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Abstract. Condition monitoring and failure prediction for wind turbines currently comprise a hot research
topic. This follows from the fact that investments in the wind energy sector have increased dramatically due
to the transition to renewable energy production. This paper reviews and implements several techniques from
state-of-the-art research on condition monitoring for wind turbines using SCADA data and the normal behavior
modeling framework. The first part of the paper consists of an in-depth overview of the current state of the art. In
the second part, several techniques from the overview are implemented and compared using data (SCADA and
failure data) from five operational wind farms. To this end, six demonstration experiments are designed. The first
five experiments test different techniques for the modeling of normal behavior. The sixth experiment compares
several techniques that can be used for identifying anomalous patterns in the prediction error. The selection of
the tested techniques is driven by requirements from industrial partners, e.g., a limited number of training data
and low training and maintenance costs of the models. The paper concludes with several directions for future
work.

1 Introduction

In recent years, investments in renewable energy sources like
wind and solar energy have increased significantly. This is
the result of goals set in climate change agreements and
changes in the geopolitical situation. According to the Global
Wind Report 2022, an additional 93.6 GW of wind energy
production capacity was installed in 2021. This brings the
total to 837 GW, which corresponds to a 12 % increase com-
pared to the previous year (Lee and Zhao, 2022). To keep the
transition on track, the profitability of the investments needs
to be guaranteed. Furthermore, to keep the European econ-
omy competitive in the globalized market, the price of en-
ergy production using wind turbines needs to be kept as low
as possible. Both depend to a large extent on the maintenance
costs.

According to Pfaffel et al. (2017), recent studies have
shown that the operation and maintenance of wind turbines

make up 25 %–40 % of the levelized cost of energy. A more
detailed analysis shows that premature failures due to ex-
cessive wear play a considerable role. These are caused by,
among other things, high loads due to environmental condi-
tions and aggressive control actions (Verstraeten et al., 2019;
Tazi et al., 2017; Greco et al., 2013). If it were possible to
identify these types of failures well in advance, it would cre-
ate the opportunity to avoid unexpected downtime and orga-
nize the maintenance of turbines more optimally. This in turn
would result in increased production and a further reduction
in maintenance costs, which would improve the profitability
of the investments and reduce wind energy prices.

This paper gives an overview of the current state of the art
on condition monitoring for wind farms using SCADA data
and the normal behavior modeling (NBM) framework. The
focus on SCADA data is motivated by the fact that they are an
inexpensive source of information that are readily available.
This is valuable in an industrial context where adding new
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sensors is expensive and not straightforward. The focus on
the NBM methodology can be justified by the fact that it has
shown its merits and that properly trained NBM models can
result in interesting engineering insights. Several techniques
used in the state-of-the-art research are also implemented and
compared. For this, 10 min SCADA data from five differ-
ent wind farms are used. Furthermore, failure information is
also available for these wind farms. More specifically, there
is information on generator bearing, generator fan, and rotor
brush high-temperature failures. The different techniques are
implemented and compared using six demonstration exper-
iments. Five experiments focus on NBM, and one focuses
on the analysis of prediction error. By conducting a com-
parative analysis and discussion of the results on real data,
a better understanding can be achieved of the performance
of different techniques applied to real data. Because an ex-
haustive overview is unfeasible, only a limited selection can
be discussed. This selection is based on several assumptions,
e.g., that there are only a relatively limited number of train-
ing data and a limited amount of time and that due to mainte-
nance constraints the complexity of the methodology needs
to be kept as low as possible. These constraints are based on
feedback received from several industrial partners.

The paper is built up as follows. The first section is the
Introduction. The second section discusses the current state
of the art. In the third section, an experimental methodology
is designed that combines, compares, and demonstrates the
performance of several techniques mentioned in the state-of-
the-art overview. The fourth part is the comparative analysis
of several techniques from the state of the art. The fifth and
last part is the conclusion, which also includes a discussion
of possible future directions for research.

2 Overview of the state of the art

Failure prediction on wind turbines using SCADA data is a
hot research topic. This is due to the fact that over time more
sensor data have become available (Helsen, 2021). There are
several different families of methodologies that compete in
this domain. According to Helbing and Ritter (2018), the
methodologies can be divided into model-based signal pro-
cessing and data-driven methods. An alternative classifica-
tion can be found in Black et al. (2021), where a distinc-
tion is made between (1) trending, (2) clustering, (3) NBM,
(4) damage modeling, (5) alarm assessment, and (6) per-
formance monitoring. In Tautz-Weinert and Watson (2017)
five categories are identified: (1) trending, (2) clustering, (3)
NBM, (4) damage modeling, and (5) assessment of alarms
and expert systems.

The NBM methodological family is very diverse. Many
different algorithms can be used to model the “normal” or
“healthy” behavior of a wind turbine signal. However, in
all this diversity, there are several commonalities. Figure 1
gives an overview of a standard NBM flow. The SCADA

data are ingested by the pipeline. The first step is splitting
the data into a training and testing dataset. This is done prior
to the preprocessing and modeling steps to avoid “informa-
tion leakage”. The testing dataset is a random subsample that
is set aside for the final validation of the methodology and
should not be used during training. How this split is made
depends on the type and the number of data. Often 80 %–
20 % or 70 %–30 % random splits are made. However, other
options are possible. If the data are time series, which is the
case when using SCADA data, and the models used as NBM
use lagged predictors, then the train–test split should be done
more carefully so that the relation between the target and the
lagged predictors is not broken. A possibility is assigning the
first 70 % of the observations (based on their timestamp) to
the training and the rest to the testing dataset. In the next step,
the data are preprocessed. This is done to clean the signals
(e.g., removing measurement errors, filling in missing val-
ues) and in some cases to reduce the noisiness of the signals
(e.g., binning). Filtering is sometimes used if it is expected
that the relation between the signals is influenced by certain
other factors (e.g., wind turbine states). The preprocessing is
done on the training and testing dataset separately. However,
the same techniques are used on both datasets.

In the next step, the training dataset is used to learn or
train the normal behavior model. For this, a health label of
some kind is required. In the case of SCADA-based anomaly
detection for wind turbines, this is in general a tempera-
ture signal that is related to the failure that needs to be de-
tected. For example, if the research is focused on predicting
generator bearing failures, then the label might be the tem-
perature of a generator bearing. This means that it is a su-
pervised regression problem. Many different algorithms are
suitable as NBM models, e.g., ordinary least squares (OLS),
random forest (RF), support vector machine (SVM), neural
network (NN), and long short-term memory (LSTM). The
NBM model is trained on healthy data (meaning not polluted
with anomalies that can be associated with a failure). Once
the NBM model has been trained, it can be used for predict-
ing the expected normal behavior using the test dataset. In
the next step, the difference between the predicted and the
observed behavior is analyzed. If there is a large deviation
between the two, this can be considered evidence of a prob-
lem. The deviation is in general transformed into an anomaly
score that says something meaningful about for example the
probability of failure or the remaining useful life (RUL).

In what follows an overview is given of different tech-
niques that are used in the state-of-the-art literature for each
step of the pipeline. The papers that will be discussed in this
section have the following properties: firstly, they are based
on wind turbine SCADA data; secondly, they perform con-
dition monitoring and anomaly detection on temperature sig-
nals of the turbine (this excludes for example research that
focuses on the power curve); and thirdly, they follow the
NBM methodology. By limiting the scope of the overview,
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Figure 1. Schematic overview of NBM framework.

it can be more exhaustive and give the reader a better insight
into what has been tried in the literature.

2.1 Preprocessing techniques

Preprocessing is an important, although often somewhat un-
derexposed, part of the NBM pipeline. Decisions taken dur-
ing this step can influence the training and performance of the
NBM models later on. Different preprocessing techniques
exist and have been used in recent research. The choice of
a technique is to a certain extent guided by the properties
of the input data; e.g., for time series data, the order of the
data points, as well as the relation between them, is rele-
vant. This means that only preprocessing techniques that re-
tain this property of the data should be used. But even then
multiple preprocessing techniques are usable. Why a certain
technique is chosen over a different one is often not thor-
oughly explained in papers. This subsection attempts to give
an overview of which techniques are used in current state-of-
the-art research. An analysis of the literature shows that the
preprocessing of the data is used for among other things the
handling of missing values, outliers, noise reduction, filter-
ing, and transforming the data.

Missing values can be problematic for certain statistical
and machine learning models. For this reason, they need to
be treated or filled in properly. Several techniques are used
in the literature. A first technique is removing the observa-
tions with missing data (see Maron et al., 2022; Miele et al.,
2022; Cui et al., 2018; and Bangalore et al., 2017). This can
be difficult when time series modeling is used. Furthermore,
the question needs to be asked why the data are missing.

If they are not “missing completely at random” (MCAR),
this can result in bias (Emmanuel et al., 2021). A differ-
ent solution is single imputation. A first example of this is
carry forward and/or backward. In this technique, the miss-
ing value is replaced by the last known value preceding the
missing value (carry forward) or the first known value fol-
lowing on from the missing value (carry backward). This is
used in Bermúdez et al. (2022), Campoverde et al. (2022),
Chesterman et al. (2022, 2021), and Mazidi et al. (2017). An
alternative is interpolation. This can be done in several ways,
e.g., Hermite interpolation (see Bermúdez et al., 2022, and
Campoverde et al., 2022) or linear interpolation (see Chester-
man et al., 2022, 2021, and Miele et al., 2022). There are
several elements that need to be taken into account when
using these techniques. First of all, extra care needs to be
taken when using them. Large gaps in time series are a prob-
lem, since the imputation can become meaningless. This can
result in pollution of the relation between multiple signals.
High dimensionality of the data can also be a problem (Em-
manuel et al., 2021).

If the number of missing data is fairly limited (and there
are no long stretches of missing data), an aggregate like the
mean or median can be calculated and used as a proxy. The
resulting time series has of course a lower resolution, but the
missing values are gone. This method is used in Verma et
al. (2022). The success of this methodology of course de-
pends on how many data are missing and on how many data
each aggregated value is based on. Another solution is what
is called machine-learning-based imputation. This technique
uses certain machine learning models to impute the missing
values (Emmanuel et al., 2021). There are several ways to do
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this. For example, clustering algorithms like k-nearest neigh-
bors can be used to find similar complete observations. This
is used in Black et al. (2022).

The above overview gives several techniques that have
been used in research that focuses on anomaly detection in
temperature signals from wind turbines. However, there ex-
ist several other techniques that can be used for imputing
missing values, e.g., hot-deck imputation, regression impu-
tation, expectation maximization, and multiple imputation
(Emmanuel et al., 2021). To the best of the authors’ knowl-
edge, no (or a very limited number of) papers in this specific
research domain have been written that use these techniques.
The lack of research that uses, for example, multiple impu-
tation (like multivariate imputation by chained equations or
MICE; van Buren and Groothuis-Oudshoorn, 2011) can be
considered a blind spot.

A second problem that might influence the NBM training
is outliers. If these occur in sufficient quantity, they can im-
pact the modeling severely. Oftentimes the decision is made
in the literature to simply remove them. This of course im-
plies that the outliers can be detected in the first place. This
can be done for example by using the interquartile range (see
Campoverde et al., 2022), a custom dynamic or user-defined
threshold (see Chesterman et al., 2022, 2021, and Castellani
et al., 2021), the 5σ rule (see Miele et al., 2022) or clustering
(see Cui et al., 2018, and Bangalore et al., 2017). Remov-
ing outliers needs to be done carefully to avoid abnormal
values associated with the failure of interest also being re-
moved. This requires a good understanding of the data. In
some cases the outliers will be clearly visible. This can for
example be the case when measurement errors result in val-
ues that are multiple times larger or smaller than what is
physically possible. In these cases removing the outliers is
straightforward. However, in other cases, the difference be-
tween outliers or anomalies caused by the failing component
and outliers caused by another reason is much less clear. Re-
moving these types of outliers should only be done after care-
ful consideration.

Some papers also use noise reduction techniques. Noise in
signals can make it more difficult for the NBM algorithm to
model the relation between them. If it is possible to clean the
signal, this should be considered, since it will improve the
performance of the NBM model. This can be done for exam-
ple by aggregating the data to a lower resolution (see Chester-
man et al., 2022, 2021, and Turnbull et al., 2021) or cleaning
or filtering the data using expert knowledge (see Peter et al.,
2022; Takanashi et al., 2022; Verma et al., 2022; Turnbull et
al., 2021; Udo and Yar, 2021; Beretta et al., 2020; and Kusiak
and Li, 2011).

In some cases, it might be useful to transform the data.
This can result in features with more favorable properties.
For example, principal component analysis (PCA) transfor-
mation (see Campoverde et al., 2022, and Castellani et al.,
2021) and zero-phase component transformation (see Ren-
ström et al., 2020) result in uncorrelated features which are

linear combinations of the original signals. This can be ben-
eficial for the training of the NBM. Another transformation
that might be done is rebalancing the dataset. This can be
necessary when certain operational states of the turbine are
underrepresented in the training data. Oversampling of the
minority class or undersampling of the majority class is an
option. A more sophisticated technique is the synthetic mi-
nority oversampling technique (SMOTE) used in for exam-
ple Verma et al. (2022). Lastly, in some papers, new features
are created by clustering the original signals of the SCADA
data into several groups using clustering algorithms. In the
next step, the new features are used as input to the NBM
model (see Liu et al., 2020).

This overview shows that many different preprocessing
techniques are available and have been tried. However, the
technique choice is often not well motivated in the papers.
Also, the impact of a certain technique on the results is in
general not extensively discussed, even though it is known
from statistical research that this can be significant.

2.2 The data and signals

SCADA data can come in different resolutions. The most
available resolution is 10 min, since it reduces the number
of data that need to be transmitted (Yang et al., 2014). This
means that, for each 10 min window, the dataset contains the
average signal value. In general, the SCADA data also con-
tain information on the minimum, maximum, and standard
deviation of the signal during the 10 min window. Less com-
mon resolutions are for example 1 min and 1 s. In the state-
of-the-art literature, the following resolutions can be found:

– 10 min – Bermúdez et al. (2022), Black et al.
(2022), Campoverde et al. (2022), Chesterman et al.
(2022, 2021), Maron et al. (2022), Mazidi et al. (2017),
Miele et al. (2022), Peter et al. (2022), Takanashi et
al. (2022), Beretta et al. (2021, 2020), Castellani et
al. (2021), Chen et al. (2021), Meyer (2021), Turnbull
et al. (2021), Udo and Yar (2021), Liu et al. (2020),
McKinnon et al. (2020), Renström et al. (2020), Zhao
et al. (2018), Bangalore et al. (2017), Dienst and Be-
seler (2016), Bangalore and Tjernberg (2015, 2014),
Schlechtingen and Santos (2014, 2012), Zaher et al.
(2009), Garlick and Watson (2009);

– 5 min – Kusiak and Li (2011);

– 10 s – Kusiak and Verma (2012);

– 1 s – Sun et al. (2016), Li et al. (2014);

– 100 Hz – Verma et al. (2022), Kim et al. (2011).

The 100 Hz data used in for example Verma et al.
(2022) come from the Controls Advanced Research Tur-
bine (CART) of the National Renewable Energy Laboratory
(NREL). The fact that it is a research turbine makes it pos-
sible to sample at much higher rates than what is normally
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possible. Some papers combine the SCADA data with other
information sources like event logs that contain wind turbine
alarms (see Miele et al., 2022; Beretta et al., 2020; Renström
et al., 2020; and Kusiak and Li, 2011) or vibration data (see
Turnbull et al., 2021).

The SCADA data contain information on many different
parts of the turbines. This implies that the datasets consist
in general of dozens or even hundreds of signals (depend-
ing on the turbine type). However, not all of them are rele-
vant to the case that is being solved. Some papers focus on a
small subset of expert-selected signals (see for example Pe-
ter et al., 2022; Bermúdez et al., 2022; and Chesterman et al.,
2022). Other papers use a large subset of signals and reduce
the dimensionality of the problem during the preprocessing
step or during a model-based automatic feature selection step
that extracts the relevant information (see for example Lima
et al., 2020; Renström et al., 2020; and Dienst and Beseler,
2016). Some papers select signals based on the internal struc-
ture of the wind turbine (for example on the subsystem level;
Marti-Puig et al., 2021). The advantage of the first method
is that the number of signals used for training is limited,
which reduces the computational burden of the training pro-
cess. The disadvantage is however that for cases in which the
expert knowledge is not complete, important signals might be
missed. This is less likely when the second method is used.
The disadvantage of this method is however that the compu-
tational cost is significantly higher and that the selected sub-
set can change over different runs. The third method uses the
wind turbine ontology or taxonomy as a guideline. Its per-
formance depends of course on the quality of the ontology or
taxonomy.

The signals that are often used for condition monitoring of
wind turbines can be more or less divided into three groups:
(1) environmental data like wind speed or outside tempera-
ture (used in for example Bermúdez et al., 2022; Black et
al., 2022; Campoverde et al., 2022; Mazidi et al., 2017; and
Miele et al., 2022); (2) operational data from the wind tur-
bine like active power or rotor speed (used in for example
Bermúdez et al., 2022; Black et al., 2022; Chesterman et al.,
2022; Miele et al., 2022; and Peter et al., 2022); and (3) wind
turbine temperature signals like the temperatures of the gen-
erator bearings, the temperature of the main shaft bearing,
or the temperature of the generator stator (used for example
in Bermúdez et al., 2022; Black et al., 2022; Campoverde et
al., 2022; Chesterman et al., 2022; and Mazidi et al., 2017).
The first two groups are often used by default, independent
of the target signal that needs to be modeled or the failure
that needs to be detected. This is because they contain infor-
mation on the wind turbine context (e.g., it is a stormy day,
a very hot day, the turbine is derated). The third group of
signals is much more tied to the case at hand. For example,
generator temperature signals are used if the focus lies on
generator failures and gearbox temperature signals are used
if gearbox failures need to be detected.

Overall it can be stated that most state-of-the-art research
is focused on 10 min SCADA data. This means that there are
research opportunities on data with a higher resolution like
1 min or 1 s. Furthermore, several signal or feature selection
techniques are used in the literature. However, a thorough
examination of their performance (expert-knowledge-based
vs. automatic or model-driven vs. ontology- or taxonomy-
guided feature selection), advantages, and disadvantages has,
according to the best of our knowledge, not been done yet.

2.3 Normal behavior modeling algorithms

The next part of the NBM framework is the algorithm that is
used for modeling the normal behavior. In general, a consid-
erable amount of attention is paid to this in the literature. This
part models the normal (or healthy) behavior of the signal of
interest. For this, the current state-of-the-art literature uses
techniques from the statistics and machine learning domains.
These domains contain a large variety of algorithms that are
suitable for the task. More or less three categories can be dis-
tinguished: (1) statistical models, (2) shallow (or traditional)
machine learning models, and (3) deep learning models. Al-
though this classification gives the impression that the papers
can be assigned to a single category, it is quite often the case
that research uses or combines models from multiple cate-
gories.

Even though there are examples of recent papers in which
statistical techniques are used for the modeling of the nor-
mal behavior, they are a minority. Models that are used are
for example OLS and autoregressive integrated moving av-
erage (ARIMA) (see Chesterman et al., 2022, 2021), where
they are used to remove autocorrelation and the correlation
with other signals from the target signal. A different kind of
statistical algorithm that is occasionally used is the PCA (see
Campoverde et al., 2022) and its non-linear variant (see Kim
et al., 2011). These are, contrary to the previous algorithms,
unsupervised, but they can be used to learn the normal or
healthy relations between the signals. In Garlick and Wat-
son (2009) an OLS and an autoregressive exogenous (ARX)
model are combined to model the normal behavior, which
makes it possible to take time dependencies into account.
The advantage of statistical models is that they are relatively
simple, computationally lightweight, and data-efficient. They
are well studied, and their behavior is well understood. This
makes them often suitable as a first-analysis tool or in do-
mains where there are constraints on the computational bur-
den or the number of data that are available. The downside
is however that they are relatively simple, which makes them
in general unsuitable to model highly complex non-linear dy-
namics. Whether this is a problem depends of course on the
case that needs to be solved.

Techniques from the traditional (shallow) machine learn-
ing domain are used more often. By traditional machine
learning is meant models like decision trees, random forests,
gradient boosting, and support vector machines. These mod-
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els are more complex than traditional statistical models and
are better able to model non-linear dynamics. However, they
require in general more training data and time. Examples of
algorithms that are used in the current state of the art are
tree-based models like random forest (see Chesterman et al.,
2022; Turnbull et al., 2021; and Kusiak and Li, 2011) and
gradient boosting (see Chesterman et al., 2022; Maron et al.,
2022; Beretta et al., 2021, 2020; Udo and Yar, 2021; and Ku-
siak and Li, 2011) and models like support vector machine
and regression (see Chesterman et al., 2022; Castellani et al.,
2021; McKinnon et al., 2020; and Kusiak and Li, 2011). An-
other type of model that is occasionally used is derived from
the linear model (OLS) but includes some form of regulariza-
tion to be better able to cope with high dimensional data and
highly correlated features, i.e., least absolute shrinkage and
selection operator (LASSO) (see Dienst and Beseler, 2016).
The latter model can be situated somewhere between the sta-
tistical and traditional machine learning categories.

In recent years deep learning models, e.g., neural net-
works, have become popular. Deep learning models are more
complex than traditional machine learning models. Their ad-
vantage is that they are even better at modeling non-linear dy-
namics. Their disadvantages are that they require even more
data, they are computer-intensive to train, and the results are
more difficult to interpret. This however has not diminished
their popularity, and at the moment they are the most popu-
lar model category in the state-of-the-art research. Just like
the traditional machine learning domain, the deep learning
domain is very diverse. Over the years many different types
of models have been developed. These are either completely
new models or combinations of already existing deep learn-
ing models. Both can be found in the state-of-the-art litera-
ture. Deep neural networks are used in Black et al. (2022),
Jamil et al. (2022) (transfer learning), Mazidi et al. (2017),
Verma et al. (2022), Meyer (2021) (multi-target neural net-
work), Turnbull et al. (2021), Cui et al. (2018), Sun et al.
(2016), Bangalore and Tjernberg (2015) (nonlinear autore-
gressive exogenous model, NARX), Bangalore and Tjern-
berg (2014), Li et al. (2014), Kusiak and Verma (2012),
Kusiak and Li (2011), Zaher et al. (2009). Another popu-
lar type of model is the autoencoder (AE). Just like a PCA,
this model learns normal or healthy behavior through dimen-
sion reduction which makes it ignore noise and anomalies.
However, compared to the PCA it is better at learning non-
linearities. This model type is used for example in Miele et
al. (2022), Chen et al. (2021), Beretta et al. (2020), Ren-
ström et al. (2020), and Zhao et al. (2018). Convolutional
neural networks (CNNs), originally designed and used for
the analysis of images, can also be used for the detection of
anomalies and failures. Examples can be found in Bermúdez
et al. (2022) (combination of CNN and LSTM), Xiang et al.
(2022), Zgraggen et al. (2021), and Liu et al. (2020). An-
other model that is used is the LSTM. This model is partic-
ularly suitable for time series, since it is able to model the
time dependencies. This model is used in Bermúdez et al.

(2022) and Udo and Yar (2021). Two other models that have
also been used but to a much lesser extent are the extreme
learning machines (ELMs) (see Marti-Puig et al., 2021) and
the generative adversarial network (GAN) (see Peng et al.,
2021).

Another type of algorithm that is occasionally used in
the literature is based on fuzzy logic. An example of such
a model is the adaptive neuro-fuzzy inference system (AN-
FIS). Papers that use this model are Schlechtingen and San-
tos (2014, 2012) and Schlechtingen et al. (2013). In Tautz-
Weinert and Watson (2016), experiments are performed with,
among others, ANFIS and Gaussian process regression. And
finally, there is also research that uses copula-based model-
ing. An example is the research presented in Zhongshan et
al. (2018).

Overall it can be stated that the NBM ecosystem is di-
verse. In recent years, deep learning has become the most
popular methodology. The merits of these models are clear
from the results. Often they outperform the statistical and
traditional machine learning models. However, the question
is whether they are always the most suitable methodology
for implementation in the field. The data requirements mean
that deploying the system quickly on a new wind farm is
not possible (transfer learning alleviates this issue to a cer-
tain extent). Also, the high computational requirements re-
sult in more costly retraining and higher maintenance costs.
The question is whether these disadvantages are outweighed
by the improved performance once deployed in the field. Not
much attention is paid in the literature to this question.

2.4 Algorithms for the analysis of the NBM prediction
error

The last step of the NBM methodology is the analysis of the
prediction error made by the NBM model. This model pre-
dicts the expected normal behavior of a signal. If the true
or observed signal deviates abnormally much from this pre-
diction or the deviation shows certain trends, then this might
indicate that something is going wrong with the related com-
ponent and that a failure is imminent. The main goal of the
last step is to search for these patterns in the prediction er-
ror. There are many different techniques (and combinations
of techniques) that can be used for this. There are differ-
ent ways to classify them. They can be divided by domain.
Firstly there are statistics-based methods that use the distri-
bution of the prediction error under healthy conditions to de-
termine a threshold that can be used to classify the prediction
errors as normal or anomalous. Secondly, there are methods
that are based on models from the statistical process control
(SPC) domain. Thirdly there are methods that are based on
models from the machine learning domain. A different clas-
sification focuses on the number of signals they analyze in
a single pass. There are univariate methods, which only take
a single signal at a time into consideration. There are also
multivariate methods, which look at multiple signals. In gen-

Wind Energ. Sci., 8, 893–924, 2023 https://doi.org/10.5194/wes-8-893-2023



X. Chesterman et al.: Overview of NBM approaches for SCADA data 899

eral, machine-learning-based methods are multivariate. The
SPC-based method can be both, since the univariate control
chart algorithms like Shewhart, cumulative sum (CUSUM),
and exponential weighted moving average (EWMA) have
their multivariate counterparts. However, in the state-of-the-
art literature often only the univariate versions are used. The
statistics-based methods that use the distribution of the pre-
diction error are in general univariate. An exception to this is
the Mahalanobis distance, which is mostly used in a multi-
variate setting.

The overview of the state of the art given in this pa-
per will use the first classification as a guideline. The tech-
nique that uses the distribution of the prediction error to
find a suitable threshold to identify anomalies is for exam-
ple used in Meyer (2021), Zhao et al. (2018), and Kusiak
and Verma (2012). The Mahalanobis distance combined with
an anomaly threshold is used in Miele et al. (2022), Ren-
ström et al. (2020), Cui et al. (2018), and Bangalore et al.
(2017). SPC techniques are used in Udo and Yar (2021) (She-
whart control chart), Chesterman et al. (2022) (CUSUM),
Chesterman et al. (2021) (CUSUM), Bermúdez et al. (2022)
(EWMA), Campoverde et al. (2022) (EWMA), Xiang et al.
(2022) (EWMA), and Renström et al. (2020) (EWMA). The
machine-learning-based methods for the analysis of the pre-
diction error are in general modifications of traditional ma-
chine learning algorithms. For example, the isolation forest,
which is used in Beretta et al. (2021, 2020) and McKinnon
et al. (2020), is similar to the random forest algorithm, while
the one-class SVM, used in Turnbull et al. (2021), Beretta
et al. (2020), and McKinnon et al. (2020), is similar to the
SVM.

Overall it can be stated that in the current state of the art,
multiple techniques are used for the analysis of the predic-
tion error, without a single category clearly having the up-
per hand. Furthermore, both univariate and multivariate tech-
niques are still used. The multivariate techniques can analyze
the prediction errors in multiple signals, which gives them an
advantage compared to the univariate techniques. However,
their disadvantage is that when analyzing several signals at
the same time, a deviation in a single signal might be masked.
This is shown in Renström et al. (2020), where the authors
observe that when the Mahalanobis distance is calculated on
several prediction errors at the same time (multivariate set-
ting), it does not always clearly increase when only a single
prediction error deviates. For this reason, they point out that
it would be interesting to combine multivariate and univariate
techniques.

3 Design of demonstration experiments for
evaluating the performance of techniques used in
the state-of-the-art literature

In this section, the methodology of the experiments is ex-
plained, which will be used to demonstrate certain techniques

found in the state-of-the-art literature. For this demonstra-
tion, an NBM pipeline is designed, which consists of the
following steps: data preprocessing, NBM, anomaly detec-
tion, and health score calculation. The pipeline is validated
on data from five operational wind farms. The data contain
information on three types of failures, i.e., generator bearing
replacements, generator fan replacements, and rotor brush
high-temperature failures. In each step of the pipeline, mul-
tiple techniques and configurations are tested and compared.
To this end, six experiments are designed. Care is taken to
create a lab environment as much as possible. This means
that the parts of the pipelines that are not relevant to the ex-
periment are kept constant.

3.1 The input data

The experiments are based on two data sources (for confi-
dentiality reasons not all the details of the input data can
be shared). The first one is 10 min SCADA data originat-
ing from five different onshore wind farms (wind farms 1–
5). The geographic location of each wind farm is different.
The wind turbines in these wind farms are all of the same
type with a rated power of 2 MW. The wind farms are rela-
tively small, containing only four to six wind turbines. Some
datasets contain a substantial number of missing values. The
number of (obvious) measurement errors is low. The SCADA
data contain over 100 signals. Only the 10 min averages of
the signals related to the drive train or the operational con-
dition of the wind turbine are used in this research. The sig-
nals that are selected from the SCADA data are based on the
state-of-the-art literature. It is a relatively large subset, larger
than what would be used if the selection were based on only
expert knowledge. Table 1 gives an overview.

The second source of information comprises the main-
tenance logs, which contain the replacements and failures.
Information is available on three types of events: generator
bearing replacements, generator fan replacements, and ro-
tor brush high-temperature failures. For each replacement or
failure event, information is available on the turbine ID, the
date, and the event type. This is valuable information for val-
idating the methodologies. However using these logs also in-
volves a couple of challenges, e.g., imprecise event dates or
missing events. The logs give only an approximate indication
of when something went wrong. Furthermore, it needs to be
pointed out that a replacement of a component does not nec-
essarily mean that the component failed. Some components
will have failed, whereas others will have been replaced as a
preventive measure.

3.2 Preprocessing

The first step of the NBM framework or pipeline is the pre-
processing of the data (see Fig. 1). Because the main focus of
this paper lies on the NBM and the anomaly detection tech-
niques, no extensive comparative analysis of different pre-
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Table 1. Overview of the SCADA signals used as input for the NBM model.

Signal name Symbol Unit Information

TempGenBearing_1 (avg) Tgen_bear_1
◦C Temperature of the first generator bearing

TempGenBearing_2 (avg) Tgen_bear_2
◦C Temperature of the second generator bearing

TempStatorWind (avg) Tstator
◦C Temperature of the generator stator

GeneratorSpeed (avg) Vgen rpm Rotational speed of the generator
Generator torque (avg) τgenerator N m Torque at the generator
TempConvInlet (avg) Tconv_inlet

◦C Temperature of the converter inlet
TempGearbBear_1 (avg) Tgear_bear_1

◦C Temperature of the gearbox bearing 1
TempGearbBear_2 (avg) Tgear_bear_2

◦C Temperature of the gearbox bearing 2
TempGearbInlet (avg) Tgear_inlet

◦C Temperature of the gearbox inlet
GearboxSpeed (avg) Vgearbox rpm Rotational speed of the gearbox
TempRotorBearing (avg) Trotor_bear

◦C Temperature of the rotor bearing
Rotor speed (avg) Vrotor rpm Rotational speed of the rotor of the wind turbine
Active power (avg) Pactive kW Amount of power that is being produced by the wind turbine
Nacelle temperature (avg) Tnacelle

◦C Temperature measured inside the nacelle of the wind turbine
Outside temperature (avg) Tambient

◦C Ambient temperature
Wind speed Vwind ms−1 Wind speed measured at each turbine

processing techniques is done. However, the NBM pipeline
makes use of several preprocessing techniques, which makes
it necessary to at least discuss or mention them. Some tech-
niques are trivial but necessary. They will just be mentioned
without going into more detail. The more interesting ones,
like for example the healthy data selection or the fleet me-
dian normalization, will be discussed more thoroughly.

The NBM framework makes use of the following prepro-
cessing steps:

– Data cleaning. This involves selection of relevant vari-
ables and turbines, renaming of the variables, match-
ing of the SCADA data with the replacement infor-
mation, and linear interpolation or carry forward/back-
ward of the missing values (similar to what was done in
Bermúdez et al., 2022; Campoverde et al., 2022, Mazidi
et al., 2017; and Renström et al., 2020, but with linear
interpolation). This step will not be discussed in more
detail, since it is a trivial transformation.

– Selecting healthy training data. This rule-based method
will be discussed in depth.

– Determining the operating condition of the turbines.
This is done using the IEC 61400-1-12 standard (Com-
mission, 2022) as a guideline.

– Signal filtering using the wind farm median. This is
an important transformation with a significant impact
on the results. For this reason, this step is discussed in
depth.

– Removal of sensor measurement errors. The removal of
sensor measurement errors is done in a fully automated
way. A short discussion of this step is given.

– Aggregating to the hour level. The purpose of this step
is to reduce the amount of noise and the number of miss-
ing values in the data. Similar actions were taken for ex-
ample in Turnbull et al. (2021) and Verma et al. (2022).
This step is not always appropriate. This is for exam-
ple the case for failures that form very fast over time
or for signals that exhibit damage patterns that are very
short-lived like in vibration analysis. It is up to the data
analyst to determine whether the advantages outweigh
the disadvantages. This preprocessing step will not be
discussed in more detail, since it is a trivial technique.

3.2.1 Signal filtering using the fleet (wind farm) median

The wind turbine signals in the SCADA data are quite com-
plex, meaning there are a lot of factors that influence them.
This complexity makes it more difficult to model the normal
behavior. This means that if a part of this complexity could
be removed, it would simplify the problem, which normally
should result in an improved modeling performance and an
overall more data-efficient model. This can be accomplished
by calculating the fleet median of a signal (e.g., temperature
of generator bearing 1 at time t for turbines 1, 2, 3, 4, 5) and
subtracting it from the wind turbine signals (e.g., temperature
of generator bearing 1 at time t of turbine 1). This technique
is also used in Chesterman et al. (2022, 2021). The fleet me-
dian can be seen as an implicit normal behavior model. It
is implicit because it does not require the selection of pre-
dictors or the training of a model. It models the normal be-
havior as long as 50 %+ 1 turbines are acting normally at
any given time. By taking the median over a whole farm,
it captures farm-wide effects, which are common to all the
turbines, which is why it will be called the “common compo-
nent”. Elements modeled by this component are for example
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the wind speed, the wind direction, and the outside tempera-
ture. By subtracting the median from the wind turbine signal,
these farm-wide effects are removed. What is left are turbine-
specific effects, which will be called the “idiosyncratic com-
ponent”. Turbine-specific anomalies should only be visible
in there.

In practice, this preprocessing step means that from
each signal in Table 1 the fleet median is subtracted
(e.g., Trotor−fleet median Trotor, Trear−fleet median Trear).
Figure 2 shows the results of the decomposition for the five
turbines of wind farm 2. The top subplot shows the original
generator bearing 1 temperature signal. The middle subplot
shows the common components. From the plot, it is obvi-
ous that the common component captures the general (fleet
or farm-wide) trend, while turbine-specific evolutions are ig-
nored. The bottom subplot shows the idiosyncratic compo-
nents. The power down of turbine 4 is (more) clearly visible
in the idiosyncratic component than in the original signal.
This indicates that the decomposition is successful. Figure 3
shows that the fleet median is useful for filtering out macro-
level or fleet-wide effects like seasonal fluctuations from the
data. The common component captures clearly the seasonal
fluctuations in the nacelle temperature, which results in an id-
iosyncratic component that is free of them. This is beneficial
because it means that seasonal fluctuations will not influence
the false positive rate when less than 1 year of training data
is used. Furthermore, the common component also captures
the transient behavior like cool-downs that are common to all
turbines in the fleet. This means that the idiosyncratic com-
ponent is free from most transient behavior. What remains
of transient behavior are cool-downs that are unique to the
turbine. This means that they are caused for example by a
turbine that is turned off for maintenance. These events are
relatively rare, which means that subtracting the fleet median
from the signals has reduced the modeling complexity sub-
stantially.

How well the fleet median removes the macro-level effects
depends of course on the quality of the fleet median. An issue
that may arise, especially in small wind farms, is that a sub-
stantial number of turbines are offline for maintenance. For
example, it can be that two turbines are offline for mainte-
nance in a wind farm with four turbines. This will of course
have an impact on how representative the median is of the
normal behavior. For this reason, a rule-based safeguard is
added that under certain conditions will convert the fleet me-
dian to NaN. The rules are the following:

– If fleet size< 5, no missing values at time t are allowed.

– If 5≤ fleet size< 10, at most 20 % missing values at
time t are allowed.

– If fleet size≥ 10, at most 40 % missing values at time t
are allowed.

3.2.2 Selecting healthy training data

The selection of healthy training data is an important step
in the NBM framework. If it is not done properly, it can re-
sult in the contamination of the training data with anomalous
or “unhealthy” observations, which can disturb the training
of the normal behavior. Data are considered healthy if they
are not polluted by abnormal behavior caused by a damaged
component. Unfortunately, data from real machines do not
contain a label that indicates whether they are healthy or not.
This means that certain assumptions need to be made about
the data, i.e., a “healthy data” rule. The rule used in this pa-
per considers data that precede a failure by less than 4 months
(which is the same as what is used in Verma et al., 2022) or
follow a failure by less than a month (to avoid test and upstart
behavior) unhealthy.

Once the unhealthy data have been identified, healthy data
can be selected. The methodology presented here selects the
healthy data in a fully automated fashion. The user can de-
termine how many training data (number of observations) per
turbine are required for modeling the normal behavior. The
healthy data are selected in chronological order from the time
series. For most experiments, the first 4380 (which equals
roughly 6 months of data) healthy samples of each turbine are
selected for training. The selected data are combined into a
single training dataset. This implies that only a single model
per signal per farm is trained, which results in a large re-
duction in the training time and more efficient usage of the
training data. Figures 4 and 5 give a schematic representation
of how the healthy training data are selected.

3.2.3 Handling of measurement or sensor errors

Removing outliers and/or measurement errors is something
that is done in most research. The SCADA data used for the
demonstration experiments contain a small number of un-
realistic values. The technique used here uses thresholds to
determine which observations are measurement errors and
which are not. The overview of the state of the art shows
that this is a technique that is often used. The thresholds used
in the demonstration experiments are determined in a fully
automated fashion so that they do not need to be manually
determined for each signal of each turbine type. This ma-
nipulation of the data is not without risk. Only measurement
errors should be removed and not the deviations in the sig-
nals caused by the failure of the component. The threshold
depends on the median value of the original signal (meaning
that the fleet median has not been subtracted from the wind
turbine signal). This value is multiplied with a scaling factor,
which in this paper is set to 1. This threshold is used on the
signal from which the fleet median has been subtracted. All
absolute values in this signal that are larger than the threshold
are considered measurement errors. Concretely this means
that values from the wind turbine signal that deviate from
the fleet median (on the positive side) by more than its me-
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Figure 2. Example of the impact of decomposing the generator bearing 1 temperature of the turbines in wind farm 2 in a common and
idiosyncratic component.

dian value are considered measurement errors. Equation (1)
shows the procedure using mathematical notation. The mea-
surement errors are replaced with NaN values. In a later step,
they are replaced using linear interpolation or if necessary
carry forward/backward.

Errormeasurement =
1 if |Valuefleet_corrected|>

Valueoriginal outlier_factor,
0 otherwise,

(1)

where Errormeasurement is an indicator whether the observa-
tion is a measurement error or not, Valuefleet_corrected is the
signal value from which the fleet median value has been sub-
tracted, Valueoriginal is the signal value, and outlier_factor is
a constant multiplier.

3.3 Normal behavior modeling

The normal behavior model is the core of the NBM frame-
work. It models the normal or healthy relation between one

or more predictors and a target signal. Once trained it can
be used to predict the expected normal behavior. The differ-
ences between the observed and predicted values are then
analyzed by anomaly detection algorithms in the final step.
In this section, the methodological setup of the experiments
will be discussed. To assess the performance of the NBM
configurations, two metrics are used. The first metric is the
healthy test data RMSE. A proper NBM model should be
able to model the healthy data well. However, this metric
does not tell us much about how well it can distinguish un-
healthy from healthy data. For this reason, a second metric is
introduced, which is the difference between the median pre-
diction error in the healthy and unhealthy data (1PEunh-h)
(see Eq. 2). The idea behind this metric is that good NBM
models should have a small prediction error in the healthy
data (PEh) (because they are trained on the healthy data) and
a large prediction error in the unhealthy data (PEunh) (be-
cause something has changed compared to the healthy situa-
tion). For the type of failures studied in this paper, 1PEunh-h
should be positive because the damage to the related compo-
nents should result in higher-than-normal temperatures. The
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Figure 3. Example of the impact of decomposing the nacelle temperature of the turbines in wind farm 2 in a common and idiosyncratic
component.

Figure 4. Unhealthy data identification.

more positive 1PEunh-h is, the better the NBM because it
indicates that the model can better distinguish healthy from
unhealthy data.

1PEunh-h =median(PEunh)−median(PEh), (2)

where 1PEunh-h is the difference between the median un-
healthy and healthy data prediction error, PEunh is the un-

healthy data prediction error, and PEh is the healthy data pre-
diction error.

As a baseline the fleet median signal for the healthy train-
ing data is used. Since the fleet median also models the nor-
mal behavior, although without the requirement of specify-
ing the predictors, it will be called an “implicit NBM” (vs.
the “explicit NBM” models that do require a specification of
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Figure 5. Heuristic-based healthy data identification.

predictors, model, parameters, etc.). The explicit NBM that
will mainly be used is the elastic net. It is a simple, trans-
parent, and robust model that can handle large numbers of
(correlated) predictors. At the same time, it can work with a
limited number of training data. This corresponds to require-
ments set by industrial partners, e.g., at most only a couple of
months of 10 min training data per turbine, low maintenance
cost, low training cost, and high transparency. Nevertheless,
in experiments 2 and 6 the performance of the elastic net will
be compared to that of more complex models from the shal-
low machine learning domain (i.e., light gradient-boosting
machine (light GBM), support vector regression (SVR) in
experiment 6) and the deep learning domain (i.e., multi-layer
perceptron (MLP) in experiments 2 and 6). This should give
an idea of the limits and usability of the elastic net model and
whether the trade-off between computational cost and com-
plexity on the one hand and the performance on the other
hand is acceptable or not.

3.3.1 Elastic net regression for modeling the normal
behavior

It has been shown in the literature that linear models can be
good modelers of the normal behavior of wind turbines, and
they are also time-efficient (see Dienst and Beseler, 2016).
However, by using elastic net (which was developed in Zou
and Hastie, 2005), which is basically a linear regressor with
L1 and L2 regularizers added to it (see Eq. 3), there are some
extra advantages. Firstly, the model is more robust when
many (correlated) features are used. Secondly, it also per-
forms an automatic feature selection. This implies that it is
possible to model for example the generator bearing 1 tem-
perature by giving the model all the signals that are con-
nected to the whole drive train of the turbine. This reduces
the configuration burden for the user. Furthermore, the algo-

rithm works in a transparent way, which avoids the “black
box” problem. The number of training data it requires is also
favorable compared to more complex machine learning al-
gorithms. A disadvantage of the model is that it is relatively
simple, which means that it is not good at modeling highly
non-linear dynamics. Whether this is a problem will be tested
in experiment 5, where the performance of the elastic net is
compared with that of more complex shallow machine learn-
ing and deep learning models.

β̂elastic-net
= argminβ

 N∑
i=1

(
yi −β0−

p∑
j=1

xijβj

)2

+λ1

p∑
j=1
|βj | + λ2

p∑
j=1

β2
j

 , (3)

where β̂elastic-net denotes estimates of the coefficients or
weights by the elastic net model, β0 and βj denote coeffi-
cients or weights of the model;

∑p

j=1|βj | is the L1 penalty
term;

∑p

j=1β
2
j is the L2 penalty term, also called Tikhonov

regularization; λ1 ≥ 0 is the weight of L1 penalty term; and
λ2 ≥ 0 is the weight of L2 penalty term.

3.3.2 Training of the NBM model

The NBM models are trained on healthy data that are ex-
tracted from the SCADA data. Failing to train on more or less
healthy data can result in severe degradation of the modeling
performance of the NBM (this depends on the relative quan-
tity of anomalies). To reduce the computational and mainte-
nance burden of the pipeline, a single NBM model per sig-
nal per wind farm is trained. This means that healthy train-
ing data from several wind turbines are combined in a single
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training dataset. This decision was taken in response to con-
cerns raised by wind turbine operators that if separate models
were trained per turbine, this would result in an unacceptable
maintenance burden. Combining training data from multiple
wind turbines is however not without risks. Structural signal
differences (e.g., a turbine with a generator bearing that is al-
ways 1 or 2 ◦C warmer than the one of a different turbine un-
der the same conditions) between the different wind turbines
are not modeled (unless wind turbine dummies are added to
the predictor list). This can result in structural deviations in
the prediction errors, e.g., a prediction error that is struc-
turally positive or negative. However, data analysis showed
that the temperature or behavior differences between the dif-
ferent bearings are small. There are no indications in the re-
sults (see below) that the differences between the different
bearings seriously hamper the analysis. Furthermore, exper-
iments in which the model was retrained after each bearing
replacement did not show any clear performance improve-
ment.

In general, the training of the NBM models will be done
by using the first 4380 healthy observations (or 6 months of
data) of each turbine. This number is limited on purpose so
that it answers the requirements of the industry. Fewer train-
ing data mean that new wind turbines can more easily be
added to the anomaly detection system (less startup time).
The subtraction of the fleet median from the wind turbine
signals neutralizes seasonal fluctuations. The NBM models
are trained on the training data using a full grid search or
a random grid search when the number of hyperparameter
combinations is large, over sensible ranges for the hyperpa-
rameters. To avoid overfitting 5-fold cross-validation (CV) is
used. The trained model is tested on the test dataset to as-
sess the performance. For each model, the healthy test data
RMSE is calculated. This is used to compare the models from
the different experiments. The third experiment examines the
impact of further reducing the quantity of training data to
2 months per turbine.

3.4 The anomaly detection procedure

The trained NBM model is used to predict the expected nor-
mal behavior. The prediction error in the model indicates
how anomalous the observed behavior is. As shown in the
state-of-the-art overview, there are many different anomaly
detection techniques that can be used to analyze it. The tech-
niques used in the sixth experiment are based on univariate
statistical techniques that are transparent, robust, and com-
putationally light. More specifically, two different techniques
are tested. The first technique is based on the prediction error
distribution. The second technique is based on a technique
from the SPC domain.

The first technique is most suitable for identifying point
anomalies. It is based on the principle of iterative outlier
detection (IOD) (also called iterative outlier removal). This
means that outliers are removed over several iterations un-

til the outlier thresholds (these are the thresholds that de-
termine which observations are outliers and which are not)
have stabilized. To make these thresholds more robust against
outliers, the standard deviation is approximated by the me-
dian absolute deviation (MAD) (see Eqs. 4 and 5, with k =
1.4826). The anomaly scores are calculated using Eq. (6).

MAD=median
(∣∣Xi − X̃∣∣), (4)

where Xi is the signal observation at time t = i, X̃ is the
signal median, and MAD is the median absolute deviation.

σ̂robust = kMAD, (5)

where σ̂robust is a robust estimate of the standard deviation
signal, k is a constant multiplier or scaler, and MAD is the
median absolute deviation.

Anomaly score=

−3 if idio_comp >medianidio_comp− 5σ̂robust,

−2 if idio_comp >medianidio_comp− 4σ̂robust,

−1 if idio_comp >medianidio_comp− 3σ̂robust,

1 if idio_comp >medianidio_comp+ 3σ̂robust,

2 if idio_comp >medianidio_comp+ 4σ̂robust,

3 if idio_comp >medianidio_comp+ 5σ̂robust,

(6)

where idio_comp is the idiosyncratic component,
medianidio_comp is the median idiosyncratic component,
and σ̂robust is a robust estimation of the standard deviation.

In the next step, the anomaly scores are transformed into
health scores. This is done by calculating the moving av-
erage of the anomaly scores for different windows (1, 10,
30, 90, and 180 d). For these moving averages, upper and
lower bounds are calculated. This is done by combining
the moving averages with the same window length of the
same signals from the different wind turbines and calculating
Tukey’s fences. Three positive thresholds are used to deter-
mine the moving-average anomaly score. Next, the sum of
the moving-average anomaly scores is taken over the differ-
ent windows for each time step t . This sum is the health score
and determines the health category (Eq. 8).

MAanomaly score win x =

1 if MAwinx > q(MAwinx,0.75)

+1.5(q(MAwinx,0.75)− q(MAwinx,0.25)),
2 if MAwinx > q(MAwinx,0.75)

+2.5(q(MAwinx,0.75)− q(MAwinx,0.25)),
3 if MAwinx > q(MAwinx,0.75)

+3.5(q(MAwinx,0.75)− q(MAwinx,0.25)),

(7)

where MAwinx is the moving average with window length x,
q(MA, .) is the quantile of the moving-average distribu-
tion, and MAanomaly score win x is the moving average of the
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anomaly score for window length x.

Health score=MAanomaly score win 1d,

+MAanomaly score win 10d,

+MAanomaly score win 30d,

+MAanomaly score win 90d,

+MAanomaly score win 180d, (8)

where MAanomaly score win x is the moving average of the
anomaly score over a window with length x.

Health category=
good if health score≤ 5,

mediocre if 5< health score≤ 10,
bad if health score> 10.

(9)

The second technique is based on CUSUM (Page, 1955),
which comes from the statistical process control (SPC) do-
main. CUSUM is designed to be more sensitive to small
changes in the mean than for example Shewhart charts (used
for example in Udo and Yar, 2021). The algorithm is run with
different subgroup sizes, e.g., 10, 30, 90, and 180 d. Instead
of using the subgroup mean and the overall mean, the sub-
group median and overall median are used. The standard de-
viation of the subgroups is replaced with the robust standard
deviation estimated using the MAD (see Eq. 5). This makes
the algorithm more robust against anomalous trends. For
each subgroup size, anomaly thresholds are calculated using
Eq. (7). For each signal, there are three thresholds. These are
common for all turbines in the wind farm. The signal health
scores are calculated by summing the anomaly scores for the
different subgroup sizes (meaning for each time step t the
sum is taken over all the subgroup sizes) (Eq. 8). The health
category is calculated using Eq. (9).

Assessing the performance of the anomaly detection algo-
rithms on real data is a non-trivial task due to data imperfec-
tions. Imprecisions in the replacement dates, problems that
are not resolved after a first attempt, incomplete event lists,
preventive maintenance, etc. make it hard to automate the
validation process. This means that each detection or non-
detection needs to be validated by a human. Also, it intro-
duces a certain inexactness into the validation process. For
this reason, a somewhat different validation procedure will
be used. The performance of the anomaly detection algo-
rithms is assessed by calculating the percentage of failures
that are correctly identified. This is the case when a cluster
of bad health is found around the time of the failure. The ratio
of false positives is also estimated. This is done using the fol-
lowing methodology. Firstly, turbines are selected that have
experienced no known failures. This is the case for 10 tur-
bines in total. For those turbines, it can be assumed that the
components were probably relatively healthy during the ob-
servation period. This means that the number of bad health
observations will be fairly limited. Bad health observations

that are found for those turbines are probably false positives.
For each signal, the percentage of “bad” health observations
is calculated. The median ratio for each signal over all the se-
lected turbines is used as an approximation of the false posi-
tive ratio of the anomaly detection model.

3.5 The experiments

In total six demonstration experiments will be conducted.
Five experiments will focus on the NBM model, and one
experiment will focus on the anomaly detection algorithms.
Experiment 1 compares the performance of the base elastic
net regression with that of the implicit NBM. Experiment 2
evaluates the added value of using lagged predictors. Lagged
predictors have also been used in Garlick and Watson (2009).
Experiment 3 analyzes the impact of reducing the quantity of
training data from 6 months per turbine to 2 months. In the
state of the art, different numbers of training data are used.
This is mainly driven by the number of data available. Exper-
iment 4 discusses the added value of PCA-transformed input
for the elastic net. Using PCA for preprocessing of the data is
also done in Campoverde et al. (2022). Experiment 5 exam-
ines the added value of using more complex machine learn-
ing models like SVR (with a radial kernel) and light GBM.
The performance of these models compared to that of the
elastic net will say something about the importance of non-
linearities. Experiment 6 compares the performance of the
IOD–MAD and the CUSUM anomaly detection algorithms.
For the analysis, the prediction error in the base elastic net
model is used.

4 Results

4.1 Experiment 1: the added value of using the elastic
net regression model on top of the results of the
implicit NBM

The pipeline configuration is as follows: implicit NBM based
on fleet median, explicit NBM based on elastic net regres-
sion, heuristic-based healthy data selection, full-grid-search
hyperparameter tuning (5-fold CV), and 6 months of training
data per turbine.

The first experiment investigates the usefulness of adding
an explicit NBM (elastic net regression) model to the
pipeline. One of the downsides of the implicit NBM (fleet
median) is that it is unable to model turbine-specific transient
behavior. Whether this is a serious problem depends on the
case. However, if it is a problem, it can be solved by adding
an explicit NBM to the pipeline. If the above reasoning is cor-
rect, it can be expected that the healthy test data RMSE will
decrease considerably if the elastic net regression is added to
the pipeline.

Figures 6 and 7 show that the prediction error when using
the elastic net is indeed smaller than when only the implicit
NBM is used. The most obvious improvement is that the
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large negative spikes in the prediction error in the implicit
NBM, which correspond to cool-downs caused by power
downs of the turbine, are much smaller in the prediction er-
ror made by the elastic net. This indicates that the elastic net
is modeling the transient behavior to a certain extent. The er-
ror is however still larger during transient phases than during
steady-state phases. The healthy test data RMSEs in Fig. 8
further support the findings that the elastic net is a useful ad-
dition to the pipeline. The RMSEs of the prediction errors are
substantially smaller when the elastic net is used.

Based on the results of the first experiment, it can be con-
cluded that using the elastic net has a clear added value. The
healthy test data RMSE is always smaller for the pipeline
with the explicit NBM. The fact that the RMSE of the elas-
tic net model is quite small shows that relatively simple and
lightweight models can be useful for the modeling of normal
behavior.

4.2 Experiment 2: the added value of using lagged
predictors

The pipeline configuration is as follows: implicit NBM based
on fleet median; explicit NBM based on elastic net regres-
sion; heuristic-based healthy data selection; full-grid-search
hyperparameter tuning (5-fold CV); 6 months training data
per turbine; and lags 1, 2, and 3 of each predictor are added.

In the second experiment, the input data are augmented by
adding the lagged values of the input signals (excluding the
target signal that is being modeled). The idea behind using
the lagged terms is that it makes it possible to model the time
dependencies. This can be useful when modeling the tran-
sient behavior of the turbine. In steady-state situations where
factors like active power change little, the positive impact
will most likely be less clear. Three lags (t, t−1, t−2, t−3)
for each input signal are added. This means that the model
can look up to 3 h in the past.

Figures 9 and 10 show that the difference between the pre-
diction errors for the NBM with no lags and the NBM with
three lags is marginal. In general, there is no clear difference
visible between the two. Surprisingly, there is also no clear
improvement to be found in the modeling of the transient
behavior. Figure 11 gives an overview of the RMSE in the
healthy data for all the target signals for the turbines in wind
farms 1–5. The results show that adding the three lags to the
model results for a majority of the signals in a marginal re-
duction in the median healthy test data RMSE.

Figure 12 shows the difference between the unhealthy and
healthy median prediction errors (1PEunh-h calculated using
Eq. 2) for the elastic net and multi-layer perceptron (MLP).
The figure focuses on the results for three target signals,
i.e., TempGenBearing_1 (avg) (Tgen_bear_1), TempGenBear-
ing_2 (avg) (Tgen_bear_2), and TempStatorWind (avg) (Tstator).
For the three failures that are being examined, i.e., the rotor
brush high-temperature failure, the generator bearing failure
and the generator fan failure, it is assumed that the degra-

dation of the component can be observed directly or indi-
rectly in the Tstator, Tgen_bear_1, and Tgen_bear_2 and the Tstator,
Tgen_bear_1, and Tgen_bear_2 respectively. More specifically, in
all three cases, an increase in the temperatures is expected
when the component is damaged. This means that 1PEunh-h
should be positive. The more positive it is, the more useful
the NBM is for anomaly detection.

The results in Fig. 12 show that for the elastic net the
1PEunh-h only marginally increases when three predictor
lags are used. For rotor brush high-temperature failures,
1PEunh-h is clearly positive for the elastic net model with
zero or three lagged predictors. This corresponds with the
expectations. However, 1PEunh-h is also clearly positive for
Tgen_bear_1. This is more difficult to explain, since it is un-
likely that the rotor brush high-temperature failure can be
linked to abnormally high temperatures at the first genera-
tor bearing. For the generator bearing failure, the 1PEunh-h
is clearly positive for Tgen_bear_2. This is also in line with ex-
pectations. Since 1PEunh-h is only positive for the second
generator bearing and not for the first generator bearing, it
is likely that most of the bearing failures happened at the
second generator bearing. Unfortunately, the replacement in-
formation received from the wind turbine operator does not
indicate which bearing has failed, so this statement can not
be verified. For the generator fan failures, the 1PEunh-h is
clearly positive for the elastic net with three lags. This is not
the case for the other signals, which is quite surprising, since
the hypothesis is that a generator fan failure should be in-
directly visible in all three generator signals. Furthermore,
there is no evidence that the MLP (with zero or three lags)
improves upon the elastic net model. The meaning of this
will be discussed below. The results in Fig. 12 give only a
first indication of whether the NBM is useful for anomaly
detection or not. The lack of a clear positive 1PEunh-h for
signals where it is expected to be positive does not mean
that all is lost. The anomaly detection techniques discussed
in Experiment 6 are more sensitive for small deviations. This
means that they can in some cases still detect anomalies even
though the 1PEunh-h is not clearly positive.

From the results of the second experiment, it can be con-
cluded that the addition of three lags only marginally im-
proves the model accuracy using healthy data. There is some
evidence that the addition of the predictor lags results in
NBM models with more anomaly detection potential. How-
ever, the improvement is in general small. Taking into ac-
count that adding the lags of all the predictors results in a
strong increase in the dimensionality of the problem and the
computational time, it is debatable whether the (limited) per-
formance gains outweigh the extra cost. Reasons for the low
added value of the lags can perhaps be an insufficient num-
ber of lags, a lack of information on the dynamics in the ag-
gregated SCADA data, or the combination of transient and
non-transient behavior. The first hypothesis seems to be un-
likely, since limited experimentation using more lags showed
no clear improvement in performance. The second hypothe-
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Figure 6. Prediction error in explicit and implicit NBM model for the TempGenBearing_1 (avg) signal of turbine 1.

Figure 7. Prediction error in explicit and implicit NBM model for the TempStatorWind (avg) signal of turbine 1.

sis is possible due to the fact that subtracting the fleet median
from the SCADA data signals (see Preprocessing section) re-
sults in less autocorrelation in the data. Also, the aggregation
of the data to the hour level will have an impact. This re-
sults in lagged predictor values that are less informative. The
third hypothesis would imply that the dynamics of the steady
state and the transient behavior of the turbine are so differ-
ent they can not be learned by one elastic net model. This
is a possible explanation. A solution to this problem would
be to train a separate model for the transient and steady-state
behavior or use a more complex model that is better able to
learn the differences between the two states. The fact that no
performance gains are achieved when using the MLP makes
this hypothesis however somewhat less convincing. Never-
theless, to give a conclusive answer to which hypothesis is
the correct one, further research is required.

4.3 Experiment 3: impact of reducing the training data
to 2 months per turbine instead of 6

The pipeline configuration is as follows: implicit NBM based
on fleet median, explicit NBM based on elastic net regres-

sion, heuristic-based healthy data selection, full-grid-search
hyperparameter tuning (5-fold CV), and 2 months of training
data per turbine.

In this experiment, the impact is analyzed of reducing
the quantity of training data from 6 months per turbine to
2 months. This is relevant since fewer training data mean
less computational and startup time when using the pipeline
on a new wind farm. However, reducing the number of train-
ing data in general also comes at a cost. The model accuracy
tends to decrease. The question is how much and whether it is
outweighed by the advantages. Furthermore, since the train-
ing data are selected in chronological order (meaning the first
X healthy observations), fewer training data mean that it be-
comes more likely that certain turbine conditions are missed
(or are underrepresented in the data). This can for example be
the case with long-duration power downs which cause excep-
tionally low temperatures for certain components. The most
likely result will be that those conditions will be less well
modeled, resulting in a larger prediction error. Depending on
the use case of the pipeline, this might be a problem.
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Figure 8. Comparison of RMSE of implicit and explicit NBM for wind farms 1–5. Signal ID 1: TempGearbBear_1 (avg); signal ID 2:
TempGearbBear_2 (avg); signal ID 3: TempGearbInlet (avg); signal ID 4: TempGenBearing_1 (avg); signal ID 5: TempGenBearing_2
(avg); signal ID 6: TempRotorBearing (avg); signal ID 7: TempStatorWind (avg).

Figure 9. Prediction error in explicit and implicit NBM model for the TempGenBearing_1 (avg) signal of turbine 2.

Figures 13 and 14 show indeed that there is some loss of
prediction accuracy when the number of training data are re-
duced from 6 to 2 months. This shows itself as an increase
in the prediction error. During steady-state behavior, this loss
is not really visible, but during transient behavior, the loss of
fit can be substantial (see for example Fig. 13). This is most
likely caused by the fact that the training data do not (suf-
ficiently) contain similar transient behavior examples. Fig-
ure 15 gives a more general overview of the RMSE results.
It shows that the reduction in training data in general leads
to an increase in the healthy test data RMSE. This increase is
not massive but often also not negligible. For some signals,
the median RMSE is slightly smaller. This reduction should
not be considered evidence for a superior model but more
an indication that the influence of the sample on the results
is considerable. This is something that should be taken into
account when analyzing the results.

Figure 16 shows the differences between the median pre-
diction errors in the unhealthy and healthy data (1PEunh-h).
The results indicate that for detecting rotor brush high-
temperature failures, 6 months of training data is better than
2. This is clear from the fact that1PEunh-h for Tstator is much
larger when using 6 months of training data. The generator
bearing failures are detected clearly in Tgen_bear_2. Again it
can be observed that1PEunh-h is somewhat smaller when us-
ing only 2 months of training data. The analysis for the gen-
erator fan failures is somewhat less clear. On the one hand,
there is, surprisingly, a larger1PEunh-h for the model trained
on only 2 months of data when using Tgen_bear_2 as the target
signal. On the other hand, the model trained on 2 months of
training data does not result in a positive 1PEunh-h for the
Tstator signal, contrary to the model with 6 months of training
data. Overall it can be stated that fewer training data result in
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Figure 10. Prediction error explicit and implicit NBM model for the TempStatorWind (avg) signal of turbine 2.

Figure 11. Comparison of RMSE of the no lags and the three lags NBM for wind farms 1–5. Signal ID 1: TempGearbBear_1 (avg); signal
ID 2: TempGearbBear_2 (avg); signal ID 3: TempGearbInlet (avg); signal ID 4: TempGenBearing_1 (avg); signal ID 5: TempGenBearing_2
(avg); signal ID 6: TempRotorBearing (avg); signal ID 7: TempStatorWind (avg).

general in NBM models with less potential to be useful for
anomaly detection.

Experiment 3 has shown that reducing the training data
to 2 months results in reduced performance of the model.
This is not so much a problem for the behavior states that
are frequently shown by the turbine (e.g., steady-state behav-
ior). It does have however a large influence on the states that
are rare (e.g., long-term cool-downs). Furthermore, the re-
sults also show that the anomaly detection potential of the
NBM decreases if the number of training data is reduced to
2 months. Whether the reduced performance of the NBM is a
problem really depends on the use case. For some use cases,
the larger prediction error in certain rare states is not an issue.
For those cases, it might be useful to reduce the number of
training data because this will reduce the computational bur-
den of the pipeline. However, if rare behavior is important,
the advantages may not outweigh the disadvantages.

4.4 Experiment 4: added value of a PCA transformation
step before the explicit NBM

The pipeline configuration is as follows: implicit NBM
based on the fleet median, PCA transformation, explicit
NBM based on elastic net regression, heuristic-based healthy
data selection, full-grid-search hyperparameter tuning (5-
fold CV), and 6 months of training data per turbine.

In the fourth experiment, the impact of PCA-transforming
(only a transformation, no dimensionality reduction) the data
prior to the elastic net modeling is analyzed. Normally the
elastic net algorithm should be able to handle high dimen-
sional data with strong correlations between some of the
predictors. However, in practice, there might still be some
benefit of first PCA-transforming the data. Figure 19 shows
that the prediction accuracy in general does not (or only
marginally) improve when a PCA transformation step is
added to the pipeline. For several signals, the opposite hap-
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Figure 12. Difference between the median prediction error in the unhealthy and healthy data for elastic net and MLP models with no or
three lags of the predictor variables. EN: elastic net; MLP: multi-layer perceptron; 0: no predictor lags; 3: three predictor lags (xt−1, xt−2,
xt−3).

Figure 13. Prediction error in NBM models with 6 months and 2 months of training data for the TempGenBearing_2 (avg) signal of turbine
3 of wind farm 5.

pens. However, these results hide certain interesting side ef-
fects. Figure 17 shows that the pipeline with the PCA tends
to be a better modeler of the cool-downs than the model with-
out the PCA. Figure 18 also shows that the pipeline without
the PCA in some rare cases generates (unrealistically) large
prediction errors, while this is not the case when the PCA
is used. Furthermore, the training time (and hyperparameter
tuning) is considerably shorter for the pipeline with the PCA,
even though the number of combinations being tested during
tuning is much larger (2728 for the pipeline with PCA, 341
for the pipeline without PCA). This might have something
to do with the fact that the new features generated by the
PCA transformation are uncorrelated. This can improve the
training of the elastic net. For example, for wind farm 5 the
hyperparameter tuning without PCA took 4329 s, while with
the PCA it took only 3859 s.

Figure 20 shows the differences between the unhealthy
and the healthy prediction error (1PEunh-h). The results show

that using the PCA as a preprocessing step has in general a
small positive impact on 1PEunh-h. For the rotor brush high-
temperature failures, there is no clear change in the positive
difference for the Tstator signal for the model with and without
PCA preprocessing. For the generator bearing failures, the
positive difference for the Tgen_bear_2 signal is slightly larger
when using the model with PCA preprocessing. The same is
true for the Tstator signal for the generator fan failures.

Based on the results of the fourth experiment, it can be
concluded that PCA-transforming the data prior to the elas-
tic net modeling can be beneficial in some cases. Although
the healthy test data RMSE does not decrease, it does avoid
certain large (erroneous) prediction errors and it seems to im-
prove the modeling of the transient behavior. It also seems to
improve somewhat the distinction the NBM can make be-
tween healthy and unhealthy data. Furthermore, it also re-
duces the training time considerably. This means that PCA-
transforming the data prior to the elastic net modeling has
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Figure 14. Prediction error in NBM models with 6 months and 2 months of training data for the TempStatorWind (avg) signal of turbine 3
of wind farm 5.

Figure 15. Comparison of RMSE when using 6 months or 2 months of training data for the NBM model for wind farms 1–5. Signal ID 1:
TempGearbBear_1 (avg); signal ID 2: TempGearbBear_2 (avg); signal ID 3: TempGearbInlet (avg); signal ID 4: TempGenBearing_1 (avg);
signal ID 5: TempGenBearing_2 (avg); signal ID 6: TempRotorBearing (avg); signal ID 7: TempStatorWind (avg).

some benefits. Whether these outweigh the added complex-
ity and the loss of the original features (the principal com-
ponents are linear combinations of all the original features)
depends of course on the case.

4.5 Experiment 5: added value of more complex NBM
models

The pipeline configuration is as follows: implicit NBM based
on the fleet median; explicit NBM based on elastic net regres-
sion, SVR, light GBM, or MLP; heuristic-based healthy data
selection; full-grid-search hyperparameter tuning for elastic-
net; SVR and light GBM and randomized grid search tuning
for MLP (5-fold CV); and 6 months of training data per tur-
bine.

The fifth experiment focuses on the complexity of the rela-
tions between the inputs (predictors) and the outputs (targets)
of the NBM problem. The elastic net regression is a relatively
simple model that works well when the problem is linear
(meaning linear in the parameters). However, if the problem
is highly non-linear, this type of model is not really suitable.
In the latter case, more complex models like tree-based algo-
rithms or neural networks are more appropriate. The trade-
off is however that these models are more “black box” and
require in general many more training data. Nevertheless, it
is still interesting to analyze the performance of these mod-
els. If they clearly outperform the elastic net model, then that
is evidence for the existence of non-linear relations. The per-
formance of the elastic net will be compared with that of an
SVR with a radial kernel (also used in Castellani et al., 2021),
a light GBM (which is similar to the gradient-boosting algo-
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Figure 16. Difference between the median prediction error in the unhealthy and healthy data (1PEunh-h) for elastic net models with 6 months
and 2 months of training data; 6: 6 months of training data; 2: 2 months of training data. The results are shown for TempGenBearing_1 (avg)
(Tgen_bear_1), TempGenBearing_2 (avg) (Tgen_bear_2), and TempStatorWind (avg) (Tstator).

Figure 17. Prediction error in base NBM and PCA + NBM for the TempGenBearing_1 (avg) signal of turbine 1 of wind farm 1.

rithms used in Udo and Yar, 2021; Maron et al., 2022; and
Beretta et al., 2021), and an MLP.

Figure 21 shows that the prediction error in the four mod-
els is roughly similar in size, with some large upward or
downward spikes at certain points in time for the SVR. Fig-
ure 22 shows however that under certain conditions the SVR
and light GBM performance severely degrades. This is the
case during large long-term cool-downs. This problem also
impacts the elastic net and the MLP but to a lesser extent.
With limited examples in the training dataset, the SVR and
light GBM have difficulties estimating the normal behav-
ior in those cases. The elastic net, which is a much simpler
model, might use relatively accurate extrapolations for esti-
mating those cases. The MLP performs during cool-downs
clearly better than the SVR and light GBM but does not
completely reach the performance of the elastic net. A pos-

sible explanation for this is that the MLP is better at learn-
ing the non-linearities than the SVR and light GBM, but the
problems it has with extrapolation mean that it does not per-
form as well as the elastic net. Figure 23 gives an overview
of the healthy test data RMSEs. The results show that the
SVR never performs best, and it often performs significantly
worse than the three other models. The light GBM and MLP
perform marginally better than the elastic net for some sig-
nals; however, the improvement is small. For some signals,
they perform worse than the elastic net. This means that there
is some evidence for non-linearities when modeling some of
the signals. The evidence is however weak.

Figure 24 shows the differences between the unhealthy and
the healthy prediction error (1PEunh-h). The purpose of this
plot is to see whether using more complex machine learning
models results in NBM models that are better at distinguish-
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Figure 18. Prediction error in base NBM and PCA + NBM for the TempGenBearing_2 (avg) signal of turbine 3 of wind farm 3.

Figure 19. Comparison of the RMSE when the data are PCA-transformed to when the data are not PCA-transformed for wind farms 1–5.
Signal ID 1: TempGearbBear_1 (avg); signal ID 2: TempGearbBear_2 (avg); signal ID 3: TempGearbInlet (avg); signal ID 4: TempGen-
Bearing_1 (avg); signal ID 5: TempGenBearing_2 (avg); signal ID 6: TempRotorBearing (avg); signal ID 7: TempStatorWind (avg).

ing healthy from unhealthy data. For the rotor brush high-
temperature failures, the elastic net model outperforms the
other models. This is clear from the fact that the 1PEunh-h
for the Tstator signal is the largest for the elastic net. For the
generator bearing failure, the story is the same. The elastic
net outperforms the other models. The prediction error dif-
ference for the Tgen_bear_2 signal is the largest for the elastic
net. For the generator fan failures, the results indicate that
the more complex models somewhat outperform the elas-
tic net model. The light GBM has a larger 1PEunh-h for
the Tgen_bear_1 signal, and the MLP and SVR have a larger
1PEunh-h for the Tstator signal. These results indicate that us-
ing a combination of several of the more complex models
might result in a better anomaly detection performance.

The results of experiment 5 show some (weak) evidence
that the relation between the predictors and some of the tar-

gets is non-linear. This means that some non-linear models
(e.g., from the traditional machine learning or the deep learn-
ing domain) might improve the modeling of the healthy data.
The improvements obtained by the light GBM and the MLP
are however small. Furthermore, if the1PEunh-h is analyzed,
then there is no evidence that the more complex models out-
perform the elastic net for rotor brush high-temperature and
generator bearing failures. However, for generator fan fail-
ures, it might be beneficial to use the more complex mod-
els or a combination of the models. Furthermore, the results
also show that the more complex models are more suscepti-
ble to the underrepresentation of certain states in the training
dataset. This can lead to severe performance degradation.
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Figure 20. Difference between the median prediction error in the unhealthy and healthy data for elastic net models with and without
PCA preprocessing; 0: no PCA preprocessing; 1: PCA preprocessing. The results are shown for TempGenBearing_1 (avg) (Tgen_bear_1),
TempGenBearing_2 (avg) (Tgen_bear_2), and TempStatorWind (avg) (Tstator).

4.6 Experiment 6: identifying anomalies in the prediction
error using iterative outlier detection and CUSUM

The sixth and last experiment focuses on detecting anoma-
lies in the prediction error made by the NBM. The previous
experiments all focused on the NBM itself because it is the
basis of the anomaly detection pipeline. In this section, the
focus shifts to the anomaly detection algorithms that can be
used to find abnormal prediction error patterns. As shown in
the “Overview of the state of the art” section, there are multi-
ple ways this can be achieved. Testing and comparing all the
methods that have been developed is obviously unfeasible.
For this reason, a selection will be made that takes into ac-
count the requirements of the industry, namely maintainabil-
ity, transparency, computational efficiency, and robustness.
Preference is given to univariate statistical techniques that
have been thoroughly studied, i.e., IOD–MAD and CUSUM.
The accuracy of the techniques will be, as described in the
“Design of demonstration experiments for evaluating the per-
formance of techniques used in the state-of-the-art literature”
section, assessed in both a quantitative and a qualitative fash-
ion. For practical reasons, the figures shown in this section
are only a subset of all figures that can be generated from the
results.

4.6.1 Generator bearing replacement

Generator bearing failures can normally be detected in the
temperatures of the bearings. When damage or wear is form-
ing, the temperatures start to increase due to increased fric-
tion. The information from the wind turbine operator, un-
fortunately, does not mention which bearing was replaced,
e.g., bearing 1 or 2. However, in general, this can be deduced
from the results because the health degradation is much more
pronounced for one of the two bearings. Generator bearing

failures normally form slowly over time. This means that
health degradation shows itself mostly during a prolonged
period of time. The strength of the degradation depends how-
ever also on how fast the bearing was replaced. If it was re-
placed as part of preventive maintenance, then the degrada-
tion signal will most likely be less strong compared to situ-
ations in which the bearing truly failed. In total, information
on four generator bearing replacements is available.

The generator bearing replacement in Figs. 25 and 26 is
detected by the IOD–MAD and the CUSUM algorithms, al-
though the latter detects it only lightly. IOD–MAD tends to
generate more anomalies that can not be associated with this
failure compared to CUSUM. The generator bearing replace-
ment in Figs. 27 and 28 is also clearly detected by both the
IOD–MAD and the CUSUM algorithm. The fact that both
algorithms detect the replacement strongly indicates that the
degradation of the bearing most likely was severe. Both algo-
rithms also raise some anomalies around year 5. It is unclear
at the moment what the reason for this is.

The overall results show that the IOD–MAD algorithm is
able to identify three out of four generator bearing replace-
ments, while CUSUM found only two out of four. IOD–
MAD has however the tendency to generate more bad health
flags that can not be associated with the failures. This prob-
ably means that the false positive rate for this algorithm is
higher than for CUSUM. CUSUM on the other hand seems to
be much less sensitive (probably not sensitive enough). It is
likely that changing the hyperparameters would improve the
performance. However, parameter tuning with such a small
number of examples is difficult.

4.6.2 Generator fan replacement

Generator fan problems can only be observed indirectly for
the turbines of wind farms 1–5. This is due to the fact that
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Figure 21. Prediction error in elastic net, SVR, light GBM, and MLP NBM models for TempGenBearing_2 (avg) signal of turbine 2 of wind
farm 5.

Figure 22. Prediction error in elastic net, SVR, light GBM, and MLP NBM models for TempGenBearing_1 (avg) signal of turbine 3 of wind
farm 2.

Figure 23. Difference between the median prediction error in the unhealthy and healthy data. Comparison of the RMSE of the elastic net, the
SVR, the light GBM, and the MLP NBM models for wind farms 1–5. Signal ID 1: TempGearbBear_1 (avg); signal ID 2: TempGearbBear_2
(avg); signal ID 3: TempGearbInlet (avg); signal ID 4: TempGenBearing_1 (avg); signal ID 5: TempGenBearing_2 (avg); signal ID 6:
TempRotorBearing (avg); signal ID 7: TempStatorWind (avg).
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Figure 24. Difference between the median prediction error in the unhealthy and healthy data for elastic net, light GBM, multi-layer per-
ceptron, and support vector regression models. EN: elastic net; GBM: light gradient-boosting machine; MLP: multi-layer perceptron; SVR:
support vector regression. The results are shown for TempGenBearing_1 (avg) (Tgen_bear_1), TempGenBearing_2 (avg) (Tgen_bear_2), and
TempStatorWind (avg) (Tstator).

Figure 25. Health score and category based on the IOD–MAD algorithm for TempGenBearing_2 (avg) of turbine 3 of wind farm 3.

Figure 26. Health score and category based on the CUSUM algorithm for TempGenBearing_1 (avg) of turbine 3 of wind farm 3.
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Figure 27. Health score and category based on the IOD–MAD algorithm for TempGenBearing_1 (avg) of turbine 2 of wind farm 4.

Figure 28. Health score and category based on the CUSUM algorithm for TempGenBearing_1 (avg) of turbine 2 of wind farm 4.

there is no signal available in the SCADA data that is directly
linked with the fans. However, it can be assumed that the
failure of a generator can be observed indirectly by analyz-
ing the temperatures of generator components. Even though
this should be possible, indirect observations are probably
less clear than direct observations, meaning that the health
degradation will most likely be much less clear. Initially, it
was assumed that a generator fan failure could be identified
if all three generator signals, e.g., TempGenBearing_1 (avg),
TempGenBearing_2 (avg), and TempStatorWind (avg), show
health degradation. However, in practice, it appears that this
is not the case and that in general the failure can only be
spotted in one signal, namely the TempGenBearing_1 (avg)
signal. The result of this is that it is often difficult to make a
distinction between a generator bearing failure and a genera-
tor fan failure. This means that when bad health is observed
in the TempGenBearing_1 (avg) signal, the user will receive
the warning that there is an issue with the bearing or the fan.

The datasets for wind farms 1–5 contain in total three us-
able examples. The three examples show that IOD–MAD
finds all the replacements correctly. CUSUM misses one.

Figures 29 and 30 show the results for the third generator fan
failure in the dataset. The IOD–MAD algorithm also raises
bad health flags at some other points in time. This is less
the case for CUSUM. It would be a bit premature to immedi-
ately decide that those are false positives. After all, the Temp-
GenBearing_1 (avg) signal can also be influenced by issues
with the bearings or some other factors. In practice, it would
mean that at those points in time the user would also receive
a warning for a potential fan or bearing failure. However, the
number of those cases is relatively small given that the ob-
servation window is nearly 6 years long.

Overall the IOD–MAD algorithm identified three out of
three generator fan replacements correctly, while CUSUM
found two out of three. The results show also that CUSUM
is more conservative than IOD–MAD, which makes it less
capable. However, it also generates fewer bad health flags
that can not be linked to the generator fan replacements.
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Figure 29. Health score and category based on the IOD–MAD algorithm for TempGenBearing_1 (avg) of turbine 1 of wind farm 5.

Figure 30. Health score and category based on the CUSUM algorithm for TempGenBearing_1 (avg) of turbine 1 of wind farm 5.

4.6.3 Rotor brush high-temperature failure

The datasets for wind farms 1–5 contain five examples of ro-
tor brush high-temperature failures that can be used for the
validation of the anomaly detection models. Two failures had
to be excluded due to missing SCADA data. Just like the gen-
erator fan replacements, there is no direct way to identify
these failures. It is however assumed that they can be iden-
tified indirectly through the temperature of the stator wind-
ings (although there is some debate whether this is always
the case). Just like for the generator fan replacement case, it
means that the signal might not always be very strong.

The first rotor brush high-temperature failure (Figs. 31
and 32) is detected by both algorithms. For IOD–MAD, the
main detections happen after the date of the replacement, but
given the uncertainty about the event dates and the fact that
sometimes an issue is not solved after the first try, it can
still be considered a correct detection. The detection by the
CUSUM algorithm is very clear. The generator rotor brush
high-temperature failure in Figs. 33 and 34 is also detected

correctly. However, the detection strength is lower for the
CUSUM algorithm than for the IOD–MAD algorithm.

The overall results show that both algorithms can quite re-
liably detect the rotor brush high-temperature failures using
the temperature of the stator windings. Four out of five fail-
ures were detected. However, from the results, it is also clear
that the detections are not always very clear. Nevertheless,
they are still sufficiently different from the rest of the data to
be useful for the user.

4.6.4 False positive ratio

The last part of this experiment is assessing the false posi-
tive ratio of the anomaly detection models. The analysis will
be focused on the IOD–MAD algorithm because it has the
highest detection accuracy. The results in Table 2 show that
false positive ratios for the different signals are 0.12 for the
TempGenBearing_1 (avg) signal and 0.08 for the TempGen-
Bearing_2 (avg) and the TempStatorWind (avg) signals. This
is a relatively small ratio given that there is always some un-
certainty about the health of the data. The results show how-
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Figure 31. Health score and category based on the IOD–MAD algorithm for TempStatorWind (avg) of turbine 2 of wind farm 1.

Figure 32. Health score and category based on the CUSUM algorithm for TempStatorWind (avg) of turbine 2 of wind farm 1.

ever that for some turbines, the false positive ratio for cer-
tain signals can be high. This is for example the case for the
TempGenBearing_2 (avg) signal of turbine 1 of wind farm
2. This might indicate that there is a hidden underlying issue
with the second bearing of this turbine. Nevertheless, it can
be concluded that in general, the false positive ratio is quite
low.

5 Conclusion and future research

This paper gives an overview of recent research on the condi-
tion monitoring of wind turbines using SCADA data and the
NBM framework. The goal is to give the reader an idea of
what the current state of the art is, e.g., what has been tried
and what techniques are performed using data from opera-
tional wind farms. This is done by first presenting a struc-
tured overview of the current state of the art. This gives an
idea of how an NBM pipeline is normally set up and which
techniques are used for the different steps. In the second part
of the paper, several techniques from the state of the art are
selected and applied to data from several real operational

wind farms. This is done through six demonstration experi-
ments. The different techniques are compared, and their per-
formance is thoroughly analyzed. Five experiments focus on
the NBM model, and one experiment focuses on the analysis
of the prediction error.

The first experiment examines the modeling performance
of a relatively simple NBM model, i.e., the elastic net. The
results show that the model is a capable modeler, even during
the transient behavior of the turbine. The second experiment
discusses the impact of using the lagged values of the predic-
tors as input to the elastic net model. The results show only
a marginal improvement of the model quality (minor reduc-
tion in the healthy test data RMSE). The modeling of the
transient behavior is not noticeably better. Potential expla-
nations for this are, firstly, data with a 1 h resolution might
be insufficient; secondly, three lagged values might not be
enough; and thirdly, a single model for transient and non-
transient behavior might be problematic due to differences in
the behavior dynamics. The third experiment examines the
impact of reducing the quantity of training data from 6 to
2 months. The results show a reduction in the modeling ac-
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Figure 33. Health score and category based on the IOD–MAD algorithm for TempStatorWind (avg) of turbine 1 of wind farm 4.

Figure 34. Health score and category based on the CUSUM algorithm for TempStatorWind (avg) of turbine 1 of wind farm 4.

curacy (as expected). The risk of underrepresentation of cer-
tain wind turbine states in the training data also increases.
This can result in degraded model performance for these
states. The fourth experiment discusses the added value of
PCA-transforming the output of the implicit NBM before it
is given to the elastic net. The results show that the overall
model performance does not improve when the PCA trans-
formation is used. However, some abnormally large predic-
tion errors disappear and the run time of the pipeline is sig-
nificantly reduced. A possible explanation for this is the fact
that the PCA breaks the correlation between the predictors,
which results in a more stable model and faster convergence.
The fifth experiment investigates whether more complex ma-
chine learning models are useful for the pipeline. The re-
sults show that the SVR with a radial kernel performs overall
worse than the elastic net, while the light GBM and MLP
perform slightly better (for some signals). However, these
more complex models can suffer from severe model degrada-
tion during the transient behavior of the turbine. A possible
explanation can be found in the underrepresentation of this
behavior in the training dataset. A possible solution for this

might be oversampling the minority behavior. The sixth and
last experiment tests two different univariate anomaly detec-
tion techniques (IOD–MAD and CUSUM) that generate a
health score for the signals. The results show that IOD–MAD
is able to identify the failures more accurately, at the cost of
more alerts during periods that can not immediately be linked
to a failure. Most generator bearing replacements, generator
fan replacements, and rotor brush high-temperature failures
can be detected accurately. Furthermore, the number of false
positives generated by the IOD–MAD algorithm is quite low.
The end result is an NBM pipeline with relatively low com-
putational demands, which is quite robust, has a limited num-
ber of models, and is able to detect three different failure
types accurately on five different wind farms without changes
to the configuration of the pipeline.

The overview of the state of the art shows that at the mo-
ment a lot of research is being done on condition monitor-
ing and failure prediction for wind farms using SCADA data.
The NBM methodology is a popular methodological choice
for this. Many different configurations (preprocessing, NBM,
and analysis of the prediction error) have been tried. Never-
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Table 2. Overview of the ratio of bad health observations on the total number of observations. WF stands for wind farm and T for turbine.

WF / T TempGenBearing_1 (avg) TempGenBearing_2 (avg) TempStatorWind (avg)

1 / 1 0.03 0.03 0.14
1 / 4 0.09 0.09 0.06
2 / 1 0.28 0.43 0.03
3 / 1 0.12 0.25 0.08
3 / 2 0.15 0.04 0.08
3 / 4 0.02 0.08 0.02
4 / 3 0.14 0.17 0.01
4 / 4 0.12 0.24 0.11
5 / 2 0.16 0.04 0.11
5 / 3 0.06 0.05 0.09

Median 0.12 0.08 0.08

theless, there are still some blind spots that might be inter-
esting for future research. Firstly, a thorough structured anal-
ysis of the impact of different preprocessing techniques on
the performance of the condition monitoring could be use-
ful. This will give insights into which techniques work well
and give future researchers a basis to start from. This should
avoid the situation there is today where often ad hoc deci-
sions are taken without proper explanation of the motivation
as to why or a clear idea of what the impact will be on the
final results. Secondly, a more thorough comparative anal-
ysis of different NBM models (e.g., statistical, traditional
machine learning, deep learning) might be useful, prefer-
ably taking into account the demands/remarks from the in-
dustry. Thirdly, most research now focuses on SCADA data
with a 10 min resolution. With more and more data becom-
ing available from wind turbines and improved connectivity,
research can be done on data with a higher resolution. Com-
parative studies of the performance of condition monitoring
using 10 min SCADA data and data with a higher resolu-
tion (e.g., 1 min, 10 s, 1 s) might be interesting. It will give
the industry an idea of what the added value is of collecting
SCADA data with a higher resolution. Furthermore, it most
likely will make it possible to detect events or failures that
are short-lived. A thorough comparative analysis of the tech-
niques used for the analysis of the prediction errors would
also be useful. Fourthly, these analyses should preferably be
done on data from real operational wind farms. Furthermore,
it would help the research on this topic a lot if data from
several operational wind farms could be made public. This
would make it possible to use these datasets as standards,
which would make it easier to compare the performance of
different techniques.
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