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Abstract. In this work, we implement, verify, and validate a physics-based digital twin solution applied to a
floating offshore wind turbine. The digital twin is validated using measurement data from the full-scale TetraSpar
prototype. We focus on the estimation of the aerodynamic loads, wind speed, and section loads along the tower,
with the aim of estimating the fatigue lifetime of the tower. Our digital twin solution integrates (1) a Kalman filter
to estimate the structural states based on a linear model of the structure and measurements from the turbine, (2) an
aerodynamic estimator, and (3) a physics-based virtual sensing procedure to obtain the loads along the tower. The
digital twin relies on a set of measurements that are expected to be available on any existing wind turbine (power,
pitch, rotor speed, and tower acceleration) and motion sensors that are likely to be standard measurements for a
floating platform (inclinometers and GPS sensors). We explore two different pathways to obtain physics-based
models: a suite of dedicated Python tools implemented as part of this work and the OpenFAST linearization
feature. In our final version of the digital twin, we use components from both approaches. We perform different
numerical experiments to verify the individual models of the digital twin. In this simulation realm, we obtain
estimated damage equivalent loads of the tower fore–aft bending moment with an accuracy of approximately 5 %
to 10 %. When comparing the digital twin estimations with the measurements from the TetraSpar prototype, the
errors increased to 10 %–15 % on average. Overall, the accuracy of the results is promising and demonstrates the
possibility of using digital twin solutions to estimate fatigue loads on floating offshore wind turbines. A natural
continuation of this work would be to implement the monitoring and diagnostics aspect of the digital twin to
inform operation and maintenance decisions. The digital twin solution is provided with examples as part of an
open-source repository.
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knowledges that the US Government retains a nonexclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the pub-
lished form of this work, or allow others to do so, for US Govern-
ment purposes.

1 Introduction

The offshore floating wind turbine market is expected to
grow in the coming decades as the technology gains in ma-
turity, with several floating wind turbine prototypes already
tested and commissioned, such as the TetraSpar, developed
by Stiesdal Offshore (Stiesdal Offshore, 2022). Operation
and maintenance (O&M) costs can account for approxi-
mately one-third of offshore wind farm life cycle expendi-
tures for a fixed-bottom project and are expected to be higher
for remote (floating) projects (Castella, 2020). Reducing the
O&M costs is therefore an impactful and effective means to
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lower the costs of floating offshore projects. Digital twin so-
lutions are increasingly being used to follow products during
their life cycle to assess component conditions, guide predic-
tive maintenance, and thereby reduce O&M costs. A review
of digital twins for power systems is found in Song et al.
(2023). Digital twins often include a virtual sensing compo-
nent that provides information not measured by the physi-
cal system and a structural health monitoring component to
assess the condition of the system. Virtual sensing technol-
ogy is usually achieved using physics-based or data-driven
approaches, with both approaches relying on measurements
from the physical system to infer and extrapolate informa-
tion about its current state. Physics-based approaches use
a numerical model of the system, whereas data-driven ap-
proaches use either ad hoc algorithms or machine-learning
techniques. Machine-learning approaches can be trained us-
ing high-fidelity models or measurements, leading to poten-
tially high accuracies while maintaining low computational
time, but their training requirements imply that a technology
cannot be readily transferred from one platform to another.
Physics-based models often require low-fidelity models to
achieve computational times low enough for digital twins to
run in real time. They nevertheless offer the advantage that
they provide tractable and insightful results, and they can be
applied to a same family of wind turbine concepts because
they do not require a training dataset. Currently, there is no
definite case as to which approach can lead to the best dig-
ital twin implementation, and it is possible that future ap-
proaches will combine physics-based with data-driven tech-
niques. This work presents the development, verification, and
validation of a physics-based digital twin for floating wind
turbines as a proof of concept for future maturation of the
technology.

Digital twins for wind turbine applications have recently
become a topic of research interest. The authors explored
the topic of physics-based digital twins in previous work,
in which a method to estimate tower loads on land-based
turbines was developed (Branlard et al., 2020a, b). The ap-
proach relied on a Kalman filter model (Kalman, 1960;
Zarchan and Musoff, 2015) that combines a linear physics-
based model of the structure with measurements from the tur-
bine to perform a virtual sensing of the tower section loads
and estimate the fatigue of this component. The measure-
ment data were taken from the supervisory control and data
acquisition (SCADA) system using sensors readily avail-
able on most turbines. The approach used a mix between
an augmented Kalman filter approach (Lourens et al., 2012),
where the loads are estimated with the states of the system,
and a physics-based aerodynamic estimator for aerodynamic
thrust. Bilbao et al. (2022) used a Gaussian process latent
force model to estimate the forcing of the system and thereby
obtain the section loads along the tower. Drivetrains are an-
other component for which a digital twin has been applied,
with physics-based approaches presented in Mehlan et al.

(2022, 2023) and data-driven models presented in Kamel
et al. (2023).

Despite the recent popularity of the term “digital twin”,
the concept is heavily based on the fields of structural health
monitoring and load estimations (or, more generally, virtual
sensing), which have long been topics of research. For in-
stance, Iliopoulos et al. (2016) used physics-based modal de-
composition to estimate the dynamic response on the sub-
structure of a fixed-bottom wind turbine. Neural networks
have been used to establish transfer functions or surrogate
models based on SCADA data to obtain wind turbine loads
with the aim of performing conditional monitoring (see,
e.g., Cosack, 2010; Schröder et al., 2018). Kalman filters
were introduced in fields other than wind energy to per-
form load estimation (Auger et al., 2013; Ma and Ho, 2004;
Eftekhar Azam et al., 2015; Lourens et al., 2012). Kalman
filtering has been extensively used in wind energy to esti-
mate rotor loads and improve wind turbine control (Boukhez-
zar and Siguerdidjane, 2011; Selvam et al., 2009; Bottasso
and Croce, 2009; Bossanyi, 2003). Load estimations were
also achieved using hybrid techniques combining physics
based on SCADA data by Noppe et al. (2016). Other load
estimation techniques may be used, such as lookup tables
(Mendez Reyes et al., 2019), modal expansion (Iliopoulos
et al., 2016), machine learning (Evans et al., 2018), neural
networks (Schröder et al., 2018), polynomial chaos expan-
sion (Dimitrov et al., 2018), deconvolution (Jacquelin et al.,
2003), or load extrapolation (Ziegler et al., 2017).

In this work, we build on our previous work related to
fixed-bottom turbines and present a digital twin solution
for floating wind turbines that relies on physics-based mod-
els and a Kalman filter. We apply the digital twin to the
TetraSpar structure and use measurements from the full-scale
prototype. Achieving computational efficiency is crucial to
be able to run the digital twin online; therefore, a reduced-
order model with few selected degrees of freedom is used.
Developing digital twins for floating wind turbines presents
a set of challenges compared to our previous work on fixed-
bottom foundations. The potentially large motions under-
gone by the platform may affect the aerodynamics and ac-
celerometer signals. The models developed for fixed-bottom
foundations need to be augmented to be able to predict the
aerodynamics when the platform experiences large pitching
motions. The dynamics of the platform motion needs to be
well captured for the tower-top accelerometer to be used and
for estimating the loading in the station-keeping system. In
both floating and fixed-bottom wind turbines, hydrodynamic
loads need to be estimated to capture member-level loads in
the substructure, but they can be omitted as a first approxi-
mation if only the tower loads are estimated, as in this study.

In Sect. 2, we provide an overview of our digital con-
cept, the vision for future application, and the TetraSpar pro-
totype on which the digital twin is applied. In Sect. 3, we
present the individual components of the digital twin and run
some isolated verification studies on them. In Sect. 4, we
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present results from the digital twin application first using
numerical experiments and then using measurements from
the TetraSpar prototype before concluding. To avoid length-
ening the main text, we provide derivations (some of which
are important contributions of this work) and additional re-
sults in appendices.

2 Overview of the digital twin concept

In this section, we provide an overview of our digital twin
concept and how it is applied in this study.

2.1 Long-term vision of the digital twin concept

Many definitions and applications of digital twins are pos-
sible. The vision for the concept discussed in this work is
to follow the life cycle of a wind turbine in real time and
ultimately provide tangible signals to inform O&M deci-
sions. Our goal is to achieve this by relying only on mea-
surements expected to be available on most wind turbines,
thereby avoiding the extra cost of adding sensors. In this
work, we leave open the question as to whether the installa-
tion of an additional set of optimally placed and selected sen-
sors can further improve the predictions of the digital twin,
further reducing the long-term O&M costs, and thereby war-
ranting the additional costs of adding the sensors.

We illustrate our approach and vision in Fig. 1.
The digital twin is intended to run in real time on a cloud

platform. It combines a set of models (on the left of the fig-
ure) with data from the real system (on the right) to perform
the estimation of various states and eventually produce diag-
nostics that can be used to inform the O&M. The data from
the real system are taken from high-frequency measurements
from the SCADA system (e.g., power, pitch, rotor speed).
The states estimated by the digital twin include aerodynamic
states (wind speed, thrust) and motions of the structure (e.g.,
surge, pitch, tower deflection). The core algorithm in the es-
timation is a Kalman filter that uses a linear wind turbine
model. The estimated states are used in a virtual sensing step
to produce quantities of interests (QoIs), such as the loads
at key locations of the structure. The QoIs are then intended
to be postprocessed by a monitoring and diagnostic tool to
generate the data needed to perform condition-based O&M.

2.2 Narrowed scope

The boxes in Fig. 1 with dashed-line borders – structural
health modeling, monitoring and diagnostics, and O&M de-
cisions – are postponed to future work, even though they are
essential steps to achieve our final vision. Dashed lines and
arrows indicate options that may be exploited in the future
but are also outside of our scope: the use of historical data
to assist in the diagnostics, the use of estimates to perform
model updating, and real-time implementation.

This work therefore focuses on the estimation of states and
environmental conditions under the assumption that the esti-
mated quantities can replace costly measurements and even-
tually be used for O&M decisions. We intend to provide a
proof of concept that paves the way for future commercial
applications. A detailed description of each of the boxes sur-
rounded with solid lines is given in Sect. 3.

2.3 System studied

2.3.1 The TetraSpar prototype

The system studied for this article is the TetraSpar floating
offshore prototype. The system consists of a floating plat-
form and station-keeping system developed by Stiesdal Off-
shore in collaboration with partners Shell, RWE, and TEPCO
Renewable Power, as well as a 3.6 MW wind turbine with a
rotor diameter of 130 m developed by Siemens Gamesa Re-
newable Energy. A sketch of the system is provided in Fig. 2.

The prototype was installed off the coast of Norway and
commissioned in November 2021. The prototype turbine is
equipped with additional sensors (labeled “Optional mea-
surements” in Fig. 1), which we use to validate the esti-
mated QoIs.

2.3.2 Numerical experiments

Prior to using measurement data, we use simulations (re-
ferred to as “numerical experiments”) in place of the real
system to feed data to the digital twin. The advantage of this
approach is that the QoIs are directly accessible and can be
compared to the estimates for verification purposes.

Data for the numerical experiments are obtained using
OpenFAST simulations (Jonkman et al., 2023a, b). A model
of the TetraSpar floating platform and the wind turbine was
implemented in OpenFAST based on data provided by the
manufacturers. All the members of the substructure are mod-
eled using the strip-theory approach (Morison equation) be-
cause the inherent long-wavelength assumption of the strip
theory has been shown to be sufficiently accurate for this
structure with relatively slender members. The OpenFAST
model is complemented with NREL’s Reference OpenSource
Controller (ROSCO, Abbas et al., 2022). The controller pa-
rameters are tuned so that OpenFAST simulations match the
operating conditions of the turbine extracted from SCADA
data (pitch, rotor speed, and power). The nacelle velocity
feedback option of ROSCO is used to reduce the platform
pitching motion. Using trial and error, the frequency and
damping ratio of the pitch PI controller are set to ωp =

0.05 rad s−1 and ζp = 7 %, and the values for the torque con-
troller are set ωQ = 0.15 rad s−1 and ζQ = 7 %. The gain
scheduling of the pitch controller is obtained using the tun-
ing feature of ROSCO. We note that the controller is only
needed to perform verifications of the digital twin with real-
istic time series of the turbine responses, but the controller
itself is not used for the design of the digital twin. We use the
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Figure 1. Overview of the digital twin concept. Dashed lines indicate features that are outside the current scope.

Figure 2. Sketch of the TetraSpar prototype.

following modules of OpenFAST (Jonkman et al., 2023a, b):
MAP (mooring lines), HydroDyn (hydrodynamics), Elas-
toDyn (tower and blade elasticity; rigid floater), AeroDyn
(aerodynamics), InflowWind (wind inflow), and ServoDyn
(controller interface).

For the numerical experiments, we use synthetic turbulent
wind fields generated using TurbSim (Jonkman and Buhl,
2006). In particular, we often use the same wind field, which
we refer to as the “turbulent step”, where a deterministic
ramp and drop are added to a turbulent field. The advantage
of this 10 min wind field is that it covers all the operating
regions of the turbine in a challenging way because the vari-
ations of the wind speed are sudden. The wind speed at hub
height for the turbulent step can be seen in Fig. 6.

2.3.3 Main aspects of the structural model

We model the structure using a set of 8 degrees of free-
dom (DOFs), as illustrated in Fig. 3.

The platform is represented as a rigid body, and its mo-
tion is described using 6 DOFs: surge, sway, heave, roll,
pitch, and yaw, respectively noted x,y,z,φx,φy , and φz. The
tower bending in the fore–aft direction is represented us-
ing 1 generalized DOF, qt, associated with a Rayleigh–Ritz
shape function, taken as the first fore–aft mode shape of the
tower (Branlard, 2019). The side–side tower bending can be
added in a similar way, but for simplicity, it was not consid-
ered in this study. The shape function along the tower height,
zt, is written as8(zt), with8(0)= 0 at the tower bottom and
8(LT)= 1 at the tower top, where LT is the tower length.
The shaft rotation is noted ψ , so that the rotation speed of
the rotor is ψ̇ , where the dot notation indicates differenti-
ation with respect to time. The rotor–nacelle assembly is
modeled as a rigid body. The full vector of DOFs is there-
fore q = [x,y,z,φx,φy,φz,qt,ψ]. The equations of motion
will be recast into a first-order form by concatenating the
vector of DOFs and its time derivative, x = [q, q̇]. The se-
lected set of DOFs captures the first-order effects as it is the
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Figure 3. Notations for the structural modeling of the floating wind turbine, assuming no yawing of the nacelle. (a) Main
points (F,T ,N,O,G) and inertial coordinate system (i). (b) Degrees of freedom (x,y,z,φx ,φy ,φz,qt,ψ) and main loads: aerodynam-
ics (T ,Q), hydrodynamics (6×6 mass and damping and stiffness matrices, Mh, Ch, Kh; wave-excitation force neglected), mooring (6×6 stiff-
ness matrix, Km), and gravity (g).

minimal set required to capture the full motion of the floater
(necessary to compute restoring loads and tower loads), the
tower flexibility (necessary to capture tower loads), and the
rotor motion (necessary to capture the aerodynamics). Addi-
tional degrees of freedom could be considered to increase the
modeling accuracy, in particular to include floater flexibility
for internal calculation of substructure member loads. This
would increase the computational requirement and only con-
tribute to second-order effects, and it is therefore postponed
to future work.

In this work, we perform simplifying assumptions, e.g.,
neglecting the influence of nacelle yaw on the system. The
measurement data are conveniently provided in the fore–aft
and side–side system of the nacelle. The main assumption is
therefore that we assume a rotational symmetry of the plat-
form and mooring system about the yaw axis. We intend to
lift this assumption in future work. Some of the consequences
of this assumption is that we do no capture changes of iner-
tial properties due to asymmetry of the support structure and
changes of stiffness of the mooring system. In the case of the
TetraSpar, the mass matrix of the floater does not vary sig-
nificantly with the yawing of the coordinate system, and the
assumption is fair. We note that if the structure had perfect
120◦ symmetry about the yaw axis, then its inertia would
be invariant by yaw rotation. For the restoring stiffness of

the mooring system, the diagonal terms do not vary signifi-
cantly as the coordinate system yaws, but some of the cou-
pling terms vary by 50 % to 200 %. The couplings between
the platform DOFs are likely wrongly estimated under the
rotational symmetry assumption. The impact is nevertheless
limited because most of the platform DOFs (x,y,φx , and φy)
are measured and therefore observable by the Kalman filter.

3 Individual components of the digital twin

In this section, we describe and verify the individual compo-
nents of the digital twin presented in Fig. 1. In Sect. 4, we
present applications of the digital twin where all the individ-
ual components are combined together.

3.1 Wind turbine measurements

The measurements used as inputs to the digital twin are listed
in Table 1.

These outputs are stored in a database at a sampling rate
of 25 Hz. We expect these measurements to be standard sen-
sors for any floating wind turbine. The TetraSpar prototype
is equipped with additional measurements that are used to
validate the implementation of the digital twin (see Sect. 4).
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Table 1. Measurements used as inputs to the digital twin.

Signal Symbol

Collective blade pitch angle θp
Rotor speed ψ̇

Generator torque∗ Qg
Platform surge and sway x,y

Platform roll and pitch φx ,φy
Nacelle accelerations r̈N
∗ Obtained from the power measurement using
Eq. (2).

Table 2. Approaches and tools used to obtain nonlinear and linear
models.

3.2 Nonlinear wind turbine models

3.2.1 Overview

Similar to our previous work (Branlard et al., 2020b), we use
two different pathways to obtain nonlinear and linear models
of floating wind turbines: OpenFAST and WELIB (Wind En-
ergy LIBrary, Branlard, 2023c, d). The OpenFAST approach
was described in Sect. 2.3.2, it is compared to the WELIB
approach in Table 2, and the WELIB toolset is further dis-
cussed below. In the next sections, we will show that the re-
sults from both approaches are consistent with each other so
that either of the two can be used to obtain nonlinear and lin-
ear reduced-order models. Ultimately, in Sect. 4, a mix of the
two approaches is used for the digital twin: linear OpenFAST
models for the state-space equations (Sect. 3.5) and WELIB
for the virtual sensing step (Sect. 3.6).

3.2.2 WELIB tools

The WELIB approach consists of a set of dedicated open-
source Python tools that are similar to the ElastoDyn, Hydro-
Dyn, and MAP modules of OpenFAST. We developed these
tools to offer additional modularity and granularity: the tools
can be called individually or together; their states, inputs, and
outputs can be accessed and manipulated at each time step;
and the Python scripting eases the manipulation of the mod-
els. For instance, this allows for

1. analytical linearization of the structural dynamics,

2. simple linearization of the hydrodynamics (obtention of
6× 6 matrices),

3. linearization of hydrodynamics with respect to wave el-
evation,

4. linearization with respect to parameters (Jonkman et al.,
2022), and

5. interactive time stepping of the linear and nonlinear
model.

In this work, we mostly use the first two features listed above,
and their usage will be described in Sect. 3.3.2. Results from
time-stepping simulations will be presented in Sect. 3.3.3.
We expect to exploit the additional features of WELIB in
future digital twin implementations. For this work, we im-
plemented the following tools in WELIB: (1) YAMS, a sym-
bolic structural dynamics package to obtain the equations of
motion of an assembly of rigid and flexible bodies analyt-
ically and allow for their analytical linearization (Branlard
and Geisler, 2022); (2) pHydroDyn, a Python version of the
module HydroDyn (with a subset of HydroDyn’s functional-
ity) to determine the hydrodynamic loads; and (3) pyMAP, a
wrapper around the MAP module of OpenFAST to obtain
the mooring quasi-statics. With these three additions, it is
possible to perform nonlinear simulations of floating wind
turbines using WELIB and perform comparisons with Open-
FAST.

3.2.3 Differences between the two nonlinear
approaches

Currently, no controller or aerodynamic module is present
in WELIB. Therefore, nonlinear time-stepping simulations
with WELIB are limited to free-decay simulations or pre-
scribed loads. Another shortcoming is that WELIB does not
cover the full range of options available with OpenFAST,
which is a continuously evolving, extensively verified and
validated tool. Such options include the potential flow rep-
resentation of hydrodynamic bodies, the flexibility of the
floating structure, and aerodynamic and control features. One
benefit of WELIB over OpenFAST is the possibility to per-
form interactive time stepping, that is, to change the states
and inputs dynamically during the simulation. We do not
use this approach in this work, but it can be considered for
nonlinear digital twin applications, for instance, using an ex-
tended Kalman filter algorithm. Another benefit is the pos-
sibility to obtain analytical linear models of the structure,
which avoids using finite differences and therefore reduces
the associated numerical errors. In the WELIB approach,
the individual modules are linearized separately before being
combined into the final linear model, and it is therefore eas-
ier to understand where each term in the Jacobians of the lin-
ear models comes from and thereby gain physical intuitive-
ness on the model. Ultimately, the linear models obtained
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by both approaches are similar and differ mostly based on
differences in the structural dynamics equations and the im-
plementation of rotational transformation matrices. Results
comparing time simulations using both approaches will be
presented in Sect. 3.3.

3.3 Linear wind turbine models

As part of our digital twin concept, we have chosen to use
linear wind turbine models and a Kalman filter for the core
of the state estimation (see Sect. 3.5). Nonlinear models and
an extended Kalman filter could be considered in future it-
erations. In this section, we describe how the linear models
from OpenFAST and WELIB are obtained.

3.3.1 OpenFAST linearization

OpenFAST can provide full-system linearization of its un-
derlying nonlinear models by using a mix of analytically and
finite-difference-derived Jacobians (Jonkman and Jonkman,
2016; Jonkman et al., 2018). The linearization process pro-
vides the state-space model (δẋ = Aδx+Bδu) and output
equation (δy = Cδx+Dδu) for small perturbations (indi-
cated with δ) of the internal states (x), inputs (u), and outputs
(y) of OpenFAST, around a selected operating point. Open-
FAST provides the linear model for the entire set of states,
inputs, and outputs present in the model (including virtual
sensor-type outputs typically written to an output file and not
used internally). In this work, we extract subsets of the A,
B, C, and D matrices and combine them to form the linear
model of the state estimator (see Sect. 3.5).

3.3.2 WELIB linearization

WELIB performs the linearization of the structure, hydrody-
namics, and moorings independently before combining them
into one model. The aerodynamic loads are not linearized be-
cause a dedicated aerodynamic estimator is used in this work
(see Sect. 3.4). The steps are as follows.

– The structural equations are linearized analytically us-
ing our symbolic framework (Branlard and Geisler,
2022). We introduced a notion of “augmented inputs”
to linearize the equations of motion without explicit
knowledge of the external forces. The process is de-
scribed in Sect. A.

– We compute the 6× 6 linearized rigid-body hydrody-
namics matrices (mass matrix Mh, damping matrix Ch,
and stiffness matrix Kh) corresponding to the six rigid-
body motions of the platform. At the time of this study,
these matrices could not be obtained directly from
OpenFAST. While working on this issue, we ended up
devising multiple ways to obtain them. They can now
be obtained using (1) full-system linearization of the
HydroDyn module, (2) the Python implementation of

the HydroDyn module by performing rigid-body per-
turbations of the full platform, or (3) an upgraded ver-
sion of the OpenFAST HydroDyn driver that also uses
rigid-body perturbations. The first approach uses base-
line OpenFAST functionalities but requires additional
postprocessing scripts and derivations. The full-system
linearization of OpenFAST provides Jacobians of the
hydrodynamic loads as a function of motions of the in-
dividual hydrodynamic analysis nodes (of which mod-
els often have hundreds to thousands of). To transfer
these individual Jacobians to the reference point and
obtain the 6× 6 matrices, we developed and used the
method presented in Sect. B. The process is involved
and prone to errors. In comparison, the second and third
approaches are straightforward to implement and are
several orders of magnitude faster. The Python version
was implemented first and then ported over to Fortran
so that it can be readily available to the OpenFAST
community. The consistency between the different ap-
proaches was verified, and because of its ease of use,
the second approach is retained in this study. We note
that in this study, all members are modeled using the
Morison equation and the hydrodynamic drag is set to
zero during the linearization process. There is therefore
no frequency-dependent damping, and the effect of hy-
drodynamic drag is assumed to be part of the modeling
uncertainty of the state estimator (see Sect. 3.5).

– The linearized 6× 6 mooring stiffness matrix, Km, is
obtained by calling the linearization feature of the MAP
module and transferring the Jacobian to the reference
point using the method outlined in Sect. B.

– The linearized equations of motion are assembled as

[M0 +Q0Mh]δq̈ + [C0+Q0Ch]δq̇

+ [K0+Q0 (Kh+Km)]δq = δf a+ δf h, (1)

where the matrices with subscript 0 originate from the
linearization of the structure (see Sect. A). The matrix
Q0, of dimension 8× 6, maps the subset of the 6 rigid-
body platform DOFs (x,y,z,φx,φy,φz), used for the
definitions of Mh, Ch, Kh, and Km, to the full vector
of DOFs, q. The term δf a is an approximation of the
aerodynamic loads and will be discussed in Sect. 3.4.
The term δf h is an approximation of the hydrodynamic
wave-excitation loads. In this work, δf h is mapped
into the inherent model noise of the Kalman filter (see
Sect. 3.5). Assuming that the loading is part of the
model noise is a crude approximation that is expected
to be fair as long as the loading has a zero mean value,
which is expected to be the case for the wave loading
but not for the wind or current loading (here omitted).
This modeling choice is not very influential in this work
because the motions of the platform measured by the
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inclinometers and GPS sensors inherently carry infor-
mation about the wave loading. Improvements could be
obtained by including a model for the wave-excitation
loads and further limiting the wave load signal such that
it remains within a certain frequency band.

For instance, we could introduce a hydrodynamic state
analog to the wave elevation or a set of states that scales
different hydrodynamic shape functions so that the hy-
drodynamic load can be obtained as a linear superposi-
tion of scaled shape functions. In our application (tower
section loads), such modeling did not appear necessary,
but it will be considered in future work as it can be rel-
evant to estimate substructure loads.

– We recast Eq. (1) into a first-order system to obtain the
state matrix A.

3.3.3 Verification of the linear models

In this section, we compare results from the OpenFAST non-
linear model, the OpenFAST linear model, and the WELIB
linear model for free-decay simulations of the TetraSpar
structure. Free-decay simulations are sufficient because wave
and aerodynamic loads are purposely not included in the lin-
ear models used by the digital twin. The OpenFAST lin-
ear model is obtained about the operating point defined by
q0 = 0 and ψ̇0 = 10 rpm. All models (including the Open-
FAST nonlinear model) use 8 DOFs. The initial conditions
are set to q = [1,−1,0.6,0.5,0.5,0,−0.2,0] (in m and ◦)
and ψ̇ = 10 rpm, after which the structure is free to move.

First, simulation without hydrodynamics (structure only)
is considered to isolate and verify the structural dynamics
part of the models. The time responses from the linear and
nonlinear models are in strong agreement when only the
structure is considered (see results in Sect. C). Then, we con-
sider results for a model that includes hydrodynamics but
without wind or external waves (still water). We set the hy-
drodynamic drag to zero due to the difficulty in linearizing
this term and let the state estimator account for this modeling
uncertainty. Results of the free-decay simulation are given in
Fig. 4 for a time period of 153 s corresponding to the surge
frequency. When hydrodynamics is included, the time re-
sponses from the linear models are in strong agreement with
the nonlinear OpenFAST results for the surge, heave, pitch,
and tower fore–aft DOFs. The sway, roll, and rotor speed re-
sponses tend to drift as the simulation time advances, which
we assume can be attributed to inherent differences between
linear and nonlinear models. The coefficient of determina-
tion (R2) is indicated in Fig. 4, comparing the linear models
to the reference OpenFAST simulations for each response.
In all cases, the OpenFAST linear model is closer to the non-
linear OpenFAST model than the WELIB model. The con-
sistency between the linear and nonlinear OpenFAST model
is expected because they are obtained from the same code
base. The WELIB linear model had difficulty capturing the

yaw response. We believe that some of the error in the yaw
signal is due to differences between the formulations of the
three-dimensional rotations in OpenFAST and WELIB. The
difference in yaw results in a difference of coupling between
the DOFs, which can explain the differences observed in the
sway, roll, and rotor speed signals.

o further quantify the differences between the models, we
compare the natural frequencies obtained using the Open-
FAST linear and WELIB linear models in Table 3. Overall,
the frequencies between the two linear formulations agree
very well (less than 2.5 % relative error), except for the roll
frequencies (4 % error) with hydrodynamics. Given the re-
sults of this section, we will continue this study using the
OpenFAST linear model. We expect that continuous develop-
ment of WELIB will further narrow the gap with OpenFAST
in the future.

3.4 Aerodynamic estimator

In Sect. 3.3, we indicated that the linear models were derived
without accounting for aerodynamics. Instead, we choose to
include the aerodynamic contribution separately within the
digital twin. The reason for this choice is that the determi-
nation of the aerodynamic loads is essential to capturing the
main loading and deflections of the structure, in particular the
tower, and the aerodynamic loads vary significantly over the
range of operating conditions. Therefore, separating this con-
tribution limits the need to obtain different linearized models
for different operating conditions. We have successfully ap-
plied this approach in the past (Branlard et al., 2020a). In this
work, we extend this approach to accommodate the floating
wind application. The different elements of the aerodynamic
estimator consist of a torque estimator, aerodynamic maps,
and a wind speed estimator.

3.4.1 Kalman filter for torque estimation

We assume that the power and rotor speed are reliable mea-
surement signals, and we further assume that the generator
torque (relative to the low-speed shaft) can be inferred from
the power signal as

Qg =
P

ψ̇

1
nηDT(ψ̇)

, (2)

where ηDT is the drivetrain (gearbox and generator) effi-
ciency and n is the gear ratio. For the TetraSpar, n= 1, and
we assume ηDT = 1. The dynamics equation of the drivetrain
is modeled as

JDTψ̈ =Q−Qg, (3)

where JDT is the inertia of the drivetrain about the shaft axis.
If we assume that the generator torque is a measurement, then
an augmented Kalman filter (Lourens et al., 2012) can be
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Figure 4. Free decay of the structure using nonlinear and linear models for a case including moorings and hydrodynamics (still water). Time
series of the main DOFs. RotSpeed stands for rotor speed.

Table 3. Comparison of system frequencies obtained using the WELIB and OpenFAST linear models with and without hydrodynamics (no
added mass, damping, hydrostatics, or wave excitation). n/a stands for not applicable.

Structure+mooring Structure+mooring+ hydrodynamics

Mode OpenFAST WELIB Relative error OpenFAST WELIB Relative error
[Hz] [Hz] [%] [Hz] [Hz] [%]

Surge 0.0088 0.0088 −0.2 0.0067 0.0065 −2.4
Sway 0.0088 0.0088 −0.1 0.0067 0.0068 −0.7
Yaw 0.0163 0.0162 −1.0 0.0128 0.0128 −0.3
Pitch 0.0879 0.0886 −0.7 0.0253 0.0257 −1.6
Roll 0.0894 0.0902 −0.9 0.0256 0.0266 −4.0
Heave n/a n/a n/a 0.0276 0.0276 −0.2
Tower FA 0.5782 0.5789 −0.1 0.5129 0.5145 −0.3

used to estimate the aerodynamic torque Q, using the fol-
lowing state equation:ψ̇ψ̈
Q̇

=
0 1 0

0 0 1
JDT

0 0 0

ψψ̇
Q

+
 0
−

1
JDT
0

Qg. (4)

A random walk approach is used for the evolution of the
torque, that is, Q̇= 0, and the Kalman filter adds further
model noise to this equation. The measurement equation of
the Kalman filter is

[
ψ̇

Qg

]
=

[
0 1 0
0 0 0

]ψψ̇
Q

+ [0
1

]
Qg. (5)

In the following, we write Q̂, the aerodynamic torque ob-
tained using the method outlined above. We present verifica-
tion results in Sect. 3.4.4.

3.4.2 Aerodynamic maps

It is commonly accepted that the aerodynamic performance
of a wind turbine mostly depends on the tip-speed ratio
and the pitch angle of the blade. With compliant structures,
the bending of the blade, the bending of the tower, and

the motions of the floating platform (in particular, the plat-
form pitch) will also affect the aerodynamic performance.
These motions are to a large extent a function of the mean
wind speed. Therefore, we recommend tabulating the aero-
dynamic performance as a function of wind speed (U ), rotor
speed (ψ̇), blade pitch (θp), and platform pitch (φy , assumed
to be in the fore–aft direction). The power and thrust coeffi-
cients, respectively noted CP and CT, are precomputed using
aeroelastic simulations in OpenFAST for a discrete set of val-
ues of the four input parameters. In the simulations, the blade
and tower elasticity are accounted for. To limit the number of
simulations, only the points that are within reasonable prox-
imity of the regular operating conditions of the wind turbine
are computed. The 4D aerodynamic maps are precomputed
as follows:

CP
(
U,ψ̇,θp,φy

)
, CT

(
U,ψ̇,θp,φy

)
, (6)

U ∈ {2,3, . . ., 25}ms−1, ψ̇ ∈ {5,5.5, . . ., 18} rpm, (7)
θp ∈ {−1,0, . . .,30}◦, φy ∈ {−10,0,15}◦. (8)

The precomputed values are stored in a database.

3.4.3 Wind speed estimation

The digital twin uses the aerodynamic map database to esti-
mate the wind speed and aerodynamic thrust. For a given air
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Figure 5. Illustration of wind speed estimation in the case where
multiple wind speed values match the target torque value Q̂.

density (ρ), rotor radius (R), and measurements ˜̇ψ, θ̃p, φ̃y ,
the aerodynamic torque and thrust are readily obtained as a
function of wind speed from the database:

Q(U )=
1
2
ρ
U3

˜̇ψ
πR2CP

(
U, ˜̇ψ, θ̃p, φ̃y

)
,

T (U )=
1
2
ρU2πR2CT

(
U, ˜̇ψ, θ̃p, φ̃y

)
, (9)

where SI units are assumed for all variables. For a given es-
timated torque (Q̂), the estimated wind speed (Û ) is found
such that

Q(Û )− Q̂= 0. (10)

As illustrated in Fig. 5, multiple values of Û can potentially
satisfy Eq. (10) because the aerodynamic torque is a non-
linear function of the wind speed. In such cases, we use
the steady-state operating condition curve of the turbine to
choose between the multiple solutions (typically two) by se-
lecting the point closest to this curve (see Fig. 5). A relax-
ation scheme is also used, based on the previous estimate, to
alleviate sudden jumps of the estimated wind speed.

3.4.4 Verification of the aerodynamic estimator

To verify the aerodynamic estimator, we ran an OpenFAST
simulation of the TetraSpar with the turbulent step wind field
mentioned in Sect. 2.3.2 and irregular waves computed with
a significant wave height ofHs = 6 m and a peak spectral pe-
riod of Tp = 14, which represent a fairly extreme sea state for
the site of the TetraSpar prototype. The simulated values of
ψ̇ , θp, φy , andQg are used as direct input to the aerodynamic
estimator. Comparisons of the estimates with the OpenFAST
outputs are shown in Fig. 6. The shaded areas on the graphs
represent the areas where the generator torque is zero (tur-
bine spinning up); therefore, the wind speed estimator is not
expected to work in that region. The tops of the plots indicate

Figure 6. Example of aerodynamic estimation using simulated
measurements from OpenFAST. (a) Wind speed. (b) Dimension-
less torque. c) Structural inputs from the OpenFAST simulation pro-
vided to the estimator.

the ratio of standard deviations, the mean relative error (ε),
and the coefficient of determination (R2). Throughout this
article, we define the mean relative error of a quantity x as

ε(x)=meani

[
|xest[i] − xref[i]|

mean(|xref|)

]
, (11)

where xest is the estimated signal, xref is the reference sig-
nal, and x[i] is the value of a signal at time step i. Using the
mean of |xref| in the denominator avoids issues related to sig-
nals crossing 0. It results in lower mean relative error than
if the instantaneous value were used, but the metric is still
indicative of how far the two signals are on average.

To quantify the performance of the estimator, we repro-
duce the simulation above but add different noise levels to
the measurements to account for measurement errors by the
sensors. A Gaussian noise signal of zero mean and standard
deviation rσ is added to each input, where r is the noise level
and σ is the standard deviation of the clean input. The results
are shown in Table 4. As expected, the error in the estimation
increases with increasing noise levels. This numerical exper-
iment provides a rough quantification of the errors that can
be expected from the aerodynamic estimator.

3.5 State estimator

In this work, we follow a similar approach to our previous
work (Branlard et al., 2020a), where an augmented Kalman
filter is used to estimate states and loads. The Kalman filter
used in the aerodynamic estimator (Sect. 3.4) is augmented
with additional states and outputs. The Kalman filter uses two
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Table 4. Mean relative error (ε) of the wind speed, torque, and
thrust estimates for increasing noise levels.

Noise level 0 % 1 % 5 % 10 % 20 %

Wind speed 2.6 % 2.6 % 3.1 % 4.1 % 6.7 %
Torque 3.5 % 3.8 % 5.0 % 6.8 % 11.1 %
Thrust 4.1 % 5.1 % 5.6 % 7.3 % 11.6 %

linear models: a state equation, describing the time evolution
of the states, and an output equation, describing how the mea-
surements are related to the states and inputs. The state and
output equations are written as

δẋKF = XxδxKF+XuδuKF+wx, (12)
δyKF = YxδxKF+YuδuKF+wy, (13)

where δxKF, δuKF, and δyKF are the state, input, and output,1

respectively; Xx , Xu, Yx , and Yu are the system matrices
that relate the different system vectors; and wx and wy are
Gaussian processes representing modeling noise. The output
vector, δyKF, is also referred to as the “measurement” vector
because it corresponds to the measured signals. At a given
time step, the Kalman filter algorithm uses the system matri-
ces, a set of measurements, and an a priori knowledge of the
model and measurement uncertainties to estimate the state
vector (Kalman, 1960; Zarchan and Musoff, 2015).

In this work, we design the state estimator such that the
state vector contains the structural degrees of freedom (δq
and δq̇) and the aerodynamic torque (Q), and the input vec-
tor consists of the thrust (obtained with the aerodynamic es-
timator) and the generator torque (obtained from the power).
These design choices were guided by our previous work on
the topic. For this choice of state and input variables, we
build linear models for the state and output equations. We
use the linear models described in Sect. 3.3 (the A, B, C, and
D matrices) to populate the system matrices of the Kalman
filter. Additional details on how the relevant Jacobians are ex-
tracted are given in Sect. 3.6.1. Given our choice of system
vectors, the state equation isδq̇δq̈
Q̇

=
 0 I 0

A12 A22
∂ q̈
∂Q

0 0 0

δqδq̇
Q


+

 0 0
∂ q̈
∂Qg

∂ q̈
∂T

0 0

[Qg
T

]
+wx, (14)

where A12 and A22 are the two lower blocks of the A matrix,
and I is the identity matrix. The Jacobians with respect to
the loads are extracted from the B and D matrices. A random

1In general, the Kalman filter system vectors are different from
the ones used for the linearization presented in Sect. 3.3; therefore,
the subscript “KF” (for Kalman filter) is added to these vectors.

walk approach is used for the evolution of the torque Q (that
is, we set Q̇= 0). The output equation, which effectively re-
lates the measurements to the system states and inputs, is set
as
δq̃

ψ̇

r̈N
Qg

=

∂ q̃
∂q

∂ q̃
∂ q̇

∂ q̃
∂Q

0 Ĩ 0
∂ r̈N
∂q

∂ r̈N
∂ q̇

∂ r̈N
∂Q

0 0 0


δqδq̇
Q



+


0 0
0 0
∂ r̈N
∂Qg

∂ r̈N
∂T

1 0

[Qg
T

]
+wy, (15)

where r̈N is the vector of nacelle accelerations, and q̃ =

{δx,δy,δφx,δφy} is the measurements of surge, sway, roll,
and pitch as given in Table 1.

The state and output equations are used as part of a
Kalman filter algorithm implemented in WELIB, which con-
tinuously takes as input the measurements from the wind tur-
bine (corresponding to the left-hand side of Eq. 15). The pro-
cess and covariance matrices used within the Kalman filter
algorithm (determining the values of wx and wy) are popu-
lated based on the estimated standard deviations of the dif-
ferent states and outputs. At each time step, the thrust is es-
timated using the aerodynamic torque of the previous time
step and used as input. The result of the Kalman filter is the
estimated states and outputs at each time step. Sample simu-
lation results are provided in Sect. 4.

3.6 Virtual sensing

Once the states are estimated by the Kalman filter, the vir-
tual sensing step is used to derive quantities of interest (see
Fig. 1). In this work, we focus on the estimation of the sec-
tional loads along the tower using a physics-based model. We
investigate two methods to obtain these loads.

3.6.1 OpenFAST linearization outputs

The first method consists of using the linearization outputs
of OpenFAST, namely, using a subset of the equation δy =
Cδx+Dδu (see Sect. 3.3.1). In general, if a quantity of in-
terest is present in the output vector of OpenFAST, it can be
retrieved as follows. If the variable is located at the row index
k in the vector y, then this variable can be obtained from the
states and inputs as

[y]k = [δy]k +
[
y0
]
k
= [C]kδx+ [D]kδu+

[
y0
]
k
, (16)

where [·]k indicates that the row k of the matrix or column
vector is used. In our case, [y]k in Eq. (16) would be the
sectional fore–aft bending moment at the height zj along the
tower, noted My(zj ). The advantages of using this method
are multiple:
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1. the method is directly applicable to any other outputs
computed by OpenFAST,

2. the calculation procedure is linear and therefore compu-
tationally efficient,

3. if strain measurements are available at given heights, the
rows [C]k an[D]k could be included in the output equa-
tion of the Kalman filter (Eq. 15) to provide information
about the model’s expectation of these measurements,
and

4. the underlying linear model is consistent with the non-
linear model of OpenFAST.

The downside of the method is its linearity, in the sense that
it is only valid close to the operating point and could lack
important nonlinear effects. The values of [C]k , [D]k , and
[y0]k would potentially need to be reevaluated if the system
operates away from the linearized operating point. One pos-
sible solution is to introduce gain scheduling to continuously
modify the linear system based on the estimated wind speed.
In this work, we used one operating point only and obtained
results with fair accuracy (see Sect. 4). We nevertheless ex-
pect that to better represent the different operating regions
of a pitch-regulated wind turbine, three to five linear models
stitched together through gain scheduling would be needed.

3.6.2 Nonlinear calculation (WELIB)

An alternative method consists of computing the section
loads based on first principles using the formulation pre-
sented in Branlard (2019). The calculation requires knowl-
edge of the tower-top loads and the full kinematics of the
tower and nacelle (position, velocity, and acceleration). At a
given time step, the kinematics are computed based on q, q̇,
and q̈. The tower-top loads are estimated based on the aero-
dynamic loads and the inertial loads of the rotor–nacelle as-
sembly. We describe the method in more detail in Sect. D.
The advantages are that nonlinearities are accounted for and
the model is valid irrespective of the operating condition. The
downside is that this method does not provide any of the four
advantages offered by the OpenFAST linearization method.

3.6.3 Verification of the section load calculation

To verify the calculation of the section loads, we use the same
turbulent step wind field and irregular sea state that were used
in Sect. 3.4.4. We assume that the time series of q, q̇ and q̈
are entirely known, extracted from the OpenFAST simula-
tion. These time series are provided to the two section loads
algorithms: the WELIB nonlinear algorithm and the Open-
FAST linear algorithm.

We run two sets of virtual sensing. In the “ideal” set, the
loads at the tower top are extracted from OpenFAST results
and provided to the two virtual sensing algorithms. In this

ideal case, the linearized operating points of the OpenFAST
linear model are set as the mean of each of the OpenFAST
time series values. Results for the ideal case are illustrated
in Fig. 7. The two algorithms are able to reproduce the sec-
tion loads of OpenFAST with relatively high accuracy, which
verifies our two calculation procedures.

In the second set, labeled “unknown thrust”, the tower-top
loads are not provided to the algorithms; instead, the aerody-
namic estimator mentioned in Sect. 3.4.4 is used to estimate
the aerodynamic loads. This time, we do not set the linearized
operating point of the OpenFAST linear model to the mean
value of the time series; we set it to the static equilibrium
(without loading).

The results are illustrated in Fig. 8. The accuracy of the
section load calculation is seen to deteriorate when the aero-
dynamic loads are estimated with the aerodynamic estimator,
which is expected. The damage equivalent load computed
with a Wöhler slope of m= 5 is found to be 3.7 % lower
with the OpenFAST linear method and 1.2 % lower with the
YAMS nonlinear method compared to the value for reference
signal.

The performance of both algorithms remains satisfactory
because the extrapolated signals follow the reference Open-
FAST nonlinear simulation. The relative error obtained with
the OpenFAST linear algorithm is higher (13.3 %) than the
one obtained using the WELIB nonlinear method (8.2 %).
The main source of error in the linear model is associated
with the fact that the linearization point was not tuned for this
specific simulation. It is our simplifying design choice to use
only one linearization operating point throughout. Because
of the loss of accuracy associated with this design choice, we
use the WELIB nonlinear algorithm in the digital twin for the
calculation of section loads.

After performing a sensitivity analysis on the inputs and
states of the system, we observed that the variables that most
affect the fore–aft section loads are the platform pitch (φy),
the tower fore–aft bending degree of freedom (qt), and the
aerodynamic thrust. In this section, we assumed that all the
states were known (including φy and qt), leading to great ac-
curacy in the estimation of the section loads. The final veri-
fication step involves providing estimated states to the algo-
rithm, which is the topic of the next section.

4 Applications of the digital twin

In Sect. 3 we discussed how the different components of the
digital twin were introduced and tested using increasing com-
plexity. In this section, we discuss combining the different
components to form the digital twin. We begin using numer-
ical experiments from OpenFAST (see Sect. 2.3.2), similar to
what was done previously, before using measurements from
the TetraSpar prototype.
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Figure 7. Tower fore–aft bending moment for the turbulent step and an irregular sea state as calculated by OpenFAST and compared to
the WELIB nonlinear and OpenFAST linear method. The motion of the structure is determined by OpenFAST and provided to the two
algorithms. The tower-top loads are also provided to the algorithms (ideal case, as opposed to Fig. 8).

Figure 8. Tower fore–aft bending moment for the turbulent step and an irregular sea state as calculated by OpenFAST and compared to the
WELIB nonlinear and the OpenFAST linear method. The motion of the structure is determined by OpenFAST and provided to the two other
algorithms. The tower-top loads are estimated using the aerodynamic estimator (unknown thrust case, as opposed to the ideal case presented
in Fig. 7).

4.1 Numerical experiment

First, we use the same turbulent step wind field and sea state
that was used throughout Sect. 3. The augmented states of
the system are determined at each time step using the state
estimator described in Sect. 3.5. The measurements (see Ta-
ble 1) are taken from the nonlinear OpenFAST simulation.
The wind speed and aerodynamic loads are estimated using
the aerodynamic estimator described in Sect. 3.4. The linear
model is derived from linearized OpenFAST, and the sec-
tion loads in the tower are obtained using the WELIB virtual
sensing algorithm described in Sect. 3.6. The estimates from
the digital twin are compared with the reference nonlinear
OpenFAST simulation results in Fig. 9. A visual inspection
of the time series reveals that the digital twin is able to cap-
ture the main trends and fluctuations of the different signals.
The match can be considered remarkable given that only the
sensors provided in Table 1 are used by the digital twin. Met-
rics such as mean relative error (ε) and coefficient of determi-
nation (R2) are indicated on the figure. Despite the visually

appealing match, the metrics indicate that the tower-bottom
moment has a mean error of ε = 21 %. The damage equiva-
lent load of the tower-bottom moment is underestimated by
ε̃Leq =−21 %, where we define

ε̃
(
Leq

)
=
Leq,est−Leq,ref

Leq,ref
. (17)

Differences in damage equivalent loads typically indicate
differences in the frequency content of the signals. We com-
pare the frequency content of the estimated signals with the
reference signals in Fig. 10. The low-frequency content (be-
low 1 Hz) is captured well, in line with the visual inspection
of Fig. 9. Unfortunately, no clear trend is found for the high-
frequency content: the power spectra of the aerodynamic
loads indicate an underestimation, whereas the spectra of the
tower-top position and tower-bottom bending moment tend
to have higher energy content. As shown in previous studies
(Branlard et al., 2020a), filtering of the input measurements
can be used to tune the energy content at high frequencies.
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Figure 9. Estimated signals from the digital twin compared to results from a nonlinear OpenFAST simulation using the turbulent-step
numerical experiment. From top to bottom: aerodynamic torque (Q), aerodynamic thrust (T ), tower-top position (qt), and tower-bottom
fore–aft bending moment (My , TB). Results are made dimensionless for confidentiality reasons.

Figure 10. Power spectral density (PSD) of the time series pre-
sented in Fig. 9. A logarithmic scale is used on the y axis.

The method is yet unsatisfactory because it acts as an arti-
ficial rebalancing of energy content to achieve the desired
DEL value. Both low- and high-frequency content contribute
to the DEL values; therefore, we believe that systematic im-
provement is only possible through modeling improvements
and higher observability of the states by the Kalman filter.

To quantify the errors in the estimation under a wider set
of operating conditions, we run 10 min simulations for a set
of wind speeds under normal turbulent conditions and sea
states. We select wind speeds from 5 to 20 m s−1 using 10 dif-
ferent seeds per bin of wind speed. The seeds are used to

Figure 11. Mean relative error of estimated signals for various wind
speed and seeds. Clockwise from top left: wind speed (U ), aerody-
namic loads, tower-bottom moment (My TB), and damage equiva-
lent load of the tower-bottom moment (Leq,My

TB). The individual
simulations are indicated by transparent markers. The average over
each seed is indicated using solid lines.

randomize the turbulent field and sea states. The wind speed
range is selected so as to avoid cut-in and cut-out events
where the aerodynamic estimator is not expected to perform
well. The turbulence intensity is selected based on the normal
turbulence model for a turbine of class A. The wave height
and wave period are set as a function of the wind speed as
Hs(U )= 0.16U + 1 and Tp(U )= 0.09U + 5.57. The Hs and
Tp relationships were obtained by performing a linear regres-
sion on the sea state and wind measurements at the test site.
OpenFAST simulations are run for each case, and then the
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Figure 12. Comparison of digital twin outputs with wind speed and tower-bottom moment measurements from the TetraSpar prototype. The
measured wind speed comes from a nacelle anemometer and therefore is expected to differ from the rotor-averaged value estimated by the
digital twin.

digital twin is run using these numerical measurements. A
summary of the mean relative error on some key estimated
quantities is given in Fig. 11. We observe that the mean rel-
ative error of the wind speed and aerodynamic loads is be-
tween 5 % and 15 % with a tendency for larger errors on the
aerodynamic loads at low and high wind speeds. The error
further propagates within the system, and the tower-bottom
moment is estimated with a relative error between 10 % and
40 %. The error levels indicate that the aerodynamic estima-
tor, which is based on quasi-steady rotor-averaged aerody-
namics, cannot fully capture the dynamic aerodynamic state
of the rotor in floating conditions. In general, the digital twin
lacks sufficient information to fully capture the tower-top
loads and the frequency content of the system. It is expected
that the placement of additional sensors, such as accelerom-
eters or load cells, along the tower can significantly improve
the estimation of the tower loads (in that case, we would
either use OpenFAST linearization outputs or an extended
Kalman filter and a nonlinear model for the outputs). As seen
in Fig. 11, the relative error levels on the damage equivalent
loads are between −10 % and 5 %, with the loads being ei-
ther overestimated or underestimated depending on the wind
speed. The structural health monitoring system could poten-
tially use the estimated error levels indicated in Fig. 11 to
provide a confidence interval on the fatigue lifetime of the
tower. We note that these error levels represent a best-case
scenario because we assumed that no noise or biases were
present in the measurements. We expect the error levels to
increase with additional measurement noise.

4.2 Estimations using measurements from the full-scale
prototype

In this section, we use measurements from the full-scale
TetraSpar prototype installed off the Norwegian coast. Four
days of data were selected based on data availability; a wide
range of wind speeds are present in the time series (ranging
from 4 to 24.5 m s−1 with an overall mean of 8.9 m s−1). Two
days were selected in summer and two in winter to account
for potential seasonality. Apart from these criteria, the selec-

Figure 13. Similar to Fig. 11 but using measurements from the
TetraSpar prototype. Each marker indicates a 10 min simulation re-
sult. Solid lines are bin averages. The whiskers indicate the stan-
dard deviation in each bin. The bottom plots are for the tower-
bottom (TB) and tower-middle (TM) bending moments.

tion of time series can be considered random. The measure-
ment data are stored as 10 min time series sampled at 25 Hz.
The total number of 10 min samples used over the four days
is 576. The measurement data are provided to the digital twin
to perform the state estimation and virtual sensing. The pro-
totype is equipped with load cells at the tower top, middle,
and bottom and nacelle wind speed measurements. We use
these measurements to compare with the digital twin esti-
mates.

We begin by highlighting the computational time of the
current procedure, as computational efficiency is crucial to
achieve our digital twin vision. The state estimation is cur-
rently 10 times faster than real time. The virtual sensing step
is twice as fast as real time, but computational improvements
are possible, in particular, by using a compiled language in-
stead of Python. For reference, OpenFAST simulations of
the full TetraSpar model (with substructure flexibility) typ-
ically run 3 times slower than real time, and a reduced-order
OpenFAST model with 8 DOFs runs 1.1 times slower. Cur-

https://doi.org/10.5194/wes-9-1-2024 Wind Energ. Sci., 9, 1–24, 2024



16 E. Branlard et al.: Digital twin floating

rently, real time estimation cannot be achieved with Open-
FAST. Reduced-order modeling techniques, such as the ones
presented in this article, are necessary to implement an online
digital twin. Yet, if the digital twin is run as a postprocessing
step, then parallelization using multiple CPUs could be used,
e.g., processing different time periods of the day.

A sample of results is provided in Fig. 12. The figure illus-
trates a selected case where the estimation of the tower load
is reasonably accurate, with an error on the damage equiv-
alent load of only 0.4 %. We note that the wind speed from
the measurement is a point measurement (from the nacelle
anemometer, in the wake of the turbine, and moving with the
nacelle), and it is therefore not expected to be in strong agree-
ment with the digital twin estimate, which is representative
of a rotor-averaged wind speed.

An aggregate of results from all the 10 min digital twin
runs is illustrated in Fig. 13. The figure shows relative er-
rors in wind speed, thrust, and damage equivalent loads at
the tower bottom and tower middle. As indicated previously,
the wind speed from the digital twin and the measurements
are different quantities, but the level of error obtained indi-
cates that the digital twin is able to capture the main level of
wind speed. The aerodynamic thrust from the aerodynamic
estimator is compared with the load cell at the tower top in
the fore–aft direction. This is a crude first-order approxima-
tion (e.g., neglecting inertial and gravitational loads, nacelle
tilting, and shaft bending), but the overall estimated levels ap-
pear to be, on average, around 10 % of those obtained from
the measured ones. The tower damage equivalent loads are,
on average, within ±10 % of the values obtained from the
measurements, but some cases show errors ranging between
±50 %. To give perspective on the large error values taken
by the metrics, we illustrate two cases with large errors in
Figs. 14 and 15. In both cases, we observe that the estima-
tor is capturing the trends and low frequencies with accuracy
that, from a pure qualitative perspective, would appear satis-
factory. As seen in Fig. 14, an offset is present in the signal,
which indicates that some physics might be missing from the
load virtual sensing or that the state estimator is failing. Mea-
surement errors could also affect the results, but no system-
atic error was detected over the time period investigated. It is
therefore difficult to conclude as to what is the main source
of error. In Fig. 14, the overall load level is captured well,
but the error in the damage equivalent load is εLeq is 33 %.
As illustrated in Fig. 10, our current method fails at captur-
ing the high-frequency content of the signals, which can have
a significant impact on the accuracy of the damage equiva-
lent loads. Despite these challenges, the average accuracy of
10 % is promising and indicates that the current methodology
can be used to reconstruct some structural and environmental
signals from a limited number of readily available sensors.

5 Conclusions

In this work, we implemented, verified, and validated a
physics-based digital twin solution applied to a floating off-
shore wind turbine. The work focused on the estimation of
the aerodynamic loads and the section loads along the tower,
using a set of measurements that we expect to be available
on any existing wind turbine (power, pitch, rotor speed, and
tower acceleration) and motion sensors that are likely to be
standard measurements for a floating platform (inclination
and GPS sensors). The key concept behind our approach uses

1. a Kalman filter to estimate the structural states based on
a linear model of the structure and measurements from
the turbine,

2. an aerodynamic estimator, and

3. a physics-based virtual sensing procedure to obtain the
loads along the tower.

An important part of the work was developing the method-
ology and implementing the tools and models necessary for
the aerodynamic estimation, state estimation, and load virtual
sensing. We explored two different pathways to obtain mod-
els: a suite of Python tools and OpenFAST linearization. We
used components from both approaches for the digital twin.

Using numerical experiments, we found that the accuracy
of the individual models was typically on the order of 5 %.
When comparing the digital twin estimations with the mea-
surements from the TetraSpar prototype, the errors increased
to 10 %–15 % on average for the quantities of interest. Over-
all, the accuracy of the results appeared promising given the
scope of our work, which aimed to illustrate a proof of con-
cept for a floating wind turbine digital twin. We observed
a non-negligible scatter of results for the estimation of the
tower damage equivalent loads that we attributed to the diffi-
culty of capturing high-frequency content.

Future work should therefore explore possible improve-
ments of the method to address this issue.

Additional improvements could include

1. gain scheduling of the linear models to extend the do-
main of validity of the linear models used and reduce
the modeling error;

2. using nonlinear models and extended Kalman filtering
techniques to lift the linear assumptions that challenge
the aerodynamics, hydrodynamics, and structural dy-
namics;

3. introducing additional degrees of freedom and a full ac-
count of the yawing of the nacelle to increase the fi-
delity of the models and account for the flexibility of
the floater;

4. adding a model to account for wave-excitation forces to
account for hydrodynamic loads and likely improve the
estimation of member-level loads;
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Figure 14. Similar to Fig. 12 but for a case where a clear offset is present in the tower loads.

Figure 15. Similar to Fig. 12 but for a case where a large error in damage equivalent load is observed.

5. introducing additional measurements to improve the
state estimation and increase the observability of the
state;

6. improving the robustness of the aerodynamic estimator
in particular, beyond the cut-in and cut-out wind speeds,
to apply the digital twin when the turbine is not operat-
ing; and

7. expanding the virtual sensing steps to estimate addi-
tional signals.

Appendix A: Linearization of the equations of motion
with augmented inputs

In this section, we describe the procedure used to linearize
the structural equations of motion without knowledge of the
external loads, which is used to obtain Eq. (1). We write the
implicit form of the equations of motion as

e(q, q̇, q̈, ũ, t)= 0, (A1)

where q, q̇, q̈, and ũ are the degrees of freedom, velocities,
accelerations, and augmented inputs of the model, respec-
tively. The term augmented input is used because the exter-
nal loads are included in this vector. The external loads are
(in general) a function of the degrees of freedom. Therefore,
we write the augmented input vector as

ũ= ũ(q, q̇, q̈,u), (A2)

where u is the vector of inputs in the classical sense, that is,
consisting of system inputs that do not depend on the degrees

of freedom (for instance, the wave elevation). The operating
point is written using the subscript “0” and is defined as

e
(
q0, q̇0, q̈0, ũ0, t

)
= 0. (A3)

We perturb each variable, as q = q0+ δq, q̇ = q̇0+ δq̇, etc.,
where δ indicates a small perturbation of the quantities. The
perturbation of the augmented input is then

ũ=ũ
(
q0, q̇0, q̈0,u0

)
+
∂ũ

∂q

∣∣∣∣
0
δq +

∂ũ

∂ q̇

∣∣∣∣
0
δq̇ +

∂ũ

∂ q̈

∣∣∣∣
0

δq̈ +
∂ũ

∂u

∣∣∣∣
0
δu, (A4)

where |0 indicates that the expressions are evaluated at the
operating point. The linearized equations are obtained using
a Taylor-series expansion:

[M0 −Q0
∂ũ

∂ q̈

∣∣∣∣
0

]
δq̈ +

[
C0−Q0

∂ũ

∂ q̇

∣∣∣∣
0

]
δq̇

+

[
K0−Q0

∂ũ

∂q

∣∣∣∣
0

]
δq =Q0

∂ũ

∂u

∣∣∣∣
0
δu, (A5)

with

M0 = −
∂e

∂ q̈

∣∣∣∣
0
,C0 = −

∂e

∂ q̇

∣∣∣∣
0
,K0 = −

∂e

∂q

∣∣∣∣
0
,

Q0 =
∂e

∂u

∣∣∣∣
0
, (A6)

and where M0, C0, and K0 are the linear mass, damping, and
stiffness matrices, and Q0 is the linear forcing vector, also
called the input matrix.
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Appendix B: Transfer of a Jacobian from one
destination point to another

The Jacobians provided by OpenFAST and MAP are pro-
vided at given nodes of the structure (e.g., the hydrodynamic
nodes, or the fairleads). In this section, we highlight the pro-
cedure to transfer these Jacobians to another node (the plat-
form reference point) assuming a rigid-body relationship be-
tween the nodes. The procedure is used in this work to com-
pute the linear 6×6 matrix for the hydrodynamics and moor-
ing dynamics in Sect. 3.3.2. We obtain different relationships
depending on whether the destination point is assumed to be
displaced or not (see different subsections below).

B1 Transfer of Jacobians between two points

We consider a point source (noted S) and a destination point
(noted D). The notations are illustrated in Fig. B1. We as-
sume that the two points belong to a rigid body. The forces
and moments at the destination and source are related as fol-
lows:

FD = FS, (B1)
MD =MS+ s̃FS, (B2)

where s = rS− rD is the vector from destination point to
the source point; FS and MS are the force and moments,
respectively, at point S; and the tilde notation refers to the
skew symmetric matrix, which is a matrix representation of
the cross product. We seek to linearize Eqs. (B1) and (B2)
for small displacements and rotations of the destination and
source nodes. In particular, we seek to express the Jacobians
at the destination node as a function of the source node, as-
suming a rigid-body relationship between the two. The rigid-
body relationship linking the small displacements (δu) and
small rotations (δθ ) of the source and destination points is

δuD = δuS+ s̃0δθS,

δθD = δθS, (B3)

where s0 is the vector between the source and destination
points at the operating point (prior to the perturbation). The
Jacobians of the transformations given in Eq. (B3) and its
inverse are[
∂uD
∂uS

∂uD
∂θS

∂θD
∂uS

∂θD
∂θS

]
=

[
I s̃0
0 I

]
,

[
∂uS
∂uD

∂uS
∂θD

∂θS
∂uD

∂θS
∂θD

]
=

[
I −s̃0
0 I

]
.

(B4)

To linearize Eqs. (B1) and (B2), we introduce the following
perturbations:

FD = FD0 + δFD, FS = FS0 + δFS, (B5)
MD =MD0 + δMD, MS =MS0 + δMS, (B6)

where the subscript 0 indicates values at the operating point.
At the operating point, Eqs. (B1) and (B2) are satisfied; that
is,

FD0 = FS0 , (B7)
MD0 =MS0 + s̃0FS0 . (B8)

B1.1 Transfer of forces

Inserting Eq. (B5) into Eq. (B1) leads to

FD0 + δFD = FS0 + δFS, (B9)

which, using Eq. (B7), leads to

δFD = δFS. (B10)

The Jacobians of the loads at node D with respect to the dis-
placements at nodeD are then obtained by applying the chain
rule to Eq. (B10) and making use of the Jacobian of the dis-
placements given on the right of Eq. (B4). For instance, for
the force,

∂FD

∂uD
=
∂FS

∂uS

∂uS

∂uD
+
∂FS

∂θS

∂θS

∂uD
=
∂FS

∂uS
,

∂FD

∂θD
=
∂FS

∂uS

∂uS

∂θD
+
∂FS

∂θS

∂θS

∂θD
=
∂FS

∂θS
−
∂FS

∂uS
s̃0. (B11)

For the transfer of the moments, the relationship will be
different whether the moments are transferred at the undis-
placed destination point or the displaced destination point.

B1.2 Moments at the undisplaced destination point

In this section, the moments are transferred to the undis-
placed destination point. The vector from the undisplaced
destination point to the displaced source is

r = s0+ δuS. (B12)

Introducing Eqs. (B6) and (B12) into Eq. (B2) and temporar-
ily using the “×” notation instead of the tilde notation leads
to

MD0+ δMD =MS0 + δMS+ s0×FS0 + s0

× δFS+ δuS×FS0 + δuS× δFS. (B13)

Making use of Eq. (B8), neglecting the nonlinear term (δuS×

δFS), and reintroducing the tilde notation leads to

δMD = δMS+ s̃0δFS− F̃S0δuS. (B14)

The Jacobians of the moments at the undisplaced node D
with respect to the displacements at nodeD are then obtained
by applying the chain rule to Eq. (B14):

∂MD

∂uD
=
∂MS

∂uS

∂uS

∂uD
+
∂MS

∂θS

∂θS

∂uD

+ s̃0

[
∂FS

∂uS

∂uS

∂uD
+
∂FS

∂θS

∂θS

∂uD

]
− F̃ S0

∂uS

∂uD

=
∂MS

∂uS
+ s̃0

∂FS

∂uS
− F̃S0 (B15)
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Figure B1. Rigid-body kinematics with the loads from one source point (S) transferred to a destination point (D), assuming small motion
of the points.

and
∂MD

∂θD
=
∂MS

∂θS

∂θS

∂θD
+
∂MS

∂uS

∂uS

∂θD

+ s̃0

[
∂FS

∂θS

∂θS

∂θD
+
∂FS

∂uS

∂uS

∂θD

]
− F̃S0

∂uS

∂θD

=
∂MS

∂θS
−
∂MS

∂uS
s̃0+ s̃0

∂FS

∂θS
− s̃0

∂FS

∂uS
s̃0+ F̃S0 s̃0. (B16)

B1.3 Jacobian relationships at the undisplaced
destination point

Equations (B11), (B16), and (B15) can be gathered in ma-
trix form to relate the different Jacobians between the source
point and the undisplaced destination point:[
∂FD
∂uD

∂FD
∂θD

∂MD
∂uD

∂MD
∂θD

]
undisplaced

=

[
I 0
s̃0 I

][ ∂FS
∂uS

∂FS
∂θS

∂MS
∂uS

∂MS
∂θS

]
[

I −s̃0
0 I

]
+

[
0 0
−F̃S0 F̃S0 s̃0

]
.

(B17)

B1.4 Moments at the displaced destination point

In this section, the moments are transferred to the displaced
destination point. The vector from the displaced destination
point to the displaced source is

r = s0+ δuS− δuD = s0− s̃0δθS. (B18)

Introducing Eqs. (B6) and (B18) into Eq. (B2) and temporar-
ily using the “×” notation instead of the tilde notation leads
to
MD0 + δMD =MS0 + δMS+ s0×FS0 + s0× δFS

− (s0× δθS)×FS0 − (s0× δθS)× δFS. (B19)

Making use of Eq. (B8), neglecting the nonlinear term ((s0×

δθS)× δFS), and reintroducing the tilde notation leads to

δMD = δMS+ s̃0δFS+ F̃S0 s̃0δθS. (B20)

The Jacobians of the loads at the displaced node D with re-
spect to the displacements at node D are then obtained by
applying the chain rule to Eq. (B20) and making use of the
Jacobian of the displacements given on the right of Eq. (B4).

∂MD

∂uD
=
∂MS

∂uS

∂uS

∂uD
+
∂MS

∂θS

∂θS

∂uD
+ s̃0

∂FS

∂uS

=
∂MS

∂uS
+ s̃0

∂FS

∂uS
(B21)

and
∂MD

∂θD
=
∂MS

∂uS

∂uS

∂θD
+
∂MS

∂θS

∂θS

∂θD
+ s̃0

∂FS

∂θD
+ F̃S0 s̃0

=
∂MS

∂θS
−
∂MS

∂uS
s̃0+ s̃0

∂FS

∂θD
+ F̃S0 s̃0

=
∂MS

∂θS
−
∂MS

∂uS
s̃0+ s̃0

∂FS

∂θS
− s̃0

∂FS

∂uS
s̃0+ F̃S0 s̃0 (B22)

B1.5 Jacobian relationships at the displaced destination
point

Equations (B11), (B22), and (B21) can be gathered in matrix
form to relate the different Jacobians:[
∂FD
∂uD

∂FD
∂θD

∂MD
∂uD

∂MD
∂θD

]
displaced

=

[
I 0
s̃0 I

][ ∂FS
∂uS

∂FS
∂θS

∂MS
∂uS

∂MS
∂vecθS

]
[

I −s̃0
0 I

]
+

[
0 0
0 F̃S0 s̃0

]
. (B23)

B2 Relationships at the displaced destination point for
multiple source points

We now consider the case where multiple point sources are
present. The derivation can be seen as a generalization of the
previous case between two points, but special care is needed
when summing the contributions from the different nodes.
The notations are illustrated in Fig. B2. The loads at the des-
tination points are obtained as

FD =
∑
k

Fk, (B24)

MD =
∑
k

Mk + s̃kFk, (B25)

where k is an index looping over all points of the rigid struc-
ture. To shorten notations, we define the vector between the
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Figure B2. Rigid-body kinematics with the loads from multiple source points (Sj ), transferred to a destination point (D).

destination point and a given point as

sk = rk − rD, (B26)
sk0 = rk0 − rD0 , (B27)

where sk is the vector between the displaced points and sk0

is the vector prior to the displacement. Due to the rigid-body
assumption, the elementary displacements of the points are
related as follows:

δuD = δuj + s̃j0δθ j

δθD = δθ j , (B28)

from which one obtains the relationships

∂uj

∂uD
= I,

∂θ j

∂uD
=O,

∂uj

∂θD
=−s̃j0 ,

∂θ j

∂θD
= I,

∂θ j

∂θk
= Iδjk,

∂θ j

∂uk
=O. (B29)

Using a similar Taylor expansion as for the case with two
nodes, the perturbation loads are obtained as

δFD =
∑
k

δFk, (B30)

δMD =
∑
k

δMk + s̃k0δFk + F̃k0

(
s̃k0δθk

)
. (B31)

The chain rule for a given quantity of interest (Q) is obtained
by summing over all the elementary variables:

dQ=
∑
j

∂Q

∂uj
duj +

∂Q

∂θ j
dθ j . (B32)

For instance, applying the chain rule to FD and using
Eq. (B30) leads to

∂FD

∂uD
=

∑
j

∂FD

∂uj

∂uj

∂uD
+
∂FD

∂θ j

∂θ j

∂uD
=

∑
j

∑
k

∂Fk
∂uj

∂uj

∂uD

+
∂Fk
∂θ j

∂θ j

∂uD
=

∑
j

∑
k

∂Fk
∂uj

. (B33)

Eventually, the Jacobians at the displaced destination node
are obtained as[
∂FD
∂uD

∂FD
∂θD

∂MD
∂uD

∂MD
∂θD

]
displaced

=

∑
j{∑

k

([
I 0
s̃k0 I

] [ ∂Fk
∂uj

∂Fk
∂θj

∂Mk

∂uj

∂Mk

∂θj

][
I −s̃j0
0 I

])

+

[
0 0
0 F̃j0 s̃j0

]}
. (B34)

Appendix C: Verification of the linear models

In this section, we supplement the results given in Sect. 3.3.3
by showing free-decay results without hydrodynamics (no
added mass, damping, hydrostatics). In Fig. C1, we show re-
sults with the structure only, and results with the structure
and moorings are reported in Fig. C2. These results also in-
clude the nonlinear WELIB formulation. A strong agreement
is found between the nonlinear OpenFAST and WELIB mod-
els and between the linear OpenFAST and WELIB models.
The yaw degree of freedom appears to be more challenging
to capture for the linear models. We recall that OpenFAST
and WELIB use a different definition of the transformation
matrices between the degrees of freedom, which results in
different structural dynamic equations.
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Figure C1. Free decay of the structure using nonlinear and linear models for a case including only the structure (no moorings, no hydrody-
namics). Time series of the main DOFs.

Figure C2. Free decay of the structure using nonlinear and linear models for a case including moorings (no hydrodynamics). Time series of
the main DOFs.

Appendix D: Computation of section loads

In this section, we describe the nonlinear calculation proce-
dure used in Sect. 3.6.2 to assess the section loads along the
tower based on estimates of the structure kinematics and the
loads at the tower top. For conciseness, in this appendix, we
use x and z for the coordinates along the tower fore–aft and
tower height, respectively, instead of xT and zT.

D1 Tower fore–aft bending moment and shear force

The fore–aft and side–side moments are computed in the
same way; therefore, this section focuses on the fore–aft di-
rection. The sectional fore–aft bending moment at a given
tower height z is determined as

My(z)=My,top−

LT∫
z

Sx(z′)dz′. (D1)

Here, My,top is the fore–aft bending moment at the tower
top, and Sx is the shear force in the x direction, obtained as

Sx(z)=

LT∫
z

px,all(z′)dz′, (D2)

where px,all is the force per unit length acting on the tower
section in the fore–aft direction, including contributions from
the external loads (aerodynamic loads on the structure), iner-
tial loads due to the acceleration of the structure (including
gravity), and nonlinear correction terms from the loads in the
z direction (p−1 effect, including self-weight effects). The
different contributions are written as follows:

px,all = px,ext+px,corr−px,acc. (D3)

In this work, we neglect the external loads on the tower,
px,ext = 0 (aerodynamic loads on the tower are typi-
cally small relative to rotor-thrust loads for an operating
wind turbine). The acceleration contribution is px,acc =

−m(z)(ax,struct(z)− ax,grav), where m is the mass per length
along the beam, ax,struct(z) is the acceleration of the section,
determined based on the rigid-body acceleration of the floater
and the elastic motion of the tower (q̇T and q̈T), and ax,grav is
the acceleration of gravity in the x direction. The p−1 cor-
rection term due to the vertical loading is computed as (see
Branlard, 2019)

https://doi.org/10.5194/wes-9-1-2024 Wind Energ. Sci., 9, 1–24, 2024



22 E. Branlard et al.: Digital twin floating

px,corr =
d28

d2z

 L∫
z

pzdx′+
∑
zk≥z

Fz,k


−

d8
dz

[
pz+

∑
k

Fz,kδ(z− zk)
]
, (D4)

where pz is the vertical load per unit length (mostly con-
sisting of the self-weight), Fz,k is the kth vertical force act-
ing at point zk , δ is the Dirac function, and 8 is the shape
function used to describe the tower displacement field (see
Sect. 2.3.3). In our case, only the vertical force acting on top
of the tower is present, z1 = LT, and Fz,1 = Fz,top. The pro-
cedure to compute the section loads in the y direction (using
the p−1 correction as well) is similar.

D2 Tower and rotor–nacelle assembly kinematics

The determination of the tower section loads requires knowl-
edge of the tower kinematics, to compute astruct, and of the
rotor–nacelle assembly (RNA) kinematics, to compute the
inertial contribution to the tower-top loads (see Sect. D3).
The position, linear velocity, linear acceleration, rotational
speed, and rotational acceleration of the floater (point F ,
body f ) are given respectively by

rF = {x,y,z}i, vF = {ẋ, ẏ, ż}i, aF = {ẍ, ÿ, z̈}i, (D5)
ωf =

{
φ̇z, φ̇y, φ̇z

}
i
, ω̇f =

{
φ̈z, φ̈y, φ̈z

}
i

(D6)

where the notation i indicates that the coordinates of the vec-
tor are expressed in the inertial coordinate system. The trans-
formation matrix from the floater to the inertial frame is ob-
tained as Rf2i = R(φx,φy,φz), where R is a function com-
puting the rotation matrix. The tower base (point T , body t)
kinematics are obtained from the floater motion using rigid-
body kinematics:

rT = rF+ rFT, (D7)
vT = vF+ωf× rFT, (D8)
aT = aF+ωf× (ωf× rFT)+ ω̇f× rFT, (D9)
ωt = ωf, ω̇t = ω̇f, Rt2i = Rf2i, (D10)

where rFT is the vector from the floater point to the tower
base. The kinematics of a given tower section (point S, at
height z) are given by

rS = rT+ rTS = rT+ rTS0 +uS, (D11)
vS = vT+ωt× rTS+ u̇S, (D12)
aS = aT+ωt× (ωt× rTS)+ ω̇t× rTS+ 2ωt× u̇S+ üS, (D13)
ωs = ωt+ωts, (D14)
ω̇s = ω̇t+ ω̇ts+ωt×ωts, (D15)

where rTS0 = zẑt is the vector from the tower base to the un-
deflected section, and uS, u̇S, and üS are the elastic motions

of the section computed based on the shape function and the
generalized coordinates, e.g., uS(z)=

∑
j

qt,j8j = qt8(z)x̂t

(see Branlard and Geisler, 2022). We note that OpenFAST
also includes a vertical motion associated with the deflection
(referred to as a “geometric nonlinearity”), which we neglect
in this work. The transformation matrix from the section to
the tower is Rs2t = R(−u′S,y,u

′

S,x,0), where uS,y and uS,x
are the components of uS in the tower coordinate system,
and the prime notation indicates the differentiation with re-
spect to z. The rotation speed and acceleration of the tower
section with respect to the tower base are

ωts =
{
u̇′S,y, u̇

′

S,x,0
}

t
, ω̇ts =

{
ü′S,y,

′üS,x,0
}

t
. (D16)

The kinematics of the tower-top point and nacelle (point N ,
body n) are taken from the last section node (point S with
z= LT). Yawing, tilting, and rolling of the tower top would
change the orientation matrix, rotational velocity, and rota-
tional acceleration of the nacelle. These kinematics are omit-
ted here for conciseness. The kinematics of the center of
mass of the RNA (point G) are obtained using rigid-body
kinematics – identical to what was used between point F
and T .

D3 Tower-top loads

The tower-top loads are computed as follows:

Ftop = Faero−Finertia, (D17)
Mtop =Maero−Minertia, (D18)

where the aerodynamic loads are transferred to the tower top
and where the inertial loads from the rigid-body RNA are

Finertia =MRNA (aG−g) , (D19)
Minertia = rNG×Finertia+ JG · ω̇n+ωn× (JG ·ωn) , (D20)

where rNG is the vector from the tower top to the center of
mass of the RNA, MRNA is the mass of the RNA, JG is the
inertia tensor of the RNA at its center of mass, aG is the lin-
ear acceleration of the center of mass of the RNA, ωn is the
rotational acceleration of the RNA, and ω̇n is the rotational
acceleration of the nacelle. The load calculation is first done
in the coordinate system of the nacelle and then transferred to
the coordinate system of the tower where Eq. (D1) is defined.

Code availability. The source code of the digital twin and exam-
ples using a generic spar turbine are provided in the GitHub repos-
itory (https://github.com/NREL/wtDigiTwin, Branlard, 2023a) and
https://doi.org/10.5281/zenodo.8048549 (Branlard, 2023b).

Data availability. The wind turbine model and measurement data
for the TetraSpar are not publicly available. The source code repos-
itory (see “Code availability”) contains open-source models of the
NREL 5 MW for testing purposes.
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