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Abstract. Inflow wind field measurements from nacelle-based lidar systems offer great potential for different
applications including turbine control, load validation, and power performance measurements. On floating wind
turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations.
Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be understood. In
this work, we investigate the influence of floater motions on wind speed measurements from forward-looking
nacelle-based lidar systems mounted on floating offshore wind turbines (FOWTs) and suggest approaches for
correcting motion-induced effects. We use an analytical model, employing the guide for the expression of un-
certainty in measurements (GUM) methodology and a numerical lidar simulation for the quantification of uncer-
tainties. It is found that the uncertainty of lidar wind speed estimates is mainly caused by the fore–aft motion of
the lidar, resulting from the pitch displacement of the floater. Therefore, the uncertainty is heavily dependent on
the amplitude and the frequency of the pitch motion. The bias of 10 min mean wind speed estimates is mainly
influenced by the mean pitch angle of the floater and the pitch amplitude. We correct motion-induced biases in
time-averaged lidar wind speed measurements with a model-based approach, employing the developed analyt-
ical model for uncertainty and bias quantification. Testing of the approach with simulated dynamics from two
different FOWT concepts shows good results with remaining mean errors below 0.1 ms−1. For the correction
of motion-induced fluctuation in instantaneous measurements, we use a frequency filter to correct fluctuations
caused by floater pitch motions for instantaneous measurements. The correction approach’s performance depends
on the pitch period and amplitude of the FOWT design.

1 Introduction

With many countries worldwide having ambitious targets for
FOWT installations and a pipeline of upcoming projects, the
installed capacity of FOWT is expected to increase exponen-
tially in the coming decade. Forecasts expect the global in-
stalled capacity of floating wind to reach 16.5 GW by 2030
(GWEC, 2022). While FOWTs offer the potential to exploit
wind resources in deep waters, new challenges occur due
to the dynamic behavior of floating support structures. One
of these challenges is the reliable measurement of wind re-
sources and FOWT inflow conditions.

For wind measurements in deep waters, typically met
masts are not applicable due to high installation costs. As
an alternative, floating lidar concepts have been developed
and are already used in industry projects and research ap-
plications. A comprehensive overview of the technology and
challenges can be found in Gottschall et al. (2017). The use
of forward-looking nacelle-based lidar systems is advanta-
geous to measure inflow conditions to individual turbines.
Potential use cases for nacelle-based lidar systems include
power performance monitoring, load monitoring, and turbine
control.

Özinan et al. (2022) published a power curve assessment
campaign with a nacelle-based lidar on a 2 MW FOWT. This
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study compared lidar measurements to a nacelle-mounted
sonic anemometer. While a good agreement between both
wind speed references was observed, the power curves with
lidar wind speed measurements showed higher scatter com-
pared to the nacelle cup-anemometer measurements. It can
be expected that the increased scatter is caused by the influ-
ence of floater dynamics and the corresponding shift of the
measurement position on lidar measurements. However, no
systematic analysis and quantification of motion-induced ef-
fects are presented in this study.

In Conti et al. (2020) load simulations have been
performed using lidar-estimated wind field characteristics
(WFCs). Predicted loads have been compared to load mea-
surements at the turbine. In Conti et al. (2021) a methodology
for combining nacelle-based lidar measurements with con-
strained wind field reconstruction techniques has been pro-
posed to improve the accuracy of load assessments for fixed-
bottom wind turbines. Since this study was performed for
bottom-fixed wind turbines, no effects of floating dynamics
are considered. The effect of floater dynamics on measured
wind speed time series must be investigated to transfer the
proposed methodology to the case of floating wind turbines.

Another application of nacelle-based lidar systems is the
use of different lidar-assisted wind turbine control strategies.
These control strategies aim to use knowledge about the ap-
proaching wind field to optimize the operation of the tur-
bine. Investigated concepts include collective and individual
pitch control (see, e.g., Bossanyi et al., 2014), yaw control
(see, e.g., Fleming et al., 2014), and speed control (see, e.g.,
Schlipf et al., 2013). The abovementioned studies did not in-
vestigate the proposed control strategies for floating wind tur-
bines and did not consider the effect of floater dynamics on
the inflow measurements used.

Although different applications require wind speed mea-
surements in different temporal resolutions (e.g., 1 Hz for tur-
bine control versus 10 min average for performance measure-
ments), for all the abovementioned applications the quantifi-
cation of uncertainties and biases in lidar measurements is
essential. The need for uncertainty quantification and the de-
velopment of suitable tools and models has also been high-
lighted as an important step towards the broad application of
nacelle-based lidar systems by Clifton et al. (2018).

While the abovementioned studies have mainly investi-
gated the use of nacelle-based lidar systems for the measure-
ment of inflow conditions of onshore or bottom-fixed off-
shore wind turbines, little experience exists for the use on
FOWT. Since the floating dynamics of the FOWT causes
translational and rotational displacement of nacelle-mounted
lidars, it can be expected that these dynamics affect the mea-
surements. Therefore, it is necessary to investigate motion-
induced effects and evaluate the need for motion correction.

The quantification of uncertainties and correction of mo-
tion influence have in general already been approached
by several authors for both floating and fixed lidar sys-
tems. In Gottschall et al. (2014) motion-induced effects

on buoy-based lidar systems were investigated following a
simulation-based and experimental approach. While mean
wind speed measurements showed little deviation from fixed
reference measurements, the authors found systematically
increased turbulence intensity (TI) measurements. Bischoff
et al. (2022) introduced a simulation-based approach for the
uncertainty estimation of buoy-based floating lidar systems
under different met-ocean conditions. Kelberlau and Mann
(2022) quantified the motion-induced measurement errors
for lidar buoys. Biases in the measurement were derived
numerically and analytically using a mathematical model
of the measurements under motion influence. Since above-
mentioned studies are specifically addressing uncertainties of
buoy-based lidar systems, their results are not directly trans-
ferable to nacelle-based systems on FOWT, which have sig-
nificantly different dynamic characteristics.

In Meyer and Gottschall (2022) an analytical approach
is followed for the investigation of uncertainties of nacelle-
based lidar measurements. In this work the methodology pro-
posed by the guide for the expression of uncertainty in mea-
surements (GUM) (JCGM 100:2008, 2008) is followed to
estimate uncertainties due to line of sight variations in range,
elevation angle, and azimuth angles. While a high depen-
dency of measurement uncertainty on the chosen beam eleva-
tion and azimuth angles is found, the study does investigate
the effect of floating dynamics.

For nacelle-based lidar systems on FOWT, Gräfe et al.
(2022) demonstrated the influence of floater dynamics on
lidar measurements. The main effects influencing the ob-
tained lidar wind measurements are changing beam direc-
tions, changing position of focus points, and superposition
of translational velocities. Rotational displacements of the
floater and the lidar system cause tilted beam directions com-
pared to a fixed lidar system, which leads to changing line of
sight (LOS) measurements. Changing beam directions also
cause changing positions of focus points in space. The pres-
ence of vertical wind shear leads to errors in the wind speed
estimates. Finally, floater dynamics cause translational dis-
placements of the lidar system in space, which creates the
superposition of additional velocity components on the li-
dar measurements. The influence of floater dynamics on lidar
measurements was investigated with a numerical simulation
approach for a 15 MW spar-type FOWT. Results showed an
increase in mean absolute error between lidar-estimated and
true wind field rotor-effective wind speed depending on the
environmental conditions. An overestimation of mean rotor-
effective wind speed, due to spatially shifted focus points,
was observed. The study is based on the simulation results
for one specific FOWT design and does not investigate indi-
vidual degree of freedom (DOF) individually. Thus, results
are not directly transferable to other FOWT designs.

The correction of motion influence in lidar measurements
has been addressed by different studies. Kelberlau et al.
(2020) suggest a motion compensation approach for tur-
bulence intensity estimates from buoy-mounted vertical az-
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imuth display (VAD) scanning lidar systems based on mea-
sured motion time series. Here, motion data from a motion
reference unit are used to calculate the contribution of the
buoy motions on the LOS measurements and the current
LOS geometry. Further, this information is considered in the
wind field reconstruction process for each measurement. Ap-
plication of the suggested method yielded good agreement
between motion-compensated and fixed reference measure-
ments. While the proposed methodology is in general appli-
cable to nacelle-based lidar measurements, results are not di-
rectly transferable due to different beam geometries and dy-
namics characteristics.

In Désert et al. (2021) motion-induced contributions to
LOS wind speed measurement variances are calculated based
on 10 min mean motion data and used to correct the turbu-
lence intensity measured by the lidar. A similar approach is
followed by Gutiérrez-Antuñano et al. (2018). Here ampli-
tudes and periods of the pitch and roll motion of a lidar buoy
in combination with information about the lidar configura-
tion are used to estimate the motion-induced variance of hor-
izontal wind speed estimates. In Salcedo-Bosch et al. (2022)
and Salcedo-Bosch et al. (2021) the use of Kalman filters for
motion correction of 10 min statistics from buoy-based lidar
systems is investigated. Inertial measurement unit (IMU) sig-
nals from the buoy along with a turbulence model are used to
model the true wind velocity vector and correct the motion-
corrupted lidar measurements. Again the focus of these stud-
ies lies on the correction of buoy-based lidar TI estimates.
The motion influence on nacelle-based lidar wind speed esti-
mates cannot be derived from them.

With the present work, we aim to provide missing in-
sights into the effect of floater dynamics on nacelle-based
lidar inflow wind speed measurements. Therefore, we sys-
tematically analyze the motion-induced effects for individual
floater DOFs and provide methodologies for the correction
of these effects. In short, the objectives of this work are as
follows:

– to quantify floater motion-induced uncertainties and bi-
ases in nacelle-based lidar wind speed measurements on
FOWT,

– to introduce correction methods for motion-induced ef-
fects on lidar wind speed measurements on different
timescales,

– to assess the introduced correction methods for different
floater characteristics and atmospheric conditions.

Structure of the work

In Sect. 2, the overall methodology of the study, the used
tools, and measurement data sets are introduced. In Sect. 2.2
we introduce a newly developed analytical model for the esti-
mation of uncertainties and biases in lidar measurements for

floating wind turbines under consideration of floater dynam-
ics. Since the analytical model includes several simplifying
assumptions, we use the numerical lidar simulation frame-
work ViConDAR ( Pettas et al., 2020; Pettas et al., 2022;
Gräfe et al., 2022) to verify the findings from the analytical
model. The simulation approach of this framework is shortly
introduced in Sect. 2.3.

In Sect. 3 we discuss the motion influence on nacelle-
based lidar measurements. Therefore, we first present find-
ings from the measurement campaign. Second, we present a
parametric study based on an analytical and numerical model
which quantifies the influence of individual floater DOFs on
the lidar measurements.

In Sect. 4 we first discuss the need for motion compensa-
tion for different applications of nacelle-based lidar measure-
ments. Following this discussion, in Sect. 4.1 we introduce a
model-based correction approach for 10 min averaged lidar
wind speed estimations. Here, the analytical model is used
to calculate correction values based on dynamics input pa-
rameters. In Sect. 4.2 we introduce a correction approach for
instantaneous lidar wind speed estimates based on time series
frequency filtering.

In Sect. 5 we use the numerical lidar simulation frame-
work as a testing environment for both correction approaches
and evaluate the performance of the proposed motion cor-
rection approaches. Here we use simulated dynamics of two
FOWTs, modeled in the aeroelastic simulation code Open-
FAST (Jonkman, 2007), as inputs for the lidar simulation. A
final discussion on the performance and the applicability of
the correction approaches for different FOWT characteristics
is given in Sect. 6.

2 Methodology

The methodology covers the introduction of the numerical
and analytical models for quantification of uncertainty and
bias in lidar wind measurements on floating wind turbines.
A parametric study is used for the quantification of motion-
induced effects. Based on the findings of the parametric
study, two approaches for the correction of time-averaged
and instantaneous lidar wind measurements are introduced.
An overview of the methodology used and use of the an-
alytical and numerical lidar measurement models is shown
in Fig. 1. A dynamics parameter space defines the range of
rotational and translational displacements. The uncertainties
and biases in nacelle-based lidar measurements are quanti-
fied using the analytical model in combination with the GUM
methodology and the numerical model in combination with
statistical metrics. Using this quantification of uncertainties
and biases, two correction approaches are introduced.

2.1 Measurement campaign

The data set analyzed for this study contains data from a
forward-looking lidar mounted on the nacelle of the FLOAT-
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Figure 1. Utilization of analytical and numerical lidar measurement models.

GEN (BWIdeol, 2019) floating wind turbine demonstrator
The measurement campaign took place from December 2020
to April 2021. For this study measurement data from January
2021 were analyzed.

The floating substructure is a barge-type floater employing
BW Ideol’s damping pool design. It is installed on the SEM-
REV test site (ECN, 2017) located near the Atlantic coast of
Brittany. The wind turbine employed for this demonstrator
is a 2 MW Vestas V80 turbine with a rotor diameter of 90 m
and a hub height of 60 m. Further details on the measurement
campaign can be found in Özinan et al. (2022).

The measurement campaign employed a Wind Iris TC li-
dar (Vaisala, 2022). This lidar system is a four-beam pulsed
lidar with a 1 Hz sampling frequency for the total pat-
tern. LOS velocities are measured at 10 distances from 50
to 200 m. The beam geometry of the system is described
in Sect. 3.2. Furthermore, the lidar system is equipped with
an IMU, providing the rotational displacement in pitch and
roll direction of the lidar system. The wind field reconstruc-
tion procedure followed in this study is based on the ap-
proach from Schlipf et al. (2020). In this method the hor-
izontal wind speed components u and v are reconstructed
using LOS measurements from all four beams. For the ro-
tational displacement measurements from the lidar IMU, it
has been found that the measurements do heavily overes-
timate the amplitudes of the displacements compared with
other nacelle-based sensors. Therefore, the inclination data
used in this study have been corrected using a linear rela-
tionship between the inclination measurements of the IMU
and other nacelle-mounted inclinometers. The correction ap-
proach is discussed in Chen et al. (2022).

2.2 Analytical model

The analytical uncertainty model aims to provide estimates
of uncertainty for lidar LOS wind speed measurements
and wind field characteristics reconstructed from LOS wind
speed measurements. The uncertainty estimation according
to the GUM methodology requires an analytical description
of the measurement. For the case of nacelle-based lidar mea-
surements on a FOWT, the model must contain the relevant
dynamic behavior of the FOWT, a description of the wind
field, and a model of the measurement itself.

Figure 2. Lidar pattern and coordinate systems for the analytical
model.

The dynamic behavior of the FOWT is modeled consider-
ing four DOFs, namely the rotational displacement in yaw,
pitch, and roll direction, as well the heave displacement of
the floater (see Fig. 2). The low-frequency displacements of
the floater in the surge and sway direction are typically caus-
ing slow translational displacements of the nacelle compared
to the effect of rotational floater displacements. Therefore,
the sway and surge displacement of the floater is not consid-
ered in the model as individual DOFs. The temporal behavior
of the considered DOFs, a, is modeled by harmonic oscilla-
tions around a defined mean value:

a = Aa ·

(
sin

2π
Ta
t

)
+ ka, (1)

where Aa is the amplitude, Ta is the period, ka is the mean
value of the respective DOF, and t is the time. A rigid floater-
tower assembly is assumed to transfer the modeled floater
dynamics to the dynamics of the lidar device mounted on
the nacelle of the turbine. Therefore, the rotational displace-
ment and the translational heave displacement of the lidar
device are equivalent to the displacement of the floater. The
rotational displacements of the floater cause relevant trans-
lational displacements at the mounting position of the li-
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Table 1. Considered FOWT dynamics parameters.

DOF Amplitude Period Mean

Yaw Aψ [◦] Tψ [s] 0
Pitch Aβ [◦] Tβ [s] kβ [◦]
Roll Aγ [◦] Tγ [s] 0
Heave Aheave [m] Theave [s] 0

dar. The translational displacements (xtrans,ytrans,ztrans) are
modeled by defining the mounting position of the lidar,
[xm,ym,zm], in the floater coordinate system and the mul-
tiplication by a rotation matrix R:xtrans
ytrans
ztrans

= R(ψ,β,γ ) ·

xm
ym
zm

+
 0

0
zheave

 , (2)

where zheave is the heave elevation of the floater (see Fig. 2).
The definition of the rotation matrix R is given in Ap-
pendix A5. The translational velocities at the lidar mounting
position are found by calculation of the first time derivative
of the translational displacement:

xvel =
1xtrans

1t
, (3)

where xtrans denotes the vector of translational displacements
(xtrans,ytrans,ztrans), and xvel is the vector of translational ve-
locities (xvel,yvel,zvel).

The model parameters defining the dynamic behavior of
the FOWT are summarized in Table 1.

In reality, the LOS measurement of a lidar is influenced
by various atmospheric and technical parameters. For the an-
alytical calculation of motion-induced uncertainties, a sim-
plified model of the atmosphere and the lidar measurement
is introduced. The horizontal wind speed is modeled using a
power-law profile given by

Vh = Vref

(
H

Href

)α
, (4)

where Vref is the reference wind speed, Href is the reference
height, H is the height above ground, and α is the vertical
wind shear exponent. Horizontally, the wind field is assumed
to be homogeneous. The v and w wind speed components
are assumed to be zero. While these assumptions avoid the
introduction of a turbulence model and enable the analytical
derivation of uncertainty following the GUM methodology, it
should be pointed out that model results do not reflect any ef-
fects originating from the turbulent nature of real wind fields.

For the consideration of the dynamic LOS position due to
floater motion, two coordinate systems are introduced. Fol-
lowing the notation of Schlipf (2016), the I coordinate sys-
tem is an earth-fixed reference coordinate system, and the
L coordinate system is the coordinate system of the lidar de-
vice. The coordinates of the lidar focus points are defined in

terms of angles from the center line θ and angles around the
center line φ:xp,L
yp,L
zp,L

=
 cosθ

sinθ cosφ
cosθ sinφ

 . (5)

The specific beam geometry used in this study is given in
Sect. 3.2. Considering the rotational displacement of the lidar
system due to the yaw, pitch, and roll DOFs of the floater, the
coordinates of the rotated focus points in the earth-fixed co-
ordinate system are obtained by multiplication by a rotation
matrix R:xp,I
yp,I
zp,I

= R(ψ,β,γ ) ·

xp,L
yp,L
zp,L

 . (6)

where ψ,β, and γ are the current roll, pitch, and yaw angle,
respectively, and (xp,I,yp,I,zp,I) is the current position of the
lidar focus points in earth-fixed coordinates (see Fig. 2). The
rotation matrix R is given in Appendix A5.

Finally, the LOS velocity is mathematically described by
a projection of the local wind vector [u,v,w] on the vector
describing the line of sight. In the remainder of the paper, we
refer to u as the u component of the wind field.

vlos = xpn,Iu+ ypn,Iv+ zpn,Iw+ (xInxvel+ ypn,Iyvel+ ypn,zvel),

(7)

where xpn,I,ypn,I,zpn,I is the normalized LOS vector. The
wind speed components u,v,w are derived using Eq. (4).
To enable a straightforward analytical uncertainty deriva-
tion, probe volume averaging effects are not considered. The
translational velocities (xvel,yvel,zvel) are added to the local
wind vector as additional velocity components.

The dynamic measurement height H is given by

H = zp,I+hlidar+hheave, (8)

where zp,I is the z coordinate of the focus point, hlidar is the
height of the lidar mounting position above mean sea level,
and hheave is the elevation due to the heave motion of the
floating platform.

Considering the vertical wind profile and the wind direc-
tion ϕ and assuming the vertical wind speed component w to
be zero yields

vlos = Vref

(
zp,I+hlidar+hheave

Href

)α
× (sinϕ · xpn,I+ cosϕ · ypn,I)
+ (xpn,Ixvel+ ypn,Iyvel+ ypn,Izvel). (9)

Following the recommendation of IEC 61400-50-3:2022
(2022), the GUM methodology is applied for quantification
of uncertainty in vlos as a function of input parameters given
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in Eq. (9). Further, this uncertainty is propagated through a
wind field reconstruction algorithm to derive uncertainties
of the reconstructed u component of the wind vector. De-
tails on the derivation of uncertainty are described in Ap-
pendix A. The analytical model is also used to quantify the
bias in lidar-estimated u-component wind speed as a function
of dynamic input parameters. The derivation of bias is given
in Appendix A3. The model is made available as an open-
source tool by the chair for wind energy at the University
of Stuttgart (SWE) on https://github.com/SWE-UniStuttgart/
FLIDU (last access: 27 April 2023).

2.3 Numerical model

The analytical model for the estimation of uncertainty and
biases introduced in Sect. 2.2 includes several simplifying
assumptions about the wind field and the measurement. Par-
ticularly, it assumes a horizontally homogeneous wind field,
does not account for turbulent effects, and models the lidar
measurement as a single-point measurement. Therefore, a
more sophisticated numerical model is employed to verify
the analytical uncertainty and bias estimation. ViConDAR
is an open-source numerical framework for the simulation
of lidar measurements in turbulent wind fields and the use
of simulated measurements as constraints in synthetic wind
field generation. Details on ViConDAR can be found in Pet-
tas et al. (2020). ViConDAR has been adapted for consider-
ation of floating dynamics of the lidar system in six DOFs.
In this study, we use ViConDAR to simulate lidar measure-
ments under the same dynamic input quantities as in the an-
alytical model and derive uncertainties and biases of simu-
lated measurements and reconstructed wind speed. ViCon-
DAR requires the input of the rotational displacements (yaw,
pitch, roll); the translational displacements in surge, sway,
and heave direction; and the translational velocities in the
surge, sway, and heave direction.

Similar to the analytical model, the positions of lidar focus
points after rotational displacement are obtained by multipli-
cation of the LOS vectors by a rotation matrix R(ψ,β,γ ).
The translational displacement of the lidar system does not
affect the angular beam directions but shifts the lidar system
and the focus in space. After consideration of translational
displacements the positions of focus points are given byxp,I
yp,I
zp,I

= R(ψ,β,γ ) ·

xp,L
yp,L
zp,L

+
xtrans
ytrans
ztrans

 , (10)

where (xp,L,yp,L,zp,L) is the focus point position in lidar co-
ordinates, (xtrans,ytrans,ztrans) are the translational displace-
ments and include the surge, sway, and heave DOFs of the
floating platform.

The LOS measurements of the individual beams are mod-
eled as a projection of the wind vector [u,v,w] on the current
normalized LOS vector (xpn,I,ypn,I,zpn,I):

Figure 3. Lidar pattern and coordinate systems for the numerical
model.

vlos =

∞∫
−∞

(xpn,Iu+ ypn,Iv+ zpn,Iw)f (ad)dad

+ (xvelxpn,I+ yvelypn,I+ zvelzpn,I), (11)

where f (ad) is the range-weighting function, and ad is the
distance between the lidar and the focus point. In the simula-
tion, the range-weighting function is represented by a defin-
able length of the range gate and discretized by a number of
points along the beam. The length of the range gate is set to
30 m, discretized over 10 points. The translational velocities
(xvel,yvel,zvel) of the lidar create additional velocity com-
ponents in the LOS measurements. The x coordinate of the
focus points in space is converted to the time coordinate of
the synthetic turbulence box using Taylor’s frozen turbulence
hypothesis. The wind vector is then sampled from the closest
point to the [x,y,z] grid of the synthetic turbulence box (see
Fig. 3).

Synthetic turbulent wind fields with desired characteris-
tics are created using a turbulence generator. In this work the
open-source turbulence generator TurbSim (Jonkman, 2014),
which is based on employing the Veers method (Veers, 1988)
for turbulence modeling, is used. The u-component wind
speed is reconstructed following the same approach as the
reconstruction procedure for the analytical model described
in Appendix A2.

3 Motion influence in nacelle-based lidar
measurements

3.1 Findings from measurement campaign

Figure 4a shows the 10 min inclination sensor mean pitch an-
gle per wind speed, including the standard deviation of the
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Figure 4. Analysis of measurement campaign data. (a) Mean and standard deviation of floater pitch angle over 10 min mean wind speed
bins. Error bars denoting the standard deviation of mean pitch values over all 10 min samples. Standard deviation of translational velocity in
x direction over wind speed bins. (b) Time series of reconstructed u-component wind speed and pitch angle. (c) PSD of floater pitch angle,
LOS-1 velocity, and reconstructed u-component wind speed.

10 min mean pitch angle per wind speed bin for the float-
ing example data set. As expected the mean pitch angle data
show a high dependency on wind speed and related thrust
force. However, the magnitude of mean pitch angles is in
the region below 1◦, which is rather low compared to other
floater types (e.g., Windcrete FOWT concept; Mahfouz et al.,
2021).

Additionally, the standard deviation within each 10 min in-
terval is shown per wind speed bin. Standard deviations in the
pitch angle are increasing with the wind speed and the as-
sociated wave excitation of the floater. For this floater type,
the pitch motion is mainly caused by hydrodynamic forces
and is large compared to other floater types (e.g., spar-type
floaters). This pitch motion causes translational velocities of
the nacelle in the x direction. In Fig. 4a, the black line shows
the standard deviation of the translational velocity in the x
direction.

Since this velocity component is superimposed on the
measurement, it can be expected that the pitch motion and
related translational velocities of the nacelle will cause sig-
nificant fluctuations in the lidar measurements. The effect of
mean pitch angles and related shift of measurement positions
is expected to have a smaller influence on the measurement
for this floater type.

This is confirmed by the time series example in Fig. 4b,
which shows the lidar-reconstructed wind speed estimate and
the measured pitch inclination signal. A strong correlation
between the pitch angle of the floater and the lidar wind
speed can be observed.

Finally, the power spectral density (PSD) of the inclination
pitch signal and one LOS velocity signal as well as the recon-
structed u component of the wind speed are shown in Fig. 4c.
The PSDs of the LOS velocities of the individual beams and
the pitch signal and the reconstructed u component of the
wind speed show peaks at the floater pitch frequency. For
this example, a clear correlation between the lidar pitch sig-
nal and the reconstructed u-component wind speed can be

observed. This analysis shows that the rotational DOF of the
floater, in particular the pitch motion, is strongly influenc-
ing the LOS measurements and the reconstructed wind speed
of the nacelle-mounted lidar. These findings suggest that the
motion influence on the lidar measurements needs to be fur-
ther investigated and quantified.

3.2 Parametric study for uncertainty and bias
quantification

In this section the findings from uncertainty and bias esti-
mation of lidar measurements under motion influence, as de-
fined in Appendix A, are presented for both the analytical
and the numerical approach. The lidar configuration investi-
gated in the numerical and analytical uncertainty estimation
follows the one which is used in the real measurement cam-
paign.

This configuration represents a fixed-beam lidar system
with four beams, arranged in a rectangular pattern. The open-
ing angle (angle to the center line) of all four beams is
set to θ = 19.8◦, and the angle around the center line is
set to φ= 39.6, 140.4, −39.6, and −140.4◦. The range of
the lidar is assumed to be 200 m. The LOS measurements
from all four beams are taken sequentially with a delay of
Tmeas= 0.25 s. For this pattern, the duration of a full scan
is 1 s. The resulting scanning pattern is visualized in Fig. 3.
For both the analytical model and the numerical model, a
hub height, which is also the installation height of the lidar,
of 100 m and a rotor radius of 75 m are assumed.

In the first analysis, the influence of displacement in in-
dividual DOFs on the measured LOS velocities is examined
with the help of the analytical model. Figure 5 shows the
LOS velocity per beam as a function of displacement for
the yaw, pitch, roll, and heave displacement for three val-
ues of the vertical shear exponent α. Additionally, the recon-
structed u component of the wind field is shown as a func-
tion of each DOF. The reconstruction approach is detailed
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Figure 5. Modeled LOS velocities and reconstructed u-component wind speed as a function of yaw, pitch, roll, and heave displacement for
all four beams. Reference wind speed: 10 ms−1. Top: α = 0. Center: α = 0.1: Bottom: α = 0.2. α is the vertical shear exponent. VLOS1 and
VLOS2 correspond to the two upper beams, and VLOS3 and VLOS4 correspond to the two lower beams. The y axis is normalized to the
reconstructed wind speed at zero displacements.

in Appendix A2. In this analysis, quasi-static displacements
are assumed. Velocity components resulting from changing
quasi-static conditions are not considered.

For a vertical shear exponent of α = 0, the individual LOS
velocities differ for changing pitch and yaw angles. How-
ever, due to the symmetric beam pattern, the reconstructed
wind speed shows no significant fluctuation over the respec-
tive DOF. Under the presence of a vertical wind shear profile,
this behavior changes. The yaw and roll displacement causes
fluctuations in the LOS velocities. Again the reconstructed
wind speed stays nearly constant due to the symmetric beam
pattern.

For the pitch DOF, the upper and lower beam LOS ve-
locities have different characteristics. Therefore, the recon-
structed wind speed is fluctuating. It is also important to
note that the relationship between reconstructed wind speed
and pitch angle is nonlinear. This nonlinear relationship can
cause bias in averaged lidar wind speed estimates. Heave
displacement in combination with a nonlinear vertical wind
shear profile causes fluctuation in the reconstructed wind
speed due to changing measurement elevation. As a result,
the reconstructed u-component wind speed will show a small
negative bias because horizontal wind speeds increase slower
with increasing height than they decrease with decreasing

height. However, for the expected range of floater heave ele-
vations, this effect is small compared to the effect of floater
pitch motion.

Figure 6 illustrates the dependency of measured LOS ve-
locities and reconstructed wind speed on translational ve-
locities of the lidar device for quasi-static conditions. No
fluctuation in translational velocities is considered. It can
be seen that the translational velocity components are di-
rectly projected on the LOS direction of the beam and thus
cause significant changes in the measured LOS velocities.
For the translational displacement in the x direction, this di-
rectly translates into changing reconstructed wind speeds.
For the y and z direction the reconstructed u-component
wind speed remains constant, since the effects on the left and
right as well as upper and lower beams compensate for each
other. However, it is important to note that the relationship is
strictly linear, meaning that zero mean fluctuations in trans-
lational velocities will cause zero mean fluctuations in LOS
velocities and thus not cause any bias in the LOS velocity
and reconstructed u component of the wind speed.

This analysis shows that the most relevant DOF for the
influence of nacelle-based lidar wind measurements is pitch
motion. Under the presence of a vertical wind shear profile,
the rotational pitch displacement causes a significant varia-
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Figure 6. Modeled LOS velocities as a function of translational nacelle velocities in x, y, and z directions for all four beams. Reference
wind speed: 10 ms−1 and vertical shear exponent α = 0.2. The y axis is normalized to the reconstructed wind speed at zero displacements.

Figure 7. Uncertainty estimation of u-component wind speed.
Fixed parameters: Uref= 10 ms−1, Aψ = 0◦, Aγ = 0◦, and
Aheave= 0m.

tion in reconstructed wind speed. This variation is nonlinear
as a function of pitch displacement, indicating that the dis-
placement could introduce bias in the measurement. The ro-
tational pitch motion also causes translational velocities of
the nacelle in the x direction. These translational velocities
cause fluctuations in the reconstructed wind speed. Conse-
quently, we focus on the analysis of the influence of the pitch
DOF in combination with the present vertical shear profile in
the following sections.

3.3 Uncertainty quantification

In this section, we quantify motion-induced uncertainties in
reconstructed lidar wind speed estimates as a function of
dynamic input parameters using the analytical and numeri-
cal models. For the analytical model, the wind field is only
defined by the inflow wind speed of 10 ms−1 and the ver-
tical shear exponent α. The dynamics parameters are sum-
marized in Table 2. Figure 7a and b show the u-component
wind speed uncertainty estimates from the analytical model

Table 2. Dynamics parameters for uncertainty quantification.

Parameter/case (a) (b) (c) (d)

Pitch amplitude [◦] 0 : 1 : 5 0 : 1 : 5 2 2
Mean pitch [◦] 0 −5 : 1 : 0 0 −5 : 1 : 0
Pitch period [s] 30 30 10 : 5 : 50 10 : 5 : 50
Vertical shear [–] 0 : 0.1 : 0.2 0.1 0 : 0.1 : 0.2 0.1

as functions of shear exponent, mean pitch angle, and pitch
amplitude.

The resulting uncertainty of the reconstructed u wind
speed component is mainly dependent on the pitch ampli-
tude, which determines the magnitude of different effects.
With a given pitch period of 30 s, the pitch amplitude de-
termines the magnitude of the translational velocity in the
fore–aft direction. In this case, this is the main source of un-
certainty in the reconstructed wind speed. Additionally, the
pitch amplitude determines the uncertainty resulting from
changed beam direction and shifted focus points. The over-
all uncertainty of the u wind speed component is found to
be in the region of up to 315 % of the reference wind speed.
No significant influence of the inflow shear exponent and the
mean pitch angle on the overall uncertainty estimate of the
u-component wind speed component can be observed.

In the next step, the influence of the frequency of rotational
pitch movement was investigated. Figure 7c and d show the
uncertainty of u-component wind speed as a function of
shear exponent, mean pitch angle, and period of floater pitch
movement. The corresponding parameter space is summa-
rized in Table 2. Results show a strong dependency on the
period of the rotational pitch movement of the floater. This
parameter determines the magnitude of the translational ve-
locities at the lidar mounting position. Therefore, short peri-
ods of rotational movement in general cause high uncertainty
in u-component wind estimates. No significant influence of
the inflow shear exponent and the floater mean pitch angle
can be observed.

Verification of the analytical results is done employing the
numerical model. Turbulent synthetic wind fields used in the
simulations are generated for a mean wind speed of 10 ms−1

and a turbulence intensity of 6 %. A total of 10 random tur-
bulence realizations are generated for each wind condition,
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Table 3. Wind field parameters.

Parameter Value

Wind speed [ms−1] 10
Turbulence intensity [%] 6
Surface roughness [m] 0.03
Shear exponent [–] 0.0 : 0.1 : 0.2
Spatial grid resolution [m] 4
Grid size [m] 180× 180
Time step [s] 0.1
Usable time [s] 600
Seeds 10

and the presented results are averaged over all random real-
izations. Additional wind field parameters are summarized in
Table 3.

Figure 8 shows a comparison of the analytical and numeri-
cal uncertainty estimation for selected dynamic input param-
eters. For the numerical model, uncertainty is represented
by the mean absolute error (MAE) metric. The MAE is the
mean of the absolute error between the time series of lidar-
estimated wind speed and the reference time series of the full
input wind field. The MAE represents the instantaneous er-
ror between the reconstructed wind speed and the input wind
field. Therefore, it contains the fluctuations resulting from as-
sumed FOWT dynamics. This metric can be compared qual-
itatively and quantitatively to the uncertainty results from the
analytical model.

In general, the pattern of the numerical results follows the
estimation of the analytical uncertainty model. The MAE is
heavily dependent on the pitch amplitude and period, which
is determining the magnitude of the fore–aft motion of the
lidar system. The shear exponent and mean pitch angle vari-
ation show no significant effect on the MAE. Quantitatively,
both models show similar magnitudes of uncertainty and
MAE values. It can be seen that there is a linear relationship
between uncertainty in the u-component wind speed estimate
and the amplitude of the pitch DOF of the floater. A nonlin-
ear relationship between uncertainty in u wind speed esti-
mate and pitch period with lower uncertainties for increasing
pitch periods can be observed.

This analysis shows that the uncertainty in reconstructed
u-component wind speed measurements is dominantly deter-
mined by the fore–aft motion of the nacelle, which is mainly
caused by the pitch rotation of the floater. High pitch ampli-
tudes and high frequencies cause high uncertainties in wind
speed estimates. For the conditions and models considered,
this uncertainty is found to be of the order of magnitude
of 1 ms−1.

3.4 Bias quantification

In this section, we quantify the motion-induced bias in recon-
structed lidar wind speed estimates as a function of dynamic

input parameters using the analytical and numerical models.
The input wind fields for the numerical model and the dy-
namics parameter space are the same as previously used for
the uncertainty quantification.

Figure 9a and b show the estimation of bias in the recon-
structed u-component wind speed from the analytical model.
As a function of vertical shear exponent and pitch ampli-
tude, results show a negative bias in the reconstructed u-
component wind speed, which is increasing for higher shear
exponents. For increasing pitch amplitudes a slightly neg-
ative trend in the wind speed estimation can be observed,
which is more pronounced for high vertical shear conditions.
This is caused by the combined effect of a nonlinear verti-
cal wind shear profile and the nonlinear relationship between
beam directions and measured LOS velocity.

Non-zero mean pitch angles result, in general, in upwards-
or downwards-shifted focus points. For negative mean pitch
angles (upwards-shifted focus points) and the assumption of
a power-law wind profile, this results in a positive bias in the
LOS measurements. Depending on the magnitude of vertical
shear this effect exceeds the negative effect from the pitch
motion and leads to an overestimation of wind speed. Con-
sequently, the overestimation is most pronounced for high
negative mean pitch and low pitch amplitudes.

For the relationship between vertical shear, pitch ampli-
tude, and resulting bias, it can be seen that the calculated bias
is not 0, even in the presence of zero pitch amplitude. This
bias is not introduced by any dynamics but is a result of the
definition of the reference value used for bias calculation. As
detailed in Appendix A, the reference for bias calculation is
defined as the average wind speed over the rotor plane. De-
pending on the present shear profile, the assumed rotor size,
and the lidar pattern, this reference value is different from the
lidar u-component wind speed estimate. Therefore, only the
change of bias over the varying dynamics parameters can be
attributed to the influence of the dynamics.

Figure 9c and d show the bias of u-component wind speed
as a function of shear exponent, mean pitch angle, and pitch
period. No significant dependency of wind speed bias to the
frequency of the floater pitch motion can be observed.

The analytical model results are verified using the nu-
merical model. Figure 10 shows a comparison between the
numerical and analytical bias estimation. For the numerical
model, the bias is expressed in terms of the mean error (ME),
which is the error between the mean of the lidar-estimated
time series and the mean of the full wind field time series
over the full simulation length of 600 s. The ME can be com-
pared to the bias metric from the analytical model. As for
the uncertainty estimation, the ME follows the pattern of the
analytical bias estimation. Quantitatively, the results of both
models show good agreement. Observed deviations between
the model results are in the region below 0.015 ms−1 for the
given reference wind speed of 10 ms−1.

This analysis shows that the bias in reconstructed u-
component wind speed is determined by the mean pitch an-
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Figure 8. Comparison between analytical and numerical uncertainty and MAE estimation. Panels (a) to (d) refer to cases in Table 2. Fixed
parameters: Uref= 10 ms−1, Aψ = 0◦, Aγ = 0◦, and Aheave= 0 m.

Figure 9. Bias of u-component wind speed. Parameter according
to Table 2. Fixed parameters: Uref= 10 ms−1, Aψ = 0◦, Aγ = 0◦,
and Aheave= 0 m.

gle of the floater and the pitch amplitude. In the presence
of vertical wind shear, negative mean pitch angles cause
upwards-shifted focus points, which result in positive bias in
u-component wind speed estimates. High pitch amplitudes
cause negative bias in u-component wind speed estimates.
This bias is of the order of magnitude of 0.1 ms−1.

4 Correction approaches

The results of the numerical and analytical uncertainty and
bias estimation have identified the main dynamic effects in-
fluencing the measurements of nacelle-based lidars on float-
ing wind turbines. Motion-induced uncertainties in measure-
ment time series are mainly influenced by the following:

– Translational velocity components caused by the fore–
aft movement of the nacelle due to floater pitch motion
cause fluctuation in horizontal wind speed estimates.

Motion-induced biases in time-averaged wind speed mea-
surements are mainly influenced by the following:

– Rotational oscillations of the beam direction due to
floater pitch motion cause an underestimation of hori-
zontal wind speed components.

– Negative mean pitch angles of the FOWT are causing
upwards-shifted focus points, resulting in an overesti-
mation of wind speed.

It is important to note that these effects have different or-
ders of magnitude and are relevant at different timescales.
Translational velocities cause fluctuations in the measure-
ment time series, which can be of the order of 1 ms−1,
and must be considered when using measurement time se-
ries data. Overestimation and underestimation of mean wind
speeds due to rotational movement are 1 order of magnitude
smaller and are found to be in the region of 0.1 ms−1. This
is most relevant in cases where accurate estimates of mean
wind speed are necessary.
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Figure 10. Comparison of bias wind speed estimation from the analytical and numerical model. Fixed parameters:Uref= 10 ms−1,Aψ = 0◦,
Aγ = 0◦, Aheave= 0 m, and α = 0.1.

Depending on the intended use of the measurement, a
correction of these effects can be necessary. Power perfor-
mance measurement of wind turbines is a key application
of lidar wind measurements. According to IEC 61400-12-
1, the performance measurements should be performed by
measuring the 10 min average power output of the wind tur-
bine and the 10 min average inflow wind speed. A wind
turbine power curve is then obtained by binning the wind
speeds from 4 to 16 ms−1 and plotting against the corre-
sponding power outputs. While the standard procedure re-
quires the use of met-mast-mounted cup anemometers, the
use of nacelle-based lidar is an attractive alternative. How-
ever, the question arises if wind speed measurements from
nacelle-mounted lidars introduce uncertainty or bias in the
power performance measurements and if motion-induced ef-
fects need to be corrected. The findings from Sect. 3.4 show
that mean wind speed estimates from nacelle-based lidars can
be biased depending on the dynamic condition of the wind
turbine. For power performance measurements, bias of the
order of 0.1 ms−1 or around 1 % could be significant. This
suggests that a correction of 10 min mean wind speed esti-
mates, used for power performance assessment, will be nec-
essary for the use of nacelle-based lidar systems on floating
wind turbines under specific dynamic conditions.

The use of lidar inflow measurements for turbine load val-
idation has been investigated by several studies using dif-
ferent methods. In Conti et al. (2020) 10 min statistics of
lidar-estimated wind field characteristics are used for the pa-
rameterization of synthetic turbulent wind fields for aeroelas-
tic turbine simulations and evaluation of loads. It was found
that uncertainties in the lidar-estimated mean wind speed and
the lidar-estimated turbulence intensity used for the parame-
terization of synthetic wind fields are the main sources of
uncertainty in predicted loads. It can be expected that the
dynamics-induced bias in lidar wind speed measurements
will affect load estimations. In Dimitrov et al. (2019), be-
sides lidar-estimated wind field statistics for parameteriza-
tion, measured lidar wind speed time series are used to con-
strain synthetic wind fields for load validation studies. In this
method, it can be expected that motion-induced fluctuations
in the wind speed measurements will significantly influence
the resulting wind field and load estimates. This suggests

that the correction of instantaneous errors in lidar wind speed
measurements is necessary for use in load validation studies.

Another application of nacelle-based lidar systems on
FOWT is the use of lidar wind speed measurements for tur-
bine pitch control. Here the wind speed information of the
inflow wind field is used as an input to an additional control
loop that aims to compensate for changes in wind speed, e.g.,
through gusts, by changing the rotor blade pitch angles in or-
der to maintain the rotor speed. This control approach can
significantly reduce platform motions and variations in rotor
speed due to disturbance in the form of wind gusts (see, e.g.,
Schlipf et al., 2015). The application relies on instantaneous
time series information of the inflow wind speed with sam-
pling frequencies in the region of 1 Hz. Since these measure-
ments contain motion-induced fluctuations, correction of the
lidar wind speed measurement time series data is necessary
to avoid undesired effects on the pitch controller. In Schlipf
et al. (2015) this is considered by using a model-based wind
field reconstruction algorithm, which takes the instantaneous
displacements and velocities of the lidar system into account,
to provide a motion-compensated wind speed estimate.

The abovementioned use cases show that motion correc-
tion of measurements from nacelle-based lidar systems is
necessary, while different timescales have to be considered.
In this work, we suggest a method for the correction of fore–
aft motion-induced fluctuation based on frequency filtering
and a simple model-based correction approach of the turbine
mean pitch employing the analytical model.

4.1 Model-based correction

As shown in Sect. 3, the bias in the wind speed estimation is
mainly caused by a non-zero mean pitch angle, which causes
upwards-shifted measurement positions and oscillating beam
directions, caused by the floater pitch motion.

Instead of correcting lidar measurement time series based
on the instantaneous turbine tilt angles, we suggest correcting
the reconstructed wind speed with a model-based approach.
The analytical model introduced in Sect. 2.2 is used to calcu-
late the mean error in the reconstructed u-component wind
speed estimation as a function of the wind speed WS, ver-
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Table 4. Parameter space correction look-up table.

Parameter Value

Wind speed [ms−1] 4 : 4 : 20
Shear [–] 0.0 : 0.05 : 0.3
βmean [◦] 0 : 0.1 : 5
Aβ [◦] 0 : 0.1 : 5

tical shear exponent α, turbine mean pitch βmean, and pitch
amplitude Aβ .

vcorr. = f (WS,α,βmean,Aβ ) (12)

In this way a four-dimensional look-up table with correc-
tion values vcorr. is created for the parameter space given in
Table 4.

The remaining model parameters are set to fixed values
of Tβ = 30 s, Aψ = 0, Aγ = 0, and Aheave = 0, as results are
only evaluated for these values. It should be mentioned that
the dimension of the created correction look-up table can eas-
ily be extended to other model parameters if a significant sen-
sitivity is found for a specific setup.

Assuming the mean pitch angle and the mean pitch ampli-
tude are known for each 10 min period through inclination
measurements and using the lidar-estimated u-component
wind speed and vertical shear exponent, the correction value
can be extracted from the look-up table and subtracted from
the lidar-estimated u-component wind speed:

ucorr. = urec− vcorr(urec,αrec,βmean,Aβ ). (13)

The approach avoids the need for synchronized motion
time series data, which might not be available in all cases.
Inclination sensor signals might be noisy or not accurate
enough due to the influence of nacelle acceleration on the
sensor. Thus, the suggested approach is easy to implement
for practical applications. However, it relies on the availabil-
ity and accuracy of floater dynamics statistics. Inaccuracies
could occur in transient conditions, where mean floater dy-
namics do not represent the actual floater dynamics suffi-
ciently.

4.2 Frequency filtering

In this study, we investigate the use of frequency filters for
the correction of motion-induced fluctuations. We suggest
the application of a frequency filter on the time series of re-
constructed u-component wind speed estimates. As shown
in Fig. 4, the time series of LOS wind speed and the recon-
structed u wind speed show peaks at the floater pitch fre-
quency. The application of a frequency filter aims to correct
the influence of floater pitch displacement and the resulting
translational velocities in the fore–aft direction without in-
troducing bias or error in the estimation of the real wind field
properties.

For frequency filtering, we use a bandstop filter character-
ized by three parameters. The stopband frequency range is
given by a width parameter, defining the upper- and lower-
frequency limit of the stopband. The peak pitch frequency
of the floater is used as the center frequency fcenter of the
applied bandstop filter, while the upper and lower bounds
of the filter are defined at fpass,lower = fcenter−width/2 and
fpass,upper = fcenter+width/2. The filtering depth is defined
by the stopband attenuation parameter, depth, in dB. The
steepness of the filter’s transition region is defined by a steep-
ness parameter.

The filter parameters applied in Sect. 5 are optimized with
a parametric study, evaluating the ME and the MEA between
the corrected lidar wind speed and the full wind field refer-
ence. The goal of this optimization is to find the filter param-
eterization, which is minimizing the MEA, while not increas-
ing the ME significantly. The filter has been implemented us-
ing the MATLAB (MATLAB, 2020) bandstop filtering func-
tion.

5 Results

We evaluate the correction approaches using the numerical li-
dar simulation framework ViConDAR. Lidar measurements
are simulated by coupling an aeroelastic simulation of spe-
cific FOWT models to ViConDAR. In this way, the dynamics
input response to wind and wave conditions is used as an in-
put to the lidar simulation. Details on the coupling approach
can be found in Gräfe et al. (2022). For this study, we use
two different FOWT models with different characteristics in
their input response to wind and wave conditions.

The first FOWT model employed for the simulation of
FOWT dynamics is the Windcrete floater design concept
(Mahfouz et al., 2021) in combination with the International
Energy Agency (IEA) 15 MW reference wind turbine (Gaert-
ner et al., 2014). Windcrete is a monolithic spar design with a
draft of 155 m and a tower height of 129.5 m. The hub height
of this FOWT concept is 140 m above sea level. The floater
and the tower are designed as a single concrete member with
an overall mass of 3.665× 107 kg. Three delta-shaped cate-
nary mooring lines are employed for station keeping of the
floater. The mooring lines have an overall length of 615 m
and a mass per length of 561.25 kgm−1. Details on the Wind-
crete design parameters and the dynamic behavior can be
found in Mahfouz et al. (2021). The second FOWT model
is the numerical model of the FLOATGEN FOWT demon-
strator, introduced in Sect. 2.1. Both FOWTs are modeled
in the open-source aeroelastic simulation code OpenFAST
(Jonkman, 2007). To minimize the influence of transient ef-
fects, the first 600 s of each simulation is discarded. Simu-
lations are created for three sets of wave conditions using a
JONSWAP wave spectrum with parameters given in Table 6.
Turbulent synthetic wind fields are created according to pa-

https://doi.org/10.5194/wes-8-925-2023 Wind Energ. Sci., 8, 925–946, 2023



938 M. Gräfe et al.: Quantification and correction of motion influence for nacelle-based lidar systems

Table 5. Wind field parameters.

Parameter Value

Wind speed [ms−1] 4 : 4 : 20
Turbulence intensity [%] 6
Surface roughness [m] 0.03
Shear exponent [–] 0.1, 0.2, 0.3
Spatial grid resolution [m] 5
Time step [s] 0.05
Usable time [s] 1200
Seeds 6

Table 6. Parameter space wave conditions, where Hs is the signifi-
cant wave height, and Tp is the peak wave period.

Parameter Wave 1 Wave 2 Wave 3

Hs [m] 1 2 5
Tp [s] 6 9 11

rameters given in Table 5. For all testing cases the same lidar
configuration as described in Sect. 3.2 is used.

5.1 Model-based correction

Figure 11 shows the model-based correction results for simu-
lated dynamics for the FLOATGEN (first row) and Windcrete
(second row) FOWT. Before the correction, FLOATGEN
shows negative mean errors in u-component wind speed,
which increase with wind speed. This pattern is more pro-
nounced under wind conditions with high vertical shear val-
ues. This behavior can be explained by the dynamic char-
acteristics of FLOATGEN. As a barge-type floater, FLOAT-
GEN shows insignificant mean pitch angles for the given
conditions. On the other hand, floater pitch amplitudes show
relatively high values for the given wave condition. Conse-
quently, the negative effect of pitch movement is predom-
inant. The model-based correction approach is able to re-
duce the ME significantly, resulting in ME below 0.1 ms−1

or 0.5 %.
The Windcrete FOWT model shows a different behavior.

The mean error of the u-component wind speed before cor-
rection increases with the wind speedup to the rated wind
speed of the turbine and slightly decreases for the above-
rated wind conditions. The effect is more pronounced for
high vertical shear conditions. The spar-type floater only
shows small pitch amplitudes, below 1◦, for the given wind
and wave conditions. In contrast to FLOATGEN, the mean
pitch angle shows relatively high values, especially at rated
wind speed. Consequently, the positive effect of upward-
shifted lidar focus points is predominant. In this case, the
model-based correction approach can reduce the mean error
significantly over the full wind speed range. The remaining
MEs are below 0.1 ms−1 or 0.5 %.

5.2 Frequency filtering

We first test the filtering approach using the lidar simulation
framework ViConDAR for a random realization of a syn-
thetic turbulent wind field with prescribed floater dynamics.

Figure 12 shows an exemplary time series plot of lidar-
estimated u-component wind speed with and without appli-
cation of the frequency filter. Additionally, the u-component
wind speed component of the original wind field averaged
over the rotor plane is shown as a reference. Since the floater
pitch frequency is defined by only one frequency in this case,
a narrow peak in the resulting PSD of the lidar-measured u-
component is observed. The application of the bandstop filter
corrects the pitch-induced fluctuations accurately.

In Fig. 13, example time series and corresponding PSD
plots for simulated lidar measurements on the FLOATGEN
and Windcrete FOWT before and after the application of the
bandstop filter are shown. As a reference, the wind speed av-
erage over the rotor plane is shown. The uncorrected mea-
surements for FLOATGEN are characterized by periodic
fluctuations caused by the floater’s response to wave exci-
tation. Application of the frequency filter reduces the fluc-
tuations significantly. For the Windcrete FOWT, no clear in-
fluence of pitch motion can be observed in the time series
and the corresponding PSD. Consequently, application of the
frequency filtering cannot reduce the error between the lidar-
measured wind speed and the full wind field reference. The
reference PSD of the original wind field represents an aver-
age over all points in the rotor plane. Therefore, the spectrum
lies below the lidar-estimated spectra. It should be noted that
the lidar spectrum does contain the combined effect of probe
volume averaging and cross contamination due to spatially
separated measurement volumes.

Figure 14 shows the MAE results of the frequency-
filter-based correction approach for simulated dynamics of
FLOATGEN (first row) and Windcrete (second row) FOWT.
For FLOATGEN, the pitch motion of the floater is mainly
determined by the wave conditions with high pitch excitation
for wave frequencies, close to the natural pitch frequency of
the floater at 0.1 Hz. The frequency filtering of the present
floater pitch frequency can significantly reduce the MAE.

For the given wind and wave conditions the Windcrete
floater shows very small pitch excitation, resulting in small
translational velocities of the nacelle and no significant peak
in the frequency spectrum. In this case, the MAE is not af-
fected by the frequency filtering approach. On the contrary,
the MAE of the filtered lidar wind speed estimates is slightly
higher compared to the uncorrected value because the ap-
plied frequency acts on the measured wind field spectrum
itself. Thus, not only motion-induced frequency components
are filtered. MAE values are not significantly influenced by
wave conditions because of the small dependency between
floater pitch response and different wave conditions.

Besides MAE, the second metric used to evaluate the per-
formance of frequency filtering is ME. While for FLOAT-
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Figure 11. Mean errors of u wind speed component for FLOATGEN (a–c) and Windcrete (d–f) FOWT with and without correction for
varying vertical shear exponents.

Figure 12. (a) Time series example of lidar-estimated u-component wind speed, frequency-corrected lidar u-component wind speed estimate,
and reference wind speed of the input wind field. (b) Power spectral density of lidar-estimated u-component wind speed and frequency-
corrected lidar u-component wind speed estimate. Dynamics parameters: Uref= 12 ms−1, Aβ = 3◦, Tβ = 20 s, Aψ = 0◦, Aγ = 0◦, and
Aheave= 0 m.

GEN, filtering of the pitch frequency does not introduce ad-
ditional bias, for Windcrete bias of up to 0.2 ms−1 is intro-
duced in the time series. A comparison of ME before and af-
ter the application of the frequency filter is shown in Fig. 15.
The MAE and ME results of this simulation study show that
the proposed frequency filtering approach for motion correc-
tion is able to reduce MAE while not introducing bias. This
applies only to floaters that cause a distinct peak around the
pitch frequency of the floater in the frequency spectrum of
the lidar wind speed measurements.

6 Discussion

The motion influence on nacelle-based lidar measurements
was investigated with two different models. The introduced

analytical model for the estimation of uncertainties and
bias introduces several novelties and benefits compared to
already-existing lidar simulation and uncertainty quantifica-
tion frameworks.

First, it specifically addresses nacelle-based lidar systems
on floating wind turbines for which very limited academic
and industry experience exists, and uncertainty quantifica-
tion is crucial for the application in various use cases. The
advantage of this model over other, already available simu-
lation tools lies mainly in its simplicity. The assumption of a
power-law wind profile with no representation of turbulence
does not require the generation of synthetic turbulent wind
fields. The representation of floater dynamics in terms of
frequency and amplitude parameters of the individual DOF
avoids the need for numerical aeroelastic turbine-floater sim-
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Figure 13. Time series and PSD of simulated lidar wind speed estimate with and without frequency correction for wave case 3 (see Table 6).
(a, b) FLOATGEN and (c, d)Windcrete.

Figure 14. MAE of u wind speed component for FLOATGEN (a–c) and Windcrete (d–f) FOWT with and without correction for varying
wave periods and vertical shear exponent of α = 0.1.

ulations. Thus, it allows an efficient estimation of motion-
induced uncertainties and biases based on basic design pa-
rameters of the FOWT concept and the lidar configuration.
In this way, expensive computational numerical simulation
can be avoided, while still considering the most relevant ef-
fects of floater motion on the measurement. Based on these

estimations and the intended use of the lidar measurements,
decisions about correction approaches can be facilitated. As
shown in Sect. 5.1 the use of model results for bias correction
of measurements also shows additional potential for future
use of the model.
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Figure 15. ME of u wind speed component for FLOATGEN (a–c) and Windcrete (d–f) FOWT with and without application of frequency
filter. Vertical shear exponent α = 0.1.

The numerical model is more sophisticated and considers
several characteristics which are neglected by the analytical
model. In particular, it uses synthetic turbulent wind fields
to account for the turbulent nature of real wind fields. Addi-
tionally, the probe-volume-averaging effect of lidar measure-
ments is considered. The lidar setup is represented in a more
realistic way, considering the temporal relation between the
individual LOS measurements. A comparison of the results
from the analytical and numerical models shows good agree-
ment between both models. This indicates that the combined
effect of turbulence, probe volume averaging, and time rela-
tion between the LOS measurements is small. The individ-
ual influence of these characteristics cannot be derived from
our results, since no sensitivity study was conducted. How-
ever, comparing the results of the analytical and numerical
model, we find good agreements between the two models,
which in general gives confidence in the quantification of un-
certainties. Based on a parametric study it was found that the
most influential floater DOF for nacelle-based lidar measure-
ment is the pitch displacement, leading to different effects
relevant to different timescales. For time-averaged measure-
ments, the pitch motion in combination with a vertical shear
wind profile lead to an underestimation of wind speed. For
FOWT configurations, operating at a non-zero mean pitch
angle, shifted measurement positions in combination with a
vertical shear profile lead to an overestimation of wind speed.
Instantaneous wind speed measurements are mostly influ-
enced by translational velocities of the nacelle, which are
also caused by the rotational pitch movement of the floater.
Two different approaches for the correction of these effects

were introduced and tested using the numerical lidar simula-
tion framework. The model-based bias correction approach
is using bias estimates from the analytical model to calculate
correction values as a function of pitch amplitude, frequency,
and present shear conditions.

For the testing case using prescribed dynamics based on
amplitude and frequency parameters, the correction approach
yields very accurate results. Here, it should be noted that
the analytical and numerical model use the same dynamics
inputs. In reality, the modeled floater dynamics of the an-
alytical model might not exactly represent the real floater
dynamics. Also, the parameters determining the correction
value for every 10 min are not constant for real floaters and
need to be averaged, which adds uncertainties. However, the
testing cases with the aeroelastic simulation of a spar-type
and barge-type FOWT with very different pitch characteris-
tics still yield good results with remaining mean errors of
below 0.1 ms−1. For all testing cases, it is assumed that the
parameters necessary for the determination of correction val-
ues can be measured accurately. In reality, the determination
of these parameters (mean pitch angle and pitch amplitude)
would rely on inclination measurements, which could add
uncertainty to the corrected wind speed estimates. A sensi-
tivity study, quantifying the effect of these uncertainties, and
further verification with real measurements are needed be-
fore the application of the methodology.

For higher pitch periods, translational velocities of the na-
celle caused by floater pitch motions are not increasing the
MEA significantly. Thus, the MEA is not predominantly de-
termined by the pitch motion of the floater. Filtering of these
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frequencies yields increased MAEs, since relevant parts of
the wind field spectrum are filtered out. Here, it should also
be mentioned that the pitch frequency is assumed to be ex-
actly known for each simulation run and not changing over
time, which does not accurately represent the behavior of
FOWTs under varying environmental conditions.

The testing cases using the simulated dynamics from
FLOATGEN and Windcrete FOWT confirm the findings of
the idealized conditions. For FLOATGEN, which has a rel-
atively low natural pitch period of around 11 s and high
pitch amplitudes, the MEA is predominantly determined by
the pitch motion of the floater. Here, the MAE can be re-
duced significantly using the filtering approach. For Wind-
crete, with a natural pitch period of around 50 s and smaller
pitch amplitudes, the filtering approach does not yield satis-
factory results. For applications on real measurement data,
the filtering frequencies need to be determined through mea-
surements, e.g., based on a peak detection algorithm, which
might introduce additional uncertainties. Therefore, verifica-
tion of the method with real measurements is necessary.

7 Conclusions

In this study, we analyzed motion-induced effects on lidar
measurements from forward-looking nacelle-mounted lidars
on FOWT. For this analysis, we introduced a new analyti-
cal model for the estimation of uncertainty and bias in lidar-
estimated wind speed. FOWT dynamics are modeled using
amplitudes and periods of floater DOF in yaw, pitch, roll,
and heave directions. The deterministic wind field is mod-
eled by a simple power-law profile. Further, we applied the
GUM methodology to derive combined uncertainties in the
LOS measurements and in the reconstructed WFC. To ver-
ify the model outputs we compared the results to uncertain-
ties derived with the numerical lidar simulation framework
ViConDAR. This lidar simulation follows a more detailed
modeling approach, in particular taking into account turbu-
lent wind fields.

Results of a parametric study showed that the uncertainty
of lidar-estimated wind speed estimates is mainly caused by
the fore–aft motion of the lidar resulting from the pitch dis-
placement of the floater. Therefore, the uncertainty is heavily
dependent on the amplitude and the frequency of the pitch
motion. The estimated bias in 10 min averaged wind speed is
mainly influenced by the mean pitch angle of the floater, the
pitch amplitude, and the vertical shear of the wind field.

Further, we introduced two approaches for the correction
of motion-induced effects. We used the analytical model to
derive a look-up table of correction values for 10 min av-
eraged wind speed measurements. Testing of the approach
with simulated dynamics from two different FOWT concepts
showed good results. The remaining mean errors between
simulated lidar measurements and input wind fields were
found to be below 0.1 ms−1 for both FOWT models. We used

a frequency filter to correct fluctuations caused by floater
pitch motions in instantaneous measurements. The correc-
tion can reduce the MAE in lidar wind speed estimates under
certain conditions. The frequency filtering yields good results
for dynamic conditions characterized by harmonic pitch os-
cillation with low pitch periods and high pitch amplitudes.
For dynamic conditions characterized by varying pitch os-
cillation or high pitch periods and low amplitudes, the fre-
quency filtering cannot reduce MEA in lidar wind speed es-
timates.

Appendix A

A1 Analytical estimation of uncertainty in wind field
characteristics

Following the GUM methodology for expression of uncer-
tainty (Sommer and Siebert, 2004), the total uncertainty of
y = f (x1,x2, . . .,xn) with n uncorrelated input quantities xi
is given by

U2
y =

n∑
i=1

(
δf

δxi

2
)
U2
x,i, (A1)

where Ux,i is the standard uncertainty of input quantity xi .
Accordingly the total uncertainty in the LOS measure-

ments, induced by floater dynamics, is given by

Uvlos =

√√√√√√
(
δvlos
δψ

)2
U2
ψ +

(
δvlos
δβ

)2
U2
β +

(
δvlos
δγ

)2
U2
γ

+

(
δvlos
δhheave

)2
U2
hheave
+
δvlos
δxvel

2
U2
xvel

, (A2)

where Uψ ,Uβ ,Uγ ,Uhheave , and Uxvel are the standard uncer-
tainties of input quantities. The formulation in Eq. (A2) as-
sumes that the considered input quantities are uncorrelated.
As the input quantities represent the dynamics of the floater,
which are closely connected to wave forces acting on the
floater, they are modeled as harmonic oscillations. Follow-
ing Sommer and Siebert (2004), the standard uncertainties of
this type of input quantities are given by

Ua =
1a
√

2
, (A3)

where ai is the amplitude of the assumed oscillation of the
input quantity i. The derivatives in Eq. (A2) are the par-
tial derivatives of Eq. (9) with respect to the considered in-
put quantities. The solutions of the partial derivatives can be
found in Appendix A4.

A2 Uncertainty propagation through wind field
reconstruction

In this section, we derive uncertainties in the reconstructed
wind field characteristics based on previously derived LOS
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uncertainties. Since the lidar is only able to measure the wind
speed in the line-of-sight direction, wind field characteristics
including the horizontal wind speed components need to be
reconstructed from the LOS measurements. It is not possible
to reconstruct the three-dimensional wind vector from a sin-
gle LOS measurement unambiguously. Different approaches
to this problem like the velocity–azimuth display technique
introduced by Browning and Wexler (1968) are discussed in
the literature. Other approaches combine several LOS mea-
surements and use assumptions about spatial and temporal
correlations between the measurements to reconstruct the
wind field characteristics (see, e.g., Borraccino et al., 2017).

For the analytical derivation of uncertainty, we employ a
simple wind field reconstruction algorithm that assumes the
v and w components of the wind field to be zero. Under this
assumption, all contributions to the measured radial velocity
are attributed to the u component of the wind field, which can
lead to an overestimation of this component. The uncertainty
related to this effect increases with growing magnitudes of
v and w components. The implementation of other recon-
struction approaches is possible but requires modifying the
corresponding partial derivatives. The reconstructed u com-
ponent of the wind speed at each beam is given by

ui =
vlos,i

xL,iri
, (A4)

with vlos,i being the LOS wind speed of beam 1 to 4, xL,i
being the focus point x coordinate of beam i, and ri being
the measurement distance. Further we combine the measure-
ments of all four beams by averaging the wind speed esti-
mates of the individual beams.

Thus, the reconstructed wind speed component urec is
given by

urec =
1
4
·

(
vlos,1

xL,1r1
+
vlos,2

xL,2r2
+
vlos,3

xL,3r3
+
vlos,4

xL,4r4

)
. (A5)

Again, the uncertainty of the reconstructed horizontal
wind speed components can be estimated by combining the
standard of uncertainties of the input quantities by follow-
ing the GUM methodology. The combined uncertainty of n
correlated input quantities is given by

U2
y =

4∑
i=1

δf

δxi

2
·U2

i + 2
N−1∑
i=1

N∑
j=i+1

δf

δxi

δf

δxj
UiUj ri,j , (A6)

where ri,j is the correlation coefficient of beam i and j .
Considering Eq. (A5), the reconstructed wind speed compo-
nent urec is a function of the four LOS velocities. Thus the
total uncertainty of urec given by

U2
urec
=

n∑
i=1

δu

δvlos,i

2
·U2

los,i

+ 2
N−1∑
i=1

N∑
j=i+1

δu

δvlos,i

δu

δvlos,j
Ulos,iUlos,j ri,j , (A7)

where Ulos,i is the standard uncertainty of beam i as calcu-
lated in Eq. (A2). In this case, the LOS velocities of the four
beams cannot be assumed to be uncorrelated. The correla-
tion is considered by the correlation coefficient ri,j of the
LOS velocities of beam i and j . The partial derivatives can
be found in Appendix A4.

The correlation coefficients between the LOS measure-
ments of the individual beams are needed as a parameter
for the calculation of uncertainty of reconstructed wind field
characteristics. They are influenced by the changing LOS di-
rections and the position of focus points in space and the as-
sumed wind field. Thus, correlation coefficients are depen-
dent on the set of dynamic input parameters and the phasing
between the single DOF. In the model, the correlation co-
efficients are calculated for the present set of model input
parameters. This is done by evaluating Eq. (9) over time for
each LOS and calculating the correlation between the result-
ing LOS time series.

A3 Analytical estimation of bias

The lidar measurement model introduced in Sect. 2.2 is also
used to estimate systematic biases in reconstructed wind
field characteristics that occur due to floater dynamics. Us-
ing Eq. (9), which combines the temporal evolution of all
dynamic input quantities, the LOS velocity is calculated for
a defined parameter space over a defined time span. Fur-
ther, the wind field reconstruction approach introduced be-
fore is applied to calculate the horizontal wind speed compo-
nent urec. The bias of the reconstructed u-component wind
speed is calculated by

Biasu = uref− urec,mean, (A8)

where uref is the reference wind speed, and urec,mean is the
mean value of the reconstructed wind speed component. The
reference wind speed is calculated as the average over a rotor
plane. The rotor diameter for this hypothetical rotor is cho-
sen to be drotor= 150 m. The results of the bias estimation are
very sensitive to the exact calculation procedure of the ref-
erence value. Therefore, to make the results comparable to
the numerical model results, the calculation procedure is the
same as in the numerical model. In the numerical model, the
u wind speed components of all grid points of the synthetic
wind field which are within the rotor plane are averaged. For
the reference values uref of the analytical model, the wind
speed components of the same grid points are calculated ac-
cording to the assumed power-law wind profile. The average
of these points is taken to calculate uref.

Equation (9) combines the temporal evolution of all dy-
namic input quantities. Therefore, different effects can po-
tentially influence the estimation of bias. First, it must be en-
sured that the length of the time window of calculation is
large enough to avoid any relevant influence of time window
length on the bias estimation. Second, the phasing between
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Figure A1. (a) Standard deviation of bias estimation within
100 random realization over the time window length. (b) Standard
deviation of averaged bias estimations over a number of averaged
random realizations with a time window length of 600 s.

the individual dynamics input quantities could influence the
bias estimation.

Figure A1a shows the standard deviation within 100 re-
alizations of the bias estimation of the wind speed u com-
ponent for one set of input parameters as a function of time
window length. The phasing of input dynamics (yaw, pitch,
roll, and heave) is randomized for each realization. It can be
seen that the standard deviation is fluctuating over the time
window length, depending on the ratio between time window
length and dynamics frequencies, with minima for time win-
dow lengths being multiples of dynamics frequencies. This
effect is small for longer time window lengths where the av-
eraging period is 1 order of magnitude higher than the period
of input dynamics. The remaining fluctuation in standard de-
viation for a time window length of 600 s is small and can be
neglected. However, the standard deviation is not converg-
ing to 0, since the random phasing between the individual
dynamics input quantities is part of the standard deviation.
Therefore, several random realizations with a time window
length of 600 s are averaged. Figure A1b shows the standard
deviation of averaged bias estimates as a function of the num-
ber of random realizations, averaged for one bias estimate.
For the remainder of the work, all bias estimates of the ana-
lytical model are calculated for a time window length of 600 s
and averaged over 10 random realizations.

A4 Partial derivatives

δvlos

δψ
=−Vref

(
zL+hlidar+hheave

Href

)α
× (sinϕ(xL sinψ + yL cosψ))
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A5 Rotation matrices

The rotation matrix is given by

R(ψ,β,γ )=

cosψ −sinψ 0
sinψ cosψ 0

0 0 1


×

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ


×

1 0 0
0 cosγ −sinγ
0 sinγ cosγ

 . (A15)
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