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Abstract. Selecting a wind farm layout optimization method is difficult. Comparisons between optimization
methods in different papers can be uncertain due to the difficulty of exactly reproducing the objective function.
Comparisons by just a few authors in one paper can be uncertain if the authors do not have experience using
each algorithm. In this work we provide an algorithm comparison for a wind farm layout optimization case study
between eight optimization methods applied, or directed, by researchers who developed those algorithms or who
had other experience using them. We provided the objective function to each researcher to avoid ambiguity about
relative performance due to a difference in objective function. While these comparisons are not perfect, we try
to treat each algorithm more fairly by having researchers with experience using each algorithm apply each algo-
rithm and by having a common objective function provided for analysis. The case study is from the International
Energy Association (IEA) Wind Task 37, based on the Borssele III and IV wind farms with 81 turbines. Of partic-
ular interest in this case study is the presence of disconnected boundary regions and concave boundary features.
The optimization methods studied represent a wide range of approaches, including gradient-free, gradient-based,
and hybrid methods; discrete and continuous problem formulations; single-run and multi-start approaches; and
mathematical and heuristic algorithms. We provide descriptions and references (where applicable) for each op-
timization method, as well as lists of pros and cons, to help readers determine an appropriate method for their
use case. All the optimization methods perform similarly, with optimized wake loss values between 15.48 % and
15.70 % as compared to 17.28 % for the unoptimized provided layout. Each of the layouts found were different,
but all layouts exhibited similar characteristics. Strong similarities across all the layouts include tightly packing
wind turbines along the outer borders, loosely spacing turbines in the internal regions, and allocating similar
numbers of turbines to each discrete boundary region. The best layout by annual energy production (AEP) was
found using a new sequential allocation method, discrete exploration-based optimization (DEBO). Based on the
results in this study, it appears that using an optimization algorithm can significantly improve wind farm perfor-
mance, but there are many optimization methods that can perform well on the wind farm layout optimization
problem, given that they are applied correctly.
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1 Introduction

Wind farm layout design presents a challenging and complex
problem due to the variable nature of the wind and complex
interactions between turbines through their wakes. Finding
a good layout is critical because even relatively small im-
provements in energy conversion can translate to significant
gains in revenue. Because the wind farm layout design prob-
lem is so complex, optimization algorithms are often used
to help designers find good layouts. Wind farm developers
and members of the academic community alike understand-
ably struggle when attempting to select a wind farm layout
optimization method: the numerous available methods dif-
fer in many ways, but the differences, affordances, and con-
straints of each method can be difficult to determine. The
varying case studies, objectives, metrics, and author exper-
tise between individual studies add enough variability that
direct comparisons between methods in different papers are
very difficult to make and yield uncertain results. To facilitate
more objective comparisons between wind farm layout opti-
mization methods, we provide algorithm comparisons where
a common objective function was provided and each algo-
rithm was managed by researchers with previous experience
using them. These comparisons should aid wind farm devel-
opers and the academic community in selecting an appropri-
ate optimization algorithm for their specific wind farm layout
optimization applications. In the following few paragraphs
we provide a high-level overview of optimization, present the
types of algorithms available, and discuss each type’s typical
strengths and weaknesses, particularly as related to the wind
farm layout optimization problem.

Optimization algorithms are intended to improve a design
or process. At a minimum, they rely on receiving feedback
in the form of a function output or real-time data set to con-
trol a set of inputs to the system that affect change in the
output. For complex systems, such as a wind farm, the opti-
mal design is difficult to determine because the design space
is too large for exhaustive exploration using available meth-
ods. Therefore, designers use optimization algorithms to find
good, if not globally optimal, designs efficiently, without
an exhaustive search. There are many different optimization
methods, but they fall into three general categories: gradient-
based, gradient-free, and convex. Because wind farm lay-
out optimization problems are not generally convex, convex
methods are not applicable. We will discuss only gradient-
based and gradient-free methods in the remainder of this
work.

As their name implies, gradient-based methods rely on
some knowledge of the slope, or derivatives, of the objec-
tive function (Belegundu and Chandrupatla, 2011). Gradient-
based methods are often considered to be only local-search
algorithms because, in their simplest form, they often just
follow the slope to the nearest local optima. However,

gradient-free methods are not limited to local search as they
can be combined with global-search techniques. Gradient-
based methods also scale very well to complex problems
with many variables and constraints without an excessive
increase in computational cost. Besides relying on deriva-
tives, gradient-based methods also require that the objec-
tive function be smooth enough (Martins and Ning, 2021).
These requirements make applying gradient-based methods
to many black-box objective functions undesirable because
the derivatives of black-box functions can only be obtained
through finite differences. If finite differences are used, then
the computational cost of calculating the derivatives can be
high and the derivatives may have significant error (Gray
et al., 2014). Determining the derivatives symbolically can be
difficult or even impossible depending on the objective (Mar-
tins and Hwang, 2013). Algorithmic differentiation (AD) is
a common and efficient solution to the problem of obtain-
ing derivatives. In AD, the source code is differentiated line
by line algorithmically and the resulting derivatives are exact
(Griewank and Walther, 2008).

By contrast, gradient-free methods rely only on the objec-
tive function (Koziel and Yang, 2011), which makes apply-
ing gradient-free methods to black-box objective functions
very simple. However, these methods must work without the
knowledge of the shape of the design space that is avail-
able through gradients. Gradient-free methods may be either
deterministic or heuristic. They may also be either global-
or local-search algorithms (though even global-search algo-
rithms often fail to find the true global optimum for com-
plex and high-dimensional problems; Arnoud et al., 2019).
Many gradient-free methods use multiple function evalua-
tions (sets, points, populations, etc.) at each step to provide
the information needed to determine the next step(s) in the
optimization. Due in part to using a population or set of solu-
tions at each iteration, gradient-free methods are often prefer-
able for problems with many local optima (multimodal prob-
lems). However, gradient-free methods may require more
function calls than gradient-based methods and do not usu-
ally scale well to problems with more than 30 design vari-
ables (Rios and Sahinidis, 2013).

To reduce the number of design variables and constraints,
optimization algorithms may use re-parameterization (Ser-
rano González et al., 2017; Stanley and Ning, 2019) or dis-
cretization (Mosetti et al., 1994; Grady et al., 2005; Turner
et al., 2014). To help overcome the problem of local op-
tima, optimization algorithms may be paired with global-
search techniques, including (but not limited to) multi-start
approaches (Guirguis et al., 2016), continuation methods
(Mobahi and Fisher, 2015), or both (Thomas et al., 2022a).
Occasionally, multiple optimization algorithms are com-
bined in a hybrid approach to globalize the search of the de-
sign space with a global-search method and then speed up
the refinement of the solution using a local-search method.
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A hybrid approach may combine gradient-free and gradient-
based algorithms (as in the work of Réthoré et al., 2014) or
two algorithms of the same type (as done by Yang et al.,
2021). There is no one best optimization algorithm (Press
et al., 2007). The choices of optimization algorithm(s) and
peripheral method(s) are highly dependent on the problem
and situation.

The characteristics of the wind farm layout optimization
problem further complicate algorithm selection. The wind
farm layout optimization problem has a highly multimodal
design space (Stanley and Ning, 2019), which may lead us
to use gradient-free methods. On the other hand, wind farm
layout optimization problems may also have hundreds of
design variables and thousands of constraints, which may
lead us to choose a gradient-based optimization method with
AD derivatives. In addition to these general considerations,
each optimization method and wind farm design problem has
unique characteristics that must be considered.

Numerous studies have applied various optimization algo-
rithms to the wind farm layout optimization problem (see the
comprehensive review by Herbert-Acero et al., 2014). Some
of these studies try to provide a meaningful optimization al-
gorithm comparison by comparing results on the same sce-
narios as previous studies, such as in Grady et al. (2005),
Turner et al. (2014), and Zergane et al. (2018). However, cor-
rectly re-creating the objective function and other elements
of previous studies is very difficult and prone to error. Ex-
act duplication may even be impossible. Tracking the chains
of studies to compare algorithms is also fairly difficult. Very
few studies have directly compared multiple optimization al-
gorithms in a single study (Brogna et al., 2020). The follow-
ing few paragraphs provide a brief review of studies that have
compared more than two optimization algorithms on a single
wind farm layout optimization problem in a single paper.

Fischetti and Monaci (2016) compared three heuristic op-
timization algorithms (a subset of gradient-free methods).
They used one commercial algorithm from IBM (IBM ILOG
Cplex 12.5.1) with two different tunings, a self-made local-
search procedure, and a self-made mixed-integer program-
ming method. They tested on farms that were 3000 m by
3000 m with 1000–10 000 uniformly random potential tur-
bine locations. They found that their self-made mixed-integer
programming method outperformed the others in most cases.

Guirguis et al. (2016) compared a genetic algorithm (GA)
(gradient-free), a hybrid algorithm made of a GA followed
by a sequential quadratic programming algorithm (gradient-
based), and an interior-point nonlinear programming algo-
rithm (gradient-based). These algorithms were tested on
farms with 10, 20, and 30 turbines with three different wind
resources. The first wind resource had a single wind state,
the second had multiple directions but a single wind speed,
and the third had a distribution of both wind speed and direc-
tion. All algorithms were run 10 times for each problem with
different random seeds. They found that the interior-point

method outperformed both the GA and the hybrid method
for all cases.

Baker et al. (2019) presented the results of a first set of
wind farm layout optimization case studies under the Inter-
national Energy Association (IEA) Task 37 Work Package
3. This was a blind study; participants did not see others’
results prior to submission. Two separate studies were per-
formed. The first consisted of three round farms, with 16,
32, and 64 wind turbines, for which the objective function
was provided but participants in the studies applied whatever
optimization algorithm they chose. The study included 10
submissions representing 9 optimization methods. Six of the
submissions used gradient-based approaches, and the other
four used gradient-free methods. At least the top four opti-
mization algorithms for each wind farm were gradient-based
methods. Resulting improvements from the provided base-
line layout ranged from 2.93 % to 17.05 %. The second study
consisted of a single wind farm with only nine turbines, but
participants were free to use whatever wake and other models
they chose and to select their optimization algorithm. Results
of the second study were compared using a round-robin. The
second study included five submissions, only one of which
was gradient-free. The gradient-free method ranked at or just
below the middle of the five for all cross-comparisons of the
round-robin.

Brogna et al. (2020) compared eight different optimiza-
tion algorithms on a single wind farm as an extension of
their work presenting a wake model for use with complex
terrain. The algorithms were applied to a wind farm in com-
plex terrain with 25 turbines. Two of the algorithms in this
study were gradient-based, and two of the remaining six
were implemented by the researchers. The off-the-shelf al-
gorithms were all from the MATLAB toolbox. A total of
10 runs were completed with each algorithm on 10 ran-
domly generated starting points. The researchers tried do-
ing a single-stage optimization using the final objective func-
tion, as well as a double-stage optimization where wake ef-
fects were ignored during the first stage and included during
the second stage. Gradient-free algorithms dominated. The
gradient-based algorithms performed near the bottom for the
single-stage and worst for the double-stage. They found that
their self-implemented algorithms performed the best on this
problem.

Kunakote et al. (2022) compared 12 meta-heuristic al-
gorithms (a sub-set of gradient-free algorithms) for wind
farm layout optimization. They compared the meta-heuristic
methods on four cases, all with the same 2 km by 2 km wind
farm. The first case divided the farm into a 10 by 10 grid
and allowed the final result to have 1 to 100 wind turbines
and an extremely simple wake model. The second case was
the same but with more accurate wake effects included. The
third case set the number of turbines to 39 but kept the same
placement grid and used the simpler wake model. The final
study used 39 turbines on the same grid with the more accu-
rate wake model. They found that the real-coded ant colony
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optimization performed the best on cases 1 and 2. The moth-
flame optimization algorithm performed the best on cases 3
and 4.

While all of the above studies are useful and contribute to
a deeper understanding of how various algorithms and types
of algorithms perform on the wind farm layout optimization
problem, they exemplify some of the difficulties of compar-
ing algorithms for wind farm layout optimization. In some
cases the same researchers managed all of the algorithms
(Fischetti and Monaci, 2016; Guirguis et al., 2016; Brogna
et al., 2020; Kunakote et al., 2022). While having the same
people running each algorithm is helpful in some respects,
many algorithms have unique attributes that may only be un-
derstood by people who have used them often and studied
them deeply. It is hard to know whether the algorithms per-
formed better or worse due to the users’ experience or the
algorithms themselves. In particular, it is interesting that in
Fischetti and Monaci (2016), Guirguis et al. (2016), Baker
et al. (2019), and Brogna et al. (2020), the authors found al-
gorithms they either developed or coded themselves to per-
form the best. This is not to imply there was bias in the anal-
ysis. The problem formulation may have an impact on which
algorithms perform well, and applying a range of algorithms
well to the same problem requires a significant amount of
work and expertise, sometimes even requiring restructuring
the problem formulation. Two of the five studies discussed in
detail (Guirguis et al., 2016; Kunakote et al., 2022) only in-
vestigated heuristic and meta-heuristic algorithms. Gradient-
based algorithms have historically been discredited by re-
searchers for application to the wind farm layout optimiza-
tion (Herbert-Acero et al., 2014). All of the studies men-
tioned dealt with fairly simple wind farms in terms of size
and constraints, though Brogna et al. (2020) took a great step
toward realistic wind farm design by working with complex
terrain. None of the studies done to date compare optimiza-
tion algorithms on wind farm layout optimization problems
with multiple discrete boundary regions or concave bound-
aries, and only one drew on different researchers to run the
optimizations for each optimization algorithm.

The need for clear comparisons of optimization methods
as applied to more complex and realistic wind farm design
problems was part of the motivation for IEA Wind Task 37
to start a work package focused on collaborative case stud-
ies of wind farm design problems (IEA, 2021). The first set
of wind farm design case studies (case studies 1 and 2) un-
der this work package, and discussed previously, was pub-
lished in Baker et al. (2019). These first case studies were
designed to be introductory such that anyone could use them
to get started in the field of wind farm layout optimization.
The first two case studies were simple, mostly smaller, round
farms for which all methods were relatively easy to apply.
The second set of case studies, including case study 4 whose
results are presented in this paper, are based on the Borssele
III and IV wind farms. Among the additional complications
of these case studies are non-convex boundaries, discrete re-

gions rather than a single boundary, and more wind turbines
(81 wind turbines in case study 4). The original request for
submissions for case studies 3 and 4, and all accessory files,
can be found in Baker et al. (2021).

In this work we describe eight different wind farm layout
optimization methods and compare their performance using
a relatively complex optimization scenario (IEA 37 WP 3,
case study 4). While the original intent of the case studies
was to run a blind study, with participants separate from the
authors, the number of participants was fairly low, so the par-
ticipants agreed to work together as co-authors on this pa-
per. Each of the author-participants selected an optimization
method so that they could work with, and focus on, methods
in which they had the requisite experience and expertise. In
several cases the methods were applied, or their application
was directed, by the methods’ originators. Our objective is to
help the reader make a more informed optimization method
selection by clearly comparing the pros and cons of a range
of methods and presenting results from each method on a
shared wind farm layout optimization case study with reason-
able complexity and a provided objective function. We also
hope to provide a set of high-quality wind farm layout opti-
mization results to serve as benchmarks for other optimiza-
tion methods. In the remainder of this paper we present our
methods, including a description of the case to be optimized,
the wind farm simulation approach, and a detailed descrip-
tion of the eight optimization methods included. We then
provide results of the case study and optimization method
analysis. We conclude with a brief summary and discussion
of future work.

2 Methods

As mentioned in the Introduction, this paper describes eight
different strategies used to optimize the same wind farm lay-
out. The objective of this case study was to maximize the
annual energy production (AEP) of a wind farm, based on
the Borssele III and IV wind farms, by optimizing the place-
ment of 81 wind turbines. The turbines are 10 MW machines
with 198 m rotor diameters based on the IEA 10 MW refer-
ence wind turbine (Bortolotti et al., 2018). The wind farm
boundary for this case study was split into five discrete re-
gions, shown in Fig. 1. The presence of unconnected regions
in the wind farm boundary can be challenging when an algo-
rithm requires a continuous objective function or derivatives.
The wind turbines can be placed in any of the five regions
of the wind farm, but not between them, making the problem
inherently discontinuous and non-differentiable.

We used a simple Gaussian wake model based on Bas-
tankhah’s Gaussian wake model (Bastankhah and Porté-
Agel, 2016), and presented in the IEA case study 3 and 4
announcement documents (Baker et al., 2021), to calculate
wind speeds at each turbine in the wind farm.
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Figure 1. An overhead view of the wind farm used for the case
study, including the provided example wind farm layout. Numbers
in parentheses indicate region numbers. Wind turbine markers’ di-
ameters are the rotor diameters.
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where 1V is the velocity deficit, V∞ is the wind velocity
without wake losses, CT = 8/9 is the constant thrust coeffi-
cient, d = 198 is the rotor diameter, 1y is the distance from
the center of the wake to the point of interest perpendicular to
the wind direction, 1x is the distance from the turbine gen-
erating the wake to the point of interest in the wind direction,
and σy controls the width of the wake. The value of σy is
calculated as
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d
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where ky is a tuned variable based on turbulence intensity.
We used ky = 0.0324555 based on a turbulence intensity of
0.075 (Niayifar and Porté-Agel, 2016; Baker et al., 2021).
The individual wake calculations were combined using the
square-root-of-the-sum-of-the-squares method (Katic et al.,
1986).
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where NT is the number of wind turbines.
We chose AEP as the merit figure for the optimizations,

with AEP defined as
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where the power of each turbine k for each wind direction i
and speed j is represented by Pijk , the probability of a given
wind speed and wind direction combination is given by fij ,
and ND and NS represent the number of wind directions and
wind speeds, respectively. The objective function can then be
defined as

maximize AEP(xi,yi) i = 1. . .NT

subject to Sij ≥ 2d i,j = 1. . .NT i 6= j

[xi,yi] ∈� i = 1. . .NT, (5)

where Sij represents the spacing between turbine i and tur-
bine j , [xi,yi] is the location of each turbine, and � is the
set of all points in the defined boundary regions (see Fig. 1).

The objective function code was provided in the Python
programming language, but some authors chose to re-
implement the code in a different language. The wind re-
source, shown in Fig. 2, was divided into 360 different wind
direction bins, and the wind speeds were assumed to follow a
Weibull distribution, with 20 speed samples per wind direc-
tion. We increased the number of wind directions from the
wind rose given in the original case study documents to make
the problem more realistic. The wind speed probability dis-
tributions were unique in each direction. The complete wind
rose definition is available in the supplemental data reposi-
tory (see “Code and data availability” at the end of the pa-
per). A more complete description of the case study prompt
can be found in Baker et al. (2021).

We compared the results of the optimization algorithms
using a range of metrics in an attempt to capture some of
the trade-offs between the algorithms. The simplest compar-
ison was based on the objective merit figure, AEP. We also
compared the layouts using wake loss, a common metric that
indicates how much potential energy conversion was missed
due to wake effects. We calculated wake loss, Lw, as

Lw = 1−
AEP
AEP∗

, (6)

where AEP∗ represents the ideal AEP that would exist if all
of the wind turbines were exposed to the freestream wind.
Because most of the algorithms were run on different hard-
ware, we do not compare run time. However, to provide some
comparison of computational cost, we report the number of
function calls run during the optimization. There are many
trade-offs in the wind farm layout optimization problem that
cannot be captured in a measurable way. We have also pro-
vided pro and con lists to help the reader understand some of
the more qualitative comparisons of the algorithms.

Although the objective was the same for all, each partici-
pant in this case study approached the problem from a unique
perspective and with different methods. The rest of the Meth-
ods section includes brief explanations of the problem for-
mulations and optimization techniques that each participant
used to solve this wind farm layout optimization study.
The included methods are as follows: sparse nonlinear opti-
mizer with wake expansion continuation (SNOPT+WEC),
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Figure 2. The full wind resource used for evaluating the final wind farm layouts. (a) The wind direction probability (360 bins). (b) A
representative wind speed probability distribution (20 bins). The wind speed probability distributions were based on a Weibull distribution
and represent the probability of wind at each speed in a given wind direction.

discrete exploration-based optimization (DEBO), general-
ized pattern search (GPS), covariance matrix adaptation
evolutionary strategy (CMA-ES), genetic- and gradient-
based hybrid algorithm (GA-GB), add–remove–move greedy
(ADREMOG), pseudo-gradient optimization (PG), and the
discrete perturbation algorithm (DPA).

2.1 Sparse nonlinear optimizer with wake expansion
continuation (SNOPT+WEC)

Despite the inherently multimodal nature of the wind farm
layout optimization problem, gradient-based methods have
been shown to provide excellent results (Fleming et al., 2015;
Guirguis et al., 2016; Gebraad et al., 2017; Baker et al., 2019;
Thomas et al., 2017, 2019, 2022a). One such method, partic-
ularly developed to overcome the local optima problem in
the wind farm layout optimization problem, is called wake
expansion continuation, or WEC (Thomas et al., 2022a).
Because WEC is a higher-level process rather than a com-
plete optimization algorithm, it relies on other optimization
algorithms to function. We used the sparse nonlinear opti-
mizer (SNOPT) because it is designed for nonlinear prob-
lems with many design variables and constraints (Gill et al.,
2005). We will refer to this complete optimization method as
SNOPT+WEC.

WEC was originally proposed by Thomas and Ning
(2018), was refined and further tested by Thomas et al.
(2022a), and has been shown by Baker et al. (2019) to per-
form well as compared with other approaches. WEC is a
continuation method that requires a series of optimizations,
similar to Gaussian continuation optimization as discussed
by Mobahi and Fisher (2015). The WEC method makes use
of the inherently Gaussian shape of the wake cross sections,
as modeled using simple wake models like the one in this
study. If the widths of the many Gaussian curves represent-

ing the wakes behind each turbine in each direction are in-
creased while keeping the wake deficit (peak of the Gaussian
curve) the same, the curves will combine in such a way that
the Gaussian curves with lower peaks will essentially disap-
pear, causing a smoothing effect on the overall design space
that reduces the number of local optima. For WEC to work,
a small adjustment must be made to the wake model that al-
lows the user to manipulate the width of the wake cross sec-
tion without directly impacting the wake deficit in the center
of the wake. To use WEC with the wake model in this study
we added a single coefficient, ξ , to the denominator of the
exponential term of Eq. (1) as follows:
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[
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8σ 2
y /d

2
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exp
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ξσy

]2
)
, if 1x > 0

0, otherwise.
(7)

Values of ξ greater than unity provide a smoothing effect,
which removes some local optima; when ξ equals unity, it no
longer impacts the model. The first optimization uses a high
value of ξ , and then ξ is decreased for each optimization in
the series until ξ gets to 1. We used the values of ξ suggested
by Thomas et al. (2022a) for our WEC series: 3.0, 2.6, 2.2,
1.8, 1.4, and 1.0. An example using a simple wind farm to
demonstrate the impact of WEC on the design space is shown
in Fig. 3. With fewer local optima, the gradient-based opti-
mization algorithm is free to progress toward better layouts
without getting stuck.

We implemented a completely continuous and gradient-
based version of the optimization problem. The model was
developed and optimized in the Julia language (Bezanson
et al., 2017), using algorithmic differentiation provided by
the ForwardDiff.jl package (Revels et al., 2016) to calculate
the derivatives. We set up and ran the optimization prob-
lem using SNOW.jl (https://github.com/byuflowlab/SNOW.
jl, Ning, 2021). We scaled all partial derivatives to be±1 with
the exception of the boundary constraint derivatives, which
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Figure 3. The local optimum between the wakes disappears as the WEC factor increases. (a) Simple wind farm with three turbines, seen
from above. Wind is from the top. Shaded regions represent the wakes but are not drawn according to any wake model. (b) The AEP for the
wind farm in (a) as calculated using the provided simple Gaussian model with different values of the WEC factor, ξ , while moving the most
downstream turbine in (a) across the wakes of the other two turbines.

we scaled to be between ±1× 10−4 to reduce the impact of
the boundary on the turbine locations while still ensuring that
the boundary constraints were met.

To determine how many turbines should be placed in each
region, we used an initial boundary made of the convex
hull of the provided boundaries to encourage even turbine
distribution in the design space (see Fig. 4a). We used a
higher WEC factor value for this initial sub-optimization to
encourage rapid turbine distribution in the farm area. Fol-
lowing the optimization with the convex hull, we ran an
optimization using an approximation of the concave hull
to push turbines closer to feasible points (see Fig. 4b).
The concave hull approximation used the following bound-
ary points: (9361.5, 126.9), (10 363.8, 6,490.3), (6054.7,
8925.3), (7048.3, 9531.5), (8953.7, 11 901.5), and (107.4,
9100.0). At the completion of the optimization using the
concave hull, turbines were assigned to their nearest region.
Turbine-to-region assignments were kept constant for the rest
of the sub-optimizations in the series. We used a relatively
coarse wind rose discretization with the average wind speed
in each of 100 directions for the initial sub-optimizations and
WEC series. Once the WEC optimization series was com-
plete, we ran a final optimization with the full wind rose
(360 wind directions with 20 wind speeds in each direction
as shown in Fig. 2) and ξ = 1. The sub-optimization step pur-
pose, boundary, WEC factor values, convergence tolerance,
and wind rose discretization for each sub-optimization in the
series are shown in Table 1.

Boundary and turbine spacing constraints were enforced
using inequality constraints. The sign of the boundary con-
straint for each turbine represents whether the turbine is in-
side (negative) or outside (positive) of its assigned region.

The sign is determined with a ray-casting algorithm based
on the Jordan curve theorem (Press et al., 2007). For each
turbine, a vertical ray is drawn and the number of intersec-
tions with its region’s boundaries is counted. If the number
of intersections is odd, then the turbine is within the bound-
ary; if it is even, then the turbine is outside the boundary. The
magnitude of a turbine’s constraint value is equal to the dis-
tance from the turbine to the nearest point on the boundary
of its assigned region. Thus, the larger the constraint value
for a turbine is, the farther away from a feasible region it
is. In order for this constraint method to be compatible with
gradient-based optimization, it must be differentiable at ev-
ery possible turbine location. To accomplish this, we used
a soft-max function (instead of a traditional max and min
function) when determining the magnitude of the constraint
value.

We used the provided layout as a starting point and gen-
erated additional starting layouts loosely based on the ap-
proach taken by Stanley and Ning (2019). We evenly dis-
tributed about 45 % of the turbines on the boundary of the
convex hull. Next we placed a regular grid of turbines with a
row and column spacing of 4.25 rotor diameters in the farm
centered inside the convex hull and rotated to a random angle
between 0 and π/4 radians. Finally, we randomly removed
turbines from the grid until there were only 81 wind turbines
in the farm.

Some of the pros and cons of the SNOPT+WEC method
are given in the following lists. Similar lists are provided for
each algorithm. These lists are intended to help the reader un-
derstand why they may or may not want to use each method,
but the lists are not exhaustive.
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Figure 4. The convex and concave hulls used for the SNOPT+WEC method. (a) The convex hull as used in sub-optimization step 1. (b) The
concave hull as used in sub-optimization step 2. The labels apply to both (a) and (b).

Table 1. Description of each sub-optimization for the SNOPT+WEC method.

Sub-optimization

1 2 3 4 5 6 7 8 9

Purpose Distribute Allocate WEC WEC WEC WEC WEC WEC Refine
Boundary type Convex Concave Discrete Discrete Discrete Discrete Discrete Discrete Discrete
WEC factor 5.0 3.0 3.0 2.6 2.2 1.8 1.4 1.0 1.0
Tolerance 4× 10−5 4× 10−5 4× 10−5 4× 10−5 4× 10−5 4× 10−5 4× 10−5 4× 10−5 2× 10−5

Wind rose Reduced Reduced Reduced Reduced Reduced Reduced Reduced Reduced Full

Pros 1. WEC allows local-search algorithms to move out
of some local optima to achieve more globally opti-
mal results than standard gradient-based optimiza-
tion.

2. WEC+SNOPT is scalable to large problems (es-
pecially when using exact derivatives).

3. WEC+SNOPT is easily globalized through multi-
start to improve search breadth and further avoid
local minima.

4. WEC+SNOPT requires relatively few function
calls for optimization.

5. WEC+SNOPT is free-form (no grid or other pa-
rameterization required).

6. Open-source software is available with WEC al-
ready implemented in the wake models.

7. WEC can be used with other optimization algo-
rithms besides SNOPT.

8. SNOPT works with linear and nonlinear functions
and constraints.

9. SNOPT has fast execution due to being in Fortran,
with wrappers in Python and Julia for easy inter-
face.

Cons 1. WEC is invasive (requires simple edits to the
wake model and its interface).

2. WEC requires domain knowledge and testing due
to possible negative interactions with some simula-
tion models.

3. SNOPT is limited to local search, even though
WEC helps make it more global, so a multi-start
approach is recommended.

4. SNOPT is best used with exact derivatives, which
can be challenging to obtain.

5. SNOPT requires a license.

6. Gradient-based optimization requires some exper-
tise due to sensitivity to derivative scaling, starting
points, parameters, constraint formulation, function
smoothness, etc.

2.2 Discrete exploration-based optimization (DEBO)

Discrete exploration-based optimization (DEBO) is a new
algorithm developed specifically for this case study. DEBO
aims to overcome two of the major difficulties of wind farm
layout optimization. First, the 2D domain where turbines can
be placed,� ∈ R2, consists of unconnected regions. This fea-
ture makes the overall layout optimization problem both con-
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tinuous and discontinuous. The problem is discontinuous be-
cause the optimization algorithm has to find the best way to
divide the turbines among the different regions of �. The
problem also has continuous characteristics because once the
turbine division is made, the turbines may be placed contin-
uously within their respective regions to optimize the AEP.
Second, some of the regions are not convex, and the func-
tion to be minimized has many local optima throughout the
search space. This last feature suggests that we should not
rely solely on local methods because local methods alone
may converge to poor local optima. Taking into account the
combination of discontinuous and continuous characteristics,
as well as the large number of local optima present in the
wind farm layout optimization problem, we have developed
a purely discrete exploration-based algorithm (DEBO) that
includes both a greedy initialization procedure and a local-
search refinement process.

1. Greedy initialization. The greedy procedure sequen-
tially places the N turbines in an a priori defined do-
main where the wake losses can be minimized. This do-
main includes the boundaries of the different admissible
domain. When the right number of turbines has been
placed, the initialization stops.

2. Local search. The local-search method sequentially,
and in random order, places each turbine in its dis-
crete neighborhood until the AEP converges. The local-
search method is inspired by classical stochastic gradi-
ent methods (Wasan, 1969)1. A stochastic gradient step
consists of modifying only one randomly chosen co-
ordinate of the parameters while the other coordinates
are fixed. The DEBO method relies on the same prin-
ciple; one, and only one, randomly chosen turbine is
moved at each iteration. However, the DEBO method
differs from classical stochastic gradient methods since
DEBO is not gradient-based but relies on a discrete ex-
ploration region with a varying radius. The radius of the
discrete exploration method is reduced each time the
layout reaches a local minimum, i.e., when no discrete
turbine displacement can improve the AEP. The DEBO
method’s local-search part also differs from the random
search algorithm presented in Feng and Shen (2015). In
Feng and Shen (2015), each turbine is moved randomly
while it provides an increase in AEP, and then another
turbine is randomly selected and moved randomly. This
differs from DEBO because each turbine displacement
is not required to belong to a particular neighborhood.
Therefore, unlike the DEBO method, the random search
algorithm presented in Feng and Shen (2015) has no
guarantee to eventually stop. In addition, the presented
version of the DEBO algorithm is highly parallelizable.

1The stochastic gradient mentioned here is not the same as the
stochastic gradient used in the context of deep learning, although
these methods do have the same name.

2.2.1 Formulation of the problem

We first define the layout of a wind farm F to be a sequence
of turbine coordinates, (x,y), such that

F = 〈(x1,y1), . . ., (xNmax ,yNmax )〉, (8)

where Nmax is the maximal number of turbines to be placed
within the admissible domain �, and F (i)= (xi,yi). We
note that ⊕, the operation of concatenation between two se-
quences such as F , is defined as

〈(x1,y1)〉⊕ 〈(x2,y2)〉 = 〈(x1,y1), (x2,y2)〉. (9)

We next define the power production of farm F for wind
speed ws and wind direction wd as P(F ,ws,wd). The prob-
lem of interest, maximizing the expected power production
of the wind farm (EWind), can then be formulated as

max
F∈�Nmax

EWind{P(F ,ws,wd)}. (10)

The proposed algorithm relies on a discretization of � in
squares of dimension (dx,dy). The initial value of the meta-
parameters (dx,dy) are set by the user. Using these parame-
ters, we discretize the domain by defining Nx as

Nx =

⌊
�+x −�

−
x

dx

⌋
(11)

and Ny as

Ny =

⌊
�+y −�

−
y

dy

⌋
, (12)

where�+x ,�−x ,�+y , and�−y represent the maximal and min-
imal values of x and y, respectively, in �. Using this dis-
cretization, we can define the discrete set of admissible posi-
tions, A�, as

A� =
{
(nx,ny) ∈ [0, . . .,Nx]

×[0, . . .,Ny] s.t. (nxdx +�−x ,nydy +�
−
y ) ∈�

}
, (13)

where (nx,ny) represents a discrete point. To account for
the turbine spacing constraint, we use the definition of a
well-designed layout as shown in Definition 1.

Definition 1 (Well-designed layout). A layout F is dmin-
well-designed if all its turbines are at least at a distance
dmin apart from each other. Mathematically, a layout F is
dmin-well-designed if the following mapping, WD, returns a
true value, shown as >. A false value is represented by ⊥.

WD :�
Nmax ×R+ 7−→ {>,⊥}, (14)

WD(F ,dmin)=
{
> ;∀i 6= j‖F (i)−F (j )‖ ≥ dmin× d
⊥ otherwise. (15)
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Using Definition 1 and Eqs. (11), (12), and (13), we are
able to state the combinatorial optimization problem as
shown in Problem 1.

Problem 1 (Discrete problem). The discrete exploration-
based optimization problem finds the 2Nmax variables
{nix, i = 0, . . .,Nmax− 1} {niy, i = 0, . . .,Nmax− 1} corre-
sponding to the locations of the Nmax turbines we want to
place. This means solving the following problem:

max
nix ,n

i
y

EWind {P(F ,ws,wd)} , (16)

such that

F =
Nmax
⊕
i=1
〈(nixdx +�

−
x ,n

i
ydy +�

−
y )〉 s.t. (nix,n

i
y) ∈ A�;

∀i = 1, . . .,Nmax (17)

and

WD(F ,dmin)⇒>. (18)

We are now ready to present the general method to com-
pute an optimal layout using DEBO.

2.2.2 Presentation of the greedy part of the algorithm

The greedy part of the algorithm sequentially places the
turbines in the admissible domain. To present the algorithm
we introduce the definition of the interior border of the
discrete admissible domain in Definition 2.

Definition 2 (Border). We represent the interior border
of the admissible domain as ∂A�. A discrete point (nx,ny)
of A� belongs to ∂A� if it is in A� and at least one
of its neighbors is not. First, let us define the discrete
neighborhood DN(nx,ny) of (nx,ny):

DN(nx ,ny )=
{
(nx +px ,ny +py ) s.t. px ,py ∈ {−1,0,1}

}
. (19)

Using this definition of discrete neighborhood DN(nx,ny) of
(nx,ny), we can define A� as the interior border of the ad-
missible domain:

∂A� =
{
(nx,ny) ∈ A� s.t. DN(nx,ny) 6⊂ A�

}
. (20)

The greedy algorithm uses two sets.

1. First is a set of all the possible locations, L�, where a
turbine can be placed. Therefore, at the beginning of the
algorithm this set is equal to A�.

2. Second is a set of all potential locations, P�, where the
next turbine can be placed. This set is a subset of L�.

The algorithm consists of initializing P� to ∂A�, placing the
first turbine in the upper right side of the admissible domain,
and repeating the following procedure:

1. updating the set L� by removing the points located at a
distance inferior to dmin of the already placed turbines;

2. updating the set P� by removing its elements not in L�
(i.e., the points located too close to the placed turbines)
and by adding to this set all the points in L� located at a
distance between dmin and the maximal turbine distance
(dmax) of the last placed turbine;

3. placing a turbine in P� maximizing the AEP of the wind
farm;

4. starting over until N =Nmax or until P� is empty: in
the latter case, the algorithm failed to place the required
number of turbines, and therefore, the algorithm starts
over and this time P� is initialized as an empty set.

The complete greedy placement algorithm is presented in Al-
gorithm 1, where card(F ) is the current number of turbines
in F .

2.2.3 Discrete local-search exploration

The discrete local-search method starts from the layout
obtained after the greedy algorithm. The greedy algorithm
provided a reasonably good layout based on a not-so-coarse
discretization of the domain, allowing the computations
to be numerically tractable. The local-search part of the
algorithm aims at getting closer to a continuous approach
while keeping the discrete part of the algorithm tractable. To
describe the local-search method, we define a neighborhood
as in Definition 3. This neighborhood divides a square of
length L centered at (x,y) into 4n2

s squares of size L/(2ns)
located in the admissible domain �.

Definition 3 (Neighborhood). We note that N (x,y;L,ns) is
the neighborhood of the point coordinate (x,y) defined as
follows:

N (x,y;L,ns)=
{(
x+

(
i

ns
− 1

)
L

2
,y+

(
j

ns
− 1

)
L

2

)
∀i,j ∈ [[0, . . .,2ns]]

}⋂
�. (21)

We are now ready to describe the principle of the local-
search algorithm. The local-search method randomly moves
each turbine in its discrete neighborhood in order to maxi-
mize AEP. The local displacements of the turbines are com-
puted until convergence; that is to say, each turbine is located
at the best possible spot of its discrete neighborhood. When
convergence is reached, the length L of the neighborhood is
decreased and we start the next set of sequential turbine dis-
placements. The algorithm stops when L is small enough.
The complete description of the local-search algorithm is
given in Algorithm 2.

At this point, it is important to emphasize that this local-
search algorithm always converges. Indeed, for a given L,
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Algorithm 1 GreedyInitialization(dmin,dmax,A�,dx,dy).

border_init←> ; global_convergence←⊥
while ¬ global_convergence do

F ← 〈, 〉;
*- Initialization of the admissible positions set -*
L�← A�
*- Initialization of the potential locations set -*
if border_init then
P�← ∂A�

else
P�←∅

end if
*- First Turbine Placement -*
(nx ,ny )← argmax(sx ,sy )∈L�sx + sy

F ← F ⊕
〈
(nxdx +�−x ,nydy +�

−
y )
〉

*- Update the set of admissible locations -*

C(nx ,ny )←
{

(sx , sy ) ∈ L� s.t.
√

((sx − nx )dx )2+ ((sy − ny )dy )2 < dmin× d

}
L�← L�rC(nx ,ny )
*- Update the set of potential locations -*

V (nx ,ny )←
{

(sx , sy ) ∈ L� s.t.
√

((sx − nx )dx )2+ ((sy − ny )dy )2 ∈ [dmin× d;dmax× d]

}
P�← V (nx ,ny )∪ (P� ∩L�)
while (card(F )<Nmax)∧ (P� 6=∅) do

*- Compute best location in P� -*
(nx ,ny )← argmax(sx ,sy )∈P�EWind

{
P(F ⊕

〈
(sxdx +�−x , sydy +�

−
y )
〉
,wd,wd)

}
F ← F ⊕

〈
(nxdx +�−x ,nydy +�

−
y )
〉

C(nx ,ny )←
{

(sx , sy ) ∈ L� s.t.
√

((sx − nx )dx )2+ ((sy − ny )dy )2 < dmin× d

}
L�← L�rC(nx ,ny )

V (nx ,ny )←
{

(sx , sy ) ∈ L� s.t.
√

((sx − nx )dx )2+ ((sy − ny )dy )2 ∈ [dmin× d;dmax× d]

}
P�← V (nx ,ny )∪ (P� ∩L�)

end while
if card(F )=Nmax then

global_convergence←>
else

border_init←⊥
end if

end while
return F

any turbine initially placed at p0 can only be moved to a po-
sition in the set {p0+(iL/(2ns),jL/(2ns)), (i,j ) ∈ Z2

}∩�.
The admissible domain � being bounded, this set contains a
finite number of elements. Therefore, for a given L, the set
of all possible layouts is also a finite set corresponding to
the Cartesian product of Nmax finite sets. Moreover, a tur-
bine displacement is performed only if the resulting AEP is
strictly greater than the current one. Therefore, in the worst
case, the algorithm will test all possible layouts by always
finding a turbine to move that increases the AEP. However,
because this set is finite the algorithm will eventually stop. In
practice, convergence is met in a few iterations.

2.2.4 Complete algorithm applied

The complete algorithm consists of using the greedy part to
find a first reasonably good layout and then using the local-
search algorithm with the output of the greedy algorithm as
the initial layout. The complete DEBO algorithm as used in
the presented case study is given in Algorithm 3. Visualiza-
tions of each part of the DEBO algorithm are provided in
Fig. 5.

Some pros and cons of DEBO are as follows.

Pros 1. No gradients are required (i.e., wake model can be
considered as a black box).
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Figure 5. Visualization of the two phases of the DEBO algorithm. (a) An iteration of the greedy part of the DEBO algorithm. Potential
locations are candidates for the next turbine’s location. (b) Part of an iteration of the local-search portion of the DEBO algorithm for refining
the position of one turbine. Potential locations are the discrete neighborhood of the turbine to be moved. Labels in (a) also apply to (b).
Turbine markers are to scale with diameter equal to the turbine rotor diameter.

Algorithm 2 LocalSearch(L,Lmin,ns,F ,ρ).

while L > Lmin do
convergence←⊥
while ¬ convergence do

F ref← F

aep∗← EWind {P(F ,ws,wd)}
random_indices← shuffle([[0, . . .,Nmax[[)
for k ∈ random_indices do

F new← F

(x,y)← F(k)
for (xn,yn) ∈N (x,y;L,ns) do

F new(k)← (xn,yn)
if WD(F new,dmin) then

aep← EWind {P(F new,ws,wd)}
if aep > aep∗ then

F ← F new
aep∗← aep

end if
end if

end for
end for
convergence← F = F ref

end while
L← ρL

end while
return F

2. It can handle unconnected and non-convex bound-
ary constraints.

3. There is no strong dependence on the initialization,
so it can be run just once. The exploration proce-
dure is random enough to efficiently explore the
search space.

4. It is easy to parallelize.

Algorithm 3 Layout optimization algorithm.

d← 198
dmin← 2d
dmax← 5d
dx← 100
dy← 100
L← 1,000
Lmin← 5
ns← 6
ρ← 0.75
Compute A�
F ← GreedyInitialization(dmin,dmax,A�,dx ,dy )
F ← LocalSearch(L,Lmin,ns,F ,ρ)
return F

5. Parameterization is quite simple and does not re-
quire much optimization theory knowledge.

Cons 1. It requires fast AEP computation due to the high
number of AEP evaluations.

2. It is a new method, made specifically for layout op-
timization, so there is little known about its general
performance.

3. There is no documentation yet outside of this work.

2.3 Generalized pattern search (GPS)

Generalized pattern search (GPS) is a common gradient-
free deterministic optimization algorithm. Versions of this
algorithm are typically found within commercial wind farm
software, but the results generated here are based on MAT-
LAB’s pattern search (part of the Global Optimization tool-
box; MathWorks, 2020), which is one implementation of the
GPS method.
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The GPS algorithm moves each of the NT turbines indi-
vidually based on a set of pattern vectors that represent unity
vectors for each of the 2NT dimensions of the search space.
The step size is changed iteratively throughout the optimiza-
tion. Initially, larger step sizes are tested. Step sizes are de-
creased later in the optimization, resulting in minimal turbine
movements at the end.

The site boundaries and minimum turbine spacing require-
ments are implemented using a combination of linear and
nonlinear equality and inequality constraint formulations and
a pre-made binary (0 for feasible, 1 for infeasible) penalty
grid with a resolution of 5 m. This allows the turbines to
move between the discrete boundary regions but results in
a strong enforcement of all constraints right from the start of
the optimization. The binary constraint approach can be more
practical and faster than other methods (e.g., a ray-casting
algorithm) when the site has a complicated (i.e., many ver-
tices in the boundary), non-convex shape or many small ex-
clusion zones (which may result from unexploded ordinance
and other sources). In each iteration, a penalty value is inter-
polated for each turbine location. The sum of the penalties is
used as an equality constraint (i.e., the sum should be equal
to zero to indicate a feasible layout). In addition, if the sum is
not zero, a fixed energy yield penalty of 50 % of the average
production of a single turbine is applied to assure that infea-
sible layouts are also characterized by a poor performance.

The initial layout used for the optimization is a man-
ual adaptation of the baseline layout, where more turbines
are moved to the boundaries to increase the number of tur-
bines with freestream conditions given the site-specific wind
rose. Such “perimeter” style layouts are generally expected
to yield a higher energy production for single wind farms
and reflect common practices in wind farm layout design.

Some pros and cons of GPS are as follows.

Pros 1. It is a simple algorithm that is well documented
and quickly implemented.

2. No gradients are required (i.e., wake model can be
considered as a black box).

3. There is no need to modify the wake model imple-
mentation.

4. It can handle multi-parcel net areas with non-
convex site boundaries where turbines can move
between discrete regions throughout the optimiza-
tion.

5. Internal separation of objective and nonlinear
penalty function evaluations reduces the number of
objective function calls.

Cons 1. The MATLAB implementation used here requires
a license (including an additional license to use par-
allel features).

2. Some experience in wind farm layout design is re-
quired to provide a good initial layout to ensure al-
gorithm performance.

3. Lower performance is expected when starting from
a random initial layout given the simple but hard
penalty implementation used here.

2.4 Covariance matrix adaptation evolutionary strategy
(CMA-ES)

The covariance matrix adaptation evolutionary strategy
(CMA-ES) implementation discussed in this paper is based
on the publicly available pyCMA library (Hansen et al.,
2019). CMA-ES is a gradient-free stochastic optimization al-
gorithm that works by adaptively increasing or decreasing
the search space for the next generation, changing the means
and standard deviations of a multivariate normal distribu-
tion (the covariance matrix) where new solutions (layouts)
are sampled (Ha, 2017). Pairwise dependencies between the
variables in the distribution are represented by the covariance
matrix.

The problem is formulated as the maximization of a fitness
function that results from subtracting penalties from the net
annual energy yield. The penalties are directly proportional
to the sum of the distances between wind turbines and their
closest feasible point (observing the minimum inter-turbine
spacing and being within the boundaries of a parcel). An-
alytical functions are used to calculate the distances to the
closest feasible point for both constraints. Furthermore, each
penalty value is multiplied by a dynamic scaling factor that
is a function of the iteration number. The scaling factors re-
semble logistic functions of time. These functions enable the
constraints to be slowly enforced. The algorithm is then free
at the beginning to explore infeasible solutions to maximize
AEP and converge toward feasible solutions afterward. This
formulation enables the algorithm to find the best distribu-
tion of turbines among the different site parcels and minimize
wake effects simultaneously.

Some pros and cons of CMA-ES are as follows.

Pros 1. It is available in an open-source library.

1. It is an easy-to-use API to configure and customize
the optimization algorithm.

2. No gradients are required.

3. It is easy to parallelize, as multiple solutions are
evaluated in every iteration.

4. It has a good design space exploration ability, likely
to get close to global optimum.

5. It can handle complex multi-region non-convex site
boundaries.

6. All runs from random initial layouts converge to
layouts with similar AEPs (i.e., consistently finds
comparably optimal layouts).

7. Population size is independent of problem size
(number of design variables).
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8. Fitness function acts as a black box with inputs and
outputs.

Cons 1. Nonlinear constraints have to be handled with
penalty functions.

2. There are no guidelines to scale penalty functions
against energy yield.

3. Requires many (≈ 104) function evaluations (or rel-
atively fast fitness functions).

2.5 Genetic- and gradient-based hybrid algorithm
(GA-GB)

For the genetic- and gradient-based hybrid algorithm (GA-
GB), the optimization problem was formulated using a se-
quential hybrid approach implemented in Python. This hy-
brid approach uses both a gradient-free genetic algorithm
and a gradient-based sequential quadratic programming al-
gorithm, as shown in Fig. 6. This figure shows the optimizers
in rounded blue boxes, which feed and receive the data shown
in off-diagonal gray boxes to the analysis components in the
on-diagonal green boxes.

We first use a genetic algorithm (GA) implemented in
OpenMDAO (Gray et al., 2019) to find the best initial lay-
outs. The number of turbines in each region is a design vari-
able exposed to the GA (i.e., in this case there are five de-
sign variables controlled by the GA). Then, a placement al-
gorithm is used, which places most of the turbines for that
region equidistantly along its border, with the remainder of
the turbines inside the region, offset from the boundary. After
200 GA iterations with a population size of 30, we take the 20
turbine layouts with the highest AEP values and use each one
of those layouts as the starting point for individual gradient-
based optimizations. We use the SNOPT (Gill et al., 2002)
optimization algorithm wrapped in pyOptSparse (Wu et al.,
2020) to locally maximize AEP while controlling the turbine
locations subject to boundary and spatial constraints, though
any gradient-based optimizer can be used. Derivatives were
obtained using finite differences. The resulting layout with
the highest AEP value from these local optimizations is taken
as the globally optimal layout.

A conventional gradient-based optimizer would have trou-
ble exploring the discontinuous and multimodal design space
created by the multiple discrete regions. This hybrid ap-
proach solves that issue by resolving those discontinuities
using the GA. Smoothing the local design space and imple-
menting analytic derivatives could greatly reduce the com-
putational cost, but this increases developer time cost. Users
of this method can choose to spend additional computational
expense to fine-tune results at the local optimization level or
they can explore the global design space more by increasing
the number of iterations taken by the gradient-free method.

Some pros and cons of GA-GB are as follows.

Pros 1. GA-GB requires no modifications to the wake or
farm calculations.

2. Users can customize how much computation time
to use on both the gradient-free and gradient-based
processes.

3. The method makes no assumptions about the num-
ber of parcels or turbines.

4. GA-GB fully separates the discrete and continuous
problems to remove optimizer complexity required
for mixed-integer problems.

5. The method can run on a personal computer and
does not require supercomputing resources.

6. GA-GB is agnostic of the wake modeling type used
in that it does not require modification or knowl-
edge of the wake model.

7. Arbitrary linear and nonlinear constraints can be
handled by the gradient-based optimization pro-
cess.

8. Both the gradient-free and separate instances of the
gradient-based processes are embarrassingly paral-
lelizable.

Cons 1. The method does not directly take advantage of
any physical relationships of the wakes, wind di-
rections, or parcel orientation.

2. Reaching multiple locally optimal layouts is
straightforward using GA-GB, but finding the
global optimum is not guaranteed.

3. The sequential nature of the hybrid optimization ap-
proach means we cannot realize gains found by si-
multaneously changing the number of turbines in
the regions and moving the turbine layout.

4. SNOPT is best used with exact derivatives, which
can be challenging to obtain.

5. SNOPT requires a license.

2.6 Add–remove–move greedy (ADREMOG)

Add–remove–move greedy (ADREMOG) is a discrete,
heuristic greedy approach to wind farm layout optimiza-
tion (Tilli, 2019). It makes use of a surrogate model, the
pre-averaged model (PAM), to qualitatively assess the AEP,
thereby speeding up optimization algorithms.

The PAM is a function that represents the expected power
loss due to the wake of a turbine at given points in its sur-
roundings. Figure 7 shows the PAM used in this case study.
To derive the expected power loss at some point, we assume
that a fictitious turbine is placed at the point. The fictitious
turbine then experiences a wake loss due to the presence of
another turbine at the center of PAM. PAM computes the ex-
pected loss of the target turbine by averaging over the wind
resource. This approach can be used to estimate the quality
of a layout in terms of energy yield. First, the expected power
loss of each turbine in a given layout is obtained by summing
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Figure 6. Extended design structure matrix (Lambe and Martins, 2012) for the GA-GB optimization problem.

Figure 7. Representation of the PAM calculated using the case
study inputs. In this figure, D represents the rotor diameter.

up the individual contribution of the surrounding turbines.
Next, the total AEP estimate is calculated by removing the
energy loss of all the turbines from the theoretical energy
production in the absence of wakes.

The correlation between the AEP calculated by the PAM
and by the traditional assessment methods is not exact. The
PAM relies on the superposition of power losses, whereas tra-
ditional methods rely on the superposition of wake deficits.
Nevertheless, the PAM is suitable for assessing relative AEP
differences between layouts. Furthermore, the PAM allows
us to run wake simulations and average the turbines’ power
output over the wind rose only once during the whole op-
timization procedure. Using the PAM, we can model wake-
mixing effects by superposition of the power losses, which
opens up the possibility of precomputing expected power

losses among turbines. We can then use that information to
generate layouts.

To precompute wake losses, we first create a finite set of
possible positions within the wind farm boundaries. After-
ward, we generate the PAM on a coarse polar grid. PAM is
then centered in each possible position to obtain by interpo-
lation the expected wake loss at the other spots.

To generate layouts, we feed ADREMOG with the pre-
computed power losses. The optimization procedure begins
with a constructive stage. During this phase, ADREMOG
iteratively adds a turbine to the layout where the loss as-
sociated with that added turbine is minimized. This stage
starts by randomly placing the first turbine in one of the
possible spots, and it terminates when the desired number
of turbines is reached. The constructive stage is followed
by the readjustment stage, where each turbine is removed
from the layout and moved to a greedier position if it exists.
ADREMOG terminates when a stable layout is reached.

ADREMOG solves an unconstrained optimization prob-
lem. The possible positions are selected before ADREMOG
is launched, which ensures that all the turbines are enclosed
within the wind farm boundaries. Also, compliance with
proximity constraints is guaranteed by a static penalty. In par-
ticular, if a turbine does not respect the minimum distance, its
expected power loss is replaced with an infinite loss. This en-
sures that ADREMOG selects a feasible spot when changing
the layout.

As the placement of the first turbine impacts the quality
of the final layout, multiple initial positions are investigated,
which results in the creation of different layouts. The number
of initial placements tested is chosen empirically. Because
the AEP estimate from the PAM is only an approximation,
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each layout created is assessed with the traditional AEP cal-
culation method to determine the best one found.

Some pros and cons of ADREMOG are as follows.

Pros 1. Combining PAM with ADREMOG results in a fast
algorithm that allows

1. exhaustive multi-start if desired,
2. rapid preliminary layout generation, and
3. cheap preprocessing.

2. PAM can be combined with optimization methods
other than ADREMOG to speed them up.

3. ADREMOG is easy to implement; it is simple.

4. ADREMOG greedily selects the best position for
turbines irrespective of the wind farm region.
Therefore, it is particularly suitable for distributing
the turbines among disconnected boundary regions.

Cons 1. ADREMOG gets trapped easily in local optima.
Therefore, a multi-start approach is suggested.

2. PAM is a surrogate model. Therefore, final layouts
need to be evaluated with a standard AEP calcula-
tion method to determine their actual wake energy
loss.

3. ADREMOG does not fully reach local optima due
to the use of a surrogate model and space dis-
cretization. Nevertheless, improvements obtained
when postprocessing the final layouts with pseudo-
gradients (see Sect. 3.7) are minimal, suggesting
that ADREMOG gets close.

4. ADREMOG is too time-demanding if not em-
ployed in combination with PAM.

2.7 Pseudo-gradient optimization (PG)

The pseudo-gradient (PG) optimization method is a heuristic
technique for continuous optimization. The technique is de-
scribed in detail by Quaeghebeur et al. (2021). Essentially,
quantities similar to gradients are calculated from the ba-
sic quantities that need to be calculated for AEP calculations
anyway, such as velocity deficits for a given wind direction
and wind speed. These are then used as gradients would be,
in a gradient-following-style approach.

The concept of pseudo-gradients is illustrated in Figs. 8
and 9. Figure 8 shows four types of pseudo-gradients for a
simple case with a single wind direction and a disc-shaped
site. Note their mostly parallel or perpendicular orientation
relative to the wind direction. The first three types of pseudo-
gradients try to reduce wake effects by moving waking and
waked turbines away from each other, whereas the last type
tries to reduce wake effects by moving turbines perpendicu-
lar to wind directions to get turbines outside of the wake(s)
impacting them. Figure 9 shows the same four types of
pseudo-gradients but now for a nontrivial wind rose. These

are obtained by averaging the pseudo-gradients over all wind
speeds and directions.

The algorithm needs to start from an existing, initial lay-
out. We have tested two approaches for determining an initial
layout. The first, based on a hexagonal grid, is described be-
low. The second uses the ADREMOG algorithm described in
Sect. 2.6. The hexagonal-grid approach generates a hexago-
nal grid of turbines, with inter-turbine spacing maximized
while fitting the number of turbines required in the site. The
orientation and offset of the grid was determined by random
sampling. From experience, it became clear that a sufficient
number of turbines on the border is necessary to obtain a
well-optimized layout. Therefore, the site was enlarged when
determining the inter-turbine spacing. The turbines that fell
outside of the actual site boundaries were moved to the clos-
est point on the boundary. Any turbine distance constraint
violations were then fixed by moving affected turbines away
from each other. The site enlargement factor is an algorithm
parameter, which can be used to influence the proportion of
boundary vs. site-internal turbines.

The PG optimization itself tests three pseudo-gradient
types and two step sizes (“smaller” and “larger”) concur-
rently. All are evaluated and the one with the lowest wake
loss percentage (highest AEP) is selected to be used in the
next iteration. If the “smaller” (“larger”) step size is cho-
sen, the step size will be scaled down (up) for the next it-
eration. This scaling introduces an adaptive element to the
algorithm that aids convergence. The initial step size multi-
plier and scaling factors are parameters of the algorithm.

It is possible that the wake loss percentage increases in this
setup if the layout resulting from all three layouts is worse
than the layout the update step is applied to. Therefore, the
best layout encountered over the optimization run is chosen.
There are two stopping criteria.

1. A maximum number of iterations can be set.

2. The wake loss percentage of the currently selected lay-
out cannot exceed the best value encountered by a cer-
tain factor. This factor decreases with the number of it-
erations, making the criterion stricter over time.

Some pros and cons of PG are as follows.

Pros 1. On a per-run basis, the presented approach is com-
putationally efficient relative to gradient-based ap-
proaches (no need to calculate analytical or numer-
ical gradients) or meta-heuristic-based approaches
(only a single or a few solutions are tracked every
iteration). This efficiency creates specific possibili-
ties.

1. Use a shotgun approach to optimization: apply
the algorithm for a relatively huge number of
starting layouts.

2. Use it when studying the impact of other con-
siderations such as robustness studies, which
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Figure 8. Pseudo-gradient vectors associated with a single wind direction for the IEA Wind Task 37 case study 1 initial layout. (Reproduced
from Quaeghebeur et al., 2021, which contains further details.)

Figure 9. Pseudo-gradient vectors for the IEA Wind Task 37 case study 1 initial layout and wind rose. (Reproduced from Quaeghebeur et al.,
2021, which contains further details.)

typically require a large number of repeated op-
timization runs.

3. Use it as a cheap pre- or postprocessor for other
optimization approaches.

4. Use it for interactive human-in-the-loop design.

2. It does not require discretization of the design
space.

3. Its simplest variant can be used for any wake model
(including computational fluid dynamics models),
and the other variants can be used whenever wake
effects can be attributed to individual waking tur-
bines (such as with typical engineering wake mod-
els).

4. The concept behind it is flexible in the following
ways.

1. The steps moving turbines used in the pseudo-
gradient-based approach can also be used as
steps in meta-heuristic approaches, replacing
the typically more random steps used there.

2. Appropriate pseudo-gradients can be formu-
lated for other concerns and aspects, such as the
impact of bathymetry on substructure cost and
cable layout.

5. An open-source implementation exists with a
Python interface and efficient vectorized code.

Cons 1. The approach is prone to getting trapped in local
optima. Therefore, it is suggested to use a multi-
start approach or combine it with techniques such
as wake expansion continuation (e.g., Sect. 2.1).

2. The heuristic nature of the approach “throws away”
information available to true gradient-based ap-
proaches. Therefore we generally expect that, start-
ing from an identical starting layout, gradient-based
approaches will find better optimized layouts. (PG
optimization is capable of investigating more start-
ing layouts for equal computational cost.)

3. While the adaptive nature of the algorithm lessens
the need for semi-manual parameter tuning (initial
step size and step multipliers), the quality of the op-
timized layouts can be substantially affected by pa-
rameter selection.

2.8 Discrete perturbation algorithm (DPA)

The discrete perturbation algorithm (DPA) is a simple but
effective gradient-free optimization method used in industry.
The algorithm is based on a discretization of the design space
with turbine locations tested by both directed and random
perturbations from existing turbine locations. The algorithm
proceeds as follows.

1. Determine the smallest bounding rectangle that can con-
tain all possible locations of the turbines (i.e., a rectan-
gle containing the site boundary) and any wind resource
information.

2. Create a grid at a user-defined resolution, usually be-
tween 10 and 50 m.

3. Determine whether each point in the grid is a legal tur-
bine position (i.e., is it inside the site boundary and away
from houses, roads, etc. as specified in the geographic
information system layers). If the point is legal, add it
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to a 1D list of legal turbine positions for the current tur-
bine layout.

4. Using the wind resource information, order the list from
highest wind speed to lowest. This creates a continuous
1D sorted list of turbine positions for the optimizer to
work with rather than a 2D, fragmented, unsorted search
space. In the unlikely case that the wind resource is uni-
form across the wind farm, this sorting step will not do
anything. The purpose of sorting by wind resource is
merely to avoid turbines jumping to positions which are
significantly worse than their current position in terms
of free-stream wind minus wake effects.

5. Repeat steps 1 to 4 for each turbine layout so that there
is a sorted list of legal positions for each turbine layout.

6. Make sure the starting layout is legal. If it is not legal
then make a legal layout from scratch (one way is to
loop through the sorted list going from windiest to least
windy while respecting the various constraints listed in
step 8 – this means that the starting layout is already as
windy as it can be but needs to be spaced out to find the
optimal trade-off between wakes and resource).

7. Test starting layout (for energy including wakes and all
other losses) and keep a record of the net energy per
turbine.

8. Perturb the layout so that each turbine has a new legal
position that respects the geographic information sys-
tem constraints as well as noise, visual, shadow flicker,
and inter-turbine spacing constraints (circular, elliptical,
or sector-wise as defined by the user). Two types of per-
turbation are available.

1. The priority is to jump to a better location from
our sorted list of legal positions. However, we only
jump to places that are higher in the list or whose
wind speed is greater than the turbine’s current
waked wind speed plus some small tolerance (a dif-
ferent but similar heuristic is used for the levelized
cost of energy but from now on we will just talk
about energy optimization). We make a few dozen
attempts to jump to a new location, but if that is not
working out (due to spacing, noise, etc.), then we
try perturbation approach 8b.

2. Random perturbations of the order of the grid spac-
ing are used to sample legal positions. The aim of
this is to allow the turbines to fine-tune once they
find there are no big jumps to be made. However,
if a position opens up, there is no reason why this
turbine cannot go back to making big jumps. Some-
times there is another turbine already in the way for
this iteration. If a successful random perturbation
was made in the last step, then the same vector is

used for this one to allow momentum in moving to
a better location.

9. Test the perturbed layout. If the net energy is higher,
then accept the perturbed layout as the new starting lay-
out and go to step 8 (this almost never happens but can
happen right at the start of an optimization).

10. Look at the net energy results for each turbine. If the
net energy given by the perturbed position is lower, then
move this turbine back to its unperturbed position. If all
turbines get moved back, then go to step 8.

11. Test the layout again. It is possible that turbine 1 may
have only appeared to be doing better because turbine 2
had been perturbed to a worse location. With the return
of turbine 2, the last move of turbine 1 may no longer
be a good move.

12. Loop through steps 9 to 11 a maximum of three times
before giving up and going to step 8.

13. Repeat steps 8 to 11 for as long as patience or time al-
low; the algorithm has no good stopping condition and
tends to continue improving indefinitely.

Some pros and cons of DPA are as follows.

Pros 1. It is simple to use and implement.

2. It can be easily adapted to a wide range of con-
straints and objective functions.

3. It can be used with any wake model, given sufficient
resources.

Cons 1. It requires discretization of the design space.

2. There are no clear stopping criteria.

3. There is no publicly available implementation, doc-
umentation, or publication outside of this work.

3 Results

Final layout metrics are provided in Table 2. The opti-
mized AEP values of the best layouts found with each
algorithm range from 2905.646 to 2913.221 GW h, repre-
senting improvements over the provided layout of 1.91 %
to 2.18 %. The wake loss for the optimized layouts range
from 15.486 % to 15.694 %. The total number of function
calls used by each algorithm ranged from 97 930 to about
1 000 000. However, the function call comparison is tenuous
at best due to the use of surrogate models, which run much
more quickly than the regular model, by ADREMOG, as well
as the use of a reduced wind resource during optimization by
SNOPT+WEC. PAM runs much more quickly than the pro-
vided objective function. The function call counts reported
for ADREMOG are estimated based on the relative run time
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for function calls of PAM as compared with the provided ob-
jective function. The actual function call counts to PAM were
much higher. The run times are not included in this section to
avoid confusion because the run times are not very compa-
rable due to different hardware, different numbers of cores,
and different programming languages used for some meth-
ods. Run time is discussed in each subsection on algorithm-
specific results.

Some optimization method attributes are also provided in
Table 2. Three of the methods used a discrete problem for-
mulation, meaning that the potential wind turbine locations
were limited to predetermined locations (though DEBO does
adjust the resolution of the discretization during the opti-
mization). The other five methods used continuous formu-
lations, allowing wind turbines to be placed anywhere within
the wind farm boundaries. Most of the methods are gradient-
free algorithms. Only one, SNOPT+WEC, used a strictly
gradient-based approach, and one, GA-GB, used a hybrid
approach beginning with a gradient-free method and refin-
ing the resulting layout with the gradient-based SNOPT al-
gorithm. Four types of allocation methods were used to as-
sign turbines to boundary regions: (1) pre-optimization with
only the outer boundaries, with turbines then being assigned
to the nearest region; (2) sequential approaches where tur-
bines were added to the initial layout according to vari-
ous heuristics; (3) penalty approaches that slowly increased
penalties for infeasible layouts during the optimization so
turbines could move freely about the full wind farm space
at the beginning; and (4) leveraging a discrete formulation so
that turbines could move freely about the farm, even jump-
ing between regions, throughout the optimization. To help
avoid the problems of local optima, half of the algorithms
used a multi-start approach. To reduce computational costs,
one method (SNOPT+WEC) used a reduced wind rose with
only a single wind speed in each of 100 wind directions, and
one method (ADREMOG) used the PAM surrogate model.

The optimized layouts found by each optimization method
are shown in Fig. 10. All of the optimized layouts show sim-
ilar characteristics. Most notably, all algorithms placed many
turbines, with close spacing, along the outside boundaries of
the wind farm where freestream wind is available. All the
algorithms also provided a large space between the turbines
on the boundary and the turbines placed on the inside areas.
Turbines in the inner area are also much more spread out
than the turbines on the edges. The number of turbines allo-
cated by each optimization method to each region is shown
in Table 3. All the optimization methods adjusted the num-
ber of turbines in at least some of the regions. All methods
reduced the number of turbines in region 1 by at least one.
The number of turbines in regions 2 and 4 were increased
or decreased by one at the most. The number of turbines in
region 3 was reduced by one to three by each method. The
number of turbines in region 5 was increased by three to five
by every optimization method. The methods all agreed on the
number of turbines in each region to within three turbines for

region 1 and within two turbines for regions 2 to 5. The fol-
lowing subsections present algorithm-specific results.

3.1 Sparse nonlinear optimizer with wake expansion
continuation (SNOPT+WEC) results

We ran the SNOPT+WEC method with 10 different start-
ing layouts (nine as described in Sect. 2.1 and one using
the provided layout). We ran the optimizations using a sin-
gle core on a MacBook Pro laptop with a 2 GHz Dual-Core
Intel Core i5 processor. Run times ranged from 1.85 min to
31.33 min, with an average run time of 16.50 min. The AEP
values for the SNOPT+WEC results ranged from 2898.841
to 2910.116 GW h with an average AEP of 2906.321 GW h.
A total of 6 of the 10 optimized AEP values were in the
range of the best layouts found by the other optimization al-
gorithms. The best layout found by the SNOPT+WEC ap-
proach is shown in Fig. 10b.

While larger than many of the wind farm layout op-
timization problems presented in the literature, the prob-
lem presented here is still relatively small compared to
many real-world problems. Because gradient-based methods
scale well to problems with many variables and constraints,
SNOPT+WEC would likely still perform well on larger
problems without excessive computational cost.

3.2 Discrete exploration-based optimization (DEBO)
results

The DEBO method found the best layout across all algo-
rithms in terms of the objective function. The only layout
found with DEBO is shown in Fig. 10c. While DEBO fol-
lowed the same general trends as the other algorithms in tur-
bine placement, it placed more turbines in region 1 than any
of the other methods. DEBO was run in parallel using 10 In-
tel(R) Xeon(R) Gold 5120 2.20 GHz cores. Because there is
little randomness associated with the DEBO algorithm, only
one run was needed. The run took about 111 min.

3.3 Generalized pattern search (GPS) results

The best layout found by GPS is shown in Fig. 10d. While
the initial layout does not change the distribution of turbines
among the discrete regions compared to the baseline layout,
the GPS solver moved a few turbines between regions during
the optimization. Turbines in the center of the site experi-
enced larger shifts, whereas turbines on the boundaries were
not moved much from their initial positions. This confirms
the initial expectation that perimeter-heavy layouts offer im-
proved energy production.

The total improvements result from two separate steps in
the GPS algorithm. First, the described adaptation of the ini-
tial layout reduces the total wake loss percentage to 16.386 %
(approximately 56 % of the total reduction). The subsequent
optimization with the GPS solver then yields the remain-
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Table 2. Optimization method comparison on a range of metrics and attributes.

Layout AEP (GW h) + (%) WL (%) FCa (best) FCa (all) D or C GB and/or GF Allocation MS WR

Provided 2851.096 0.00 17.276 – – – – – – –
SNOPT+WEC 2910.116 2.07 15.564 17 626 97 930 C GB Pre-opt. Yes Red.
DEBO 2913.221 2.18 15.486 106 065 106 065 D GF Sequential No Full
GPS 2905.646 1.91 15.694 313 500 313 500 C GF Penalty No Full
CMA-ES 2906.608 1.95 15.666 95 000 950 000 C GF Penalty No Full
GA-GB 2907.541 1.98 15.639 62 160 ∼ 1 000 000 C GF and GB Penalty Yes Full
ADREMOG 2909.489 2.05 15.582 b

∼ 30 b
∼ 40 000 D GF Sequential Yes Full

PG (hexagonal) 2907.615 1.98 15.637 ∼ 150 ∼ 200 000 C GF Pre-opt Yes Full
DPA 2910.538 2.08 15.552 ∼ 100 000 ∼ 100 000 D GF Discrete No Full

a Function calls are not directly comparable due to the use of a reduced wind rose, alternate implementations, surrogate models, etc. b Estimated equivalent function calls based on
relative time required for the PAM surrogate model. Note: + signifies AEP increase from the provided layout, WL signifies wake loss, FC signifies function calls, C signifies
continuous, D signifies discrete, GB signifies gradient-based, GF signifies gradient-free, pre-opt. signifies pre-optimization, MS signifies multi-start, WR signifies wind resource, and
red. signifies reduced.

Figure 10. Best layout found for each algorithm. Labels in (a) also apply to (b) to (i).

ing 44 % of the wake loss reduction. The optimization in-
cluded approximately 313 500 function calls and ran for ap-
prox. 6.2 h on a standard desktop PC. Most of the improve-
ments in energy production were already achieved after half
the time. Infeasible layouts result in a significant drop in the
metric due to the applied energy yield penalty. The penalty

magnitude depends on the number of invalid turbine loca-
tions.
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Table 3. Turbine-to-region allocation for each algorithm’s best lay-
out. All layouts have a total of 81 turbines.

Region

1 2 3 4 5

Provided 31 11 14 16 9
SNOPT+WEC 28 12 11 16 14
DEBO 30 10 13 15 13
GPS 29 11 13 16 12
CMA-ES 27 11 13 17 13
GA-GB 28 12 13 15 13
ADREMOG 29 10 12 16 14
PG 28 11 13 15 14
DPA 29 11 12 16 13

3.4 Covariance matrix adaptation evolutionary strategy
(CMA-ES) results

The AEP function used for optimization sampled the wind
rose in 1◦ steps to avoid the artificial increase in AEP by
aligning the wind turbines in wind directions not sampled.
Wind speeds were sampled at every few meters per sec-
ond from the Weibull distribution. The best layout found by
CMA-ES is shown in Fig. 10e.

To assess the capability of the optimization algorithm
alone and avoid influencing the search, a random infeasi-
ble initial layout is generated at every run. This initial layout
packs turbines very closely together at the center of the site.
The initial mean standard deviation of the search is small, so
wind turbines begin moving slowly around their initial po-
sition. As the search evolves, the turbines move away from
each other to minimize wake losses and find a good spatial
distribution of turbines within the whole site, including loca-
tions outside the boundary of the whole site. Once conver-
gence is achieved and an infeasible layout that maximizes
AEP is found, inter-turbine spacing and corridor constraint
penalties kick in, leading to turbines self-accommodating to
find a feasible layout. Afterward, only feasible layouts are ex-
plored to maximize AEP again. The fitness function is equal
to the AEP in the fourth stage, when all constraint penalties
are zero. The results reported required approximately 5000
iterations. Each iteration evaluates 19 layouts; thus, the AEP
function is called 95 000 times. Each optimization run takes
approximately 1 h using 12 parallel threads at 3.2 GHz.

The layout was optimized 10 times, with the best wake
loss ranging from 15.88 % to 15.67 %. The best layout found
across 10 optimization runs places 49 turbines at the outer
boundaries of the site and the remaining 32 turbines within
(see Fig. 10e). The best locations found within the outer
boundary seem to roughly fall into a grid. A quick analy-
sis demonstrated that the wind turbines placed within 6 rotor
diameters of other neighbors align with them at directions
between 330 and 360◦, between 80 and 95◦, and between
37 and 60◦ wind directions, and no neighbors aligned in the

96 to 147◦ direction range. These directions are consistent
with the highest-frequency wind directions in the wind rose,
demonstrating that the method can find the most beneficial
alignments for energy capture.

3.5 Genetic- and gradient-based hybrid algorithm
(GA-GB) results

The AEP calculations used in the GA-GB optimizations were
preformed with the full 1◦ resolution wind rose, using all the
provided wind information. In reality, a coarser wind rose
could be used to still achieve comparable results, but due
to the relatively small computational burden, the full wind
rose was used. We reduce the overall computational cost
of this hybrid approach by only starting the gradient-based
optimizations from the initial layouts with the highest AEP
values. Using a laptop with a 2.6 GHz quad-core processor
and 16 GB of ram, each iteration of the GA takes about 3 s,
which results in the full GA run taking about 10 min. Each
major iteration of SNOPT takes 1 to 2 min due to the finite-
differencing required to obtain the gradient information of
the model; we get a converged layout in about 1 h. About
2800 function calls were used in the GA placement algo-
rithm, and approximately 25 000 function calls were used
for each gradient-based optimization. Because there were 20
gradient-based optimizations performed, the total number of
function calls for this study is approximately 500 000. Each
gradient-based optimization took a different number of func-
tion calls due to them reaching the convergence criteria at
different optimization iterations.

The best layout found with the GA-GB method is shown
in Fig. 10f. The optimized turbine placement, although not
regular, is generally feasible. There is some relatively close
spacing along some of the boundaries of the wind energy
areas, but with the availability of dedicated transit ways
through the farm, this is not necessarily a concern for ship-
ping traffic and transportation. Additionally, turbines are
more spaced out along internal boundaries. Based on the
NW–W–SW bias of the wind rose, direct lines of interior
turbines that align with these directions are minimized, and
when they do exist, the spacing between the turbines in these
directions appears to be maximized while being balanced
with neighboring edge turbines. This behavior follows results
of other optimization algorithms.

3.6 Add–remove–move greedy (ADREMOG) results

The best layout found using ADREMOG is shown in
Fig. 10g. ADREMOG has important trade-offs between the
quality of the layouts and the time of execution. ADREMOG
benefits from fine discretization. The median efficiency value
of the layouts improves as the number of possible positions
increases, as does the quality of the best-encountered layout.
The best outcome corresponds to a wake loss efficiency of
15.582 %; the majority of the ADREMOG results fall within
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Figure 11. Time of execution depending on the number of possible
positions.

a range of 0.3 percentage points of the best outcome. Addi-
tionally, PAM overestimates power losses compared to the
traditional AEP calculation approach. Nevertheless, the use
of PAM does not compromise the ability of ADREMOG to
build efficient layouts, as the correlation between the two as-
sessment methods is strong.

Furthermore, this surrogate model allows us to avoid
from 3 985 200 to 6 013 800 regular function calls that
ADREMOG would have required to generate one layout for
8200 possible positions. The advantage is even more sub-
stantial, considering that a multi-start approach is necessary
for identifying the best local minimum. The PAM needs to
be generated only once for the whole process. Figure 11
presents the time demanded by the optimization procedure,
to which it contributes the creation of the PAM and, after,
the execution of ADREMOG for each initial position inves-
tigated. The data refer to a common PC with 16GB RAM
running in serial.

3.7 Pseudo-gradient optimization (PG) results

To test pseudo-gradient-based optimization, 1980 initial lay-
outs were generated for both the hexagonal (random ini-
tial orientation) and ADREMOG (random position first tur-
bine) approaches. Each of the initial layouts was then opti-
mized with the same optimizer parameters. The best layout
found by PG optimization starting from a hexagonal layout
is shown in Fig. 10h.

Figure 12 shows the results for the hexagonal initial lay-
outs as a scatter plot. On the horizontal (vertical) axis the
wake loss percentage of the initial (optimized) layout is
shown. Each layout is represented by a dot, the color of
which indicates the number of pseudo-gradient (PG) itera-
tions of the corresponding optimization run. Both initial and
optimized wake loss percentages span about 0.8 percentage

Figure 12. Wake loss percentage of 1980 optimized layouts start-
ing from random hexagonal layouts. Diagonal lines indicate the im-
provement due to PG.

points, and the average improvement due to PG is about the
same (cf. diagonal lines), albeit with a large variance. Nev-
ertheless, because of the low computational cost of PG opti-
mization (relative to most other approaches), it is reasonable
to use it to slightly improve any layout, as was done in the
analysis with the ADREMOG starts. For this problem, the
magnitude of improvement achieved is significant. The num-
ber of iterations required for each optimization run is small,
and most gains are made in the first 10 iterations. This means
that the computational requirements are relatively light.

It is interesting to note in Fig. 12 that the initial hexago-
nal layouts in general already provide improved performance
over the provided layout. Roughly, an average improvement
of 0.5 to 0.7 percentage points is obtained as compared to
the manual layout provided. The hexagonal layout genera-
tion procedure can therefore be seen as a computationally
very cheap random-search-type optimization algorithm that
does not use any wake model calls.

Figure 13 shows the results for the ADREMOG-generated
initial layouts as a scatter plot. On the horizontal axis the
wake loss percentage of the optimized layout is shown. On
the vertical axis, the wake loss percentage point improve-
ment due to PG is given. Each layout is represented by a
dot, the color of which indicates the number of ADREMOG
iterations used to generate the initial layout. The number of
PG iterations generally remained below 10. The wake loss
percentages span almost 0.4 percentage points, but the im-
provement due to PG is small, up to 0.05 percentage points
but typically around 0.01. So the PG-based algorithm man-
ages to squeeze a little more efficiency out of the layouts, but
the amount is not significant. There is no clear correlation be-
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Figure 13. Wake loss percentage of 1980 ADREMOG and then
PG-optimized layouts.

tween the number of ADREMOG iterations and the quality
of the initial or optimized layouts.

A general conclusion about the use of the PG optimizer is
that while it can provide significant gains for non-optimized
initial layouts (e.g., hexagonal grid starts), this is not the case
for optimized ones (e.g., ADREMOG starts). Nevertheless,
because of the low computational cost of PG optimization
(relative to most other approaches), there is little reason to
not use it to try and improve any layout slightly, as was done
in the analysis with the ADREMOG starts.

3.8 Discrete perturbation algorithm (DPA) results

The DPA method found the second best layout across all al-
gorithms in terms of the objective function. The layout found
with DPA is shown in Fig. 10i. While DPA followed the same
general trends as the other algorithms in turbine placement,
it placed the same number of turbines in each region as the
DEBO method, except for one less turbine in region 1 and
one more turbine in region 4. DPA was run only once and
ran on a 3.5 GHz AMD Ryzen 9 3950X processor using be-
tween 16 and 32 cores. DPA was allowed to run for 24 h.

4 Discussion

The resulting layouts and related metrics indicate that all of
the algorithms included in this study performed at a similar
level in terms of layout quality. Similar to previous findings
by Stanley and Ning (2019), placing most of the turbines on
the boundary is advantageous for energy production, even if
the turbine spacing is closer than the typical rules of thumb.
The existence of shipping and infrastructure lanes through
the farm should ensure that the close spacing on the outer
boundaries does not impede maintenance and other neces-
sary activities.

The highly multimodal nature of the wind farm layout
optimization problem is very apparent in the results. Each
optimization method found a different layout, but all were
similar in performance according to the AEP and wake
loss. However, though the total spread in optimized AEP
of 7.575 GW h is small in terms of total electricity genera-
tion, it represents a potential annual revenue difference of
over USD 1 million assuming a price per kilowatt-hour of

USD 0.15 (Eurostat, 2021). Thus, for large farms like the one
in this study, even small energy gains can make a significant
financial difference. However, the simple wake models used
for layout optimization do not have high enough accuracy
to be certain of the differences between the layouts found in
this study, so we cannot conclusively say which layout will
be the best or what the true performance differences would
be in actual practice.

The computational cost of each of the methods is difficult
to compare due to factors such as different hardware, wind
resource discretization, gradient computation, and surrogate
modeling. We have included function call information for the
best layout found by each algorithm and the total number of
function calls used across all runs. This information is helpful
in assessing relative computational cost but should be used
carefully. The PAM surrogate model significantly reduced
the time required to optimize, but the ADREMOG approach
required many multi-starts to find its best layout. Other meth-
ods also rely on some number of multi-starts to overcome the
multimodality of the problem. Using a multi-start approach
substantially increases the computational cost, but total cost
may still be less for multi-start approaches than others if the
algorithm itself is cheap enough. We found that multi-start
approaches were not necessarily more costly than ones using
a single run, and multi-start approaches represent half of the
top four layouts by AEP.

The use of a discrete or continuous design space formula-
tion can significantly impact the results. Although a discrete
formulation limits which turbine locations are available, the
two best layouts (DEBO and DPA) were found using discrete
problem formulations. This indicates that the limitation on
potential turbine locations does not necessarily preclude such
methods from finding optimal layouts. Continuous formula-
tions provide more options but suffer from having potentially
too many options to explore effectively.

Because only one method was purely gradient-based, it is
hard to draw many conclusions about the trade-offs between
gradient-free and gradient-based algorithms. The gradient-
based method, SNOPT+WEC, ranked third overall in terms
of AEP and wake loss. SNOPT+WEC used relatively fewer
function calls and had low CPU time. This seems to indicate
that at least this gradient-based method can achieve compa-
rable results in less time than many gradient-free methods
on the wind farm layout optimization problem. More work
could still be done to reduce the computational cost and fur-
ther improve exploration.

Few clear trends were shown between turbine-to-region
allocation and layout quality. Three of the four allocation
method types showed up in the top four layouts. However,
because all methods moved turbines between regions, espe-
cially adding many turbines to region 5, we can say that al-
locating the right number of turbines to each discrete region
in the farm is critical to finding the best layouts. Optimiza-
tion methods that used penalty methods for turbine-to-region
allocation did not perform as well as those using the other
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allocation methods. The best layout by AEP was found using
a sequential allocation method.

While it is important to weigh the quality of results and
computational cost of each algorithm, the developer cost
and level of expertise are also important to balance. Off-the-
shelf algorithms, such as GPS and CMA-ES, may be well
documented but may not perform as well as newer meth-
ods not yet available in standard code packages. Commer-
cial code implementations, such as SNOPT and GPS, require
a license, but they are well documented. Open-source-only
methods may take a little more effort to run but may also have
more recent algorithm developments. Newly developed algo-
rithms, such as DEBO, WEC, ADREMOG, and PG, may be
available through research codes or may need to be reimple-
mented. Implementations of industry methods like DPA may
not be available but could be approximated, which may re-
quire substantial effort for development and fine-tuning. Also
important to consider are the additional efforts involved for
various peripherals such as discretizing the design space, al-
tering the wake model to accommodate algorithmic differen-
tiation or WEC, obtaining gradients, preparing and running
a multi-start optimization, reducing the wind resource, defin-
ing initial layouts, or setting up a turbine-to-region allocation
method. When selecting which algorithm to use, carefully
weigh the requirements and available resources in order to
select the most suitable algorithm for the given situation.

While Herbert-Acero et al. (2014) refer to the no-free-
lunch theorem as “for all possible performance measures, no
algorithm is better than another when its performance is av-
eraged over all possible optimization problems” (see Wolpert
and Macready, 1997, for more details on no-free-lunch theo-
rems), Herbert-Acero et al. (2014) also point out that individ-
ual algorithms may be effectively tuned to perform well on
specific optimization problems. In this work we found that
none of the algorithms significantly outperformed the oth-
ers and attribute this similar performance, in part, to the tun-
ing of each algorithm to this problem by individual experts,
which is one of the key differences between this and most of
the previous comparative studies of optimization algorithms
applied to wind farm layout optimization problems. The sim-
ilarity may also be partly due to the problem being somewhat
flat with many similar local optima. However, the DEBO al-
gorithm was developed specifically for this case study, and it
did find the layout with the highest AEP. It will be interest-
ing to see how the DEBO method performs in future com-
parisons and other problems.

5 Conclusions

In this work we introduced eight optimization methods (in-
cluding one new algorithm), applied them to the IEA case
study 4 (with 81 turbines and 5 discrete boundary regions, in-
cluding some concavities), and presented and discussed the
results. We found that all eight algorithms performed well,

both gradient-based and gradient-free, with optimized wake
loss values between 15.48 % and 15.70 %. One of the key
differences between this and previous studies is that each op-
timization method was managed by experts in that method.
Thus, user error is less likely to have impacted the results.
Having specialists in each method manage the optimizations
likely contributed significantly to the fairly even performance
of the various methods.

The most obvious similarity between the layouts found
by all the optimization methods tested is that turbines were
packed closely on the outer boundaries and much more
spread out in the internal areas of the wind farm. All the
methods placed similar numbers of turbines in each region,
but methods that used penalty functions for constraints and
turbine-to-region allocation resulted in lower optimized AEP
values. The best layout in terms of wake loss was found using
discrete exploration-based optimization (DEBO), a gradient-
free method using a discrete problem formulation that was
developed specifically for this case study. However, we also
found that continuous formulations can also be effective.

While we believe the optimization method comparisons
presented herein will be useful to the community, they are
not perfect. It is important that more comparisons of algo-
rithms on wind farm layout optimization problems be per-
formed to better assess the performance trade-offs of the var-
ious algorithms and peripheral methods. Future studies will
likely benefit from the collaborative model used here, en-
listing experts in the various algorithms so that each algo-
rithm is less likely to be negatively influenced by user error.
However, carefully creating and following clear protocols for
gathering and reporting information about the optimizations
is critical, particularly when working with many researchers.
Future comparisons should run all optimization methods on
the same hardware and establish uniform criteria for estimat-
ing computation costs in terms of time and function evalua-
tions. The standardized ontologies being created by the IEA
Wind Task 37 (Dykes et al., 2017) will likely help signifi-
cantly with performing future comparative studies of wind
farm layout optimization methods.

Code and data availability. Layout files, the provided
physics model, some figure and table generation scripts, and
other data are available at https://github.com/jaredthomas68/
thomas2022-8-opt-algs-wflop (last access: 11 May 2023) or
https://doi.org/10.5281/zenodo.7125349 (Thomas, 2022a).

The Julia implementation of the wake and farm model
used for the SNOPT+WEC method (see Sects. 2.1 and 3.1)
is available in FLOWFarm.jl at https://github.com/byuflowlab/
FLOWFarm.jl/tree/develop (last access: 11 May 2023) at commit
“ec5270203786d5bcf065fff8c80bd7710906a40e” and preserved
with a DOI at https://doi.org/10.5281/zenodo.7125827 (Thomas
et al., 2022b).

The code for pseudo-gradient-based optimization (see
Sects. 2.7 and 3.7) is publicly available (Quaeghebeur, 2020)
(https://doi.org/10.5281/zenodo.4072253). It also includes func-
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tionality for generating a pre-averaged model (see Sects. 2.6 and
3.6) and using a form of wake expansion (e.g., Sect. 2.1; called
“wake spreading” in the code; not reported on in this paper).
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