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Abstract. In the past several years, wind veer – sometimes called “directional shear” – has begun to attract
attention due to its effects on wind turbines and their production, particularly as the length of manufactured tur-
bine blades has increased. Meanwhile, applicable meteorological theory has not progressed significantly beyond
idealized cases for decades, though veer’s effect on the wind speed profile has been recently revisited. On the
other hand the shear exponent (α) is commonly used in wind energy for vertical extrapolation of mean wind
speeds, as well as being a key parameter for wind turbine load calculations and design standards.

In this work we connect the oft-used shear exponent with veer, both theoretically and for practical use. We
derive relations for wind veer from the equations of motion, finding the veer to be composed of separate contribu-
tions from shear and vertical gradients of crosswind stress. Following from the theoretical derivations, which are
neither limited to the surface layer nor constrained by assumptions about mixing length or turbulent diffusivities,
we establish simplified relations between the wind veer and shear exponent for practical use in wind energy. We
also elucidate the source of commonly observed stress–shear misalignment and its contribution to veer, noting
that our new forms allow for such misalignment. The connection between shear and veer is further explored
through analysis of one-dimensional (single-column) Reynolds-averaged Navier–Stokes solutions, where we
confirm our theoretical derivations as well as the dependence of mean shear and veer on surface roughness and
atmospheric boundary layer depth in terms of respective Rossby numbers.

Finally we investigate the observed behavior of shear and veer across different sites and flow regimes (in-
cluding forested, offshore, and hilly terrain cases) over heights corresponding to multi-megawatt wind turbine
rotors, also considering the effects of atmospheric stability. From this we find empirical forms for the probabil-
ity distribution of veer during high-veer (stable) conditions and for the variability in veer conditioned on wind
speed. Analyzing observed joint probability distributions of α and veer, we compare the two simplified forms
we derived earlier and adapt them to ultimately arrive at more universally applicable equations to predict the
mean veer in terms of observed (i.e., conditioned on) shear exponent; lastly, the limitations, applicability, and
behavior of these forms are discussed along with their use and further developments for both meteorology and
wind energy.
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1 Introduction

The shear exponent has generally not been used or accepted
by meteorologists, as it does not (directly) relate to the
physics of atmospheric flow nor to the most important bound-
ary condition – the surface. Regarding the latter, in contrast
with similarity theory (Monin and Obukhov, 1954), the shear
exponent does not contain explicit information about the sur-
face roughness. However, the shear exponent can be related
to surface properties in a generalized way, as well as to tur-
bulent kinetic energy and atmospheric stability (buoyancy) as
shown by, e.g., Kelly et al. (2014a). This is particularly useful
above the atmospheric surface layer (ASL), where microm-
eteorological theory based on ASL assumptions fails – and
where the effects of the surface are neither dominant nor sim-
ple enough to be characterized through accepted ASL param-
eterizations. As practiced in the wind energy resource assess-
ment community for decades, the shear exponent can thus be
preferable over similarity theory for use in vertical extrapola-
tion (Irwin, 1979; Mikhail, 1985; Petersen et al., 1998) with
quantification of uncertainty in its use more recently rein-
forcing this (Triviño, 2017; Kelly et al., 2019b). Shear is also
a key parameter for flow characterization towards load sim-
ulations, being seen to systematically affect various turbine
loads (e.g., Dimitrov et al., 2018; Robertson et al., 2019).

Veer has received much less attention than shear, though
its potential importance to wind energy has been noted more
recently. In the meteorological literature, where veer is of-
ten labeled as “directional shear” or “turning”, Markowski
and Richardson (2006) reviewed the distinction between veer
and vertical gradients of wind speed, listing studies of me-
teorological phenomena that considered veer (though they
focused on convective storms). While some works in me-
teorology have investigated veer, these have tended to fo-
cus on the angular difference between winds at the top of
the atmospheric boundary layer (ABL) and the surface (e.g.,
Clarke, 1975; Brown et al., 2005; Grisogono, 2011; Lind-
vall and Svensson, 2019), and they are not generally suited
for engineering applications. For wind energy, Murphy et al.
(2020) looked at the veer (and shear) along with power pro-
duction measured over a 6-month period, finding a minor
but non-negligible effect of veer on power production for a
utility-scale turbine. Gao et al. (2021) found positive veer
over the upper half of a single (2.5 MW) clockwise-turning
turbine rotor to reduce power production, opposite to and
slightly larger than the corresponding effects of negative veer
there; they also showed the rotor’s lower-half veer was less
significant than the upper half. Shu et al. (2020) examined
measurements from a lidar offshore between islands south-
west of Hong Kong, observing larger veer when hilly ter-
rain was upstream compared to more open-sea conditions;
they also noted seasonal variations. For power production,
the veer was incorporated into rotor-equivalent wind speed
(REWS) by Choukulkar et al. (2016), who found it to gen-
erally decrease production at two sites; Clack et al. (2016)

found similar results from weather assimilation model out-
put over the USA, along with higher production at night and
lower power during daytime at most locations. Wind veer
has also been examined with regard to its connection with
the distortion and lateral-movement turbine wakes via mea-
surements and simulations (e.g., Abkar et al., 2018; Brugger
et al., 2019), also including yaw-misalignment effects (Huls-
man et al., 2022; Narasimhan et al., 2022).

In this paper we investigate wind veer, showing its joint
behaviors with and connection to shear and key parameters
used to describe atmospheric boundary layer flow. In Sect. 2,
after reviewing the expression of the shear exponent and its
relation to stability and turbulence, we derive new relations
for veer; we show veer to be composed of shear-driven and
Coriolis-associated stress gradient contributions. The theo-
retical behavior of veer is also derived for canonical cases
such as Ekman and surface-layer flow, as well as the effect of
shear-stress misalignment on veer. Further, in Sect. 2.4 prac-
tical relations from micrometeorology are elucidated towards
an evaluation of the expressions developed for veer. Section 3
includes an analysis of veer, exploring and connecting the de-
veloped relations to both computational modeling and obser-
vations. Section 3.1 gives Reynolds-averaged Navier–Stokes
(RANS; mean) simulation results over flat terrain in neutral
conditions for hundreds of combinations of surface Rossby
number and ABL-depth Rossby number, showing the depen-
dence of veer on the latter, as well as the counteracting be-
havior of veer’s two primary components. Section 3.2 begins
with an analysis of multi-year observations from six different
flow regimes across four sites showing the statistical behav-
ior of shear with stability and subsequently that of veer, also
providing new empirical relations for the probability of oc-
currence of larger veer (due to the effect of stable conditions)
and for the variability in veer with wind speed. The observa-
tional analysis concludes in Sect. 3.3 with simplified prac-
tical relations for veer based on observed shear, including a
comparison with joint distributions of veer and shear across
the six flows analyzed. Finally the results are summarily dis-
cussed and conclusions given, with ongoing and future work
also described for the reader.

2 Theory and development

In this section we define the shear exponent and veer and
then derive relations for veer in terms of shear and vertical
gradients of stress, as mentioned in the previous paragraph.
Section 2.3 provides a number of expressions for veer; this
is done to facilitate its calculation and interpretation in the
different coordinate systems typically considered in wind en-
ergy flow analyses, and we also include forms that are inde-
pendent of coordinate system. Because coordinates aligned
with the mean wind for a given height of interest (e.g., hub
height) are commonly used in wind energy and because ex-
pressions for veer in such a coordinate system are simpler to
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express and calculate, we ultimately arrive at two forms in
such a system (Eqs. 14 and 16); due to its robustness, one of
these (Eq. 14) will later be shown in Sect. 3.3 to be further
simplifiable and usable (as Eqs. 39 or 40) in comparison with
measurements.

2.1 Shear exponent

Just as potential temperature – the buoyancy variable com-
monly used in meteorology – was labeled the “meteo-
rologist’s entropy” by Bohren and Albrecht (1998), one
could call the shear exponent (α) the “wind engineer’s phi-
function”. Specifically this follows from the definition of
shear exponent,

α ≡
∂U/∂z

U/z
=
∂ lnU
∂ lnz

, (1)

and the dimensionless wind speed gradient,

8m ≡
dU/dz
u∗0/κz

=
κU

u∗0
α, (2)

used in meteorology, where u∗0 is the surface-layer friction
velocity (square root of kinematic shear stress), κ = 0.4 is
the von Kármán constant, and z is the height coordinate1.
Note that Eq. (1) is derived from the power-law expression
for wind speed,

U

Uref
=

(
z

zref

)α
, (3)

which is assumed to be valid over some extent around height
zref, with Uref ≡ U (zref). The power-law (Eq. 3) with shear
exponent (Eq. 1) has been used in wind engineering for
decades (e.g., Irwin, 1979; Petersen et al., 1998) due to its
simplicity and because it does not require any information
other than the wind speed at two heights. Although Eqs. (1)
and (2) might appear to be quite alike, one can see a phe-
nomenological difference when comparing the wind speed
profiles resulting from these relations. In Monin–Obukhov
(M–O) theory 8m is a function of the stability z/L which is
proportional to surface heat flux H0 divided by u3

∗0, i.e., the
reciprocal Obukhov length is 1/L= κ(g/T0)H0/u

3
∗0, where

T0 is the background temperature and g is the gravitational
acceleration (Monin and Obukhov, 1954); the 8m function
and corresponding M–O wind profile (which arises via inte-
grating dU/dz in Eq. (2) from a height equal to the rough-
ness length z0 up to height z) thus require a number of as-
sumptions and more information than the calculation of α
via Eq. (1) or use of the power-law (Eq. 3). Monin–Obukhov
wind profiles also require the surface roughness length (z0),
while the friction velocity u∗0 (and thus shear stress) is as-
sumed to be constant in the surface layer where M–O theory

1The full derivative (d/dz) is used in Eq. (2) due to the horizontal
homogeneity assumed by Monin–Obukhov similarity theory, from
which 8m arises.

is most valid2; further, the assumptions of stationarity and a
uniform flat surface are implicit in the use of M–O theory.
Following surface-layer theory one could write an equiva-
lent shear exponent αASL =8m(z/L)/[ln(z/z0)−9m(z/L)],
where

9m =

z∫
z0

[1−8m(z′/L)]dlnz′

is the M–O wind speed correction function; the analytic
forms for 8m and 9m differ in stable and unstable con-
ditions and have been determined empirically in decades
past (Businger et al., 1971; Carl et al., 1973; Li, 2021). But
Monin–Obukhov similarity theory and its assumptions (such
as constant u∗), as well as established forms for 8m, fail
above the surface layer3.

2.1.1 Relation to stability and turbulence

As shown by Kelly et al. (2014a), in horizontally homoge-
neous conditions the steady or mean balance of turbulent ki-
netic energy (TKE) can be written in terms of shear exponent
as

α =
z

U

(ε−B − T )
−〈uw〉

(4)

for a given height z, where the streamwise direction is de-
fined by the mean wind U (z) and we have suppressed z de-
pendences for brevity; here 〈uw〉 is the turbulent horizontal
momentum flux (kinematic stress), T is the total (turbulent
plus pressure) transport, B is buoyant production, and ε is
the viscous dissipation rate of TKE. We point out that Kelly
et al. (2014a) ignored crosswind stress 〈vw〉 when deriving
Eq. (4); however, it still shows that, e.g., shear will increase
in stable conditions (B < 0) and decrease in unstable con-
ditions (B > 0), as will be demonstrated using observations
in Sect. 3.2; further, as we will see in Sect. 2.3, this is also
related to the veer. Within the ASL under these conditions
where M–O theory is valid and 〈vw〉 → 0, using the neutral

2The “constant-flux layer” in surface-layer theory does not re-
quire exactly constant fluxes with height, as is often presumed. The
label and assumption are that the nondimensional fluxes, normal-
ized by ABL scales, are constant with z (Horst, 1999; Wyngaard,
2010); i.e., the ASL is the layer over which the decrease in u2

∗ is
small compared to u2

∗0, roughly the bottom 10 % of the ABL.
3We note that Kelly and Gryning (2010) adapted M–O theory to

long-term means and Kelly and Troen (2016) extended this beyond
the surface layer within the European Wind Atlas (WAsP) frame-
work, thus addressing the stationarity and surface homogeneity as-
pects. However, the purpose and scope of the current article is to ex-
amine the commonly used shear exponent and its connection with
veer and not on vertical extrapolation methods per se. This moti-
vates use of α in applications such as wind energy, as Eq. (1) does
not directly rely on surface-layer assumptions.
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value of dissipation rate as ε0 ≡ u
3
∗0/(κz) along with the di-

mensionless functions 8ε ≡ ε/ε0 and 8T ≡ T/ε0 (Kaimal
and Finnigan, 1994), we can express a surface-layer version
of Eq. (4) as

αASL =
u∗0

κU

(
8ε +

z

L
−8T

)
≈ Iu

(
8ε +

z

L
−8T

)
, (5)

since by definition B/ε0 =−z/L and u2
∗0 =−〈uw〉; here

Iu ≡ σu/U is the streamwise turbulence intensity. The di-
mensionless dissipation rate (M–O function) 8ε ≥ 1 is
roughly 1+ 5z/L in stable conditions and increases more
weakly with−z/L in unstable conditions (Panofsky and Dut-
ton, 1984; Kaimal and Finnigan, 1994); meanwhile the trans-
port is negligible in stable conditions but 8T > 0 in unstable
conditions (e.g., Wyngaard, 2010). Thus in stable conditions
(L−1 > 0) one can see α is larger than in neutral conditions,
while in unstable conditions α becomes smaller. Above the
ASL this will also generally be the case, though analytic
nondimensional forms become difficult to derive, while the
flow becomes affected by more terrain upwind and associ-
ated inhomogeneities; furthermore in stable conditions the
local stability (at a given z) becomes increasingly more im-
portant than surface-based z/L (Derbyshire, 1990). As will
be shown below, the most common and mean conditions at
contemporary rotor heights qualitatively follow Eq. (5), but
due to these and other non-ideal effects (e.g., nonstation-
ary transients) large deviations can occur. We note that in
this work we are not searching for analytical forms for α or
surface-layer behavior; rather, we are concerned with how α

relates to the veer, especially over heights corresponding to
wind turbine rotors, a portion of which commonly extends
beyond the ASL.

2.2 Veer

For the simplified general case of Coriolis-affected mean
flow, we write the horizontal mean velocity vector {U,V } as
a complex number, S ≡ U + iV = |S|eiϕ . For a mean wind
direction defined at some height z, the veer can be defined as
a directional shear ∂ϕ/∂z through the wind direction:

ϕ(z)= arg[S(z)] = arctan
[
V (z)
U (z)

]
. (6)

In most of the micrometeorological literature, the mean wind
direction is defined based on the surface stress (i.e., via the
winds closest to the surface, so ϕ0 ≡ ϕ(0)= 0). We follow
this convention unless stated otherwise, as done for some ex-
pressions later in Sect. 2.3; one could also choose to define
the coordinate system based on the geostrophic wind direc-
tion (e.g., Svensson and Holtslag, 2009).

As is classically known in micrometeorology (e.g., Hess
and Garratt, 2002), the veer across the entire ABL de-
pends primarily on the Coriolis parameter f (thus latitude),
geostrophic wind speed |G|, and surface roughness length z0

but is also affected by the ABL depth h and stability (as con-
firmed via Reynolds-averaged Navier–Stokes simulations by
van der Laan et al., 2020). The veer across a fraction 1z/h
of the ABL will also depend on these parameters; thus for a
given site and height, 1ϕ/1z will have a distribution due to
variations in these parameters. This will become clearer be-
low as we examine the relationship between veer and shear.

The Coriolis-affected mean momentum balance can be
written in the form

∂S

∂t
= 0=−if (S−G)−

∂〈sw〉

∂z
(7)

for stationary and horizontally homogeneous condi-
tions (thus neglecting advection). Here the kinematic
horizontal pressure gradient ∇p/ρ = f {VG,−UG}

is also written like a velocity in complex form as
G≡ UG+ iVG = (−∂p/∂y+ i∂p/∂x)/(ρf ). The mean
stresses are dominated by vertical momentum transport
〈sw〉, where w denotes (turbulent) vertical velocity fluctua-
tions and s ≡ u+ iv the horizontal velocity fluctuations.

At a given height z, taking the differential of Eq. (6) (re-
calling darctanx = dx/[1+ x2

] and using the chain rule)
gives

dϕ =
UdV −V dU
|S|2

; (8)

here the superscript asterisk denotes a complex conjugate.
Applying ∂/∂z to Eqs. (7) and (8) and combining provides a
basic expression for veer:

∂ϕ

∂z
=

U

|S|2

[
1
f

∂2
〈uw〉

∂z2 +
∂VG

∂z

]
+

V

|S|2

[
1
f

∂2
〈vw〉

∂z2 −
∂UG

∂z

]
. (9)

In the case of zero geostrophic shear (dG/dz= 0), if the co-
ordinate system’s x axis is defined by the mean wind direc-
tion at the height z where the veer is sought, then Eq. (9) can
be written more simply as

∂ϕ(z)
∂z

∣∣∣∣
dG/dz→0

=
1
f |S|

∂2

∂z2 〈uw〉|ex‖U(z). (10)

Though Eqs. (9) and (10) are not directly very useful for re-
lating veer to shear, since the shear is implicit in the stress
terms (and one would need to know the profiles of horizon-
tal stresses to use these equations), they do illustrate that the
curvature of stress profiles and Coriolis effect are the basis
for mean veer following Eq. (7) and also that geostrophic
shear can further contribute to veer (e.g., due to baroclinity;
see Hoxit, 1974; Arya and Wyngaard, 1975; Pedersen et al.,
2013).

2.3 Relating veer to shear

Towards relating the veer to shear, one can alternately derive
the veer by first taking the time derivative of Eq. (8); using
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the real and imaginary parts of Eq. (7), in the horizontally
homogeneous limit (ignoring advection) one obtains a rate
equation for mean wind direction:

∂ϕ

∂t
=

[
V

|S|2
∂〈uw〉

∂z
−

U

|S|2
∂〈vw〉

∂z

]
+ f

(
|G|

|S|
cosγ − 1

)
. (11)

The “turning” angle γ ≡ ϕ−ϕG between geostrophic and
mean wind directions (e.g., Wyngaard, 2010) arises through4

UGU +VGV = U ·G= |S||G|cosγ,

by taking ∂/∂t of Eq. (6) or equivalently U∂V/∂t−V ∂U/∂t
via Eq. (8). The geostrophic wind direction is defined as
ϕG ≡ arctan(VG/UG), and the “cross-isobar” angle, i.e., the
turning over the whole ABL (γ0 = ϕ0−ϕG), is generally less
than 45◦ (Grisogono, 2011)5; in a right-handed coordinate
system, regardless of whether x is chosen to align with G
or the surface-layer wind velocity UASL, the turning tends to
γ > 0 in the Northern Hemisphere6. Note that ϕ, and thus γ ,
can vary with height z (as can ϕG in baroclinic conditions).

Assuming statistical stationarity so that ∂ϕ/∂t = 0, the
vertical derivative of Eq. (11) can be written most conve-
niently in terms of the deviation of dimensionless wind from
streamwise; taking the vertical derivative of Eq. (11) if we
again take dG/dz= 0 (neglect baroclinity), then

∂ cosγ
∂z

=
1
|G|

∂|S|

∂z
+

1
f |G|

∂

∂z

[
U

|S|

∂〈vw〉

∂z
−
V

|S|

∂〈uw〉

∂z

]
. (12)

As it is expressed in terms of angular differences γ , the equa-
tion above is independent of whether the coordinate system
is defined at the surface or by the geostrophic wind. Equa-
tion (12) clearly separates the shear and stress–Coriolis con-
tributions to veer. However, it can be simplified, and is most
meaningful, if the coordinate system is defined at the height
z for which it is applied; in practice the veer is typically cal-
culated around hub height, from hub to tip, or between mea-
surement and hub heights. Re-expressing Eq. (11) with the
coordinate system defined by having x in the mean wind di-
rection at height z so that S(z)= U (z)ex and |S(z)| = U (z),
in the mean (for dϕ/dt = 0) one has

4The turning angle can also be expressed in complex notation,
recalling that the angle between vectors written in complex nota-
tion (here U→ S and G→G) can be recovered by taking<{G∗S},
i.e., |G||S|<{e−i(ϕ+γ )eiϕ} = |G||S|cosγ .

5The ABL turning angle γ0 cannot exceed 45◦, according to the
Ekman equations (or their numerical solution, as in van der Laan
et al., 2020). However, in some situations, which tend to involve
horizontal inhomogeneities, γ0 > 45◦, these include, e.g., baroclin-
ity, terrain-induced turning (especially with stability), convective
cells, and various persistent storm structures.

6In the Southern Hemisphere, the signs are reversed: geostrophic
flow around a local low in pressure moves clockwise, with surface-
induced turbulence (“friction”) causing the flow to again increas-
ingly turn towards low pressure as the surface is approached and
thus γ < 0.

cosγ =
|S|

|G|
+

1
f |G|

∂〈vw〉⊥

∂z
, (13)

where we use the shorthand notation 〈vw〉⊥ to denote the
stress perpendicular to the mean flow at a given height.
Taking the inverse cosine and subsequently the vertical
derivative, noting that ∂γ /∂z= ∂ϕ/∂z and d(arccosx)=
−dx/

√
1− x2 while recalling ∂|S|/∂z= α|S|/z, we get

∂ϕ

∂z

∣∣∣
ex‖U(z)

=−

[
|S|

|G|

α

z
+

1
f |G|

(
∂2
〈vw〉⊥

∂z2 −
1
|S|

∂V

∂z

∂〈uw〉‖

∂z

)]
[

1−
(
|S|

|G|
+

1
f |G|

∂〈vw〉⊥

∂z

)2
]−1/2

;

here the subscript ‖ is used to remind us that 〈uw〉 is parallel
to the flow at height z. Further, this coordinate system (Eq. 8)
gives ∂V/∂z= U∂ϕ/∂z= |S|∂ϕ/∂z so that the ∂V/∂z part
just becomes an additional veer term on the right-hand side;
collecting the ∂ϕ/∂z on the left side and rearranging we then
obtain

∂ϕ

∂z

∣∣∣∣
ex‖U(z)

=

−
|S|
|G|

α
z
−

1
f |G|

∂2
〈vw〉⊥
∂z2[

1−
(
|S|
|G|
+

1
f |G|

∂〈vw〉⊥
∂z

)2
]1/2

−
1

f |G|

∂〈uw〉‖
∂z

. (14)

As will be demonstrated in a later section, basically one sees
from the numerator of Eq. (14) that the veer is comprised
of a shear-associated part and a crosswind stress-curvature
part; the denominator is basically 1 minus a few relatively
small terms. The more generic form of veer, for an arbitrary
coordinate system, also follows from Eq. (11):

∂ϕ

∂z
=

−
|S|
|G|

α
z
+

1
f |G|

∂
∂z

(
V
|S|

∂〈uw〉
∂z
−

U
|S|

∂〈vw〉
∂z

)
√

1−
[
|S|
|G|
−

1
f |G|

(
V
|S|

∂〈uw〉
∂z
−

U
|S|

∂〈v〉
∂z

)]2
. (15)

We note that Eqs. (14) and (15) avoid the use of the turning
(ageostrophic) angle γ , and subsequently nonlinear functions
involving ϕG, which becomes apparent if one expands cosγ
in Eqs. (12) or (13). However, one can see that there can be
an angular dependence within the stress-related parts written
above; when considered in coordinates defined with the x di-
rection aligned with the mean wind at height z, in the general
forms Eqs. (12) and (15), U/|S| and V/|S| can be written as
cosϕ and sinϕ, respectively. Then from Eq. (12) and using
cosγ = cosϕ cosϕG+ sinϕ sinϕG, again in coordinates de-
fined by |S(z)| = U (z), after some rearranging we arrive at
an expression for veer like Eq. (14):

∂ϕ

∂z

∣∣∣∣
ex‖U(z)

=

|S|α
|G|z
+
∂2
〈vw〉⊥/∂z

2

f |G|

sinϕG+
∂〈uw〉‖/∂z

f |G|

. (16)

Compared to Eq. (14) this lacks a negative sign, but sinϕG is
negative and with a larger magnitude than the positive contri-
bution to the denominator, ∂〈uw〉‖/∂z/(f |G|); this will be-
come more apparent in the sections which follow. We also
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note that in these coordinates ϕG = γG(z), and opposite signs
will occur for the Southern Hemisphere (Eqs. 14–16 give
dϕ/dz signed for the Northern Hemisphere in mathematical
coordinates, i.e., negative), reflecting winds rotating on aver-
age clockwise with increasing height.

For wind energy ∂(cosϕ)/∂z might be considered relevant
as ∂ϕ/∂z because it allows the direct expression of the veer-
induced variation in the streamwise wind velocity component
relative to a reference height such as hub height. One could
expect that the reduction in cosϕ away from a given z coun-
teracts the effect of typically positive shear; if desired, the
veer can be simply re-expressed later in terms of cosϕ for a
given coordinate system instead of trying to use an expres-
sion such as Eq. (12).

One last relation between shear and veer can also be elu-
cidated by considering a corrected version of Eq. (4). By
keeping the lateral shear term 〈vw〉∂V/∂z in the TKE rate
equation and then again using coordinates defined with x in
the mean direction at height z and subsequently ∂V/∂z→
U∂ϕ/∂z, then Eq. (4) contains an additional contribution, be-
coming

α|ex‖U(z) =
ε−B − T

−U〈uw〉‖/z
− z

∂ϕ

∂z

〈vw〉⊥

〈uw〉‖
. (17)

Recalling in the ABL that 〈uw〉‖ < 0 (momentum gets trans-
ferred towards the surface7) because 〈vw〉⊥ > 0 in the ABL
(Wyngaard, 2010), we see as in Eqs. (14)–(16) that nega-
tive ∂ϕ/∂z (clockwise veer) is associated with positive shear;
note that the sign of ∂ϕ/∂z is flipped in typical wind en-
ergy coordinates (left-handed, with 0◦ corresponding to wind
from the north and increasing clockwise). Although we have
provided Eq. (17) to both improve Eq. (4) from Kelly et al.
(2014a) and offer insight into how shear and veer are linked
within the context of TKE, we advise that it is not easily
utilized compared to forms like Eq. (14); the latter will be
applied and investigated further in later sections.

2.3.1 Misalignment of shear and stress

One can see a connection between the shear, veer, and stress
in Eqs. (9) and (12), and we can further examine the rela-
tion between shear and stress using complex notation as in
Eq. (7). The “misalignment” can be expressed via the angle
between ∂S/∂z and 〈sw〉, i.e.,

βma ≡ (ϕ−ϕsw)= arg(∂S/∂z)− arg(〈sw〉). (18)

The root of such misalignment arises in the rate equation for
〈sw〉. In the limit of horizontal homogeneity, if we combine
the stress budgets (e.g., see Wyngaard, 2010), i.e., adding
∂〈uw〉/∂t to i∂〈vw〉/∂t , we may write

∂〈sw〉

∂t
= 0' 〈w2

〉
∂S

∂z
−
〈sw〉

τR
−
∂

∂z
〈sww〉. (19)

7The exception to this is if one considers heights within∼ 10 %–
20 % of the ABL top (e.g., Kelly et al., 2019a).

The pressure-strain contribution has been written as 〈sw〉/τR
via the commonly used Rotta (1951) parameterization, where
τR is the Rotta timescale; this is the basis for commonly used
flux-gradient relations (Wyngaard, 2004). In such mixing-
length relations, i.e., using the “Boussinesq hypothesis”,
〈w2
〉τR is simply written as a turbulent diffusivity −νT, and

the final term in Eq. (19) is neglected. We continue to neglect
advection and horizontal transport (such as U∂〈sw〉/∂x and
∂〈suw〉/∂x, respectively); these can also contribute to mis-
alignment between ∂S/∂z and 〈sw〉 in areas of upwind hor-
izontal inhomogeneity such as nonuniform terrain and tur-
bine wakes. Thus in models where an eddy diffusivity (flux-
gradient relation) is used, such as most RANS solvers which
employ two-equation turbulence models, for flow over ho-
mogeneous surfaces there will be no stress–shear misalign-
ment.

Ghannam and Bou-Zeid (2021) derived a dimensionless
relation in terms of the angular differences βma and γ in-
stead of velocity components; although it does not provide a
convenient description of the veer, it can be re-cast to show
the effect of the misalignment angle:

f |G|sinγ =−
∂
∣∣〈sw〉∣∣
∂z

cosβma−
∣∣〈sw〉∣∣sinβma

∂ϕsw

∂z
. (20)

Thus when the stress is aligned with the shear (βma = 0),
then f |G|sinγ =−∂|〈sw〉|/∂z; this can be seen as a case
of Eq. (13). The contribution of stress–shear misalignment to
the veer can also be seen considering Eq. (19) with our ear-
lier derivations, with misalignment modifying the stresses.
For example the crosswind stress in Eqs. (13)–(15) can be
written

〈vw〉⊥ =−νT

[
∂V⊥

∂z
+
∂〈vww〉⊥/∂z

2k/3

]
, (21)

since the Rotta timescale can be expressed in terms of turbu-
lent kinetic energy k via νT = τR〈uu+vv+ww〉/3 (see Pope,
2000; Hatlee and Wyngaard, 2007). But the turbulent third-
order moment 〈sww〉 is difficult to measure, so a model for it
would be needed in order to explicitly incorporate misalign-
ment into veer predictions. Fortunately the misalignment βma
tends to be small in the surface layer (Geernaert, 1988) and
also beyond the surface layer over homogeneous terrain or
long fetch over water, especially without baroclinity (Berg
et al., 2013). However, it has been known for decades (Mo-
eng and Wyngaard, 1989) that turbulent transport is relevant
in convective ABLs, so one expects more misalignment in
unstable conditions; indeed Santos et al. (2021) saw this from
measurements over multiple heights over a land and sea site,
as did Berg et al. (2013) to a lesser extent (due to the rel-
atively short measurement campaign) over water. The mis-
alignment tends to be smaller in neutral conditions, and thus
we do not (yet) offer explicit treatment for it.
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2.3.2 Canonical solutions using an eddy diffusivity

When turbulent transport of stress is negligible (along with
baroclinity and inhomogeneity), in steady conditions the
stress and mean velocity gradient are aligned. This allows
the use of an eddy diffusivity νT to express the stress as
〈sw〉 = −νT(z)∂S/∂z which can then be cast as a nonlinear
differential equation using the stress cast in terms of eddy dif-
fusivity and shear in Eq. (10), which again in flow-following
coordinates at height z neglecting geostrophic shear is

∂ϕνT

∂z
=
−1
f |G|

∂2

∂z2

[
νT(z)

∂U

∂z

]
. (22)

This defies the solution without some prescription for νT(z),
though one can note limits of the veer by considering two
canonical cases where it can be solved: the Ekman and El-
lison regimes, corresponding to simple prescriptions for νT.
Such limits were considered by van der Laan et al. (2020)
for the geostrophic drag coefficient cG ≡ u∗/|G| and ABL-
integrated veer (cross-isobar angle) γ0 ≡ ϕ0−ϕG.

2.3.3 Ekman solution

Ekman (1905) assumed the turbulent stress was related to
the mean shear using a constant eddy viscosity νEk, which in
our notation is expressible as 〈sw〉 = −νEk∂S/∂z. Thus the
momentum balance (Eq. 7) simplifies to

f (SEk−G)=−iνEk
∂2SEk

∂z2 , (23)

which gives the classic Ekman solution:

SEk =G
(

1− e−(1+i)z/hEk
)
, (24)

where the characteristic Ekman (e-folding) height hEk is de-
fined as hEk ≡

√
2νEk/f . Simpler than relating Ekman veer

to shear, the solutions above along with Eq. (9) give the veer
directly (again in radians) as

∂ϕEk

∂z
=
−νEk

f |SEk|2

[
U
∂3U

∂z3 +V
∂3V

∂z3

]
=
e−z/hEk

hEk
·

cos(z/hEk)− sin(z/hEk)− e−z/hEk

1− 2e−z/hEk cos(z/hEk)+ e−2z/hEk

'
−0.5+ z/ (6hEk)

hEk
; (25)

this result has units of radians per meter measured counter-
clockwise, with the linear approximation8 deviating from the
exact form by less than 1 % for z < 1.5hEk. Integrated over
z±1z/2, this gives the veer across an extent 1z:

1ϕEk '
−1z

2hEk

(
1−

1z

3hEk

)
. (26)

8The approximation is found by series expansion in z/hEk of
about 0; the same result is obtainable by taking the vertical deriva-
tive of Eq. (6), i.e., ∂[arctan(={SEk}/<{SEk})]/∂z.

The Ekman forms might be seen as an upper limit on veer
for hEk on the order of typical ABL depths (∼ 300–1000 m),
analogous to what was found by van der Laan et al. (2020)
for the cross-isobar angle γ0.

From Eq. (24) one can also find an expression for the Ek-
man shear exponent αEk via Eq. (1):

αEk =
|∂SEk/∂z|

|SEk|/z
=

√
2(z/hEk)√

1− 2cos(z/hEk)ez/hEk + e2z/hEk

'

(
1−

√
2
π

z

hEk

)
. (27)

This may also be seen as an upper limit, particularly in the
surface layer where an unrealistically large diffusivity is as-
sumed; one can see that Ekman theory predicts α→ 1 ap-
proaching the surface.

2.3.4 Ellison solution (linear diffusivity profile and
surface-layer regime)

Using a surface-layer eddy-viscosity relation νT(z)= κu∗z
consistent with ASL theory, Ellison (1956) derived the so-
lution of Eq. (7) for the (complex) wind vector, resulting
in a profile of geostrophic “deficit” expressible as (Krishna,
1980)

G− SEll(z)=
2u∗
κ

[
ker0

(√
2f z
κu∗

)
+ i kei0

(√
2f z
κu∗

)]
, (28)

where ker0(x) and kei0(x) are the so-called Kelvin functions
(see, e.g., Abramowitz and Stegun, 1972). But the Ellison so-
lution can be written more compactly and conveniently, sim-
ilar to Eq. (24) with a complex argument, as

SEll(z)=G−
2u∗
κ
K0

(√
2if z
κu∗

)

=G

[
1− 2

cG

κ
K0

(
(1+ i)z
√
νT(z)/f

)]

=G

[
1− 2

cG

κ
K0

(√
2iz
hmE

)]
; (29)

K0(x) is the zeroth-order modified Bessel function of the
second kind, and the modified Ekman length scale is de-
fined by hmE ≡ κu∗/f , also equal to νT(z)/f z. For the range
0.02 . cG . 0.06 encountered in nature under neutral condi-
tions (Hess and Garratt, 2002; van der Laan et al., 2020), for
zH /hmE� 0.1 the arctangent of ={S}/<{S} can be approxi-
mated via series expansions of Eqs. (28) or (29) to yield the
practical result

1ϕEll (zH ,1z)≈ πcG exp
(
−
√
z′/zH

)∣∣∣zH+1z/2
zH−1z/2

; (30)

this follows the numerical solution to within ∼ 20 % for
0.3 . z/hmE . 2, more so for cG approaching 0.04.
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Figure 1. Veer behavior (plotted as degrees clockwise) for analytical and limiting cases of Ekman and Ellison. (a) Veer versus shear exponent
for any Ekman or Ellison ABL depth h; Ekman is dotted purple, and Ellison is dashed pink. (b, c) Profiles of bulk veer for different 1z;
Ellison solution in (c) is the numerical solution (without approximation).

It was shown in van der Laan et al. (2020) that the Ekman
and Ellison solutions basically gave upper and lower limits,
respectively, to observed full-ABL turning (ϕG−ϕ0). Fol-
lowing this, in Fig. 1 we present veer profiles along with the
relationship between veer and shear for the Ekman and Elli-
son solutions; the former is calculated via the expressions in
Eqs. (25) and (27), while the latter is obtained via Eq. (29).

One can see in the left-hand plot of Fig. 1 that the Ek-
man solution produces effectively less mixing and conse-
quently a higher shear exponent than Ellison’s. Similarly,
away from the surface (for z > νEk/(κu∗), i.e., z/hEk & 0.1)
in the right-hand plots of Fig. 1 one can see the dimension-
less Ekman veer exceeds that predicted by the Ellison solu-
tion; this is consistent with the Ekman ABL turning angle of
γ0,Ek = 45◦, which exceeds the γ0 of 5–15◦ predicted by El-
lison’s form (van der Laan et al., 2020). However, we note
that the depth h can differ between the Ekman and Ellison
solutions; hEk = hmE only if one chooses νEk = (κu∗)2/2f .
We also point out that for larger cG (not shown in figure), near
the surface (z/hmE . 0.1) Ellison’s veer grows larger than the
peak value shown at z≈ 1.5hmE and relative to the behavior
seen for cG = 0.04; however, this idealized near-surface be-
havior is likely not relevant for wind applications.

2.4 Practical forms and application

To use the expressions derived for veer earlier, one needs
the vertical derivatives of stress (or its profile) and the
geostrophic wind speed; in particular the first and second
vertical derivatives of the crosswind stress 〈vw〉⊥ appear in
Eqs. (14) and (16), along with |G|. In wind energy appli-
cations, engineers typically lack site-specific stress profiles
unless they are taken from flow modeling; if the latter is re-
liable, then there is probably less need for the shear-based
estimates for veer given in this work. The large-scale hor-
izontal pressure gradients which drive ABL flow, express-
ible as the geostrophic wind G, are likewise rarely measured

(though lidar measurements above the ABL can make this
possible, e.g., Pedersen et al., 2013). The shear contribution
to veer is multiplied by |S|/|G| in Eqs. (14)–(16). To obtain a
practical form relating shear to veer, we can start by parame-
terizing |S|/|G|; fortunately |G| is commonly calculated in
practice using a geostrophic drag law (GDL; Rossby and
Montgomery, 1935). Long used in wind applications such as
WAsP (Troen and Petersen, 1989) and related wind resource
software, it is expressible in scalar form as

|G| =
u∗

κ

√[
ln
(
u∗

f z0

)
−A

]2

+B2, (31)

with components

sin(ϕG−ϕ0)=−B
u∗

κ|G|
and cos(ϕG−ϕ0)

=
u∗

κ|G|

[
ln
(
u∗/f

z0

)
−A

]
, (32)

where the empirical coefficients {A,B} are assumed to be
constants in typical wind application. The geostrophic drag
coefficient cG ≡ u∗/|G| and ABL turning (cross-isobar an-
gle) ϕG are seen to vary with surface Rossby number Ro0
(Blackadar and Tennekes, 1968); these and {A,B} have been
shown to depend on dimensionless stability L−1u∗/f (Arya,
1978; Kelly and Troen, 2016), strength of ABL capping in-
version (Zilitinkevich and Esau, 2002), and baroclinity (Arya
and Wyngaard, 1975; Nieuwstadt, 1984). For practicality, we
start by assuming near-neutral stability, which is appropriate
in the mean for most places, as it represents by far the most
frequently observed conditions (Kelly and Gryning, 2010);
we continue to neglect baroclinity; and we neglect the influ-
ence of the capping inversion strength.9 With such assump-
tions, one can also write an (approximate) “reverse” form of

9We note Zilitinkevich and Esau (2005) gave a form for the GDL
incorporating all three of these effects, and Liu et al. (2021) prac-
tically simplified that form, using large-eddy simulations (LESs) to
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Eq. (31) to get the drag coefficient as (Troen and Petersen,
1989)

cG '
crGDL

lnRo0−A
, (33)

where the surface Rossby number is Ro0 ≡ |G|/(f z0) and
crGDL is taken to be 0.485 following its use in the wind re-
source program WAsP for several decades. Alternate forms
of Eq. (33) exist, such as that of Hess and Garratt (2002); the
latter corresponds simply to setting A= 1.28 and crGDL =

0.472 in Eq. (33). For a given roughness length z0 and mea-
sured wind speed |S|, lacking the (surface) friction veloc-
ity u∗, one needs a relation to connect u∗ and |S| in order
to get |G|. This can be done through the same wind pro-
file relation upon which the GDL is built, i.e., the log-law;
one can use u∗ = κ|S|/ ln(z/z0) within Eq. (31) or alternately
|S|/|G| = (cG/κ) ln(z/z0) using Eq. (33), where in the latter
Eq. (31) is also employed to find |G| within Ro0.

In practice one would like a direct estimate for the veer,
using the routinely measured shear, since α is seen to drive
∂ϕ/∂z. One way could be to just ignore the stress divergence
terms in Eqs. (14) or (16), which with calculation of |G|men-
tioned just above considerably simplifies the problem. How-
ever, this might not be justified, particularly if u2

∗/(f h) is not
negligible compared to |S|, as seen from comparing contri-
butions to Eqs. (14)–(16); this can be seen using the scaling
∂〈uw〉/∂z≈ u2

∗/h, where h is the ABL depth (e.g., Wyn-
gaard, 2010). Thus we consider estimating vertical deriva-
tives of the stresses, starting with the ∂〈uw〉/∂z just men-
tioned, which can be used in Eq. (16). Similarly, one can es-
timate ∂2

〈vw〉/∂z2
≈ cvwu

2
∗/h

2 or

∂2
〈vw〉/∂z2

f |G|
≈ cvw

u2
∗

f |G|h2 = cvw
c2
G

h
Roh, (34)

where Roh ≡G/(f h) is the Rossby number based on ABL
depth and of order 1; we will treat cvw as an empirical con-
stant which is tuned later below. To use Eq. (16) we also need
to find sinϕG; employing Eq. (32) and using trigonometric
identities to expand sin(ϕ−ϕ0), with some rearrangement
one obtains

sinϕG =
cG

κ

{[
ln
(
u∗

f z0

)
−A

]
sinϕ0−B cosϕ0

}
. (35)

Employing this, Eq. (34), and ∂〈uw〉/∂z≈ u2
∗/h, along with

Eqs. (31) or (33), allows one to then use Eq. (16).
On the other hand, using Eq. (14) is simpler and more

convenient than Eq. (16) because it only requires ∂〈vw〉/∂z
in addition to the second derivative of 〈vw〉 just approxi-
mated in Eq. (34) above, so one can also simply approximate

find its empirical constants in the case of a nonzero effect of cap-
ping inversion strength per Coriolis parameter. However, the extra
parameters needed are additional to what is required for the current
theory given for climatological mean conditions and well beyond
what is measured in practice.

∂〈vw〉/∂z≈ h∂2
〈vw〉/∂z2 and use Eq. (34); the GDL forms

Eqs. (31) and (33) which then allow one to get Roh and cG,
respectively. Whether using Eq. (16) or (14), we note that the
shear contribution to veer includes a surface Rossby number
(Ro0) dependence through S/|G|, while the stress–Coriolis
contribution includes an ABL-depth dependence,Roh; either
way, if we do not neglect the latter, then we also need an es-
timate for the ABL depth h. If the shear contribution is ex-
pected to dominate variations in veer, then the estimate of h
may not be so crucial; we will consider this further below in
our comparison with real-world cases and also direct inter-
ested readers to, e.g., Liu and Liang (2010) for statistics of h
in different conditions.

3 Analysis and discussion

This section presents an analysis of results from RANS sim-
ulations of the neutral atmospheric boundary layer10 and of
observations at different sites (which include the impacts of
stability). The simulations are analyzed to check the relations
given here, as well as examine the behavior of and contri-
butions to veer across the range of Rossby numbers (Ro0
and Roh) encountered in nature. An investigation of obser-
vations, spanning turbine rotor heights for six different flow
regimes and conditions across four locations, includes prob-
ing the interconnected behaviors of shear (exponent) and veer
with atmospheric stability – as well as their joint statistics,
universal trends, and variation with wind speed. The statis-
tical demonstration of observations is accompanied by pre-
dictions of veer using empirically updated forms of the re-
lations given in the previous section, as well as the forms
themselves.

3.1 RANS simulations of neutral ABLs

3.1.1 Model and setup

The Navier–Stokes solver Ellipsys1D (van der Laan and
Sørensen, 2017), which is a one-dimensional version of
the multiblock general computational fluid dynamics (CFD)
solver Ellipsys3D (Sørensen, 1995), was used to simulate
the Reynolds-averaged flow in neutral atmospheric bound-
ary layers, including Coriolis forces. Assuming zero verti-
cal velocity and constant pressure gradients, it solves the
RANS equations for incompressible flow with a finite-
volume scheme. The ABL “top” (above which turbulence is
extinguished) is modeled via the length-scale limiter model
of Apsley and Castro (1997) implemented into the k–ε tur-
bulence closure equations solved by Ellipsys1D, as outlined
in van der Laan et al. (2020); this includes the use of small
ambient values of turbulence intensity and dissipation rate

10The neutral RANS simulations can also be translated into
equivalent stable cases within the k–ε–`max turbulence closure
framework of Apsley and Castro (1997), following van der Laan
et al. (2020).
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Figure 2. Demonstration of one-dimensional RANS solver results, conforming to Eq. (13) (a) and Eq. (9) (b). Dashed line represents 1 : 1
prediction; simulated ABL depth heff calculated from Eq. (36).

above the ABL, with k–ε constants Cµ = 0.03, Cε1 = 1.21,
Cε2 = 1.92, σk = 1.0, and σε = 1.3. The k–ε model provides
the stresses occurring in the RANS equations, via the flux-
gradient relation and νT = Cµk

2/ε; thus we see that such
turbulence closure gives stresses aligned with velocity gra-
dients.

The domain height is set to 105 m to ensure it is much
larger than h for all simulations, and the bottom boundary is
handled by a rough-wall condition (Sørensen et al., 2007).
The numerical “grid” is a vertical line, with the bottom cell
height being 1 cm (placed above the roughness length) and
the cells’ sizes growing progressively upward with an ex-
pansion ratio of 1.2; the total number of cells is 384. At the
bottom cell a Neumann condition is set for k (dk/dz= 0)
and ε is set to the logarithmic value, and the wall stress is
consequently defined by the neutral surface layer for this
cell. More details, including a grid-refinement study, may be
found in van der Laan et al. (2020).

Using a constant geostrophic wind speed, the flow is
driven by a constant pressure gradient, starting with an initial
wind profile set to |G| at all heights; the ABL depth grows
upward until convergence occurs, providing a steady solu-
tion and h for a given choice of z0, pressure gradient (thus
G and f ), and turbulence (k–ε) limiting length scale `max.
The Buckingham pi theorem can be used to reduce the four
parameters {z0,G,f,`max} into two dimensionless groups,
namely Rossby numbers for z0 and `max; for length-scale-
limited k–ε RANS in the neutral ABL, one further has the
relation (van der Laan et al., 2020)

h= `0.6
max

(
|G|

|f |

)0.4

, (36)

thus giving us the two Rossby numbers Ro0 and Roh for
describing flow cases (van der Laan et al., 2020). Simula-
tions were done over the full range of ABL depths, surface
roughnesses, and wind speeds encountered in nature, which
correspond to a range of Rossby numbers spanning 105 <

Ro0 < 1010 and 15.8<Roh < 661. For simplicity |G| was
set to 10 m s−1 and f to 10−4 s−1 in the simulation set span-
ning these ranges of Rossby numbers. However, note that

Rossby similarity means that for a given pair of {Ro0,Roh}

and {z0,h} one has many (infinite) combinations of {|G|,f }
which give the same |G|/f and thus the same dimensionless
profile shapes of velocity, i.e., speed and direction as a func-
tion of dimensionless height zf/|G|. At any rate, the simula-
tions cover ranges of (exceeding) the following: ABL depths
of 200–2000 m, roughness lengths from water’s roughness
(0.1 mm) up to 2.5 m, and |G| from 5–50 m s−1.

3.1.2 Shear and veer over neutral ABLs simulated over
entire range of Rossby numbers found in nature

First we check that the RANS simulations confirm the shear–
veer relations developed earlier; we expect this to be, since
there are no extra terms in the simulated Navier–Stokes equa-
tions compared to Eq. (7). Figure 2 displays both sides of
Eqs. (9) and (13) for four cases representing somewhat com-
mon real-world conditions for heights between 50–200 m.

From Fig. 2 one can see that the Ellipsys1D solutions con-
form to Eqs. (9) and (13) derived earlier.

Towards investigating the behavior of veer (and shear) in
terms of Rossby numbers – which is facilitated by RANS
but is quite difficult to accomplish with measurements – we
turn our attention to the variation in veer as a function of sur-
face roughness. Admitting that we are using one-dimensional
simulations over a homogeneous surface, we now consider
the directional change across typical turbine rotor heights,
i.e., 1ϕ from z= 50 to 150 m. Figure 3 displays 1ϕ|150 m

50 m
plotted over different roughnesses for the two ABL depths
represented in the cases shown in the previous figure, namely
490 and 1047 m.

From the right-hand plot in Fig. 3 one can see that 1ϕ
is roughly proportional to 1/ ln(Ro0), as expected from the
S/|G| contribution to veer considering Eqs. (31) and (33).

Looking back on Eq. (34), we may also expect a Roh de-
pendence in the veer, at least considering the stress gradi-
ent contributions. Figure 4 shows veer across three different
rotor extents (z= 50–100, 50–150, and 100–200 m), over a
wide range of effective ABL depth h and associated Rossby
number Roh, for a commonly found roughness over land
(1.6 cm).
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Figure 3. Roughness dependence of turning (in degrees clockwise) seen for two representative ABL depths from one-dimensional RANS
simulations over a range of roughness lengths plotted directly against z0 (a) and alternately versus 1/ ln(Ro0) (b). Lines in (b) indicate linear
trend.

Figure 4. Influence of ABL depth and associated Rossby number on veer (clockwise) for different turbine rotor spans.

In Fig. 4 results are shown only for one roughness because
the curves of veer versus ABL depth and Roh look nearly
identical when using any other z0 (or Ro0) value, such as
water roughnesses less than 0.3 mm. In other words, the sen-
sitivity of veer to h is essentially independent of z0 if one
varies these separately from case to case as in our numeri-
cal simulations. Looking at these results, we note a behav-
ior that is consistent with the estimates for stress-gradient
contributions following Eq. (34): as indicated by the dotted
lines in Fig. 4, the veer is empirically found to be propor-
tional to Ro1.4

h (or h−1.4) over a range of ABL depths rou-
tinely observed in reality (h∼ 200–800 m); the dependence
softens to be linear in Roh (or 1/h) for depths approaching
h∼ 1 km, which are also commonly observed in nature (e.g.,
Liu and Liang, 2010). For yet deeper ABLs which are more
rarely encountered, the height dependence vanishes; this can
be intuitively interpreted, as 1z/h becomes so small that
less directional change is found for a given 1z when h is
increased further. The veer and its h dependence is seen to
be basically independent of height for these 50–100 m verti-
cal spans: at the heights of interest for wind energy shown,
the lines collapse onto one another. To compare with Fig. 3,
multiplying the veers in Fig. 4 by 1z= 100 m for the blue
and gold curves, we can also see that for a realistic range
of ABL depths and roughnesses, the effect of h is stronger
than that of z0: across all Ro0 a variation in1ϕ|150 m

50 m of only

several degrees is seen, whereas across the common range of
Roh a variation of more than 15◦ is shown.

Now that we have seen in Figs. 3 and 4 how the veer
(or simply the turning 1ϕ for typical rotor 1z) depends on
z0 and h, presumably due to the S/|G| (shear) and stress-
gradient contributions, respectively, it is prudent to exam-
ine the relative sizes of each of these contributions – par-
ticularly because RANS affords us this opportunity. One can
cleanly separate these contributions by examining the vari-
ation in cosγ , as indicated by Eqs. (12) and (13). Accord-
ingly, Fig. 5 presents the two contributions to the dimension-
less veer ∂ cosγ /∂z derived in Eq. (12) for the four over-land
cases shown in Fig. 2, as well as an over-sea case with the
same ABL depth as two of the land cases.

One can note from Fig. 5 that the shear and stress-gradient
and Coriolis contributions largely offset each other, with each
being an order of magnitude larger than their sum, which is
equal to the dimensionless veer ∂ cosγ /∂z. The vertical pro-
files of “point-wise” veer shown in the figure, which were
calculated using third-order finite difference, indicate that in
neutral conditions the veer is smaller offshore compared to
on land. Further, one sees the combined effect of the behav-
iors noted from the previous two figures: shallower ABLs
have larger veer, as do ABLs over rougher surfaces, with
Ro0(z0) having a smaller impact than Roh(h).
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Figure 5. Profiles of contributions to dcosγ /dz in Eq. (12) due to shear (a), stress gradients with Coriolis (b), and their sum (c). Five RANS
simulations shown (two roughnesses and two ABL depths over land, one over sea) over typical turbine rotor heights; the listed z0 and h
correspond to Rossby numbers using G= 10 m s−1 and f = 10−4 s−1.

Figure 6. Turning (bulk veer) in degrees clockwise versus shear exponent calculated from 50–150 m over ranges of ABL depth and surface
roughness; each point represents one RANS solution. (a) Using G= 10 m s−1 and f = 10−4 s−1 over range of ABL depths spanning the
values used in Figs. 2–5 for water and typical land roughness. (b) Again with G= 10 m s−1 and f = 10−4 s−1 over range of z0 spanning
those used in Figs. 2–5 for two ABL (typical) depths used in previous figures. (c) Over wider range of {Ro0,Roh} spanning that found in
nature; note larger vertical axis scale.

This can be put into a more practical context by consider-
ing the variation in shear and veer together across the range
of Rossby numbers found in atmospheric flows. Figure 6 dis-
plays turning versus shear exponent, with each calculated
across 1z from 50–150 m. The figure shows three plots of
{α,1ϕ}: one for a range of Roh equivalent to h ranging from
490 to 1047 m over two different z0 (land and sea), one for a
range of Ro0 equivalent to z0 values varying from 0.016–
25 cm for two different ABL depths h (which bracket the
range of h in the left-hand plot), and one over the entire at-
mospheric range of both Ro0 and Roh.

From the left and center panels of Fig. 6, it becomes ev-
ident that Roh affects 1ϕ more than α for typical rotor ex-
tents; opposite of this, Ro0 affects the shear more than the
veer. Further, for the relatively representative set of (com-
mon) cases shown in the center and left-hand plots in Fig. 6,
we notice much less variation in {α,1ϕ} compared to the en-
tire parameter space displayed in the right-hand plot; as we
will see in the next subsection, the right-hand plot is more
in line with observations despite the RANS solutions repre-
senting nominally neutral conditions11 over uniform surfaces
with neglect of shear-stress misalignment and baroclinity.

11One could argue that our RANS solutions can also be inter-
preted to include stable conditions, since the length-scale-limited
k–ε turbulence model can have its maximum mixing length `max

3.2 Results from measurements in different wind
regimes and sites

After examining the behavior of neutral-ABL dependencies
for shear and veer above from simulations, now we consider
the behavior of each in the real world from measurements at
different sites, which includes, e.g., the effects of stability.
The datasets are the same as those analyzed by Kelly et al.
(2014a), which showed shear exponent statistics for these lo-
cations, except a longer record of Høvsøre data was used
for the current study (10 years, from 2005–2015). These are
the aforementioned Høvsøre site, from 60–160 m height for
both homogeneous land and sea sectors; the partly forested
but flat Østerild site (Peña, 2019) for two virtual rotor spans,
from 45–140 and 80–200 m over 1 year; the Dutch research
site Cabauw (Beljaars and Bosveld, 1997), from 80–200 m
height for 2 years; and 1 year from a commercial site dubbed
“MR” which sits on a ridge over a mostly forested (>∼ 3/4)
area but dominated by hills having elevation differences up

rewritten using the Blackadar (1962) mixing-length formulation
such that `−1

max,eff = `
−1
max plus a stability contribution, as shown in

van der Laan et al. (2020). However, such an interpretation employs
M–O theory along with the Blackadar-type form to “combine” a
surface-layer scale `ASL ∝ z with `max; here we choose to keep
our analysis as general as possible – avoiding particular ASL forms
or assumptions, as well as models for turbulence length scale.
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Figure 7. (a) PDF of shear exponent α, weighted by frequency of occurrence for different atmospheric stability conditions; neutral is defined
by |L−1

|< 0.001 m−1, stable has L−1 > 0.001 m−1, and unstable has L−1 <−0.001 m−1. (b) Joint PDF of shear exponent calculated
from 60–160 m height and inverse Obukhov length (surface-layer stability) at z= 10 m from sonic anemometers over the homogeneous
land sectors at Høvsøre, along with M–O similarity implied by Eq. (2) shown by dashed cyan line; JPDF value of 1000 corresponds to
approximately 3.5 % occurrence. Measurements span one decade, starting in 2005.

to∼ 200 m within 10 km distance, using anemometers at 40–
136 m height.12

We investigate the statistical behavior of veer with shear
exponent as well, not only to see their interdependent be-
havior, but also towards providing useful relations for their
variability and practical prediction of veer from typical wind
energy measurement campaigns.

3.2.1 Shear exponent

Here we briefly explore the connection between probability
distribution functions (PDFs) of stability and shear exponent.
The shear distribution f (α) can be connected to f (L−1) in
the surface layer during stable conditions, but there is not
necessarily a one-to-one (unique) mapping between the two
(Kelly et al., 2014a). As seen in Eqs. (4) and (5), α tends
to correlate with stability (1/L) and particularly buoyant
destruction (−B) during stable conditions, when turbulent
transport is negligible. This is shown in Fig. 7, which dis-
plays the joint probability density of α|160 m

60 m and L−1 cal-
culated in the ASL at z= 10 m from the homogeneous land
sectors at the Danish national test station of Høvsøre (Peña
et al., 2016) from 10 min averages over a 10-year period.

From Fig. 7 one sees the cloud of observed {α,L−1
} fol-

low somewhat the curve of 8m/[ln(z/z0)−ψm(z/L)] im-
plied by M–O theory and Eq. (2) but with most α ex-
ceeding the similarity-based form; the shear exceeds M–O
theory’s prediction primarily due to the upper-level height
(160 m) being above the surface layer.13 The left-hand panel

12The details and location of the MR site cannot be shared pub-
licly due to their proprietary nature (see also Kelly et al., 2014a).
The site is located near the border between New York state (USA)
and Canada, in a moderately hilly region.

13The measurement height of 160 m also occasionally falls within
10 %–20 % of the ABL depth, whereby the capping inversion causes
enhanced stability; to a lesser extent larger shear is also caused by
minor inhomogeneities 3–7 km upwind, within a narrow range of
directions.

of Fig. 7 also shows the distribution of α for neutral (|L−1
|<

0.001 m−1), stable (L−1 > 0.001 m−1), and unstable (L−1 <

−0.001 m−1) flow regimes, weighted by frequency of occur-
rence to show the relative contributions to the overall dis-
tribution. The threshold of ±0.001 m−1 for L−1 is a sensi-
ble choice because then z/|L| � 1 (consistent with neutral
conditions) in the surface layer, which is generally taken to
have a thickness of 100 m or less (roughly h/10, also recall-
ing that M–O theory’s applicability diminishes with height
above the surface layer). Even at this relatively flat and uni-
form site, negative shear happens in both stable and un-
stable conditions, though more so in unstable and yet less
often in neutral conditions; overall, α < 0 occurs less than
5 % of the time over the 60–160 m span here, and 8 %–9 %
from anemometers at 100–160 m heights (not shown). We
also note that while the “ideal” Høvsøre land (eastern) sec-
tors have conditions split somewhat evenly between the three
stability regimes, other sites can differ (Kelly and Gryning,
2010).

3.2.2 Veer

Along with distributions of α, measured veer distributions
are shown in Fig. 8 for both land and sea conditions at
Høvsøre, i.e., from the homogeneous offshore/open-fetch
(240◦ < ϕ < 300◦) and over-land (60◦ϕ < 120◦) directions.
Shear and veer are shown calculated over height spans of
60–160 m as well as 100–160 m in the figure, which is pro-
vided to show the statistical and behavioral differences be-
tween shear and veer.

From the two plots in Fig. 8 one can see that the most com-
mon α and1ϕ/1z, i.e., the portions of P (α) and P (1ϕ/1z)
with respective probabilities within an order of magnitude
of the peak values, both systematically differ when us-
ing higher measurements at 100–160 m compared with 60–
160 m heights; however, the shift in the commonest α is sig-
nificantly smaller than the analogous shift in 1ϕ/1z be-
tween these two height ranges. This happens over both land
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Figure 8. Distributions of shear exponent (a) and corresponding veer (b) at Høvsore between 60–160 m from the homogeneous eastern land
sectors (red) and from the sea sectors to the west (blue). Solid lines are for measurements spanning 60–160 m and dashed for those spanning
100–160 m.

and sea, though both α and1ϕ/1z vary with height more for
the offshore flow than for the homogeneous land directions.
The change in mean shear exponent 〈α〉 from 60–160 to 100–
160 m is less than+5 % over land, and<+30 % is seen over
sea, while the mean veer 〈1ϕ/1z〉 is seen to increase by fac-
tors of ∼ 5/3 and 2 over land and sea, respectively.

There are several other notable differences between the
shear and veer statistics shown in Fig. 8. The peak portion
of P (α) is significantly wider over land compared to off-
shore (with larger σα over the rougher surface), while the
shape around the P (1ϕ/1z) peak does not differ signifi-
cantly from land to sea here. Further, the (logarithmic) slope
of P (1ϕ/1z) versus 1ϕ/1z for veer larger than the PDF
peak is basically the same regardless of height or surface
conditions; this and the land–sea difference between P (α)
are consistent with the earlier RANS results, where z0 pri-
marily affects α, while 1ϕ/1z is impacted more by ABL
depth. P (α) also has wider “tails” (extremes) higher from
the ground on both sides, including negative shear due to
low-level jets (such as that due to the capping inversion when
h∼ 200 m), whereas the veer simply becomes larger due to
such jets in shallow ABLs, as jets and the environment as-
sociated with the capping inversion simply cause more turn-
ing and not a reversal. The negative veer occurs due to non-
stationary processes like passing fronts (e.g., Clark, 2013),
as well as baroclinity and motions associated with it (Arya,
1978; Foster and Levy, 1998; Floors et al., 2015). Comparing
the solid and dashed lines in Fig. 8, one sees that the high-
est veers1ϕ/1z are larger for the 100–160 m measurements
than those from 60–160 m; this is again due to the greater
impact of the ABL capping inversion and associated jet with
turning.

As with shear, stability affects veer, with stable condi-
tions expected to lead to higher veer due to its damping
effect on vertical fluxes (suppressing vertical “communica-
tion” of flow information). Following the plots shown in
Fig. 7 for the shear exponent α, Fig. 9 displays the effect
of stability on veer for the Høvsøre land sectors. The fig-
ure shows P (1ϕ/1z) for neutral (|L−1

|< 0.001 m−1), sta-
ble (L−1 > 0.001 m−1), and unstable (L−1 <−0.001 m−1)

flow regimes, weighted by frequency of occurrence (indicat-
ing relative contributions to the full PDF), as well as the joint
distribution of stability and 1ϕ/1z.

From Fig. 9 one sees that in comparison with P (α) shown
in Fig. 7, the peaks of veer distributions P (1ϕ/1z) do not
depend so much on stability. However, as with the shear dis-
tribution, 1ϕ/1z also has its largest values dominated by
stable conditions; this makes sense considering that stabil-
ity tends to maintain vertical gradients by limiting vertical
fluxes. Unlike the results shown for the RANS simulations
or predicted by theory, negative veer occurs as in Fig. 8 and
is described thereunder; one can see in Fig. 9 that it basically
happens during non-neutral conditions, which tend to occur
at lower wind speeds, and is dominated by unstable con-
ditions. Looking at the joint distribution P (α,1ϕ/1z) one
sees that for the most common veer values (0 .1ϕ/1z .
0.1◦m−1), which tend to occur around neutral conditions,
there is a mild stability dependence; however, for less neutral
conditions there is little correlation between veer and stabil-
ity, aside from higher veer simply being observed more often
in stable conditions.

To show the behavior of veer across different locations,
Fig. 10 displays the PDFs of veer from a number of sites,
all of which have similar 1z and cover typical turbine rotor
extents.

From Fig. 10 we see that for veer magnitudes exceeding
the most commonly observed values (which tend to occur
in stable conditions, as shown in Fig. 9 for the Høvsøre case
above), the distributions behave similarly across locations; in
particular the “slope” of the semi-log plot for veer exceeding
the PDF peaks is roughly constant for1ϕ/1z & 0.2◦m−1 in
each case. These slopes correspond to (conditional) PDFs for
the largest veer of the form

P

(
1ϕ

1z

∣∣∣∣1ϕ1z >mode
{
1ϕ

1z

})
∝ exp

[
−1ϕ/1z

ϒveer

]
, (37)

where the characteristic veer scale defined by ϒ−1
veer ≡

∂[lnP (1ϕ/1z)]/∂(1ϕ/1z) ranges from roughly 0.07 to
0.11◦m−1. The lowest ϒveer corresponds to the offshore
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Figure 9. (a) PDF of veer 1ϕ/1z, weighted by frequency of occurrence for different stability conditions; neutral has |L−1
|< 0.001 m−1,

stable has L−1 > 0.001 m−1, and unstable has L−1 <−0.001 m−1. (b) Joint probability distribution of veer calculated from 60–160 m
height and inverse Obukhov length (surface-layer stability) at z= 10 m from sonic anemometers over the homogeneous land sectors at
Høvsøre; here a JPDF value of 3000 corresponds to 4.2 % occurrence. Measurements span one decade, starting in 2005.

Figure 10. Probability density function (distribution) of veer,
P (1ϕ/1z), for all conditions at the various sites and cases con-
sidered.

Høvsøre case, while the highest ϒveer matches the Øster-
ild case from 45–140 m. We expect larger ϒveer to corre-
spond to occurrences of higher 1/L, i.e., a larger width σ+
of the stable-side distribution P (1/L) following Kelly and
Gryning (2010); essentially the large-veer PDF in Eq. (37)
is conditional on stable conditions; i.e., we could express it
as P (1ϕ/1z|L−1 > 0)∝ exp[−(1ϕ/1z)/ϒveer]. The dom-
inance of stable conditions reported by Peña (2019) for z &
100 m at Østerild is consistent with this, though the data
from z= 80–200 m (green line in Fig. 10) with smaller ap-
parent ϒveer might appear to not be, considering the increas-
ingly stable conditions higher up at this site; but looking at
the Østerild curves in the figure we see that for higher veer
1ϕ/1z & 0.4◦m−1, there is consistency: the two largest
ϒveer values occur for z= 80–200 and z= 45–140 m. Future
work needs to be done to explore this, since we lack air–
sea temperature differences (or water–air heat flux) for the
Høvsøre offshore case and stability information for the MR
site, while stability effects above forests tend to be dimin-
ished and are difficult to interpret due to turbulent transport
through the treetops (e.g., Sogachev and Kelly, 2016).

One also sees the peaks of P (1ϕ/1z) in Fig. 10 are at
smaller1ϕ/1z for the forest-dominated Østerild cases, with
the peak of the offshore Høvsøre veer distribution falling be-
tween these and the 1ϕ/1z corresponding to the land cases
of Høvsøre, Cabauw, and MR. Note that the most commonly

found veer values are generally dominated by neutral con-
ditions (or modestly stable for the exceptional Østerild site
above 100 m) and point out that the mode of 1ϕ/1z is es-
sentially the same (0.005–0.006◦m−1) for the land cases that
are not dominated by forest. Further considering the RANS
simulation results from Fig. 6 discussed earlier, the mode of
1ϕ/1z being smaller for Høvsøre offshore than for the land
cases (of Høvsøre, Cabauw, and MR) can be explained by the
smaller ABL depths most commonly observed offshore com-
pared to onshore; this is consistent with the ABL depth dis-
tributions aggregated and reported by Liu and Liang (2010).
The modes of 1ϕ/1z found at the inhomogeneous forest-
dominated site Østerild are more strongly affected by the
tree-enhanced mixing (which reduces the veer magnitudes)
and to a lesser extent by shallower ABLs due to the coastline
2–5 km upwind in some directions.

The dependence of veer on wind speed at the sites consid-
ered is shown in Fig. 11, which displays the joint distribu-
tion of veer and 10 min mean wind speeds, P (1ϕ/1z,U ).
Along with the joint distribution, the mean veer conditioned
on wind speed, 〈1ϕ/1z〉|U , is displayed.

From Fig. 11 one can see results consistent with the ef-
fects of stability discussed earlier and evoked by Fig. 9: at
higher speeds neutral conditions dominate, giving decreased
mean veer. This is more pronounced for the onshore cases
(though there is still a reduction of nearly 40 % going from
12 to 24 m s−1 for the offshore case) because sea–air heat
fluxes and associated 1/L magnitudes tend to be relatively
smaller due to water’s large heat capacity (e.g., Cronin et al.,
2019). It is notable that for the representative wind turbine
rotor heights considered, the veer tends to be largest for wind
speeds below typical turbine rated speeds, especially over
land; this can have consequences on both the power output
and effective power curve for pre-construction annual energy
production (AEP) estimates, as well as loads.

Further, a narrower range of veer with increasing wind
speed is seen in Fig. 11, regardless of surface properties; such
narrowing is impacted by stability but also occurs in neutral
conditions. The variability in veer with mean wind speed is
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Figure 11. Joint distribution of veer and wind speed at sites considered. Solid line shows 〈1ϕ/1z〉
∣∣U , calculated using 1 m s−1 bins; lightest

shades are 2 % as likely as darkest color in each plot.

Figure 12. Measured standard deviation of veer conditioned on
wind speed, again using 1 m s−1 bins, for the sites considered.
Neutral conditions at Høvsøre are defined as in earlier figures,
i.e., |L−1

|< 0.001 m−1.

presented in Fig. 12, which displays the standard deviation of
veer conditioned on mean wind speed for the sites and cases
considered. It also adds a line to show the over-land Høvsøre
case filtered for neutral conditions.

Consistent with the joint-PDFs P (1ϕ/1z,U ) in Fig. 11,
from the semi-logarithmic plot of standard deviation of veer
conditioned on mean wind speed in Fig. 12 we can see that
the variation in veer decreases with wind speed and more
so over land than water. It is also seen that for the on-
shore Høvsøre case σ(1ϕ/1z)|U is smaller in neutral condi-
tions compared to over all stabilities, with the two values
converging at higher speeds due to the increasingly neutral
conditions. For each site having a standard deviation of veer
over all speeds σ1ϕ/1z and mean wind speed 〈U〉, the rms
veer conditioned on wind speed roughly follows the empiri-
cal form

σ(1ϕ/1z)|U =

[〈(
1ϕ

1z

)2∣∣∣∣U
〉]1/2

≈ σ1ϕ/1z exp
[
−U

〈U〉

]
(38)

up to about 12 m s−1 over land and to higher speeds offshore.
A more complicated speed-dependent variability in veer is
seen for the MR case, with higher σ(1ϕ/1z)|U at speeds above
15 m s−1 caused (presumably) by hill-induced turning. This
has two consequences worth mentioning: firstly, that tur-
bines at a site such as MR can experience persistent veer
above rated speed, potentially increasing loads and/or reduc-
ing power below rated; and secondly, such speed-dependent
behavior is likely difficult to capture with standard single
RANS simulations, demanding more detailed treatment to
handle the Reynolds-number dependence despite the lack of
stability effects at such speeds.

3.3 Relating veer to shear in application

One of the aims of this work is to relate veer to shear (or shear
exponent), as with the expressions developed in Sect. 2.3
and 2.4. Here we present joint observations of shear exponent
and veer and, following these, give practical simplified forms
based on the equations derived earlier in Sect. 2.3 and 2.4.

Following the previous subsection, we first consider the
joint behavior of 1ϕ/1z and α with wind speed and stabil-
ity for the “simple” onshore Høvsøre case having homoge-
neous upwind conditions. Figure 13 shows the observed joint
distribution P (1ϕ/1z,α) in neutral conditions, over typical
turbine operation speeds (4–25 m s−1), and separately over

Wind Energ. Sci., 8, 975–998, 2023 https://doi.org/10.5194/wes-8-975-2023



M. Kelly and M. P. van der Laan: Veer and shear 991

Figure 13. Top panels: joint distribution of veer and shear exponent observed over 10 years from 60–160 m for the Høvsøre land sectors
in neutral conditions in different speed ranges; axes zoomed in to show detail, and occurrence rate normalized per wind speed range (each
plot has a different color scale, showing occurrence rate in increments of 1/10, with the lightest shade representing 10 % as likely as the
darkest shade). Bottom panels: the same joint distributions shown with unscaled rate of occurrence (number of counts per {α,1ϕ/1z} bin,
2000 corresponds to about 3.9 %); axis ranges are chosen to compare with later figures.

different speed ranges (4–8, 8–12, 12–16, and 16–25 m s−1);
counts are used instead of PDF per wind speed range to show
relative frequencies of occurrence.

From Fig. 13 one can notice that in neutral conditions
there does not appear to be significant variation in the joint
shear–veer behavior with U , with a bit more variability at the
lowest speeds and smaller values of both 1ϕ/1z and α for
U > 16 m s−1; this is consistent with Figs. 7, 9, 11, and 12.
The larger spread at lower speeds for neutral conditions is
attributed to the larger relative effect of nonstationarity and
particularly sampling uncertainty; per the latter the integral
timescale increases roughly as U−1 (Wyngaard, 2010), so
fewer integral timescales are “sampled” per each 10 min pe-
riod. This is also evident considering the previous plot of
σ(1ϕ/1z)|U versus U in Fig. 12, where one sees σ(1ϕ/1z)|U
increasing with diminishing wind speed during both neutral
and all conditions for the Høvsøre land case but where stabil-
ity effects cause larger veer variability up to speeds of about
15 m s−1. Also, the overall JPDF (joint PDF) P (1ϕ/1z,α)
appears similar to that in the most common speed range (8–
12 m s−1). Aside from nonstationarity and sampling effects
one does not expect much speed dependence in neutral con-
ditions, considering the α-related part of Eqs. (14)–(16) be-
haves as |S|/G, which following Eq. (33) has a weak |S| de-
pendence through (lnRo0−A)−1; the RANS results also con-
firm this. We note a joint trend between α and 1ϕ/1z but
also see a spread around the most common shear exponent
and veer values due to variations in ABL depth, stress gradi-
ent and curvature, and top-down stability (capping inversion

strength; see, e.g., Kelly et al., 2019a), in addition to nonsta-
tionarity.

Figure 14 shows joint α-veer distributions like Fig. 13 but
over all conditions, i.e., not limited to neutral stratification.
One notices immediately the more frequent occurrence of
higher veer and shear, as well as negative α and 1ϕ/1z.
Further, in addition to a wider range of shear and veer com-
pared to neutral conditions, in Fig. 14 one can see there is
also a sharper increase in 1ϕ/1z with α for larger α due to
stable conditions. One can see that at the most common (8–
12 m s−1) and lower wind speeds, which occur in the range
below rated speed for typical turbines, there is a significant
increase in 1ϕ/1z with α in the more stable conditions
where α & 0.3; this higher “slope” of 1ϕ/1z versus α is
likely enhanced by the shallower ABLs which generally oc-
cur along with stable surface-layer conditions (note that the
stability metric L−1 was measured in the ASL), whereby ad-
ditional stable air above augments the veer. As mentioned
previously, the turning and veer near the ABL top will con-
tinue to increases for yet shallower ABLs (decreasing h);
meanwhile α is less sensitive to h as the upper height (used
to calculate α and 1ϕ) exceeds the peak of the inversion-
induced “jet”. Further, such high-veer conditions are not rare
for such a “simple” site at the heights considered (60–160 m);
e.g., conditions where 1ϕ/1z= 0.2 and α = 0.4 (a veer of
20◦ over a 100 m rotor) occur as frequently as conditions with
zero shear and veer.

Towards relating veer to shear for application, we now
consider the mutual behavior of 1ϕ and α together at all of
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Figure 14. Joint distribution of veer and shear exponent for different speed ranges from Høvsøre land sectors but for all stability conditions;
plots are analogous to those in the bottom of Fig. 13. All plots use the same color scale; color bar denotes count, where 3000 corresponds to
about 1.4 % occurrence.

Figure 15. Joint distribution P (1ϕ,α) at sites considered. Solid lines: mean veer conditioned on shear exponent, 〈1ϕ/1z
∣∣α〉; dotted

lines: simple estimate via shear portion using Eq. (39); dashed lines: estimate including estimate of crosswind stress–Coriolis contribution,
Eq. (40). Lightest shades are 10 % as likely as darkest shades in each plot.

the sites analyzed for this work. Figure 15 shows the joint
distribution of shear and veer for the sites considered, with
each plot also including the conditional mean of veer per
shear exponent (i.e., 〈1ϕ/1z|α〉, as solid lines).

From this figure we see a number of trends across the six
cases analyzed. First, some nonlinear variation in veer with
α is evident, along with the (less common) occurrence of
negative values of shear and veer, as was seen in Fig. 14
for the Høvsøre land case. Further, the veer tends to be
skewed towards higher values: i.e., 〈1ϕ/1z|α〉 exceeds the
most commonly observed values of 1ϕ/1z; however, the
MR site does not show such skewed behavior (consistent
with Fig. 10), presumably due to the complex terrain there.
We note the conditional mean veer 〈1ϕ/1z|α〉 is also more
clearly nonlinear in α, becoming less dependent on α in low-

shear (and negative) conditions; the MR site is an exception
to this, with hill-induced height-dependent turning causing
larger veer for α smaller than the most commonly observed
values there.

3.3.1 Simplified estimate of veer per α

Figure 15 also includes two predictions based on the theory
presented earlier. First, as discussed at the end of Sect. 2.4,
using only the shear-associated (|S|/|G|) portion of Eq. (14)
to be practical, we arrive at the estimate

∂ϕ

∂z
≈
|S|

|G|

α

z

/√
1−

[
|S|

|G|

]2

,
|S|

|G|
≈ csα

crG

κ

ln (z/z0)
(lnRo0−A)

; (39)
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compared to Eq. (14) the negative sign has been dropped
to express the veer in coordinates commonly used in wind
energy, i.e., clockwise positive. The basis for the simple
shear-driven form can be understood by recalling Sect. 3.1
and Fig. 5, where we showed that the shear and crosswind
stress-curvature contributions behaved in nearly identical but
opposite fashions, with their sum amounting to dcosγ /dz;
Eq. (39) can be considered a simple model assuming the
veer behaves like either of its two components but is sim-
ply smaller in magnitude. The practical form of |S|/|G| in
Eq. (39) employs the log-law for wind profile and reverse
geostrophic drag law Eq. (33) for u∗/|G|. The constant csα
crudely accounts for the (competing) effects of stability on
both |S| and the geostrophic drag (and any other mecha-
nisms affecting |S|/|G|) but also accounts for the smaller
magnitude of ∂ϕ/∂z compared to its shear-driven compo-
nent. Within the surface Rossby numberRo0, the geostrophic
speedG is calculated using Eq. (32), wherein u∗ is found via
the log-law and |S| with z0. To make the plots of Eq. (39)
in Fig. 15 for each site, the |S| is calculated per each bin of
α, with the case-specific parameters {z0,f,z} used as well.
At any rate, the practical parameterization using csα with the
log-law and (neutral) reverse GDL in Eq. (39) can roughly
fit the mean conditional veer at and above the most common
α observed for the onshore sites considered (α & 0.2) and at
α & 0.1 for the offshore Høvsøre case; here we have used ef-
fective roughness lengths consistent with earlier studies em-
ploying these sites (z0 = 1.5 cm for Høvsøre land, 3 cm for
Cabauw, 0.9 m for Østerild, 2 m for MR, and 0.02 cm for off-
shore). A value of csα = 0.5 can be seen to fit the heteroge-
neous terrain cases where terrain and roughness dominated
over stability (Østerild and MR, bottom plots of Fig. 15),
while for the more stability-dominated homogeneous cases
(top plots in Fig. 15) a value of csα = 0.7 for Høvsøre and
0.8 for Cabauw gave reasonable fits. The latter aspect could
be practically addressed by directly casting csα as a minimal
value plus an amount depending on the long-term variability
in positive stability (labeled σ+ following Kelly and Gryn-
ing, 2010); we note Cabauw has larger values of σ+ than
Høvsøre, which has larger σ+ then Østerild. However, ob-
taining such an expression is beyond the scope of the cur-
rent article, and some sites could have factors other than
stability which enhance the veer. We do find that includ-
ing stability within the drag law via M–O theory (for pos-
itive L−1 values consistent with observed distributions) re-
duces the reverse drag-law constant by roughly 10 %–40 %
for the Rossby numbers applicable at these sites, consistent
with the values of csα used in the plots of Fig. 15; but again,
to model stability effects beyond the surface layer becomes
rather complicated and is the subject of ongoing work. For
reference, a value of csα = 0.6 fits the mean veer for the
Høvsøre land case during neutral conditions (not shown), in
contrast to the value of 0.7 which fits when all stabilities are
considered there.

3.3.2 Veer estimate including both α and crosswind
stress

Note that for simplicity, Eq. (39) ignored the effect of cross-
wind stress; it neglects not only 〈vw〉 but consequently also
Roh, though it does incorporate the effect of Ro0 seen in the
simulations of Sect. 3.1. Thus we also consider an approxi-
mation of the 〈vw〉 terms using Eq. (34) in Eq. (14), which
introduces Roh, along with the parameterization for |S|/|G|
from Eq. (39):

∂ϕ

∂z
≈

|S|
|G|

α
z
+ cvw

c2
G
h
Roh√

1−
[
|S|
|G|
+ cvwc

2
GRoh

]2
− c2

GRoh

|S|

|G|
≈ c′sα

crG

κ

ln (z/z0)
(lnRo0−A)

, (40)

where cG is found using Eq. (33), |S|/|G| is calculated the
same way as done earlier for Eq. (39), and |G| within Roh is
calculated as it was within Ro0 of Eq. (39). To use Eq. (40)
the ABL depth must be prescribed, along with the con-
stant cvw and the parameters {z, |S|,z0,f } also employed
for Eq. (39). Given the negative curvature of lateral stress,
∂2
〈vw〉/∂z2 < 0 (e.g., Wyngaard, 2010), cvw is negative and

of order 1, with the 〈vw〉 (Roh) contribution reducing the
predicted veer compared to Eq. (39). With its moderating
effect on the α contribution, the 〈vw〉 part can produce an
α-dependent “upturn”, though slight; this is seen for the off-
shore and MR cases in Fig. 15. However, the constant c′sα
within |S|/|G| is slightly larger than csα of Eq. (39) in or-
der for Eq. (40) to fit the observed 〈1ϕ/1z|α〉; the val-
ues of csα = 0.5 are replaced by c′sα = 0.7, and csα = 0.7
and 0.8 for Høvsøre and Cabauw are replaced by c′sα of 0.8
and 0.9, respectively. The value of cvw giving the estimates
shown in Fig. 15 was −0.7 for all sites, while characteristic
ABL depths h were taken to be 800 m over the simple land
cases, 600 m offshore, and 1000 m over the hilly and forested
terrain cases; we note that the results have limited sensitivity
to h but choose these values to be consistent with mean ABL
depth observations over sites of similar character and h dis-
tributions aggregated by Liu and Liang (2010). One can see
from Fig. 15 that the estimates of 〈∂ϕ/∂z|α〉 using Eq. (40)
are not better than the simpler form of Eq. (39), though the
constants csα and cvw could easily be “tuned” together to
give a better fit for each case. However, in practice one might
not be able to do so and wish to simply predict veer based
on α; to this end, for practical applicability we suggest using
Eq. (39). Though such a recommendation would appear to be
neglecting Roh and the ABL depth, we note that for estima-
tion of mean veer (per shear) one is not so concerned with
variations in Roh or Ro0 at a given site. The spread (scatter)
around the mean veer seen in Fig. 15 is due to variation in
stability as well as Roh or Ro0, and variation from site to
site is also due to different distributions of Roh or Ro0; this
is consistent with Fig. 6 and discussions following it.
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Figure 16. Statistics of veer conditioned on shear exponent across sites considered.

To illustrate the differences just mentioned, both the mean
and standard deviation (spread) of conditional veer is shown
in Fig. 16 for all the sites and cases considered.

One immediately sees the character of 〈1ϕ/1z|α〉 tends
to follow the type of site; offshore has larger veer for high
α, simpler sites like Cabauw and Høvsøre onshore exhibit
modest veer for large α, and the more complex sites have
more limited veer for α around or above its most common
values of α. But note that Fig. 15 shows that high-shear
conditions offshore are relatively rare and that α exceed-
ing ∼0.3 is more common at the complex sites. We also
see from Fig. 16 that for low-shear conditions (α <∼ 0.1),
the simpler sites exhibit higher mean veer than offshore and
yet more compared to the forested cases, while much larger
veer is present due to upwind hills at the MR site for such
low-shear conditions (though somewhat uncommon, as seen
in Fig. 15). From the middle plot we further note that the
long-term variability in veer σ1ϕ/1z|α is lower offshore for
the most commonly occurring α there, while veer variabil-
ity does not differ so much for the most common condi-
tions across the other sites and cases – except for the 45–
140 m (lower) height range at Østerild, which shows larger
veer variability due to being in the roughness sublayer above
the forest there. In very high-shear conditions (α >∼ 0.5) the
veer variability is highest offshore (though rarer). However,
as shown in the right-hand plot of Fig. 16, the relative veer
variability σ1ϕ/1z|α/〈1ϕ/1z|α〉 tends to more clearly show
the different character of the sites: the spread of veer relative
to its mean (conditioned on α) is much larger in low-shear
conditions over forest, while this relative spread is similar
across all non-simple (forested, complex) cases for the most
commonly occurring shear; the more homogeneous sites and
cases exhibit comparable σ1ϕ/1z|α/〈1ϕ/1z|α〉 under most
conditions. For low-shear conditions, over more complex ter-
rain the relative veer variability decreases, departing from the
inhomogeneous forested (Østerild) values due to the large
hill-induced mean veer.

The use of 〈S|α〉 in the calculations was also investigated;
the plots in Figs. 15 and 16 actually incorporated mean speed
conditioned on α, though use of each site’s corresponding
overall mean speed 〈|S|〉 gave nearly identical results as those
shown in the plots (within 2 %, not shown).

4 Summary and conclusions

We have derived relationships between shear exponent (α)
and veer (1ϕ/1z) in a manner which avoids atmospheric-
surface-layer (ASL) assumptions about meteorological pa-
rameters; this has been done in order to be applicable at wind
turbine rotor heights, regardless of whether they are within or
above the ASL. Canonical behavior of veer and shear with
regards to surface roughness z0 and ABL depth h is also
elucidated (through Rossby numbers Ro0 and Roh defined
by each) through numerical solution of the one-dimensional
RANS equations under neutral conditions with length-scale-
limited k–ε turbulence closure (i.e., neutral but also translat-
able to stable conditions; see van der Laan et al., 2020).

The derived equations and RANS results essentially show
that veer most simply arises from two contributions: the
shear and the vertical variation in crosswind shear stress
at a given height (mostly through ∂2

〈vw〉/∂z2 but also via
∂〈vw〉/∂z). The numerical RANS solutions show that the
shear and crosswind-stress contributions mostly offset each
other in neutral conditions and that each is much larger (up
to an order of magnitude) than the veer itself. It is further seen
that α primarily depends upon surface roughness in neutral
conditions, with a weaker dependence on 1z/h; in contrast,
1ϕ/1zmore strongly depends on the ABL depth h, increas-
ing as Ronh, where n is between 1 and 1.4 for the h most
commonly encountered in nature (though 1ϕ/1z does also
vary with 1/ lnRo0). These behaviors are consistent with the
shear–veer relations derived in Sect. 2.3. We note that in this
work we have also derived the cause of misalignment be-
tween shear and stress, as well as its contribution to veer;
note that RANS solutions using mixing-length-type closures
(as well as, e.g., Weather Research and Forecasting plane-
tary boundary layer (WRF PBL) schemes which lack turbu-
lent transport) give stress aligned with shear, while the an-
alytic shear–veer relations derived here allow for misalign-
ment through the crosswind stress.

The actual “real-world” behavior of shear exponent and
veer has also been investigated from multi-year measure-
ments at four sites covering six different flow conditions (one
with separate land and offshore sectors, one with measure-
ments both in and above the roughness sublayer over a for-
est) for height spans or effective rotor diameters ranging from
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47–60 m centered around (hub) heights of 88–140 m. The ob-
served {α,1ϕ/1z} include effects not fully accounted for in
the equations derived here, particularly horizontal turbulent
transport due to terrain inhomogeneities (Kelly, 2020) and
nonstationary/transient flow conditions; though buoyancy is
not explicitly accounted for, it primarily affects α and the
stress, which are already incorporated into the derived veer
equations.

The effect of surface-based atmospheric stability on shear
and veer was examined for the relatively ideal (homoge-
neous) onshore site Høvsøre, where it is seen that unstable
conditions dominate the low (negative) tails of the distribu-
tions P (α) and P (1ϕ/1z), while stable conditions are re-
sponsible for large α and 1ϕ/1z; neutral conditions con-
tributed mostly to the peaks of the shear and veer distribu-
tions. Stability effects are consequently seen to increase the
long-term variability in veer and shear, as well as veer for
a given α – particularly for the commonly occurring wind
speeds which tend to occur below the rated speed of mod-
ern wind turbines (e.g., Appendix B of Kelly and Jørgensen,
2017). The mean of both α and1ϕ/1z was larger compared
to neutral conditions due to stably stratified conditions en-
hancing α and 1ϕ/1z more than unstable conditions (we
note that sites having a distribution of 1/L more dominated
by unstable conditions, possibly some offshore, could have
mean behavior similar to that found in neutral conditions).

A comparison between offshore and homogeneous on-
shore sectors at Høvsøre showed α to be smaller offshore
(as one would expect), with more extreme values at higher
z (160 m) above the surface layer regardless of the surface;
the latter is presumably due to the effect of the capping in-
version for ABL depths which occasionally approach such
heights (Liu and Liang, 2010; Kelly et al., 2014b). The veer
distributions also show larger values over land compared to
offshore, though to a lesser extent than P (α); but in contrast
to α, which can increase or decrease (with wider extremes)
due to the position of the jet associated with the capping in-
version, 1ϕ/1z increases overall with z through the jet as
the surface-based stress decreases with height (though there
can be occasional deviations from this behavior due to stress
profiles affected by upwind inhomogeneities or large coher-
ent structures).

Two practical shear–veer relationships were derived, in-
cluding parameterizations for typically unmeasured quanti-
ties contained within them, and then compared to the joint
distributions P (α,1ϕ/1z) and the 〈1ϕ/1z|α〉 measured
from all sites over all conditions. A simplified form Eq. (39)
neglecting the stress contributions was tested, as well as one
Eq. (40) containing the crosswind stress. Due to the rela-
tive simplicity of the practical shear–veer forms (and ad-
ditional phenomena not included in them), they needed to
be calibrated in order to match observed 〈1ϕ/1z|α〉: ba-
sically one coefficient in Eq. (39) and two in Eq. (40), all
of which were of order 1 and universal (constant) across all
six sites and flow situations analyzed. The form Eq. (40) for

veer including crosswind stress did not give a better match
to observations of 〈1ϕ/1z|α〉 across sites, compared to the
simpler formula (Eq. 39), and so we recommend the latter
for shear-based predictions of veer at this time. Both forms
provide their best predictions (within 10 % of observed) for
〈1ϕ/1z|α〉 during the most commonly observed (moderate
speeds and shear) and highest-impact (large-veer and stable)
situations, with underpredictions of mean veer occurring in
low-veer conditions. The observed 〈1ϕ/1z|α〉 is nonlinear
in α, whereas the derived forms were nearly linear, with the
inclusion of crosswind stress containing only a slight im-
plicit nonlinearity. Lacking turbulent transport, our predic-
tive mean veer relations are more suited for neutral and sta-
ble conditions where transport is less significant (e.g., Wyn-
gaard, 2010); the underpredictions for smaller α, dominated
by unstable conditions, evoke this. Consistent with this, the
hilly MR site shows yet more low-shear deviation from our
predictions due to inhomogeneity-related horizontal trans-
port (recalling that low shear means less shear production
of TKE).

Beyond the comparison of derived analytical forms with
measurements of conditional mean veer 〈1ϕ/1z|α〉, some
general trends were also noted. For a given α & 0.2,
〈1ϕ/1z|α〉 was larger offshore than for the onshore cases
(though note that larger α is relatively rarer offshore com-
pared to onshore conditions); this larger mean veer for a
given α is due to the ABL depth h generally being lower
offshore (see, e.g., Liu and Liang, 2010, for offshore and on-
shore h). Perhaps counterintuitively, over the forested site the
mean veer 〈1ϕ/1z|α〉 was smaller than other sites. As for
the mean veer, for α & 0.3 the long-term variability σ1ϕ/1z|α
was also found to be larger offshore; this may have an im-
pact on yaw error statistics and may be the subject of future
research. Analogous to σα|U found in Kelly et al. (2014a) for
shear, an empirical expression for the standard deviation of
veer conditioned on wind speed (σ1ϕ/1z|U ) was also found,
with an approximately exponential decrease with speed.

Ongoing and future work

While the current work provided both theoretical meteoro-
logical relations and practical forms for veer in terms of
shear, it did so without explicit treatment of buoyancy nor
turbulent transport. Some relations including stability within
|S|/|G| in the shear contribution to veer were developed and
tested; however, these were not included here, as they did not
offer improvement, are seen to be beyond the scope of the
current work, and might also require stability effects to be
explicitly incorporated within the cross-stress terms. Ongo-
ing work involves addressing the latter: i.e., self-consistent
α-based description of stability within the veer formula-
tions and within both the shear and cross-stress contributions
in concert with the stability-perturbed geostrophic drag law
(Arya and Wyngaard, 1975; Kelly and Troen, 2016). Future
work includes the incorporation of terrain-induced turbulent
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transport parameterization (following e.g., Kelly, 2020) into
the veer, as well as study of the latter via LES.

Because the veer at commonly occurring speeds (which
occur below typical rated power) and also the mean veer are
larger than for commonly assumed neutral conditions, and
since we have found relations for veer variability in terms
of wind speed, practical ongoing work also involves vertical
extrapolation of veer and accounting for its effect on power
production. Accompanying this is validation and uncertainty
quantification towards pre-construction resource assessment
as well as load calculations.
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