For the three areas, the GMM method clearly
leads to a good reconstruction error and mean wind speed
estimation. However, the EOF extrema method results in the
better estimation of the maximum wind speed for Normandy

and southern Brittany. It illustrates the fact that the GMM
method is good at reconstructing the synoptic situation while
discarding high variability points that can be relevant for ex-
treme events. Indeed, coastal points that can have a high vari-
ability due to the coastal orographic effects are selected as
salient points by the EOF extrema and QR pivot and are dis-
carded by the GMM that assigns them to a wider cluster. This
is efficient to reconstruct the mean situation in the whole map
but can lead to higher errors in high-variability areas.

The proposed GMM method is scored against the three
baselines methods in the Mediterranean Sea area for a num-
ber of sensors ranging from 1 to 10. The results are displayed
in Fig. 7, showing the great interest of the clustering-derived
method compared to benchmark methods for the offshore
wind reconstruction from sparse sampling. QR pivoting sen-
sors and EOF extrema sensors fail to surpass the Monte Carlo
simulation for a low number of sensors. The GMM method
results in reconstruction errors systematically below the min-
imum of the boxplots (i.e., first quartile minus 1.5 times the
interquartile range which is equal to 99.65 % of the data in
the Gaussian case), showing the near-optimal reconstruction.
The benchmark methods’ errors eventually decrease for a
high number of sensors and surpass the Monte Carlo median
scenario for 10 sensors. However, it is expected that the dif-
ferent methods should converge for a high number of sensors,
as the system is more and more constrained. It is illustrated
by the decreasing spread within the Monte Carlo simulation.

For the GMM curve and the Monte Carlo boxplots, the re-
construction error seems to inflect for a number of sensors
around seven, cross-validating the obtained optimal number
of sensors for the base scenario. It can be noted that the re-
construction error for the EOF extrema method drastically
decreases with the addition of the sixth sensor. As shown in
Fig. 2, the sixth sensor is a central offshore point, while the
first five locations are near the coast. For a number of sensors
above six, the EOF extrema method is then comparable to
the Monte Carlo median scenario.

For a low and an optimal number of sensors, compared
to state-of-the-art techniques, the GMM method allows for
the efficient placement of sensors for offshore wind recon-
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Figure 6. Reconstruction example for the optimal scenario in the three areas, from the reduced basis (EOF reference), from GMM clustering
(GMM) and from the three baselines: QR pivoting, EOF extrema and Monte Carlo. The color grading shows the wind speed, the black arrows
the wind direction with length proportional to the wind speed and the red dots the locations of the sensors in the optimal scenario, with seven
sensors in the Mediterranean Sea and four each in Normandy and southern Brittany.

Table 2. Reconstruction errors computed for the three areas and the four sampling methods, including the random scenario displayed in
Fig. 6. The best performing method is displayed in bold for each area. The reconstruction error (RMSE) and the errors in the max and mean
wind speed at each time step are computed.

Area Method Max wind speed Mean wind speed RMSE
RMSE [m s−1] RMSE [m s−1] [m s−1]

Mediterranean Sea GMM 0.94 0.17 0.9
QR pivoting 1.42 0.42 1.77
EOF extrema 1.28 0.2 1.37
Monte Carlo 1.28 0.35 1.41

Normandy GMM 2.0 0.1 0.85
QR pivoting 1.84 0.56 1.83
EOF extrema 0.89 0.42 1.44
Monte Carlo 1.4 0.23 1.08

Southern Brittany GMM 1.32 0.09 0.7
QR pivoting 2.04 0.29 1.33
EOF extrema 0.89 0.16 0.96
Monte Carlo 1.87 0.17 0.93
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Figure 7. QR pivoting method (orange plus), EOF extrema method
(deep blue squares) and GMM method (blue dots) are compared to
Monte Carlo simulations, displayed as boxplots in terms of wind
reconstruction error.

struction. The obtained reconstruction errors are displayed
in Table 3, along with the RMSE gain relative to the Monte
Carlo median score. In the three areas, the GMM method im-
proves significantly the reconstruction error in the base case
scenario by 13 % for southern Brittany and more than 20 %
for Normandy and the Mediterranean Sea. The QR pivoting
method proves irrelevant for this application with a 50 % in-
crease in reconstruction error in Normandy and around 30 %
in southern Brittany and the Mediterranean Sea. The extrema
method is closer to the Monte Carlo median case, though
above, probably thanks to the manual removal of irrelevant
extrema.

To visualize the effect of the sensor locations, and the ori-
gin of the reconstruction error, the reconstruction error is
computed as the root mean square error for each grid point
and displayed for the main scenario for the three areas in
Fig. 8.

The coastal sensor arrays from the QR pivoting method
displayed in the second row do not allow for offshore wind
reconstruction, as those points are strongly influenced by
coastal effects. Strong reconstruction errors of more than
2 m s−1 are then obtained far offshore for Normandy and the
Mediterranean Sea. For the EOF extrema method displayed
in the third row, where some offshore sensor locations are
present in addition to coastal ones, the synoptic wind regime
seems better captured with a more homogeneous reconstruc-
tion error. The reconstruction error patterns show the strong
spatial correlation of the input wind data with lower recon-
struction errors around the sensor locations. However, the ra-
dius of lowered reconstruction error depends on the location.
It can be noted that coastal points in QR pivoting for the
Mediterranean Sea have a small radius of influence, as op-

posed to some offshore points in the EOF extrema method.
Coastal areas, where the wind is influenced by the coastal
orography and thermodynamic effects, have lower spatial
correlations or higher variability. As such, they are consid-
ered by the QR pivoting method and the extrema method as
salient points. But in the end, they barely help to reconstruct
the whole area’s dynamics. It illustrates the importance of
smart sparse sampling for the reconstruction, as well as the
non-adequacy of QR pivots and EOF extrema as locations for
the sparse sampling in this case.

For the three areas, the GMM-obtained sensor locations
are homogeneously spatially distributed, allowing for good
reconstruction on the whole map, though somewhat neglect-
ing coastal locations. The locations, as centroids of clusters,
are the most representative points of maximum likelihood
clusters for a given number of sensors. As such, every point
of the map belonging to a certain cluster, it allows for sat-
isfactory reconstruction on most of the map. On the other
hand, the QR pivoting method and EOF extrema method se-
lect salient points that do not necessarily correlate well with
neighboring points, hence lowering the performance for re-
construction.

The final suggested sensor locations for the three offshore
wind development areas are given in Table 4. These locations
should be considered preferred locations for the deployment
of floating lidars for wind resource assessment in the French
offshore wind development areas.

6 Discussion

In this study, an optimal sparse sampling is proposed using a
Gaussian mixture model on high-resolution NWP data from
Météo-France’s MeteoNet data set (AROME model). The
method used is simple yet efficient for the optimal sparse
sampling of the offshore wind field. Applied to offshore wind
resource assessment, it can be a useful tool for the design of
observation networks. It is compared to state-of-the-art solu-
tions that fail to efficiently sample this specific problem, and
a method is proposed to estimate the optimal number of sen-
sors to deploy. The authors nonetheless draw attention to the
following points to interpret and discuss the obtained results.

The metric that is used to measure the performance of the
sparse sampling in this paper advantages the GMM method
because its homogeneous sampling allows for a correct re-
construction of the synoptic situation. Coastal points are not
reconstructed well using the GMM method, but this does not
reflect in the scoring. Since the metric averages the recon-
structed wind field’s error over the grid points, a method that
performs fairly well over the entire area is preferred.

As a consequence, both the obtained sensor’s location and
its performance depend on the selected area. In this study,
the selected sites are simple rectangles over the future de-
velopment areas. But it could be interesting to reconstruct
the wind field and score the performance at specific sites de-
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Table 3. RMSE and RMSE percentage gain versus Monte Carlo median value for the base case scenario in the three areas for the number of
clusters: seven for the Mediterranean Sea and four each for Normandy and southern Brittany. The bold numbers show the best performances.

Mediterranean Sea Normandy Southern Brittany
Score RMSE [m s−1] | % gain RMSE [m s−1] | % gain RMSE [m s−1] | % gain

GMM 0.99 | −22 % 0.90 | −24 % 0.82 | −13 %
QR pivoting 1.60 | +27 % 1.83 | +55 % 1.33 | +39 %
EOF extrema 1.37 | +9 % 1.44 | +22 % 0.956 | +0.3 %
Monte Carlo (median) 1.26 | – 1.18 | – 0.952 | –

Figure 8. Wind magnitude reconstruction error temporally averaged per grid point in the Mediterranean Sea (left), Normandy (center) and
southern Brittany (right). The reconstruction error is computed for the optimal number of sensors determined in Sect. 5.1 using the three
baselines and the proposed clustering method. The red dots are the grid points used as input for the least squares reconstruction.

fined by operational limits like, for example, bathymetry in
the Mediterranean Sea or the coastal exclusion area for the
three cases. This could lead to different results, and the sensi-
tivity of the proposed method would then need to be studied.

Given the high variability in the wind near the coast and
the possible impact on the obtained results, the first 20 km
from the coast were excluded to test the sensitivity of the
methods. It roughly corresponds to the distance to the coast
for future offshore wind parks and ensures that the impact of
the coastal orography is limited. It turns out that it does not
make the state-of-the-art methods more relevant for this ap-
plication as they still tend to select bordering points as input
points.

Now, in the context of the development of marine energies
in French waters, not only the wind should be considered
but other variables such as wave variables and physicochem-
ical parameters (turbidity, sea surface temperature, salinity)
which are important for environmental impact monitoring.
The installation of a network of sensors would therefore gain

traction if optimized with regards to multiple variables. A
follow-up of this work would be to include model data for
each of the variables of interest and perform the clustering
on the stacked first 10 EOFs of each variable for the design
of a multiparameter observation network.

Getting even closer to the industrial reality of the sensor
networks, it would be of great interest to include a cost func-
tion dependent on the location (depth, distance from shore,
other constraints). This method could be declined to find the
Pareto optimal sensor network. The optimal number of sen-
sors would therefore become the number at which the sen-
sors’ marginal cost exceeds the reconstruction gain.

The data in this study are derived from the NWP model
AROME data, with a 1.3 km grid size and hourly definition.
The parametrization of the model offshore is not perfect,
in particular for the sea–atmosphere coupling that can lead
to discrepancies in surface parameters, as shown during the
Mediterranean HyMex campaign (Rainaud et al., 2016). The
dynamics learned might then be a coarse description of the
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Table 4. Final locations selected for the deployment of floating lidars in French offshore wind development areas.

Mediterranean Sea Normandy Southern Brittany
Sensor no. (latitude (◦ N), longitude (◦ E)) (latitude (◦ N), longitude (◦ E)) (latitude (◦ N), longitude (◦E))

1 (42.775, 5.275) (49.546, −0.242) (47.721, −3.967)
2 (43.25, 4.55) (50.096, 0.283) (47.396, −2.867)
3 (42.725, 4.275) (50.221, −1.217) (47.346, −3.567)
4 (42.725, 3.475) (49.846, −0.767) (47.246, −4.042)
5 (43.175, 5.225)
6 (43.025, 3.675)
7 (42.725, 5.875)

reality, and the derived sensor locations might be limited for
real-time wind reconstruction, since they were only trained
on low-spatiotemporal-resolution patterns. The obtained lo-
cations are in this case optimal only for reconstructing the
dynamics of the NWP model, and the representativeness of
the data used compared to the reality needs to be questioned.
It could then be of interest to run such a study on higher-
resolution data, from either synthetic aperture radar measure-
ments or large eddy simulations, though on shorter periods,
or comparing the reconstruction to a set of measurements off-
shore.

Publicly available through the MeteoNet data set, only
10 m wind speed is used in this paper. For offshore wind ap-
plication, hub-height wind speed is to be considered (heavy
maintenance, loading, energy production). The described
method is agnostic to the input data, though it would be of
interest to validate the obtained sensor network with 100 m
wind speed data. It is not directly clear that the obtained sen-
sor network will be the same with data for wind speed above
100 m, since the extrapolation will be depending on the grid
point and the wind speed and direction (changing the sea sur-
face roughness). The nonlinear transformation of data can
then change the weight given by the clustering model at each
time step and grid point.

Seemingly, performing the clustering with the power-
curve-transformed data can potentially lead to different re-
sults. The study focuses on wind speed, as this can apply to
wind energy production but also maintenance operation plan-
ning or wind turbine loading. A specific study could focus on
wind power, applying vertical extrapolation and wind power
curve. The proposed method can be easily implemented in
different data inputs.

The data set used compiles 3 years of data. The model is
trained on 2 years of data and tested and scored on the third
year. It could be of interest to carry out the same study on a
longer data set from global reanalysis models such as ERA5.
The high-resolution regional AROME model from Météo-
France with its 3 years of open-source data from the Me-
teoNet data set offers a higher number of grid point, making
it more relevant for the sensor siting in small areas as the
ones in this study. The features that need to be captured by

the reconstruction are smaller scale than global models’ grid
sizes. Comparing the results obtained from the two sources
could be of interest.

The benchmark methods used from the sparse-sampling
literature, i.e., the QR pivoting method and the EOF extrema
method, do not prove to be efficient for the stated prob-
lem. For generalization purposes, this method would need
to be compared to state-of-the-art methods from benchmark
data sets such as the simulated flow past a cylinder used in
Manohar et al. (2018). This paper does not aim at generaliz-
ing a method but develops an efficient solution to an identi-
fied problem, for which state-of-the-art methods seem to fail.

Eventually, the use of a Gaussian mixture model seems ap-
propriate for the sparse sampling of offshore wind resources.
It is an easy method to implement with relatively low com-
putational cost. It is flexible and can in principle be applied
to higher-dimensional systems. This could be of interest for
offshore wind energy, allowing the inclusion of environmen-
tal parameters in the siting optimization. The method also
shows good consistency in the three development areas tested
with very different wind regimes. It is, however, important to
stress the difficulty associated with the optimal number of
sensors. As proposed in this paper, the number of sensors is
derived indirectly from an error threshold. In this context it
seems difficult to include cost or environment constraints as
such in the sensors siting.

7 Conclusions

A method for finding an optimal sensor network for offshore
wind reconstruction is presented in this paper and applied to
three of the main offshore wind energy development areas
in France. The sparse sensor placement problem is stated on
a reduced basis of the 3-year AROME prediction of wind
from the MeteoNet data set. State-of-the-art techniques of
sparse sensor placement for reconstruction (QR pivoting and
extrema methods) are compared to the proposed method,
based on the Gaussian mixture model clustering of empirical
orthogonal functions of zonal and meridional wind speeds
offshore. By selecting the cluster centroids as proposed lo-
cations for sensors, the GMM method homogeneously par-
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titions the domain into spatially correlated clusters. In this
way, the reconstruction error in the whole domain is mini-
mized, leading to a 20 % decrease in wind reconstruction er-
ror compared to the median Monte Carlo case. On the other
hand, state-of-the-art methods fail to reconstruct the whole
wind field because they are attracted by salient points with
high variability (bordering points). However, these points are
not very spatially correlated to neighboring points, resulting
in a reconstruction error higher than the median Monte Carlo
case. The GMM clustering method gives indications of the
optimal number of sensors to deploy, though this estimation
should be refined either by the integration of cost or envi-
ronmental constraints or by the definition of a reconstruction
error threshold.

The GMM clustering method seems to be a simple yet ef-
ficient solution for sparse sensor placement. Applied to off-
shore wind reconstruction, it allows for the optimal place-
ment of sensors and paves the way for smart marine moni-
toring in the era of offshore wind energy development. Fur-
ther work should focus on the technique’s generalization to
benchmark problems and question the representativeness of
the data set used. For wind energy applications, the multi-
variate case should be studied for multi-instrumental sensor
placement, and the economic constraints should be imple-
mented for the definition of the Pareto optimal number of
sensors.

In light of this study, the authors suggest the deployment
of seven sensors in the Mediterranean Sea, four sensors in
Normandy and four sensors in southern Brittany at optimal
locations to reconstruct the offshore wind field and to help
with the wind resource assessment on these areas.

Code and data availability. Meteorological data used in this
study are available online through the MeteoNet data set. The
code developed for offshore wind resource sparse sampling using
Gaussian mixture models can be accessed through https://github.
com/rmarcille/gmm_sparse_sampling.git (last access: May 2023;
https://doi.org/10.5281/zenodo.7835596, Marcille and Thiébaut,
2023).
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