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Abstract. Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction
can lead to energy losses; hence, there is a need for numerical models that can properly simulate wind farm
interaction. This work proposes a Reynolds-averaged Navier–Stokes (RANS) method to efficiently simulate the
effect of neighboring wind farms on wind farm power and annual energy production. First, a novel steady-state
atmospheric inflow is proposed and tested for the application of RANS simulations of large wind farms. Second,
a RANS-based wind farm parameterization is introduced, the actuator wind farm (AWF) model, which represents
the wind farm as a forest canopy and allows to use of coarser grids compared to modeling all wind turbines as
actuator disks (ADs). When the horizontal resolution of the RANS-AWF model is increased, the model results
approach the results of the RANS-AD model. A double wind farm case is simulated with RANS to show that
replacing an upstream wind farm with an AWF model only causes a deviation of less than 1 % in terms of
the wind farm power of the downstream wind farm. Most importantly, a reduction in CPU hours of 75.1 %
is achieved, provided that the AWF inputs are known, namely, wind farm thrust and power coefficients. The
reduction in CPU hours is further reduced when all wind farms are represented by AWF models, namely, 92.3 %
and 99.9 % for the double wind farm case and for a wind farm cluster case consisting of three wind farms,
respectively. If the wind farm thrust and power coefficient inputs are derived from RANS-AD simulations,
then the CPU time reduction is still 82.7 % for the wind farm cluster case. For the double wind farm case,
the RANS models predict different wind speed flow fields compared to output from simulations performed with
the mesoscale Weather Research and Forecasting model, but the models are in agreement with the inflow wind
speed of the downstream wind farm. The RANS-AD-AWF model is also validated with measurements in terms
of wind farm wake shape; the model captures the trend of the measurements for a wide range of wind directions,
although the measurements indicate more pronounced wind farm wake shapes for certain wind directions.

1 Introduction

The growth of offshore wind energy has led to wind farm
clustering, where wind farm interaction is unavoidable.
Recently, the Danish government released a report with
plans for a new 10 GW offshore wind farm cluster situated
around an artificial energy island hub in the North Sea

(COWI, 2020). This wind farm cluster consists of 10 wind
farms of 1 GW, with a wind farm inter-distance of only
8 km using a non-optimized wind farm cluster layout. More
examples of wind farm clusters can be found in other
parts of the North Sea, the Baltic Sea, and the East China
Sea (4coffshore.com, 2022). To our best knowledge, there
are currently no International Electrotechnical Commission
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(IEC) standards regarding recommended minimal distances
between wind farms to avoid losses due to wind farm wakes,
and wind farm owners do not have any control over potential
newly built neighboring wind farms. Hence, there is a need
for improved numerical models that can estimate wind farm
wake losses (and potential gains due to speed up effects) in
order to establish standards for wind farm placement in wind
farm clusters.

Low-fidelity engineering wind turbine wake models
(Göçmen et al., 2016) can be used to model wind
farm interaction; however, large model uncertainties exist
due assumptions on wake shape and wake superposition
methods. The performance of these models is case dependent
and can be poor (Fischereit et al., 2022) or reasonable
(Nygaard et al., 2020), which often depends on how the
models are calibrated. The current state-of-the-art numerical
models employed to simulate wind farm clusters are based
on mesoscale models, e.g., the Weather Research and
Forecasting (WRF) model (Skamarock et al., 2019). The
WRF model is normally run with nested domains, where the
finest domain has a typical horizontal cell length of 1 km.
The effect of a wind farm is modeled by a simple wind
farm parameterization, where a drag force is added to the
momentum equation (Fitch et al., 2012; Volker et al., 2015;
Abkar and Porté-Agel, 2015), and its magnitude is based
on the wind turbine thrust curve. Fitch et al. (2012) also
included a source of turbulent kinetic energy based on the
wind-turbine-extracted kinetic energy that is not converted
to electricity. A turbulent kinetic energy source term was
also motivated by Abkar and Porté-Agel (2015) based on
dispersive Reynolds stresses due to under resolving the
wind-farm-induced turbulent kinetic energy. Volker et al.
(2015) did not include such a source term but take into
account sub-grid-scale vertical wake expansion within one
grid cell.

It is not trivial to verify the wind farm parameterizations
in mesoscale models because, e.g., in the WRF model
the wind farm parameterizations are implemented within
1D planetary boundary layer (PBL) schemes (Peña et al.,
2022). These schemes are not scale aware and become
horizontal resolution dependent when decreasing the grid
size below ≈ 1 km. Only until recently, a new fully 3D PBL
scheme was implemented in the WRF model (Kosović
et al., 2020), and the Fitch parameterization was also
already configured to run with it (Rybchuk et al., 2022). In
this work, we propose a RANS-based (Reynolds-averaged
Navier–Stokes) wind farm model, the actuator wind farm
model (AWF), which can be used to verify mesoscale
wind farm parameterizations in a microscale environment
because the minimal horizontal spacing is not limited. The
AWF represents a wind farm as a forest canopy using
distributed drag forces. The use of a forest canopy model
to represent a single wind turbine wake has been employed
by Réthoré (2009), although the model performed poorly
compared to a high-fidelity turbulence-resolving simulation.

In the present work, we will show that the use of a forest
canopy model for the entire wind farm can work quite well,
as long as the correct wind farm drag force magnitude
and distribution is applied. This is achieved by applying a
pre-calculated wind farm drag force magnitude that is both
wind speed and wind direction dependent and by employing
a horizontal drag force distribution as a superposition of
two-dimensional Gaussian functions centered at the wind
turbine locations. The latter represents a smoothed number
of wind turbines per cell as opposed to counting the number
of wind turbines per cell, as commonly used in WRF’s
wind farm parameterization, in order to overcome aliasing
effects that can lead to artificial wind farm wake shapes. It
is common to use Gaussian functions to distribute forces
of simplified wind turbine models in computational fluid
dynamics (CFDs), as performed for actuator line (Sørensen
and Shen, 2002), sector (Storey et al., 2015), and disk
(AD) (Mikkelsen, 2003; Wu and Porté-Agel, 2011) models.
The AWF model can also be used to calculate the annual
energy production of a large wind farm cluster, which would
become computationally very expensive if all wind turbines
are modeled by ADs that require a horizontal cell size in the
order of D/8, where D is the rotor diameter. If the effect of
neighboring wind farms on a single wind farm needs to be
simulated, the wind farm of interest can be modeled as ADs
using a fine horizontal spacing, while all the other wind farms
can be modeled as AWFs using a much coarser horizontal
spacing; we refer to this model as RANS-AD-AWF. Such
a numerical setup is only slightly more expensive in terms
of computational costs compared to simulating the wind
farm of interest without the neighboring wind farms. A
further reduction in computational effort can be achieved by
modeling all wind farms as AWFs, hereafter known as the
RANS-AWF model.

Wind farm (cluster) modeling with RANS is challenging
when an inflow model with an atmospheric boundary layer
(ABL) height is employed together with a large horizontal
domain in the order of 200 km and more (van der Laan
et al., 2017). This is because the eddy viscosity above
the ABL height is very small, and numerical instabilities
can appear if the domain is large enough. These numerical
instabilities could be interpreted as numerical gravity waves
because a solution with standing waves can be obtained when
flow is solved with an unsteady RANS method. One could
employ a more robust inflow model representing a neutral
surface layer inflow; however, such a model is not very
realistic for either large wind turbines that are expected to
operate outside the surface or a wind farm cluster where the
effect of the Coriolis force can become important (van der
Laan and Sørensen, 2017b). An ABL inflow model can
be obtained when using the global turbulence length-scale
limiter of Apsley and Castro (1997), since it does not require
a temperature equation, and the ABL height is determined by
setting a maximum turbulence length scale. In addition, the
model is only dependent on two non-dimensional numbers
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(van der Laan et al., 2020), which eases getting the desired
inflow profile from a library of pre-calculated ABL profiles.
However, the global turbulence length-scale limiter also
limits all turbulence length scales in the three-dimensional
domain as wind farm wake turbulence length scales. The
latter can lead to a wind farm wake that stops recovering
with downstream distance, which is a non-physical result.
Furthermore, the effective inversion strength is implicit in
this model, and is relatively strong, which can escalate
the problem of numerical instabilities in large horizontal
domains. In the present work, we propose an alternative
inflow model for wind farm cluster simulations in RANS for
neutral conditions near the ground but with a stable inversion
layer; such a model reflects a conventional neutral ABL as
commonly applied in large-eddy simulations (Allaerts and
Meyers, 2018; Kelly et al., 2019; Liu et al., 2021). The model
does not use the global turbulence length-scale limiter of
Apsley and Castro (1997). Instead, the ABL height is set by
a prescribed analytical temperature profile that includes an
inversion height and strength. A temperature equation is not
solved in order to maintain a steady-state inflow. Note that
the use of an active temperature equation leads to an unsteady
RANS model, and we are interested in a steady-state RANS
model.

The wind farm cluster validation case and the
corresponding supervisory control and data acquisition
(SCADA) measurements are discussed in Sect. 2. The
numerical setup of the RANS simulations using ADs,
the proposed AWF model, and the new RANS inflow
model are discussed in Sect. 3.1.1–3.1.3, respectively. The
numerical setup of the WRF simulations and engineering
wake model calculations are presented in Sect. 3.2 and 3.3,
respectively. The AWF model is verified and compared with
the AD model in Sect. 4.1. In Sect. 4.2, the AWF model
is compared with outputs from real-time simulations using
the WRF model (and a wind farm parameterization) and
the TurbOPark engineering wake model (Nygaard et al.,
2020; Pedersen et al., 2022), and validated with SCADA
measurements of a wind farm cluster consisting of three
wind farms: two are operated by Equinor, the other one by
Ørsted.

2 Wind farm cluster validation case

Figure 1 depicts the investigated offshore wind farm cluster,
which is located in the North Sea near the east coast of
the United Kingdom. There are four wind farms located in
an area of about 70× 30 km2. SCADA measurements are
made available for the most eastern wind farm, Dudgeon,
and wind turbine power data from the front row wind
turbines are employed to probe the wind farm wakes of
Sheringham Shoal and Race Bank, for wind directions
around 235 and 270◦, at wind farm interspacings of 16 and
26 km, respectively. The most western wind farm, located

54 km away from Dudgeon, consists of several smaller
wind farms (Inner Dowsing, Lynn and Lincs), which are
not included in the present study. More details on the
investigated wind farms are listed in Table 1, where Awf
is wind farm area, computed by a concave hull method;
Nwt is the number of wind turbines; and D and zH are
wind turbine rotor diameter and hub height, respectively.
The mean wind turbine interspacing is calculated following
Sørensen and Larsen (2021):

√
Awt/(D[

√
Nwt− 1]). The

wind turbines are propriety to Siemens Gamesa Renewable
Energy (SGRE), and details on the thrust coefficient and
power curves cannot be published. In the present work, we
investigate a below-rated inflow wind speed, and the thrust
curves of both wind turbines have typical below-rated thrust
coefficient values.

2.1 Measurements

This study uses 3 years of SCADA data from Dudgeon,
from 1 January 2018 to 1 January 2021. For each turbine,
the data are first averaged to 10 min periods, and then each
period is kept only if it does not contain any missing data,
non-production or curtailment periods, low power values (<
100 kW), or low wind speed values (< 3 m s−1). Following
the filtering for each turbine, the 10 min period is kept if
at least 64 out of 67 turbines remain, leading to a final
availability of 56 % of the data for the whole period.

In parallel, ERA5 data interpolated from the nearest ERA5
grid points to the wind farm location, for the same 3-year
period, are used to estimate the Obukhov length L from
the wind speed at a height of 10 m, the temperature at a
height of 2 m, and the sea surface temperature, applying
an iterative method following Ott and Nielsen (2014). The
data are divided into three atmospheric stability classes,
namely unstable (−200 m<L< 0 m), neutral (|L| ≥ 200 m),
and stable (0 m≤L< 200 m). This classification is then
applied to the production data to get three data sets. The
data of each stability class are then binned by 1 m s−1 and 5◦

based on a reference wind speed and direction calculated by
averaging the front row wind turbines for a specific sector.
The latter is performed due to a lack of concurrent inflow
measurements. The fact that we use the same wind turbine
row to define the freestream and to probe the wake of an
upstream wind farm means that is not possible to use the data
set to validate the simulations results for the magnitude of
wind farm wake losses. Therefore, the validation in Sect. 4.2
is only performed for the wind farm wake shape, where the
wind speed of the front row wind turbines is normalized with
the wind speed averaged over the same turbines.
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Figure 1. Wind farm cluster site.

Table 1. Wind farm cluster definition.

Wind farm Operator Layout Awf Min/mean Nwt Turbine D zH
type [km2

] spacing
[D]

Dudgeon Equinor Irregular 49.9 5.1/6.4 67 SGRE 6 MW 154 102
Race Bank Ørsted Irregular 57.1 4.8/5.7 91 SGRE 6 MW 154 102
Sheringham Shoal Equinor Regular 32.3 6.1/6.3 88 SGRE 3.6 MW 107 80

3 Simulation methodology

3.1 RANS

The wind farm simulations are performed with
PyWakeEllipSys v3.0 (DTU Wind Energy, 2022b),
which is a Python wrapper of the in-house flow solver
EllipSys3D. EllipSys3D is a finite-volume CFD code
that was initially developed by Michelsen (1992) and
Sørensen (1994). The RANS model of EllipSys3D is used
to simulate the steady-state wind farm flow under neutral
atmospheric conditions including an ABL height, Coriolis
forces, and a rough wall boundary with uniform roughness,
representing homogeneous terrain. The wind turbine forces
are represented by two different methods. The baseline
approach is an AD model (Réthoré et al., 2014) and is
used to verify the proposed AWF method. Each method is
discussed separately in Sect. 3.1.1 and 3.1.2, respectively.

In this work, different RANS flow domains are used to
model wind farm clusters containing single, double, and
triple wind farms. A sketch of the flow domain types of
the different applied actuator methods is depicted in Fig. 2.
All flow domains are Cartesian grids, where the inflow
direction at the reference height is aligned with the x axis,

and different wind directions are modeled by rotating the
wind farm cluster while maintaining the grid and the global
inflow direction. The RANS-AD method (Fig. 2a) represents
all wind turbines in a wind farm by ADs. Each wind turbine
is treated as a single AD model, which has its own polar grid
that is connected to the flow domain and is also controlled
independently. The cells around the ADs, as marked by the
cyan box in Fig. 2a, are uniformly spaced in the horizontal
plane, using a fine resolution in order to resolve the wind
turbine wakes. The RANS-AWF method (Fig. 2b) follows
a similar flow domain as the RANS-AD method; however,
each wind farm is considered as a single AWF model that
uses its own force controller. The wind turbine forces are
distributed in a Cartesian grid that encapsulates the entire
wind farm, and this Cartesian grid is then connected to
the flow domain grid. The refined area in the RANS-AWF
method can be an order of magnitude coarser compared to the
refined area for the RANS-AD model, which is investigated
in detail in Sect. 4.1. The third domain type is depicted in
Fig. 2c and represents the RANS-AD-AWF method, where
both AD and AWF models are present. Since the AWF
model does not require the fine spacing of the AD models,
a second region in the flow domain is defined, as marked by
the magenta box in Fig. 2c, where the cells are expanded in
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the horizontal direction while moving away from the cyan
box, up to a maximum set spacing. It should be noted that
the three methods as depicted in Fig. 2 can also be applied
to simulate multiple wind farms. In this case, the size of the
refined inner domain(s) is adjusted to resolve all wind turbine
and farm wakes. An overview of the all the applied domains
for the validation cases, as well as the computational effort,
is provided in Table 4.3.

Figure 3 depicts a detailed description of the wind farm
cluster validation case, where Dudgeon is modeled as ADs,
and the other two wind farms, Sheringham Shoal and Race
Bank, are modeled as AWFs (the RANS-AD-AWF flow
domain type of Fig. 2c). The domain includes two areas
with a refined horizontal spacing as marked by the cyan and
magenta rectangles, as shown in Fig. 3a. The cyan rectangle
represents a uniform horizontal spacing of Dref/8 around
the Dudgeon wind farm (van der Laan et al., 2015c) and
includes a sufficiently large area to resolve the wind farm
flow for the wind directions of interests, namely, 185–200◦.
Here, Dref is the reference rotor diameter used to scale the
grid, and it is set to the smallest rotor diameter of all the
wind turbines (107 m). The magenta rectangle includes cells
that are stretched towards the boundary, and the maximum
horizontal cell size is limited to 2 Dref, which is the same
as the horizontal resolution of the AWF model. The size
of this area is set to cover both Sheringham Shoal and
Race Bank for the wind directions of interest. Outside the
magenta rectangle, the cells are further stretched, with a
maximum expansion ratio of 1.2 covering a distance of
500 Dref (53.5 km). The total number of cells in the x and
y directions are 1920 and 2048, respectively. In the vertical,
as depicted in Fig. 3b, the cells are stretched while moving
away from the ground, and the first cell height is set to
Dref/200 (0.54 m). The maximum cell size in the first layer
(up to z= 3Dref) is set to Dref/6; however, the cells in the
rotor area and below are smaller than Dref/8. The height of
the domain is set to 10 Dref, and a total number of 64 cells are
used in the vertical direction. This results in 252 million cells,
which we divide into 960 blocks using a block edge size of
64 cells. We would have preferred to set a taller domain to
avoid numerical blockage; however, there is a convergence
issue when a tall domain height is applied together with an
ABL inflow model that includes a low mixing region above
the ABL height, which is further discussed in Sect. 3.1.3.

Figure 3a and b also depict the boundary conditions,
where inlet conditions are enforced over the inflow and upper
domain faces; consequently, the flow is lid driven. Periodic
boundary conditions are used at the lateral boundaries to
be able to include wind veer. An outlet boundary condition
is used at the outflow boundary, at which all gradients in
the normal direction are assumed to be zero. The ground
is modeled by a rough wall boundary condition following
Sørensen et al. (2007).

3.1.1 AD model

The RANS-AD wind farm simulation setup is similar to
the one used in a previous work (van der Laan et al.,
2015b). The wind turbines are modeled as ADs, and each
AD is represented by a polar grid using 10× 32 cells in
the radial and azimuthal directions, respectively. Each cell
of the polar grid is connected to a set of flow domain cells,
as discussed in detail by Réthoré et al. (2014). For each
iteration, the thrust and tangential forces are calculated on
the polar grid and are then injected in the flow domain
grid as momentum sinks. The local velocities from the flow
domain grid are returned to the polar grid to recalculate
the AD forces and evaluate the wind turbine power. The
magnitude of the thrust and tangential forces are controlled
by a look-up table of alternative thrust and power coefficients
that are based on a disk-averaged velocity to avoid the need
for a freestream wind speed that is typically not known
for interacting wind turbines; more details can be found
in previous works (van der Laan et al., 2015a, 2019). For
the model verification (Sect. 4.1), a general wind turbine
model (van der Laan et al., 2022) is used with the same
rotor diameter and hub height as the wind turbine from
Dudgeon (SGRE 6 MW) but with a typical below-rated thrust
coefficient of 0.8, a power coefficient of 0.45, and a tip-speed
ratio of 8, which are all kept constant up to a rated wind
speed of 10 m s−1. The AD force distribution is modeled
by the analytical AD force model from Sørensen et al.
(2020). For the model validation (Sect. 4.2), we use an AD
with a prescribed normalized thrust force distribution that is
rescaled to obtain the desired thrust force magnitude (van der
Laan et al., 2015a). For the SGRE 3.6 and 6 MW turbines,
we use the thrust force distributions of the NREL-5 MW
(Jonkman et al., 2009) and DTU-10 MW (Bak et al.,
2013) reference wind turbines, respectively, calculated with
previously performed detached-eddy simulations (Réthoré
et al., 2014; Bak et al., 2013) for a below-rated wind speed
of 8 m s−1. This is because we lack information on the
rotational speed of the SGRE wind turbines, which is a
required input for the analytical rotor model of Sørensen
et al. (2020), and we are lacking the corresponding airfoil
data that are needed for a higher-fidelity AD model based
on a blade element momentum method. However, we do not
expect a large influence on the wind turbine and farm wakes
when using the AD model based on normalized thrust force
distribution, as opposed to using AD models based on the
analytical rotor model or airfoil data, because the prescribed
normalized thrust force distribution takes into account a
realistic radial force distribution, and it employs the provided
thrust coefficient curves of the SGRE wind turbines.
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Figure 2. Sketch of different RANS domain types. Cyan and magenta boxes contain refined cells to resolve the wind turbine and farm wakes.
Blue disks and boxes represent AD and AWF models, respectively.

Figure 3. RANS grid and boundary conditions (BCs) for the wind farm cluster validation case. Horizontal (a), vertical (b), and a zoomed
view around Dudgeon (c) are shown for every 32nd cell.

3.1.2 AWF model

The AWF model represents each wind farm as a single entity,
and its effect on the flow is modeled by a distributed thrust
force:

Fwf(x,y,z)=
1
2
ρCT,wfA(x,y,z)|U |U i, (1)

where ρ is the air density, CT,wf is the wind farm thrust
coefficient, A(x,y,z) is the wind farm force distribution
representative of the wind turbine density, and U i is the
local velocity vector. Equation (1) is the same as that used
to model a forest canopy drag force using Cd = CT,wf/2. In
fact, we employ the forest canopy model from EllipSys3D
as used in previous works (Boudreault, 2015; Dellwik et al.,
2019), but here we employ the same turbulence model

as in the RANS-AD setup as opposed to the turbulence
model developed for forest canopies (Sogachev et al., 2012;
Boudreault, 2015; Dellwik et al., 2019).

One could employ additional terms in the turbulence
model equations to account for the effect of under resolving
the wind farm layout in the AWF model when using large
horizontal cells (Abkar and Porté-Agel, 2015). However, the
literature is divided about whether this extra term should be
zero (Volker et al., 2015), act as a source of turbulent kinetic
energy (Fitch et al., 2012; Abkar and Porté-Agel, 2015), or
act as a sink of turbulent kinetic energy (Sogachev et al.,
2012). Investigating this is not in the scope of this study, and
so we do not use a source term of turbulence, partly because
we already get reasonable results with only a momentum sink
(Eq. 1).
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AWF model force distribution A(x,y,z)

The drag force of the AWF model A(x,y,z) is distributed
over a Cartesian grid encapsulating the wind farm. The
vertical drag force distribution represents the rotor area slices
following Abkar and Porté-Agel (2015). The horizontal
drag force distribution represents the wind turbine density.
Currently, when running the wind farm parameterization in
the WRF model, the user sets the number of turbines per
grid cell (for idealized cases) or inputs the turbine locations
(real-time forcing cases), and so the number of turbines
within the same grid cell are counted. Such counting can lead
to grid-dependent results, particularly for large horizontal
grid spacing and artificial velocity deficit shapes due to
aliasing effects of the wind farm layout, as the WRF model is
typically run at a horizontal grid spacing larger than 1 km. An
example of this issue is illustrated in Sect. 4.1. To overcome
this issue, we propose an alternative method to determine
the horizontal drag force distribution of the wind farm by
representing each wind turbine position as two-dimensional
Gaussian functions f (x,y) instead of points:

f (x,y)= exp

(
−

[x− xwt]2

2σ 2
x

−

[
y− ywt

]2
2σ 2
y

)
, (2)

with xwt and ywt as the wind turbine positions and σx
and σy as the standard deviations in the streamwise x and
lateral y directions, respectively. We use σx = 21 and σy =
max(21,D/4), with 1 as the horizontal grid spacing in the
AWF model. The AWF horizontal grid spacing 1 does not
have to be the same as the horizontal spacing in the CFD
grid δ. The use of 21 is motivated in Sect. 4.1, and the max
limiter is used in order to approach an AD model and avoid
a too-concentrated force; the latter could otherwise cause
numerical problems. The AWF horizontal force distribution
for each cell in the AWF model is obtained by superposing
Eq. (2) for all wind turbines. This means that for a particular
cell in the AWF grid (i,j ), the wind turbines outside this
cell can also contribute to the drag force, and cells that do
not include a turbine can have non-zero force. In general,
a smoothed wind farm layout is obtained as a smoothed
wind farm force distribution, and the individual wind turbine
positions are resolved when a fine enough horizontal spacing
is set. Another property of the Gaussian method is that a
regular wind farm layout will always have a uniform thrust
force distribution in the middle of the farm, which is not
guaranteed when binning the number of wind turbines per
cell. The magnitude of the drag distribution A(x,y,z) is not
relevant because we calibrate the wind farm thrust coefficient
to get the desired total wind farm thrust force, as discussed
in the following section. The vertically integrated AWF
horizontal force distribution of Race Bank and Sheringham
Shoal are depicted in Fig. 4 for two different horizontal
resolutions: 1=D and 1= 2D. Figure 4 shows how the
regular wind farm layout of Sheringham Shoal results in a

Figure 4. AWF horizontal drag force distribution integrated over
the height for Race Bank (RB) (a, c) and Sheringham Shoal
(ShS) (b, d) using different horizontal resolutions.

uniformly distributed drag force when 1 is coarsened from
D to 2 D by comparing Fig. 4b and d. In addition, values
below 0.01 of the maximum force distribution are set to
zero for numerical efficiency. The distributed drag forces are
stored in a separate Cartesian grid for each AWF model. The
drag force of a CFD cell that lies within an AWF model is
obtained by trilinear interpolation.

AWF model force magnitude CT,wf

Equation (1) depends on the local velocity and a local wind
farm thrust coefficient, while a single wind turbine modeled
as an AD with fixed forces can be set by a known thrust
coefficient based on the freestream wind speed. Dellwik
et al. (2019) calibrated the drag coefficient of a single
tree numerically, using a measured drag force as input. A
related method was introduced by Abkar and Porté-Agel
(2015), where the thrust force was multiplied by a correction
parameter obtained by large-eddy simulations to correct the
cell wind speed in a wind farm parameterization model,
to account for different wind farm layouts. For the AWF
model, we follow a similar approach as Dellwik et al.
(2019), where CT,wf is calibrated using simulations of a
single AWF model in order to obtain the wind farm thrust
force determined by precursor RANS-AD simulations of the
same wind farm. The wind farm thrust force depends on
both the inflow wind speed through the wind turbine thrust
coefficient curves and the inflow wind direction because
of wind turbine interaction. Hence, CT,wf is a function of
both inflow wind speed and wind direction. For wind farm
cluster simulations, the freestream wind direction and wind
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speed are undefined. Therefore, we employ a force controller
for each AWF model, where CT,wf is updated every solver
iteration based on an interpolation of a look-up table, where
CT,wf is a function of the AWF volume-averaged wind speed
and wind direction obtained from the AWF volume-averaged
velocity vector UAWF,i :

UAWF,i =

∫
AU idV∫
AdV

. (3)

UAWF,i is weighted by the drag force distribution A, so
it does not include the buffer zone around the forest
canopy and accounts only for the volume around the wind
turbine position for fine spacing AWF models. Without the
drag force distribution weighting, UAWF,i is typically over
predicted. A similar approach was followed by Churchfield
et al. (2017) for the application of the effective wind
speed calculation for an actuator line model. The force
control look-up table is created from the single AWF model
calibration simulations used to determine CT,wf from a
desired total wind farm thrust force. The simulation steps
necessary to perform the wind farm cluster validation case
simulations are summarized below.

1. For each wind farm modeled as an AWF,

a. RANS-AD simulations are performed to calculate
the total wind farm thrust force for a range of wind
speed and directions (U = 7,8,9 m s−1, φ = 175−
310◦ with a 5◦ interval);

b. RANS-AWF simulations are performed using the
same flow cases as step 1a in order to calculate
CT,wf and CP,wf as a function of the AWF
volume-averaged wind speed and wind direction.

2. RANS-AD-AWF or RANS-AWF cluster simulations
are performed.

In steps 1 and 2, we neglect the influence of inhomogeneous
inflow conditions on the wind farm thrust and power, as for
example partial wind farm wake effects of the neighboring
wind farms. However, the AWF model (as applied in step 2
with a force controller) can partly respond to inhomogeneous
conditions because the local thrust forces are dependent on
the local velocity, although variations in wind turbine thrust
coefficients are not captured due to the use of a global
wind farm thrust coefficient. The impact of this assumption
is investigated in Sect. 4.2.1. Step 1a is computationally
expensive, especially when many different wind farms in
a wind farm cluster are modeled as AWFs, and each of
them requires input from precursor RANS-AD wind farm
simulations. The computational costs of step 1a could be
alleviated by running RANS-AD wind farm simulations
more efficiently (van der Laan et al., 2022). For example,
one could run consecutive wind direction cases (applicable
to homogeneous terrain) and consecutive wind speed cases

(applicable to inflow models that include Reynolds number
similarity) both to save solver iterations, and employ wind
farm layout symmetry to reduce the number of wind
direction cases. In addition, one could also employ a fast
engineering wake model to calculate the total wind farm
thrust force, although this would most likely introduce a
higher model uncertainty. The AWF model input can also be
calculated with a RANS-based surrogate wind farm model,
which is currently investigated in a follow-up work (van der
Laan et al., 2023).

3.1.3 Atmospheric inflow and turbulence models

We employ a two equation turbulence model in the form of a
k–ε model (Launder and Spalding, 1974):

νT = CµfP
k2

ε
, (4)

Dk
Dt
=

∂

∂xj

[(
ν+

νT

σk

)
∂k

∂xj

]
+P − ε+B+ Sk,amb, (5)

Dε
Dt
=
∂

∂xj

[(
ν+

νT

σε

)
∂ε

∂xj

]
+
(
Cε,1P −Cε,2ε+Cε,3B

) ε
k
+ Sε,amb, (6)

with xj as the Cartesian coordinates, ν = 1.78406×
10−5 m2 s−1 as the molecular viscosity of air, νT as the
turbulent eddy viscosity, k as the turbulent kinetic energy,
and ε as the dissipation of k. In addition, P is the mechanical
production of turbulence, B is the buoyant turbulence
production or destruction, and Sk,amb and Sε,amb are ambient
turbulence sources. The remaining unknowns in Eqs. (4)–(6)
(except fP) are turbulence model coefficients, here set as
constants (Cµ,σk,σε,Cε,2)= (0.03,1.0,1.3,1.92). Cε,1 =
Cε,2− κ

2/(σε
√
Cµ) is used to enforce a balance with a

logarithmic wind profile with κ = 0.4 as the von Kármán
constant, and Cε,3 is discussed later. In addition, the well
known Boussinesq (1897) hypothesis is applied to define
the relationship between the Reynolds stresses and the
strain-rate tensor. In absence of the buoyancy and without
ambient sources, the model represents the k–ε–fP turbulence
model, which has been developed for a wind turbine wake
simulation subjected to a neutral atmospheric surface layer
(van der Laan et al., 2015c). The model includes a scalar
function fP, which acts as a local turbulence length-scale
limiter in regions with high-velocity gradients, i.e., the near
wake. In previous works (van der Laan and Sørensen, 2017b;
van der Laan et al., 2017), the k–ε–fP model was combined
with an atmospheric boundary layer inflow model employing
a constant pressure gradient, Coriolis forces, and the global
turbulence length-scale limiter of Apsley and Castro (1997),
in order to simulate the effect of an idealized ABL on a
wind farm. In addition, ambient turbulence sources were
used to avoid zero turbulence quantities above the ABL. This
ABL model does not require a temperature equation nor a
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buoyancy source term and can represent stable conditions
by setting a low value of the maximum turbulence length
scale `max by replacing Cε,1 with C∗ε,1 = Cε,1+ (Cε,2−
Cε,1)`/`max, as introduced by Apsley and Castro (1997).
Note that the turbulence length scale is a model parameter
defined as `≡ C

3/4
µ k3/2/ε. When the global turbulence

length-scale limiter of Apsley and Castro (1997) is applied to
three-dimensional flows containing turbulence length scales
larger than the maximum values set by `max, one can observe
non-physical behavior in the solution and also numerical
problems (van der Laan et al., 2017). This can occur for
flow over complex terrain with large hills, for large wind
farms, and for clusters of wind farms, as investigated in the
present work. The non-physical behavior typically leads to
an artificially slow wake recovery. Therefore, we propose an
alternative atmospheric inflow that sets the boundary layer
height by an inversion layer using a prescribed potential
temperature profile in combination with a non-zero B instead
of using the global turbulence length-scale limiter of Apsley
and Castro (1997). The new model does not employ an active
temperature equation in order to maintain a steady-state
model because the use of an active temperature equation in
combination with a non-linear temperature profile results in
an unsteady inflow model, where the boundary layer height
keeps growing with time.

We employ an analytically prescribed potential
temperature profile θ by defining a zero and a constant
temperature gradient at the ground and above the inversion
height zi , respectively, including a smooth transition in
between the two regions:

∂θ

∂
=

1
2

[
1+ tanh

(
z/zi − 1
zT /zi

)]
∂θ

∂z

∣∣∣∣
c

, (7)

where ∂θ/∂z|c is the constant temperature gradient above zi ,
and zT is half the width of the transition zone around zi . The
latter is clear when taking a first-order Taylor expansion of
Eq. (7), ∂θ/∂z≈ 1/2[1+(z−zi)/zT]∂θ/∂z|c, and setting z=
zi ± zT. A temperature profile can be obtained by integrating
over the height z and using θ (z= 0)= θ0 as the surface
temperature:

θ

θ0
= 1+

1
2θ0

∂θ

∂z

∣∣∣∣
c

z+ zT ln

cosh
(
z−zi
zT

)
cosh(zi/zT)

 . (8)

There is a numerical issue with cosh(z) going to infinity for
large z, which can be addressed by rewriting cosh(z) as (1+
e−2x)/(2e−x):

θ = θ0+

(
z− zi +

zT

2
ln
[

1+ e2(zi−z)/zT

1+ e−2zi/zT

])
∂θ

∂z

∣∣∣∣
c

. (9)

We set zT/zi as equal to 0.2; larger values would result in
more smoothing (wider transition), and other values could
be investigated in future work.

The effect of the prescribed temperature is represented by
a buoyancy source term in the k and ε transport Eqs. (5)
and (6):

B =−
νT

σθ

g

θ

∂θ

∂z
, (10)

with σθ = 0.74 as the Prandtl number for temperature and
g = 9.81 m s−2 as the gravitational acceleration constant.
We do not use a buoyancy source term in the momentum
equation, and a constant air density of 1.225 kg m−3 is
employed in the present work, as we only simulate wind
farms in flat terrain. The buoyancy source term in the ε
equation (Eq. 6) is multiplied by a constant Cε,3:

Cε,3 = 1+Cε,1−Cε,2, (11)

which is based on the transient ABL model of Sogachev et al.
(2012) without the global turbulence length-scale limiter
`max (or using `max =∞). In addition to the buoyancy
sources, we also add ambient sources terms (Spalart and
Rumsey, 2007) Sk,amb and Sε,amb to the k and ε transport
Eqs. (5) and (6), respectively, in order to prevent zero values
of k and ε above the ABL, similar to van der Laan et al.
(2020) but replacing `max with zi :

Sk,amb = εamb, Sε,amb = Cε,2
ε2

amb
kamb

,

`amb = Cambzi, kamb =
3
2
I 2

ambG
2, εamb = C

3/4
µ

k
3
2
amb
`amb

, (12)

with kamb, εamb, `amb, and Iamb as the ambient values for k,
ε, the turbulence length scale, and the turbulence intensity
above the ABL, respectively. We set Camb = 10−7 and
Iamb = 10−5, which are lower values compared to previous
work (van der Laan et al., 2020) but are necessary in order to
get numerically stable results and are still low enough to not
have an influence on the inflow profiles.

Since we lack measurements of the freestream, we need
an alternative source to determine the input parameters for
the inflow model. The New European Wind Atlas (NEWA)
database (Dörenkämper et al., 2020) comprises 30 years
(1989–2018) of simulated output of the WRF model for
Europe. We extended the simulated period to cover 2019 and
2020 using the same model configuration of NEWA but only
within NEWA’s Great Britain subdomain. We extract data
for a 3-year time period, 1 January 2018–1 January 2021,
at the grid point closest to the wind farm cluster center at a
latitude and longitude of 53.21647 and 1.10947◦. The grid
point is only 1.12 km from the cluster center. The data are
filtered for the same criteria as the measurements: a wind
speed bin of 7–9 m s−1 (at z= 100 m) and a Obukhov length
range of |L| ≥ 200 m. Based on the WRF model output for
these 3 years, the boundary layer height is 512 m, the wall
temperature (skin temperature) is 285 K, and the turbulence
intensity based on k (Iref) at z= 100 is 4.4 %. For the RANS
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Figure 5. Atmospheric inflow model precursor results employing a prescribed temperature profile compared to a neutral ASL solution and
results from the WRF model. Results are shown in terms of wind speed (a), relative wind direction (b), turbulence intensity (c), turbulence
length scale (d), and potential temperature (e). Horizontal dashed black lines depict the swept rotor area of the 6 MW wind turbine.

Table 2. Summary of input and derived parameters for the ABL inflow model.

Input parameters Derived parameters

Iref Uref zref fc [s−1
] zi θ0 ∂θ/∂z|c G z0 [m]

[m s−1
] [m] [m] [K] [K m−1

] [m s−1
]

0.044 8 102 1.168× 10−4 1000 285 5× 10−3 8.50 3.25× 10−5

ABL inflow model, we use the same wall temperature and
Iref at z= 102 m, an inversion height of zi = 1000 m, and
an inversion strength of 0.005 K m−1. This results in a wind
speed ABL height of about 700 m, as depicted in Fig. 5,
where results of a precursor simulation are shown employing
EllipSys1D (van der Laan and Sørensen, 2017a). Figure 5
also includes the selected NEWA data simulated by the
WRF model (only data up to 500 m were extracted) and
a neutral atmospheric surface layer (ASL) using the same
Iref and Uref. The results from the WRF model and the
prescribed temperature predict a similar wind speed, wind
veer, and turbulence intensity around the rotor area, but the
inflow profiles are quite different above the wind turbine.
The potential temperature profile from the WRF model only
matches near the ground and indicates stable conditions
above 75 m or a very shallow inversion height. Setting a
lower zi in the prescribed temperature model in order to
obtain an ABL height closer to that output by the WRF
simulations is possible. However, numerical convergence
problems can occur when such a shallow ABL inflow is
applied for wind farms with large wind turbines, as discussed
in more detail in Appendix B. The Coriolis parameter is set
to 1.168× 10−4 s−1 based on the latitude of the wind farm
cluster center. The geostrophic wind speed and roughness
length are found by an optimization procedure employing the
previously mentioned parameters and using a reference wind
speed, Uref of 8 m s−1 at z= 102 m. The input and derived
parameters are summarized in Table 2.

In the present work, we only use one inflow profile for
all simulations, for simplicity and also when the inflow

wind speed cases are not equal to 8 m s−1. For example, the
ADs are controlled using a look-up table based on force
calibration simulations (van der Laan et al., 2015a), for
which the entire wind speed range of the operational regime
is computed for a single wind turbine by using different
CT values while keeping the inflow constant. This means
that we assume Reynolds number similarity, which is not
valid for the prescribed temperature inflow model because
it follows a Rossby and Zilitinkevich number similarity, as
shown in Appendix A. However, since the AD controller is
only applied for wind farm flows around a wind speed of
8 m s−1, we neglect the effect of small variations in these
dimensionless numbers.

The new inflow model still includes a low eddy viscosity
region above the ABL height, similar to the ABL model
based on `max, as shown by the small turbulence length
scale in Fig. 5d for z > 7zref. If this region is included
in the inflow for a three-dimensional simulation of a large
wind farm cluster (e.g., in order of 200× 200 km2 or
larger), then numerical instabilities can occur (van der Laan
et al., 2017). Here, the largest horizontal domain is 169×
208 km2, which is just small enough to avoid numerical
instabilities if the domain height is set to 10 Dref (about
1 km). Furthermore, if the prescribed temperature model is
employed with an inversion height that results in a shallow
ABL, where the wind turbines are (partially) operating in
the low eddy viscosity region, then numerical problems can
occur as well. Appendix B illustrates the issue of employing
shallow ABL inflows to wind farm cluster simulations,
and the new prescribed temperature inflow model is also
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compared with the inflow model based on `max. We find
that the use of Rayleigh damping in a steady-state method as
RANS does not remove the numerical instabilities, possibly
because Rayleigh damping methods have been developed
for transient simulations (Durran and Klemp, 1983). The
numerical issues associated with the low eddy viscosity
region above the ABL need to be further investigated in
future work.

3.2 WRF

In the previous section, output from a mesoscale long
run using the WRF model was used to derive input
parameters for the RANS inflow model. Another set of
mesoscale simulations using the WRF model was performed
on the Dudgeon wind farm area (including the Dudgeon,
Sheringham Shoal, and Race Bank wind farms) but using
an implementation of the WRF model version 3.7.1, in
which the explicit wake parameterization (EWP) is included
(Volker et al., 2015). The EWP represents mesoscale wind
farm effects on the atmospheric flow. Turbine-induced drag
forces are formulated as grid-cell-averaged forces, while
wind-turbine-induced turbulence is treated via an explicit
sub-grid scale turbulence diffusion formulation (Volker
et al., 2015). In contrast to WRF’s native wind farm
parameterization (Fitch et al., 2012), no explicit source
of turbulent kinetic energy (TKE) is added to the TKE
equation by the EWP. The simulation uses a one-way
nested domain setup with three domains (Fig. 6). The
innermost domain has a grid spacing of 1 km with 216×
216 grid points. More details about model configurations
as well as initial and boundary conditions are provided in
Appendix D. This simulation is aimed to be compared with
PyWakeEllipSys-based modeling approaches of wind farm
cluster wakes, which use idealized representations of the
ABL and do not include mesoscale effects. To provide a
fair comparison, the simulation period (calendar year of
2018) has been screened for weather episodes that fulfill
the following conditions at the WRF grid-cell center closest
to the L02 turbine of Dudgeon (Fig. 1): (1) inflow wind
speed at hub height of 7–9 m s−1, (2) inflow direction
of 232.5–237.5◦, and (3) near-neutral stability conditions
(Obukhov length |L|> 200 m). To avoid the inclusion of
isolated cases, all conditions are required to persist for at
least 1 h. This resulted in a sample size of 31 temporal
snapshots of 10 min (instantaneous wind speeds) from three
distinct weather events in 2018. Furthermore, a reference
simulation without wind farms covering the same calendar
period is run and the same 31 temporal snapshots of 10 min
are extracted for the normalization of the wind speed results
from the simulation with wind farms. This is performed to
correct for the impact of the background mesoscale flow,
e.g., coastal effects or large-scale wind speed gradients in the
horizontal wake profile.

3.3 TurbOPark engineering wake model

The TurbOPark model from Nygaard et al. (2020) and
Pedersen et al. (2022) is an analytical wake model optimized
for simulating large offshore wind farms and farm-to-farm
interaction. It employs a Gaussian wake deficit profile,
but differs in its definition of the wake expansion from
other analytical models by using non-linear streamwise
wake expansion in contrast to the more commonly used
linear expansion. The non-linearity derives from assuming
that the wake expansion rate is proportional to the local
turbulence intensity, which is assumed to be a combination
of atmospheric and turbine-added turbulence. In combination
with Frandsen’s model for the streamwise attenuation of
turbulence intensity (Frandsen, 2007), the wake expands
quickly near the rotor but expands progressively slower
moving further downstream. This conserves wakes deficits
over large distances, making the model suitable for assessing
wake losses in large arrays or between farms.

The TurbOPark wake model is implemented in
DTU Wind’s open-source wind farm simulation tool
PyWake (DTU Wind Energy, 2022a). PyWake is fully
modular, so it gives complete freedom how wake, blockage,
and other sub-models are combined to define the engineering
wind farm model for the annual energy production (AEP)
simulation. The local averaged disk velocity is used to
determine thrust, power, and deficits, whereas the freestream
streamwise turbulence intensity of 5.5 %, estimated from the
turbulence intensity based on the TKE as 4.4/0.8 (van der
Laan et al., 2015c), is used at all turbines to determine
wake expansion, and the superposition of wake-added
turbulence is not taken into account. A wind-farm-optimized
version of the self-similar single turbine blockage model
(Troldborg and Meyer Forsting, 2017), derived from
RANS simulations of multiple full-scale turbines, accounts
for wind farm blockage effects, including speed-ups. A
mirror plane models the ground effect for both wakes and
blockage. Wake deficits are superposed by the root sum
square, whereas blockage effects are linearly summed, as
they constitute small perturbations. The total wind farm
flow field is obtained by summing blockage and wake
contributions. The flow solution is obtained iteratively, as
deficit information needs to be passed up- and downstream.
The computation is accelerated by initializing the solution
with a wakes-only simulation. Around cut-in and cut-off
wind speed, the discontinuous nature of the thrust curve
may spoil convergence, as certain turbines switch on and off
between iterations. This is avoided by identifying unstable
turbines and switching them off permanently.

TurbOPark, as implemented in PyWake, is used with two
different setups: one reflects the original model setup from
Nygaard et al. (2020) and Pedersen et al. (2022), and the
other is a revised setup, where the ground model for the
wake deficit is switched off, and a wake expansion coefficient
of 0.06 (instead of 0.04) is employed, as we find that the
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Figure 6. Depiction of the WRF model domains (orange frames): outermost parent domain (9 km grid spacing) with two nested inner
domains (3 and 1 km grid spacing, respectively). The location of the Dudgeon, Sheringham Shoal, and Race Bank wind farms are indicated
in blue, green, and red, respectively.

original model setup overpredicts wind farm wake effects.
The revised setup is one way of reducing these effects such
that the results compare better with the simulated results
from RANS and the WRF model for the investigated double
wind farm case, as shown in Sect. 4.2.1. However, other
setups, with linear wake summation for instance, could give
as convincing predictions if tuned. An overview of the
PyWake setups are given in Appendix C.

4 Results and discussion

4.1 Model verification

4.1.1 Horizontal drag distribution: binning vs. Gaussian
methods

The horizontal drag distribution in the AWF model represents
the wind turbine density per cell. If large horizontal cells
are used in the AWF model, e.g., in the order of the wind
turbine interspacing in a wind farm, then the AWF grid
orientation with respect to the wind farm layout can have a
large influence on the wind farm wake shape when counting
or binning the number wind turbines per cell. We refer
to this method as the binning method. One can solve the
issue by using a superposition of two-dimensional Gaussian
functions for the wind turbines to represent the number of
wind turbines per cell. To illustrate the difference between
the binning and the Gaussian methods, a square wind farm
with 8× 8 wind turbines using a spacing of 8 D is simulated
for a wind direction aligned with the diagonal. In practice,
we simply rotate a square wind farm layout by 45◦. The
wind farm is simulated using RANS-AD (as a reference)
and five RANS-AWF models, with a large horizontal grid
spacing in the drag distribution grid (1= 8 D), one using
the binning method and four using the Gaussian method
with smoothing by employing different standard deviations:
σ = σx = σy = {1/4,1/2,1,21}. The flow domain for the
AWF models is the same as the one used for the AD model,
namely a horizontal spacing ofD/8 at the wind farm location

and a maximum of 1 D in the wind farm wake up to four wind
farm lengths LWF downstream. Figure 7 shows results of
these simulations in terms of streamwise velocity normalized
by the freestream (Fig. 7f–k) and added wake turbulence
intensity (Fig. 7l–q); both quantities are extracted at hub
height. The vertically integrated drag distribution of the AWF
models (after interpolation to the CFD grid) is shown in
Fig. 7a–e. When the binning method is applied, the drag
distribution becomes inhomogeneous due to aliasing effects,
see Fig. 7a. This results in artificial wind farm wake shapes,
as depicted in Fig. 7g and m, compared to the AD simulation
shown in Fig. 7f and l. The same problem occurs with the
Gaussian method when not enough smoothing is applied,
e.g., the case for σ =1/4 (Fig. 7b, h, and n). However,
when more smoothing is used, i.e., σ =1/2 and σ =1,
the horizontal drag force distribution becomes uniform, as
shown in Fig. 7c–e (as expected for a regular layout), and the
artificial wake shape disappears (Fig. 7i–k and o–q).

The results shown in Fig. 7 are also depicted in Fig. 8
but in terms of lateral profiles of streamwise velocity at
hub height and at three different downstream locations. It
is clear that by using the binning and the Gaussian method
without enough smoothing σ =1/4, artificial wake shapes
appear, which are not present in the simulations using ADs.
The results using the largest smoothing σ = 21 reduce
the accuracy with respect to the AD simulation because
the effective resolution also reduces with an increased
level of smoothing. However, using σ =1 can lead to
a checkerboard horizontal drag force distribution for a
particular setup, e.g., for a non-rotated square wind farm
layout with 8× 8 wind turbines, 8 D spacing, and 1=

2 D. This problem disappears when using σ = 21. From
a numerical point of view, smoothing body forces with a
Gaussian in a numerical simulation should use a minimal
value of σ = 21 in order to prevent wiggles in the solution.
This is based on the Gaussian smoothing used to represent
the blade forces in actuator line models (Troldborg, 2008;
Forsting and Troldborg, 2020). Therefore, we apply a
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Figure 7. The effect of different horizontal drag force distribution methods for a coarse AWF model (1= 8 D): Binning vs. Gaussian for
a rotated square wind farm. Contours of integrated canopy density (a–d), streamwise velocity (e–i), and turbulence intensity (j–n) at hub
height. AD results (e, j) are depicted as a reference.

Figure 8. The effect of different horizontal drag force distribution methods for a coarse AWF model (1= 8 D): Binning vs. Gaussian for
a rotated square wind farm. Lateral profiles of streamwise velocity (a–c) and turbulence intensity (d–f) at hub height, at three different
downstream distances, are shown. AD results are depicted as a reference.
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Figure 9. The effect of different horizontal spacing in the AWF model for a square wind farm. Contours of integrated canopy density (a–f),
streamwise velocity (g–m), and turbulence intensity (n–t) at hub height. AD results (g, n) are depicted as a reference.

smoothing of σ = 21 for all other simulations using the
AWF model. If one would like to increase the accuracy of
the AWF model, then it is recommended to refine 1 with
σ = 21 and not solely reduce σ .

4.1.2 Horizontal drag distribution: AWF grid and CFD
grid spacing

The effect of the horizontal resolution in the AWF grid 1 is
depicted in Fig. 9 using a wind farm with 8×8 wind turbines,
a turbine spacing of 8 D, and a row-aligned wind direction.
Results of six AWF models with different 1 values are
shown, and the results are compared with results from the AD
model (using the same CFD grid spacing as the AD model
δ =D/8) in terms of streamwise velocity normalized by the
freestream (Fig. 9g–m) and added wake turbulence intensity
(Fig. 9n–t), both extracted at hub height. The vertically

integrated drag distribution of the AWF models are shown
in Fig. 9a–f. When refining the horizontal spacing in the
AWF model, the solution approaches the one of the AD
model. However, there are still differences between the AWF
model with 1/8 and the AD model mainly at the wind
farm location, as shown in Fig. 9g, h, n, and o. If a closer
match is desired, one would need to further refine 1. The
need for a finer AWF grid spacing in order to approach
an AD simulation result is not a surprise because the drag
distribution in the AWF model is represented by a Cartesian
grid, and thus more cells than eight are required to represent
a rotor disk area by square cells. This is also why our
AD model uses a polar grid for each wind turbine in the
RANS-AD setup. When 1≥D or 1≥ s/8, with s as the
wind turbine interspacing, the individual wind turbines are
no longer visible in the horizontal drag distribution of the
AWF model, as shown in Fig. 9.
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Figure 10. Difference between AD and AWF models in terms of streamwise velocity and turbulence intensity for a square wind farm layout
with 8 D spacing. AWF models differ in horizontal spacing (1) and CFD grid spacing (δ).

Figure 11. Same as Fig. 10 but for a smaller wind turbine spacing of 4 D.

The difference between the AD and the AWF simulation
results are depicted in Fig. 10 in terms of horizontal velocity,
Fig. 10a and b, and turbulence intensity, Fig. 10c and d. A
range of wind directions are simulated between 270–315◦

with an interval of 5◦. For each wind direction, the mean
and maximum absolute difference between the AD and AWF
models is calculated from cross planes centered at (y,z)=
(0,zH), with a width LWF and a height D, for a range
of downstream locations to estimate the impact of 1 on a
potential downstream wind farm. Subsequently, the results
are either averaged over the wind directions, Fig. 10a and c,
or filtered for the maximum absolute difference, Fig. 10b
and d. In addition, results are shown using the same CFD
grid as the AD model δ =D/8, and when the AWF model
spacing is the same as the CFD grid spacing 1= δ. The
first provides a more fair comparison, while the latter is used
in practice when applying the AWF model in a wind farm
cluster. As expected, the difference between the AWF and
AD models increases with coarsening the horizontal AWF
model resolution 1. However, the difference is not much
influenced by coarsening the CFD grid by using 1= δ; the
main effects are observed for the large AWF model spacing

of 1= 4 D and 8 D. The errors are the largest at the wind
farm area, which is not our area of interest when upstream
wind farms are modeled as AWFs. One could select a value
for 1 depending on the desired accuracy. For the present
work, we select 1= 2 D, which results in a mean error in
streamwise velocity and turbulence intensity of ±0.4 % and
0.3 %, respectively, for the wind farm wake at x > 2LWF.
The maximum absolute errors at x > 2LWF in streamwise
velocity and turbulence intensity are in the order of 6 % and
1 %, respectively, but often only occur locally. A similar grid
study has been performed for the same wind farm layout but
with a wind turbine spacing of 4 D; the results are depicted
in Fig. 11. In general, the differences between the AWF and
AD models are larger compared to the lower-density wind
farm. However, the mean error in streamwise velocity for the
chosen setup using 1= 2D and 1= δ is still only ±0.7 %
for x > 2L.
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Figure 12. Double wind farm case: effect of Sheringham Shoal (ShS) on Dudgeon (Du) for a wind direction of 235± 2.5◦. The effect is
shown in terms of velocity deficit magnitude (f) and shape (g), based on the southern front row wind turbine (WT) power of Dudgeon (purple
markers), and the velocity deficit magnitude extracted at a transect upstream of Dudgeon (h) (blue markers). Gaussian averaging (GA) is
applied for the results shown as dashed lines. Contours of horizontal wind speed at z= 102 m are shown in panels (a)–(e) for TurbOPark
(revised) (a), RANS-AD (b), RANS-AD-AWF (c), RANS-AWF (d), and WRF (e). The contours reflect a single wind direction of 235◦ for
the RANS models and TurbOPark, while the WRF contours are obtained from 235± 2.5◦.

4.2 Model validation

4.2.1 Double wind farm case: Sheringham Shoal and
Dudgeon

The effect of Sheringham Shoal on Dudgeon for a wind
direction of 235± 2.5◦ and a wind speed of 8± 0.5 m s−1

is simulated with RANS, TurbOPark, and the WRF model.
Three RANS setups are used: two employ either all ADs
or all AWF models for both wind farms, while the third
uses ADs for the downstream wind farm (Dudgeon) and
an AWF model for the upstream wind farm (Sheringham
Shoal). The horizontal canopy spacing of the AWF models
is set to 2 D. The RANS models are simulated for a wind
speed of 8 m s−1 and every 5◦ between 220–250◦ and post

processed by a Gaussian filter of 5◦. PyWake’s TurbOPark
implementation follows the original formulation by Nygaard
et al. (2020) (as close as possible) and a revised setup where
the ground model is switched off, and a wake expansion
coefficient of 0.06 is employed instead of 0.04. TurbOPark
is used for the same wind speeds as the RANS setups and for
every 1◦and is also post processed using the same Gaussian
filter and a subsequent linear average between 235± 2.5◦.
The Gaussian filter is applied to represent the uncertainty of
the measured wind direction (Gaumond et al., 2014; van der
Laan et al., 2015b); a mathematical description can be found
in Antonini et al. (2019). The results of the double wind farm
case are depicted in Fig. 12; in terms of horizontal wind
speed contours Fig. 12a–e; wake magnitude, Fig. 12f; and
shape, Fig. 12g; the latter two are obtained from the wind
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turbine power of the front row of Dudgeon using the wind
turbine power curve. The wake shape represents the wind
farm wake velocity deficit normalized by its mean value,
while the wake magnitude refers to the wind farm wake
velocity deficit normalized by the freestream. A wake shape
is used for validation because the SCADA measurements
of the front row turbines are both used to determine the
freestream wind speed Uref and to measure the upstream
wind farm wake due to the lack of freestream measurements,
as discussed in Sect. 2. Figure 12h also shows the results of
the wake of Sheringham Shoal extracted along a 145–325◦

transect (perpendicular to the main wind direction of 235◦),
at 1.4 km upstream of Dudgeon. These results are used in
order to compare results of all RANS models and TurbOPark
with those using the WRF model because it is not possible to
use the wind turbine power output of the front row of wind
turbines from the WRF simulation to extract the wake effect
of Sheringham Shoal due to the large horizontal resolution.
The upstream distance of 1.4 km is chosen to avoid cells that
include a wind turbine in the WRF model setup. In addition,
U∞ for the WRF model represents the wind speed from a
simulation without turbines, while U∞ is the actual inflow
wind speed in the RANS and TurbOPark models. Finally,
results from simulating the Dudgeon wind farm alone using
RANS-AD are also depicted in Fig. 12e, which show that
wind farm induction is in the order of 1 % of the freestream
and much smaller than the effect of Sheringham Shoal on
Dudgeon predicted by the RANS and TurbOPark simulations
that also include Sheringham Shoal.

The contour plots in Fig. 12a–e are rotated to better
visualize the incoming flow for the front row wind turbines
and transect, for which the results are depicted in Figs.12f–h.
Figure 12b–d shows comparable wind farm wakes between
the RANS models. The horizontal wind speed flow fields
from the WRF model results (Fig. 12e) are quite different
compared to those obtained from the RANS models. For
example, the WRF model simulation lacks regions of
increased wind speed at the sides of Sheringham Shoal,
although the flow in between the wind farms is more similar.
The horizontal wind speed deficits of TurbOPark (using
the revised setup) shown in Fig. 12a have distinct single
wind turbine wakes due to the applied superposition method
because the depicted contours in Fig. 12a reflect a single
wind direction of 235◦.

There is a maximum of 0.9 % difference between the
RANS-AD and RANS-AD-AWF models in terms of the
equivalent wind speed extracted from the first row of
wind turbines (with respect to the freestream wind speed).
Note that it is not possible to perform this exercise with
the RANS-AWF simulations, since both wind farms are
represented by an AWF model. This difference in wind
speed is smaller along the transect, and all three RANS
models predict a wake magnitude in the range of the WRF
model results, as shown in Fig. 12e. The results from
the RANS-AD-AWF and RANS-AWF models are nearly

Figure 13. Double wind farm case: effect of Sheringham Shoal
on Dudgeon in terms of wind farm power loss (a) using the three
RANS models and two horizontal grid resolutions for the AWF
model. The difference with the RANS-AD model is shown (b).

identical (Fig. 12h) because the upstream effect on Dudgeon
is small at the transect. TurbOPark in its original formulation
predicts stronger wind farm wake effects compared to RANS
for the front row of Dudgeon (Fig. 12f) and compared to
the WRF model results for the transect (Fig. 12h). However,
in terms of wake shape (Fig. 12g), all models compare
relatively well with the SCADA measurements, which shows
the difficulty of validating the models with SCADA without
freestream measurements. TurbOPark in its revised setup
predicts much better results compared to those of RANS
and the WRF model, partially due to removing the mirror
plane for the wake deficits. Whilst not relevant in the near
wind farm wake, the mirror deficits become active at large
distances from the turbine of origin when hitting Dudgeon.

The wind farm power loss of Dudgeon due the presence
of Sheringham Shoal is depicted in Fig. 13, where results
of the three RANS methods are shown as a function of
wind direction in Fig. 13a. In addition, the RANS-AD-AWF
and RANS-AWF models are also simulated with a
finer horizontal resolution of 1= 1 D. Furthermore, the
difference with respect to the RANS-AD simulation is
plotted in Fig. 13b. When the downstream wind farm is
also modeled as an AWF (RANS-AWF), then the difference
with the RANS-AD model results is generally larger (up
to 1.5 %) except for the wind directions of 245 and 250◦.
The error in the RANS-AWF model is not strongly related
to the grid size, since refining the horizontal spacing by a
factor of two only changes the results of the RANS-AWF
by a maximum of 0.1 %. We suspect that the main source
of error is the fact that the AWF model is controlled as an
entire object instead of individual wind turbine control, as
performed for the RANS-AD model. When the downstream
wind farm is operating in a half wind farm wake situation,
mostly applicable for the wind directions 220–225 and
245–250◦, then the entire AWF is still affected if the change
in the AWF volume-averaged wind speed or wind direction
changes the wind farm thrust coefficient, which would not
be the case when the downstream wind farm is represented
by ADs. If the latter is important, then one could consider
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Table 3. Grid size and computational effort of RANS wind farm (cluster) simulations including Dudgeon (Du), Sheringham Shoal (ShS),
and Race Bank (RB). Percentage between brackets reflects the reduction when using AWF models with respect to only using ADs. CPU and
run hours are listed per flow case.

Case Method Cells Block Blocks Wall clock CPU hours CPU hours incl.
[million] size & CPUs steps 1a and 1b

Single AWF CT,wf and CP,wf generation (Step 1a)

ShS RANS-AD 115 64 437 0.20 88 –
RB RANS-AD 163 64 621 0.25 153 –
Du RANS-AD 115 64 437 0.22 102 –

Single AWF force calibration (Step 1b)

Shs RANS-AWF 1.05 32 32 0.0080 0.25 –
RB RANS-AWF 1.31 32 40 0.0072 0.28 –
Du RANS-AWF 1.31 32 40 0.0066 0.26 –

Double wind farm simulations

Du+ShS RANS-AD 297 64 1134 0.72 819 –
Du+ShS RANS-AD-AWF 110 (−63.0 %) 64 420 0.50 (−32.6 %) 204 (−75.1 %) 385 (−53.0 %)
Du+ShS RANS-AWF 3.15 (−98.9 %) 32 96 0.027 (−96.7 %) 2.30 (−99.7 %) 421 (−48.6 %)

Wind farm cluster simulations

Du+ShS+RB RANS-AD 1193 64 4550 1.53 6958 –
Du+ShS+RB RANS-AD-AWF 252 (−78.9 %) 64 960 0.56 (−63.4 %) 538 (−92.3 %) 1282 (−80.1 %)
Du+ShS+RB RANS-AWF 6.55 (−99.5 %) 32 200 0.026 (−98.3 %) 2.23 (−99.9 %) 1206 (−82.7 %)

splitting each wind farm into several AWF models or simply
model the wind farm of interest with ADs following the
RANS-AD-AWF approach.

4.2.2 Wind farm cluster

The wind farm cluster consisting of the three wind farms
Dudgeon, Sheringham Shoal, and Race Bank is simulated
with RANS-AD-AWF, where Dudgeon is represented by
ADs, and the other two wind farms are modeled with the
AWF model. A range of wind directions between 190 and
300◦ is simulated for every 5◦ using a wind speed of 8 m s−1.
The wind turbine power of the first row of Dudgeon is
used to calculate the effective wind speed, and the results
are Gaussian averaged using the same standard deviation
as employed in Sect. 4.2.1. The RANS simulations are
compared with the SCADA measurements for the southern
and western front rows of Dudgeon in Figs. 14 and 15,
respectively. The results are normalized by Uref, which
represents the mean row wind speed that is used to determine
the freestream in the SCADA measurements due to the lack
of freestream measurements. Hence, the wake shape is only
validated, while the wake magnitude is not, as also discussed
in Sect. 4.2.1.

Figures 14 and 15 indicate that the RANS simulations
capture the overall trend of the wind farm wake shape
as a function of wind directions. For the southern row of
Dudgeon, the measurements indicated a more pronounced

wind farm wake shape, best visible by the difference in
simulation and measurements at the corner wind turbines
J05 and A05 for the wind directions between 205–245◦ and
235–250◦, respectively. This could indicate stronger wake
effects in the measurements, possibly due to the effect of
near stable conditions, which is not accounted for in the
simulations.

The RANS results of the western row in Fig. 15 are more
difficult to interpret because the western row width is not
large enough to capture the entire wind farm wake of Race
Bank, which leads to flat wake shapes when the western front
row of Dudgeon is operating in the full wind farm wake of
Race Bank, as seen for the wind direction of 265◦.

4.3 Computational effort

The main motivation for the AWF model is the reduction
in computational effort compared to using ADs. Table 3
provides an overview of the CFD grid sizes and
computational effort per flow case (i.e., a single inflow
wind speed and direction) for running one, two, and three
wind farms with different combinations of wind farms
modeled as AD and/or AWFs. The underlying CFD solver
in PyWakeEllipSys, EllipSys3D, is a flow solver based on
a block structured grids, which uses a message passing
interface (MPI) for communication. In the present work,
we use block (edge) sizes of 32 and 64, corresponding to
323 and 643 cells per block, respectively. The largest part
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Figure 14. Measured and simulated effect of the upstream wind farms on the southern wind turbine row of Dudgeon in terms of wake
shape for different wind directions (a–j). Results are normalized by the row-averaged wind speed. Contours of the streamwise velocity at the
reference height, normalized by the inflow wind speed, are shown for each wind direction case, including zoomed plot around Dudgeon.
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Figure 15. Same as Fig. 14 for the western row of Dudgeon for different wind directions (a–h).

of the computational effort is used to solve for the pressure
correction equation. A multi-grid algorithm is applied to
solve the pressure correction equation, and the coarsest level
is made parallel on a single node using a shared-memory
MPI. The most recent version of EllipSys3D is expected
to scale efficiently and be able to run with one block per
processor for grids with 100 000 blocks of 43. Four shared
memory CPUs are used for the wind farm cluster simulations
using three wind farms and only ADs due to the large
number of blocks (4550), while the other simulations are not
using shared memory CPUs. The AD model in EllipSys3D

was recently made more scalable by distributing the same
number of ADs to each CPU as much as possible; initial tests
have shown good scalability up to 1000 ADs (van der Laan
et al., 2023). Further optimizing the computational effort and
scalability of large wind cluster simulations using ADs is
planned in the future.

The RANS-AD grids for multiple wind farms could be
reduced by using more complex grid topologies, where
each wind farm is situated in a refined region instead of
using a single large refined area that includes all wind
farms. However, it is more challenging to generate such a
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grid topology compared to box-type domains. Furthermore,
it should be noted that the simulations are performed on
an in-house shared computer cluster. Hence, the listed
CPU hours and wall clock time in Table 3 should be
interpreted as indicative. The computer cluster consists of
516 computational nodes, each one equipped with two
16-core AMD EPYC 7351 2.9 GHz processors and 128 GB
RAM of memory (Technical University of Denmark, 2019).

When the investigated wind farm cluster is simulated with
Dudgeon as ADs and the other wind farms as AWF models,
76 % of cells can be saved compared to modeling the wind
farm cluster with only ADs due to a reduction in horizontal
spacing outside the Dudgeon wind farm area, as listed in
Table 3. For the double wind case, 63 % of the cells can
be saved, and the number of CPU hours per flow case is
reduced by 75 %. When the wind farm cluster consisting of
three wind farms is solely modeled by AWF models, then the
grid size is reduced by 99.5 %, and a flow case can be solved
in about 1.5 min. using 200 CPUs, which is a reduction of
99.9 % in terms of CPU hours. However, each AWF model
requires information of a wind farm thrust coefficient CT,wf
and the wind farm power coefficient (if the AWF model is
used to predict wind farm power) CP,wf as a function of the
AWF volume-averaged wind speed and wind direction. If this
input is derived from a set of RANS simulations using ADs,
as performed in the present work, then the computational
effort will be dominated by this step. For example, Table 3
shows that the Sheringham Shoal wind farm modeled by ADs
takes about 0.20 h per flow case or 88 CPU hours using a
grid of 115 million cells. The wind farm cluster modeled by
three AWFs requires about 1206 CPU hours per flow case
when including the wind farm precursor steps, which is still
a reduction of 83 % compared to simulating all wind farms
as ADs (6958 CPU hours per flow case), as shown by the
last column of Table 3. One could attempt to use a simplified
wake model to determine CT,wf and CP,wf, but one would
risk a loss of accuracy. An initial study shows that is possible
to predict CT,wf and CP,wf within a mean absolute error of
around 1 % when using a RANS-based surrogate wind farm
model (van der Laan et al., 2023).

5 Conclusions

A RANS-based wind farm parameterization, the AWF
model, is proposed. It uses a wind farm thrust force as a
momentum sink similar to a forest canopy model. The AWF
model can be used as an obstacle model to a downstream
wind farm of interest represented by ADs, or it can be used to
estimate wind farm power when the downstream wind farm
is also modeled as an AWF. The AWF model simulates wind
farm interaction by a calibrated controller of wind farm thrust
and power as a function of the wind farm volume-averaged
wind direction and wind speed.

When the horizontal spacing in the AWF model is refined,
the wind farm flow approaches the results from a RANS-AD
wind farm simulation. This is achieved by calibrating the
thrust force magnitude with precursor RANS-AD wind
farm simulations and employing a horizontal thrust force
distribution in the form of wind turbine density using a
superposition of the wind turbine coordinates represented
by two-dimensional Gaussian functions. The verification
study showed that the Gaussian superposition method solves
the problem of artificial wind farm wake effects that can
occur when the number of wind turbines are binned for
large horizontal cells, as current wind farm parameterizations
implemented in numerical weather models, such as the WRF
model, do.

A new atmospheric inflow model is introduced that is
potentially more suited for wind farm cluster simulations
because it does not rely on an ABL height set by a global
turbulence length-scale limiter that can result in nonphysical
wind farm wakes. The proposed inflow model relies on
a prescribed analytical temperature profile including an
inversion height and inversion strength, while a temperature
equation is not solved for in order to maintain a steady-state
inflow model. The model is shown to be dependent on three
non-dimensional numbers. The new inflow model does not
(and is not expected to) solve the problem of numerical
instabilities related to the low eddy viscosity region above
the ABL in combination with large horizontal domains
associated with wind farm clusters. The problem is mitigated
in the present work by using a relatively low domain
height, which can introduce additional numerical blockage,
thereby negatively influencing the predictions. An alternative
solution needs to be found in the future to allow the more
preferred, taller domain heights. In addition, the new ABL
model requires more validation with measurements.

The proposed RANS-AWF and inflow models are
employed to simulate two neighboring wind farms and a
cluster consisting of three wind farms, where either one of
the wind farms is modeled by ADs, and the remaining wind
farms are represented by AWF models (RANS-AD-AWF) or
all wind farm are AWF models (RANS-AWF). The results
for the double wind farm case are compared with TurbOPark,
WRF, and RANS-AD simulations (for the latter, all wind
turbines are modeled by ADs) using the wind speed derived
from the front row turbines of the downstream wind farm
and the horizontal wind speed extracted from a transect
1.4 km upstream of the wind farm farthest downstream.
The latter is performed because the chosen resolution for
the WRF model simulations was not sufficient to resolve
the front row wind turbine wind speed. While the overall
horizontal wind speed at the wind farms in the WRF model
simulations is quite different with respect to the RANS
results, the horizontal wind speed at the transect from the
WRF results compares well with those from the RANS-AD,
RANS-AD-AWF, and RANS-AWF models. In addition, the
front row wind speed in the RANS-AD-AWF only deviated
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by 0.9 % compared to the RANS-AD results with respect
to the freestream. The original formulation of TurbOPark
shows stronger wind farm wake effects compared to the
other models, but its result in terms of wind farm wake
shape compared well with all models. This indicates that
a comparison in terms of wind farm wake shape should
not be the only type of validation. A revised TurbOPark
setup, where the ground model is switched off and a
larger wake expansion coefficient of 0.06 is used, predicts
much better results compared to the higher-fidelity models.
Unfortunately, the RANS-AD-AWF simulations of the wind
farm cluster could only be validated with the shape of the
front row wind speed because the SCADA measurements
of this row are used to both measure the wake of the
upstream wind farm and determine the freestream conditions
due to a lack of concurrent freestream measurements. The
trends of the RANS-AD-AWF simulation results of the
upstream wind farm wake shapes compare reasonably well
with the results from the SCADA, although the measured
shapes indicate stronger wind farm wake effects, possibly
due to near-stable conditions that were not filtered out from
the SCADA in order to maintain a large enough data set.
More validation of both the AWF model and prescribed
temperature inflow model is required. In addition, we need
SCADA with concurrent inflow measurements in order to
validate the magnitude of wind farm wakes and its impact
on neighboring wind farms.

With the AWF model, one can simulate large wind farm
clusters with RANS; the wind farm cluster validation case
showed a reduction of 92.3 % and 99.9 % in CPU hours when
two of three wind farms or all wind farms are represented
by AWF models instead of using ADs, respectively, when
the input wind farm thrust and power coefficients are
known. If the wind farm power and thrust coefficients are
calculated from a RANS-AD simulation of each wind farm,
as performed in the present work, then the reduction in
computational effort is 82.7 % when the wind farm cluster
validation case is solely modeled by AWF models. Simpler
and faster models that can generate the AWF input are
currently investigated in a follow-up work (van der Laan
et al., 2023). This also enables a larger wind farm cluster to
be efficiently simulated with the RANS-AWF methodology
in future work. Such a study would also benefit from a
comparison with WRF model results to further investigate
the effect of neglecting the mesoscales in the RANS-AWF
approach.

The AWF model can be used to further develop wind
farm parameterizations in the WRF; this can be achieved by
implementing the two-dimensional Gaussian superposition
method of the wind turbine density and by using a wind
farm drag coefficient that is dependent on the wind direction
instead of using the wind turbine thrust curves. Idealized
WRF simulations could be used to compare the resulting
wind farm wakes with RANS-AWF simulation results.

The current implementation of the AWF model does not
include any sources in the turbulence transport equations
because the employed horizontal spacing of 2 D turned out to
be sufficiently fine. If larger horizontal cell sizes are desired,
one could investigate the use of additional turbulence-related
source terms.

Appendix A: Similarity of the prescribed temperature
inflow model

In a previous work (van der Laan et al., 2020), it was
shown that the ABL model of Apsley and Castro (1997),
including Coriolis forces, follows a Rossby similarity; here,
four dimensional input parameters (namely the geostrophic
wind speed G, roughness length z0, Coriolis parameter fc,
and `max) can be reduced to two Rossby numbers, Ro0 ≡

G/(|fc|z0) and Ro` ≡G/(|fc|`max). We typically generate a
library of normalized ABL profiles for all possible solutions,
which can then be used to find values for G and `max in
order to get a desired wind speed and turbulence intensity at
a reference height for a fixed roughness length and Coriolis
parameter. The new prescribed temperature ABL model from
Sect. 3.1.3 depends on five dimensional parameters – G, z0,
fc, zi , and ∂θ/∂z|c – however, the normalized profiles only
depend on three non-dimensional numbers:

Ro0 ≡
G

|fc|z0
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G

|fc|zi
,
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N

|fc|
=

1
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√
g

θ0

∂θ
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c
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Here, Ro0 is the surface Rossby number, Rozi is a
Rossby number based on the inversion height, and Nf
is a dimensionless number based on the ratio of the
Brunt–Väisälä frequency and the Coriolis parameter, which
is also referred to as the Zilitinkevich number (Esau, 2004;
Kelly et al., 2019; Liu et al., 2021). The similarity is
numerically proven by the collapse of simulation results for
different values of G and fc, as depicted in Fig. A1. The
numerical setup is similar to van der Laan et al. (2020), but
we have chosen a smaller time step set to 1/N instead of
1/|fc| in order to maintain numerical convergence. From the
figure, one can note that Nf mostly changes the effective
sharpness of the inversion, as seen in φ(z), as well as the ABL
turning angle φ(z= z0); the latter effect is more pronounced
for larger zi/z0. It is also possible to use an alternative
dimensionless number for quantifying the inversion strength,
using an ABL-wide bulk Richardson number (instead ofNf):
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Figure A1. Similarity of prescribed temperature inflow model for Nf = 100 (a–e) and Nf = 200 (f–j).

Appendix B: Comparison and challenges of RANS
inflow models applied to the wind farm cluster
validation case

A new atmospheric inflow model is proposed in Sect. 3.1.3
and used to perform the RANS wind farm cluster simulations
in Sect. 4. The new inflow model employs a prescribed
temperature profile with an inversion that sets the ABL
height. Previous work employed an ABL inflow model based
on a global turbulence length-scale limiter, `max (Apsley
and Castro, 1997; van der Laan and Sørensen, 2017b;
van der Laan et al., 2017). For a low value of `max, a
lower ABL height is obtained. A major issue with the
global turbulence length-scale limiter is that it can also limit
the wind farm wake turbulence length scales that could
lead to a nonphysical slow wake recovery. This issue was
mitigated by switching off the global length-scale limiter in
regions where high-velocity gradients are present (van der
Laan and Sørensen, 2017b), although it is unclear if this ad
hoc solution is sufficient for wind farm cluster simulations.
Another challenge is that for low ABL heights, one can
obtain numerical oscillations, which both the new model and
the model based on `max can suffer from. This section is
meant to illustrate these issues and to show the difference

between the inflow models when applied to the wind farm
cluster validation case.

Table B1 lists the input and derived parameters of a
shallow and a tall ABL inflow using the new prescribed
temperature ABL model and the ABL model based on `max.
The tall ABL case is the same as used through out the
article (Sects. 3.1.3 and 4), while the shallow ABL is an
additional case meant to illustrate the challenges with the
two inflow models. For the `max ABL inflow model, the
derived values for G and `max are found by interpolating a
pre-calculated library of ABL profiles (van der Laan et al.,
2020) for given z0, fc, Iref, and Uref values. The prescribed
temperature model uses an optimizer for G and z0 instead,
as discussed in Sect. 3.1.3. The tall ABL profile from the
`max ABL inflow model uses a similar roughness length
(z0 = 5× 10−5 m) as was calculated for the inflow model
based on the prescribed temperature (Table 2), which results
in a relative large value of `max, namely 53.3 m. The shallow
ABL profile of the prescribed temperature ABL model is
generated with a lower zi (300 m), resulting in a larger
derived z0 (Table B1). In addition, the value of zT /zi as used
in the prescribed temperature ABL model is increased for the
shallow ABL to avoid an inflection of the wind speed profile
below the super geostrophic jet. To lower the ABL height for
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Table B1. Summary of input and derived parameters for the ABL inflow models, both using Iref = 0.044, Uref = 8 m s−1, zref = 102 m, and
fc = 1.168× 10−4 s−1.

Input parameters Derived parameters

Iamb zi θ0
∂θ
∂z
|c

zT
zi

z0 G z0 `max

Case Model [–] [m] [K] [K m−1
] [–] [m] [m s−1

] [m] [m]

Tall ABL Prescribed temp. 10−5 1000 285 5× 10−3 0.2 – 8.50 3.25× 10−5 –
Tall ABL `max 10−6 – – – – 5× 10−5 8.62 – 53.3
Shallow ABL Prescribed temp. 10−5 300 285 5× 10−3 0.4 – 8.54 1.77× 10−4 –
Shallow ABL `max 10−6 – – – – 5× 10−3 8.93 – 7.62

a model based on `max, one can lower z0 or Iref; we choose
to set z0 = 5×10−3 m. This results in a derived value of `max
of only 7.62 m. Finally, the ABL model based on `max is
employed with a lower ambient turbulence intensity value
Iamb compared to the prescribed temperature model because
the `max ABL model is more sensitive to this parameter.
The chosen values for each ABL model are sufficient to
not influence the numerical solution (van der Laan et al.,
2020). The results of all profiles are depicted in Fig. B1.
Here it is clear that over the rotor swept area the profiles of
wind speed, direction, and normalized turbulence intensity
resulting from the prescribed temperature model are similar
to those resulting from the `max model for the tall ABL case.
The main difference can be found in the turbulence model
length scale (Fig. B1d), where the prescribed temperature
ABL model predicts larger length scales over the rotor swept
area compared to the `max based ABL model. For taller
altitudes, the models produce quite different ABL solutions,
probably because the prescribed temperature model sets an
explicit inversion strength, while the ABL model based on
`max calculates this implicitly. For the shallow ABL case,
both models predict very different profiles. This is because
the model based on `max represents stable conditions for low
values of `max, while the prescribed temperature ABL model
reflects a conventionally neutral ABL.

The four inflow profiles listed in Table B1 are applied
to the wind farm cluster validation case using the
RANS-AD-AWF model for a wind direction and wind speed
of 235◦ and 10 m s−1, respectively. The results of these
simulations in terms of horizontal wind speed contours
at hub height (z= 102 m) are depicted in Fig. B2. Here,
the prescribed temperature model for the tall ABL case
(Fig. B2a) is same as shown earlier in Fig. 14g, and its
results are similar to the results of the inflow model based
on `max (Fig. B2b) for the tall ABL case. This is because
a large ABL of about 1 km is set by using either a large
zi or a large value of `max. Figure B3 also shows a similar
wake magnitude calculated by the two inflow models, where
the difference between the models is in the order of 1 %.
The wake magnitude is based on the front row wind turbine
power of Dudgeon, as performed in Sect. 4.2. Hence, the

results presented in Sect. 4 would not have been significantly
different if the inflow model based on `max was used
instead of the new inflow model. The shallow ABL inflow
profiles applied to the wind farm cluster do not lead to a
converged result using the domain height Lz set to 10 Dref,
as employed for the tall ABL case. This is because the
low eddy viscosity region above the ABL causes numerical
instabilities when it is included in the wind farm cluster
domain. The issue can be mitigated by lowering the domain
height to exclude the low eddy viscosity region, as performed
in previous work (van der Laan et al., 2017). Here, we
apply two different values, Lz/Dref = 2.5 D and Lz/Dref =

3 D, and the results are shown in Figs. B2c–B2e. It should
be noted that these low domain heights are not desired
because the increased numerical blockage causes artificial
flow accelerations and reduced wake losses. When using
Lz/Dref = 2.5 D the shallow ABL simulations converge for
both models (Fig. B2c and d). However, for Lz/Dref =

3 D (Fig. B2e, prescribed temperature ABL model) and
Lz/Dref = 4 D (Fig. B2f, `max ABL model), the wind farm
cluster simulation starts to produce numerical instabilities
towards the outlet. It is clear that both ABL models cannot
be used to simulate a wind farm cluster subjected to a
shallow ABL inflow without lowering the domain height
to an undesired small value. In addition, it is not fully
determined if the new inflow model actually performs better
than the model based on `max, and more work is needed to
improve the numerical behavior when considering low ABL
heights. However, the prescribed temperature model offers a
more physical method of setting an ABL height compared
to using a global turbulence length-scale limiter, and the
new model also provides the possibility to explicitly set the
inversion strength.
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Figure B1. Atmospheric inflow model precursor results employing a global turbulence length-scale limiter `max compared to the prescribed
temperature ABL model for shallow and tall ABL cases. Results are shown in terms of wind speed (a), relative wind direction (b), turbulence
intensity (c), turbulence length scale (d), and potential temperature (e). Horizontal dashed black lines depict the swept rotor area of the 6 MW
wind turbine.

Figure B2. Contours of the streamwise velocity at the reference height of the validation case, simulated with RANS-AD-AWF, for a wind
direction of 235◦ and for different inflow models and ABL heights.
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Figure B3. Wake magnitude of the validation case for a wind
direction of 235◦ simulated with RANS-AD-AWF, for different
inflow models using the tall ABL case.

Appendix C: Numerical setup of TurbOPark (as
implemented in PyWake)

An overview of the numerical setup of the original and
revised TurbOPark model, as implemented in PyWake (DTU
Wind Energy, 2022a), is provided in Table C1.

Table C1. Summary of the original and revised TurbOPark setup in PyWake.

Description Original model Revised model

Wind farm model All2AllIterative All2AllIterative

Wake deficit model TurboGaussianDeficit( TurboGaussianDeficit(
use_effective_ws=False, use_effective_ws=False,
use_effective_ti=False, use_effective_ti=False,
groundModel=Mirror(), A=0.04) groundModel=None, A=0.06)

Blockage deficit model SelfSimilarityDeficit2020(, SelfSimilarityDeficit2020(,
groundModel=Mirror(), groundModel=Mirror(),
superpositionModel=LinearSum()) superpositionModel=LinearSum())

Rotor velocity averaging model GaussianOverlapAvgModel(4, 3) GaussianOverlapAvgModel(4, 3)

Turbulence model None None

Wake superposition model SquaredSum() SquaredSum()

Appendix D: Numerical setup of WRF simulations
including wind farms

An overview of the numerical setup of the WRF simulations,
including wind farms, is provided in Table D1.
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Table D1. Summary table of WRF model configurations including initial and boundary conditions.

Parameter Value

WRF version Version 3.7.1 with implemented EWP

Spatial settings

Domains D1: 188× 188 grid points, 9 km grid spacing
D2: 243× 240 grid points, 3 km grid spacing
D3: 216× 216 grid points, 1 km grid spacing

Nesting strategy One-way nested
Nudging strategy Spectral nudging∗ applied above ABL
Vertical levels 64 levels, dz≈ 25 m up to around 250 m

Temporal settings

Simulation length Blocks of 11 d including 24 h spin-up
Lateral boundary condition update interval Every 6 h

Initial and boundary conditions

Forcing data ERA5 (Hersbach et al., 2020)
Terrain data GMTED2010 (30 arcsec, Danielson and Gesch, 2011)
Land cover data ESA CCI-LC 2015 (Poulter et al., 2015)
Sea surface temperature OSTIA (Donlon et al., 2012)

Physics

Microphysics WSM5 (Hong et al., 2004)
Radiation RRTMG (Iacono et al., 2008)
Cumulus Grell–Freitas∗(Grell and Freitas, 2014)
Land surface Noah LSM (Tewari et al., 2004)
Planetary boundary layer scheme MYNN2 (Nakanishi and Niino, 2006)

∗ Only domain 1.
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