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Abstract. Modal properties and especially damping of operational wind turbines can vary over short time pe-
riods as a consequence of environmental and operational variability. This study seeks to experimentally test and
validate a recently proposed method for short-term damping and natural frequency estimation of structures un-
der the influence of varying environmental and operational conditions from measured vibration responses. The
method is based on Gaussian process time-dependent auto-regressive moving average (GP-TARMA) modelling
and is tested via two applications: a laboratory three-storey shear frame structure with controllable, time-varying
damping and a flutter test of a full-scale 7 MW wind turbine prototype, in which two edgewise modes become
unstable. Damping estimates for the shear frame compare well with estimates obtained with stochastic subspace
identification (SSI) and standard impact hammer tests. The efficacy of the GP-TARMA approach for short-term
damping estimation is illustrated through comparison to short-term SSI estimates. For the full-scale flutter test,
GP-TARMA model residuals imply that the model cannot be expected to be entirely accurate. However, the
damping estimates are physically meaningful and compare well with a previous study. The study shows that
the GP-TARMA approach is an effective method for short-term damping estimation from vibration response
measurements, given that there are enough training data and that there is a representative model structure.

1 Introduction

A novel operational modal analysis (OMA) method (Ebbe-
høj et al., 2023) for short-term modal damping estimation
for structures under the influence of varying environmental
and operational conditions (EOCs), such as wind turbines in
operation, is tested with a controlled laboratory experiment
and a wind turbine flutter test.

The dynamic properties of wind turbines (i.e. natural fre-
quencies, damping ratios, and mode shapes) can be sensi-
tive to changing EOCs (Avendaño-Valencia et al., 2017; Bo-
goevska et al., 2017). Aeroelasticity, active control, material
properties, and nonlinear damping mechanisms (e.g. friction)

are examples of phenomena and factors which can cause
EOC variability (M. O. Hansen et al., 2006; Wang et al.,
2022; Chen and Duffour, 2018). EOC variability can act on
short and long timescales relative to the fundamental fre-
quency of the given structure. For example, changing temper-
atures of wind turbine towers affecting their natural frequen-
cies work on the order of hours and days (Hu et al., 2015),
which in this context are considered long-term effects. By
contrast, complex aero–servo–elastic interactions of multi-
megawatt wind turbines can cause short-term variability of
damping in particular over a few minutes due to dependen-
cies on e.g. rotor speed, blade pitch angle, and wind speed
(M. O. Hansen et al., 2006; M. H. Hansen et al., 2006).
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Estimating aeroelastic (or operational) damping accurately
is essential for improving the design of multi-megawatt wind
turbines, as it is a crucial design parameter for modelling
fatigue and aeroelastic instabilities, i.e. stall-induced vibra-
tions (SIVs) and vortex-induced vibrations (VIVs) (Veers
et al., 2023). Improved aeroelastic damping estimation may
therefore enable designs associated with less risk or less ma-
terial usage. However, “a precise evaluation of aeroelastic
damping remains an elusive goal in some operating condi-
tions”, as stated in Grand challenges in the design, manu-
facture, and operation of future wind turbine systems (Veers
et al., 2023, p. 1090). The combination of nonstationary
EOCs and EOC-sensitive damping complicates the task of
obtaining precise aeroelastic damping estimates for wind tur-
bines.

OMA covers a broad class of output-only system identi-
fication methods for estimating modal parameters for struc-
tures in operating conditions where the input (i.e. forcing or
excitation) is not measured. Standard OMA techniques, for
instance, the covariance-driven stochastic subspace identifi-
cation (COV-SSI) (Peeters and Roeck, 2001; Brincker and
Ventura, 2015), typically assume the system is linear and
time invariant (LTI) with input resembling stationary white
noise and requiring long time measurements. Brincker and
Ventura (2015) suggest a minimum measurement time of
10
f ζ

, where f ζ is the lowest natural frequency–damping ratio
multiple of a given structure. This translates to a measure-
ment time requirement of approximately 28 min for a mode
with a natural frequency of 0.2 Hz and 3 % damping ratio,
which is in the range of a multi-megawatt wind turbine mode.
Therefore, the capabilities to track short-term variations in
damping are limited for these methods.

When identifying modal damping from output-only mea-
surements, the effect of input on the measured output must
be accounted for since both input and damping govern the
near-resonant vibration amplitudes. This can be done by ei-
ther eliminating the effect (i.e. averaging it out) or modelling
it (Au, 2017). Standard OMA methods rely on the former ap-
proach. For instance, in COV-SSI covariance, Toeplitz ma-
trices of the output measurements are computed and used
as equivalent free response approximates of an assumed LTI
system (Peeters and Roeck, 2001). However, a considerable
amount of data is required (minimum measurement time of
10
f ζ

) for the covariance Toeplitz matrices to be adequately es-
timated. Consequently, this approach involves a trade-off be-
tween temporal resolution and estimate accuracy, which can
be a limiting factor in the context of short-term variability.

Nonstationary auto-regressive moving average (ARMA)
time series models offer an avenue for accounting for non-
stationary input and time-varying system characteristics, in-
cluding modal parameters. ARMA models closely resemble
the mathematical structure of discrete-time equations of mo-
tion, where the auto-regressive (AR) part plays the role of the
left-hand (homogeneous) side, and the AR model coefficients
carry information on the modal parameters. Similarly, the

moving average (MA) part resembles the input, thus filtering
out the effect of the excitation from the modal parameters. In
time-dependent auto-regressive moving average (TARMA)
models, the model coefficients and corresponding modal pa-
rameters can vary in time. One type is the smoothness priors
TARMA (SP-TARMA) model, where the model coefficients
are modelled as autocorrelated stochastic (random) variables,
for which evolution in time is constrained by smoothness
priors (Poulimenos and Fassois, 2006; Spiridonakos et al.,
2010; Kitagawa and Gersch, 1996). The model coefficients
of the SP-TARMA model are estimated locally in time, e.g.
with a Kalman filter. The SP-TARMA models may be capa-
ble of tracking general nonstationary signals but have limited
capabilities in tracking abrupt or short-term changes (Pouli-
menos and Fassois, 2006). Functional series TARMA (FS-
TARMA) models constitute TARMA-type models whose
model coefficients are represented by predefined basis func-
tions, allowing AR and MA coefficients to evolve determin-
istically in time. FS-TARMA models are fitted to data by es-
timating global projection coefficients for each basis func-
tion, which minimizes the model prediction errors. If the ba-
sis functions can capture the time-varying nature of the sys-
tem, FS-TARMA models can track abrupt and short-term
changes in the system. However, modal parameter trajec-
tories in time for complex systems under EOC variability
might not lend themselves to be represented by a reasonable
number of time-dependent basis functions, resulting in an in-
tractable number of parameters to be estimated.

One approach to capture the effects of changing EOCs
on vibrating structures is to embed measured environmen-
tal and operational variables (EOVs) into the model. Vari-
ous approaches have been proposed for this. Multi-megawatt
wind turbines pose a particular challenge due to the intricate
aero–servo–elastic interactions. Bogoevska et al. (2017) ex-
pand SP-TARMA model residuals with a polynomial chaos
expansion (PCE) to account for long-term EOC variability
in order to improve the accuracy of structural health mon-
itoring (SHM) of wind turbines. Avendaño-Valencia et al.
(2017) introduce a linear-parameter-varying AR (LPV-AR)
model to capture the short-term dynamics, and Gaussian
process (GP) regression is used to account for long-term
variability associated with changing wind speed in terms
of 10 min averages, which is extended from a single-output
(univariate) model to a multiple-output (multivariate) model
by Avendaño-Valencia et al. (2020) and Avendaño-Valencia
and Chatzi (2020), which e.g. enables mode shape identifica-
tion.

The present work concerns short-term damping (and nat-
ural frequency) estimation based on output-only measure-
ments for structures influenced by short-term varying EOCs,
where short term is of the order of seconds. The meth-
ods mentioned above are based on models conditioned on
(e.g. 10 min) statistics, which limits their ability to track
short-term changes. The nonstationary and EOV-dependent
GP-TARMA model (introduced in Ebbehøj et al., 2023) is
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therefore conditioned on EOV time series. The GP-TARMA
model combines an FS-TARMA model where the basis func-
tions may depend on multiple EOV time series with Gaus-
sian processes by modelling the projection coefficients for
the basis functions as Gaussian rather than deterministic vari-
ables to allow for better representation of unaccounted distur-
bances. The capabilities of the GP-TARMA model to track
EOC variability are limited by how well the basis functions
capture the nonstationarities of the response (e.g. slow or fast
variations) and fundamentally by the measurement sampling
rate. While the GP-TARMA model may be nonlinear with
respect to EOVs, it is linear with respect to the response it is
modelling, i.e. representing an equation of motion that is lin-
ear in the dependent variables. Consequently, the model can-
not capture strongly nonlinear system properties. However,
weakly nonlinear effects on the effective natural frequencies
and damping ratios may be approximated if these nonlinear
effects correlate with operational states represented by the
EOV-dependent basis functions.

Verification and validation are integral parts of establish-
ing any new method or model in structural dynamics, and it
is essential for output-only damping estimation methods due
to the latent and elusive nature of damping. This work con-
tributes, in particular, to experimental validation of the GP-
TARMA approach for short-term damping estimation, suit-
able for application to wind turbines. The method is validated
using vibration measurements from two distinctly different
experimental setups: a laboratory shear frame with abruptly
changing damping realized with electromagnetic dampers
and a full-scale 7 MW wind turbine prototype deliberately
driven to flutter-like instabilities (measurements published by
Volk et al., 2020).

The paper is structured as follows: Sect. 2 summarizes
the details necessary for using the GP-TARMA model for
short-term modal parameter estimation from Ebbehøj et al.
(2023), including the GP-TARMA model definition and esti-
mation, a model structure identification scheme, a model val-
idation procedure, and downstream analysis of an estimated
GP-TARMA model. Section 3 presents the laboratory shear
frame test setup; experimental procedures; and related anal-
ysis, results, and discussion. In Sect. 4, analysis of the full-
scale multi-megawatt wind turbine instability measurements
is performed, and the results are presented and discussed.

2 Methods

This section summarizes the procedures for estimating short-
term damping ratios (and natural frequencies) from output-
only measurements using a GP-TARMA model, which is in-
troduced and presented in detail in Ebbehøj et al. (2023).
Necessary details for using the method are given, including
the GP-TARMA model definition, procedures for estimat-
ing model parameters, the selection of an appropriate model

structure, the extraction of modal parameters, and their un-
certainties. The entire procedure is summarized in Table 2.

2.1 The GP-TARMA model

The GP-TARMA model introduced in Ebbehøj et al. (2023)
can be used to model a nonstationary, discrete-time (dis-
placement/velocity/acceleration) response yt ∈ R influenced
by EOCs, which can be described usingm EOVs ξ t ∈ R1×m,
where subscript t denotes the time index, and yt and ξ t are
defined for t = 1, . . ., N . The GP-TARMA model is closely
related to an FS-TARMA model (Poulimenos and Fassois,
2006; Spiridonakos and Fassois, 2014), for which the ARMA
coefficients evolve in time as trajectories spanned by EOV-
dependent basis functions. The GP-TARMA model extends
FS-TARMA by modelling the basis function coefficients as
Gaussian variables:
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where et is a normally and independently distributed (NID)
zero-mean innovation process with variance σ 2

e,t , which may
be time varying; ai(ξ t ) and ci(ξ t ) are the ith EOV-dependent
AR and MA coefficients; and na(nc) denotes the AR (MA)
model order. The AR and MA coefficients ai(ξ t ) and ci(ξ t )
are linear combinations of basis functions gj (ξ t ) and hj (ξ t )
and the associated Gaussian projection coefficients uai,j and
uci,j . The complete set of AR (MA) basis functions for the
full time series t = 1, . . ., N constitutes a functional sub-
space defined as

FAR =
{
g1 (ξ ) ,g2(ξ ),g3(ξ ), . . ., gpa (ξ )

}
, (4a)

FMA =
{
h1(ξ ),h2(ξ ),h3(ξ ), . . ., hpc (ξ )

}
, (4b)

where gj (ξ )= [gj (ξ1), . . ., gj (ξN )]T ∈ RN×1 and hj (ξ )=
[hj (ξ1), . . ., hj (ξN )]T ∈ RN×1 are the j th basis functions
for time index t = 1, . . ., N , and ξ ∈ RN×m contains the
EOVs at the corresponding time indices. The basis functions
gj and hj may be members of different orthogonal function
families (e.g. Legendre polynomials or trigonometric func-
tions) and depend on different EOVs (e.g. rotor speed, wind
speed, and pitch angle). A basis function type consists of a
function family and an EOV. The functional subspace FAR
(FMA) may consist of ka (kc) basis function types, each with
a basis order of pak (pck ).
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For example, FAR could consist of a constant-valued bias
vector g1; first- and second-order Legendre polynomials in
wind speed v, g2(v) and g3(v); and a first-order Legen-
dre polynomial in rotor speed �, g4(�). This would cor-
respond to ka = 2 basis function types (neglecting the triv-
ial constant-valued bias type) with basis orders of pa1 = 2
and pa2 = 1 for the Legendre polynomials in wind speed
and rotor speed, respectively. The orthogonality among ba-
sis functions in the functional subspaces should be ensured,
using e.g. modified Gram–Schmidt orthogonalization (Stew-
art, 2013). In cases where EOVs contain high-frequency (i.e.
much higher than the frequency of the highest mode) scatter,
it can be beneficial to zero-phase low-pass filter (e.g. using
MATLAB’s filtfilt function) the EOVs to prevent the
high-frequency scatter from propagating to the modal param-
eters (Ebbehøj et al., 2023).

ARMA models are closely linked with discrete-time equa-
tions of motion (EOMs). The AR part resembles the left-
hand side of discrete-time EOMs, which means the AR co-
efficients carry the physical characteristics of the system it
models, i.e. natural frequencies and damping ratios. The MA
part resembles the right-hand side of discrete-time EOMs as
it can capture the effect of stochastic excitation on the mea-
sured response yt . Consequently, FAR should be composed
such that it can represent the time-varying nature of the nat-
ural frequencies and damping ratios, and FMA should be se-
lected to account for nonstationary stochastic excitation; ex-
amples of this are given in Sects. 3.2 and 4.1.

Equations (1)–(3) can be expressed as follows in the more
compact regression form:
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where the regression vector 8t =8t (ξ t ) ∈ R(napa+ncpc)×1

contains the regressed response measurement yt−i and

innovation et−i multiplied by appropriate basis func-
tion values, and the Gaussian projection coefficients are
collected in θ ∈ R(napa+ncpc)×1. The GP-TARMA model
for the full time series can be written in regression
form by employing the stacked response and innova-
tion vectors y =

[
y1+nm , . . ., yN

]T
∈ R(N−nm)×1 and e =[

e1+nm , . . ., eN
]T
∈ R(N−nm)×1:

y =8T θ + e, (6)

where nm =max([na,nc]) denotes the maximum model or-
der, and 8 ∈ R(napa+ncpc)×(N−nm) is the regression matrix.

For a given data set D = {y,ξ}, the GP-TARMA
model is fully characterized by M= {S,P}, where S =
{FAR,FMA,na,nc} contains the model structure, and P =
{µθ ,6θ ,6e} contains the time-varying innovation variance
6e = diag([σ 2

e,1+nm , . . ., σ
2
e,N ]) ∈ R

(N−nm)×(N−nm) and the
hyper-parameters for the Gaussian projection coefficients,
i.e. the mean µθ ∈ R(napa+ncpc)×1 and covariance 6θ ∈

R(napa+ncpc)×(napa+ncpc).

2.2 Model parameter estimation

A procedure for maximum likelihood (ML) estimation of
the hyper-parameters and innovation variance in P (via the
expectation maximization algorithm) presented in Ebbehøj
et al. (2023) (see also Avendaño-Valencia et al., 2017) is
summarized in this section.

With the model parameter θ and response y in Eq. (6)
modelled as random variables, the probability density func-
tion (PDF) of their joint distribution governs the probability
of the two (model parameters and response) occurring simul-
taneously:

p(y,θ |8,P)= p(θ |y,8,P)p(y|8,P), (7)

where p(θ |y,8,P) denotes the posterior distribution of the
model parameters and p(y|8,P) the marginal likelihood of
the response. For the GP-TARMA model in Eq. (6), these
distributions are Gaussian and can be specified as (Ebbehøj
et al., 2023) (see also Murphy, 2023, Chap. 2, and Avendaño-
Valencia et al., 2017)

p(θ |y,8,P)=N
(
θ̂ , P̂θ

)
, (8)

p(y|8,P)=N
(
8Tµθ ,6ε

)
, (9)

where

θ̂ = E
[
θ |y,8,P

]
= µθ +K

(
y−8Tµθ

)
, (10a)

P̂θ = E
[
(θ − θ̂ )(θ − θ̂ )T |y,8,P

]
=6θ −K8T6θ , (10b)

K=6θ86−1
ε , (10c)

6ε =6e+8
T6θ8, (10d)

where E[X] is the expected value of X, 6ε ∈

R(N−nm)×(N−nm) is the covariance matrix of the prior (i.e.
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before observing the actual response) one-step-ahead predic-
tion errors, and the innovation variance for each time index is
collected in 6e = diag

(
σ 2

1+nm, . . ., σ
2
N

)
∈ R(N−nm)×(N−nm).

The mean and covariance of the posterior parameter distribu-
tion, θ̂ ∈ R(napa+ncpc)×1 and P̂θ ∈ R(napa+ncpc)×(napa+ncpc),
are also referred to as the maximum a posteriori (MAP)
estimates of µθ and 6θ , respectively.

The marginal likelihood of the response in Eq. (9) also
serves as the marginal likelihood of the hyper-parameters
L(P|y,8), meaning that the hyper-parameters in P can be
estimated by maximizing the marginal hyper-parameter like-
lihood. This forms a ML optimization problem, which can
be formulated in terms of the log-likelihood as (Avendaño-
Valencia et al., 2017; Murphy, 2023; Rasmussen and
Williams, 2006):

P̂ = argmax
P lnL(P|y,8), (11a)

where lnL(P|y,8)=−
N

2
ln2π

−
1
2

(
ln |6ε| + εT6−1

ε ε
)
, (11b)

where the vector ε = [ε1+nm, . . ., εN ]
T
∈ R(N−nm)×1 con-

tains the prior one-step-ahead prediction errors computed at
time index t as

εt = yt −8
T
t µθ . (12)

Solutions to the ML optimization can be approximated us-
ing the general-purpose expectation maximization (EM) al-
gorithm, which constitutes an expectation step (E step) and
a maximization step (M step), which are iterated until con-
vergence. During the E step, the posterior (expected) mean
and covariance of the model parameters, θ̂ and P̂θ , are eval-
uated using Eqs. (10a)–(10d) based on the hyper-parameters
from the previous EM iteration. In the M step, the hyper-
parameters are updated using the model parameter posterior
mean and covariance from the E step by the explicit update
equations as follows (Avendaño-Valencia et al., 2017):

µ
(i)
θ = θ̂

(i−1), (13a)

6
(i)
θ = δδ

T
+ P̂(i−1)

θ , (13b)

δ = θ̂ (i−1)
− θ (i−1), (13c)

6̂(i)
e = diag

([
σ̂ 2
e,1, . . ., σ̂

2
e,N

])
, (13d)

where superscript (i) denotes the designated variable from
the ith EM iteration. The time-varying innovation variance
6̂e ∈ R(N−nm)×(N−nm) can be estimated using a 2K+1 sam-
ple moving window:

σ̂ 2
e,t =

1
2K

t+K∑
τ=t−K

(
eτ − µ̂e,t

)2
,

µ̂e,t =
1

2K + 1

t+K∑
τ=t−K

eτ , (14)

where eτ = yτ (8(i−1))T θ̂ (i−1), and µ̂e,t is the innovation
mean for the window with time index t . Although the lat-
ter is assumed to be zero, it is included in Eq. (14) because
it has been observed to improve the accuracy of damping ra-
tio estimates in cases where the response measurements are
influenced by stochastic excitation with a time-varying mean
value. The time-invariant innovation variance can likewise be
estimated using Eq. (14) with K =N/2.

The EM algorithm has been shown to converge to a lo-
cal likelihood maximum, not necessarily global (e.g. Bishop,
2006). Consequently, accurate initial values of the hyper-
parameters P (0) are required. This can be obtained by es-
timating the model parameters for the corresponding FS-
TARMA model, where uai,j and uci,j are scalars rather than
Gaussian variables, and using these parameter estimates as
the initial hyper-parameter values P (0). The corresponding
FS-TARMA model parameters can be estimated using e.g.
the two-stage least squares (2SLS) or the two-stage weighted
least squares (2SWLS) method (Spiridonakos and Fassois,
2014; Poulimenos and Fassois, 2006). Convergence of the
EM algorithm is implied by consistent and small changes in
lnL(P|y,8) and in the hyper-parameters P over EM itera-
tions.

2.3 Model validation

Once a GP-TARMA model is estimated, it is important to
validate that it adequately represents the observations (Pouli-
menos and Fassois, 2006; Spiridonakos and Fassois, 2014;
Madsen, 2007). Model validation in this present work (as
in Ebbehøj et al., 2023) consists of residual analysis and
cross-validation. Residual analysis tests whether the model
residual et (i.e. the innovations) satisfies the NID assumption,
i.e. whether it resembles white noise. A standard whiteness
test checks whether the auto-correlation function (ACF) of
the residuals resembles that of white noise, i.e. significantly
uncorrelated at time lags τ > 0. However, this is not gen-
erally applicable to the case of nonstationary residuals, as
these would be correlated through the time-varying innova-
tion variance. An approach to partially circumvent this is-
sue is to standardize the residuals using the estimated time-
varying innovation variance σ̂ 2

e,t (Fouskitakis and Fassois,
2002):

zt =
et

σ̂ 2
e,t

, t = 1+ nm, . . ., N. (15)

Given that et is a zero-mean white noise sequence with a
time-varying variance that is adequately approximated by
σ̂ 2
e,t , the standardized residual zt is stationary. Using the stan-

dardized residual zt for the ACF test renders the test sensi-
tive to the accuracy of the time-varying innovation variance
estimate. It should thus be supplemented by a test that is in-
sensitive to such an estimate.

An alternative whiteness test, fully applicable to the non-
stationary case, is a simple sign test. Sign changes in a zero-
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mean white noise sequence are expected to occur (on aver-
age) every other time step and are governed by the binomial
distribution, which is approximated by the Gaussian distribu-
tion for large Nseq (Madsen, 2007):

Number of changes in sign ∈ B
(
Nseq− 1,

1
2

)
≈N

(
µwn,σ

2
wn

)
, (16)

where Nseq is the number of samples in the residual se-
quence, and the mean and variance are given by µwn =

(Nseq− 1)/2 and σ 2
wn = (Nseq− 1)/4, respectively. Whether

a residual sequence {et : t = 1+nm, . . ., N} resembles white
noise can thus be tested by checking whether the number
of sign changes adheres to Eq. (16) under some significance
level.

Cross-validation is performed by splitting a data set of a
single recording in a training and a test set containing 75 %
and 25 % of the data points, respectively. The model is solely
estimated using the training set and is subsequently tested in
terms of residual tests and whether the orders of magnitude
of prediction errors are the same for the training and test set.
If the prediction errors of the training set are much smaller
than those of the test set, it suggests the model is over-fitted;
i.e. the model excessively represents the measured realization
of the stochastic response rather than the underlying system.
However, it is only applicable to the nonstationary case if the
two sets have comparable characteristics.

2.4 Model structure identification

In this section a procedure for identifying a suitable model
structure, i.e. S = {FAR,FMA,na,nc}, is summarized (see
Ebbehøj et al., 2023, for details). A suitable model struc-
ture is sufficiently complex to capture the underlying system
producing the response measurements while avoiding over-
fitting. To identify a suitable model structure, a range of can-
didate models with different model structures is estimated
and compared in terms of predictive performance and capa-
bility of capturing the vibration modes of interest.

To compare the predictive performance (i.e. the prior
one-step-ahead prediction errors) of the candidate models,
the residual sum of squares normalized by the series sum
of squares (RSS/SSS) and the Bayesian information crite-
ria (BIC) are used. The RSS/SSS is given by

RSS/SSS=
N∑

t=1+nm

ε2
t

/
N∑

t=1+nm

y2
t , (17)

where ε is the prior prediction error defined in Eq. (12). The
BIC is given by

BIC=− lnL(P|y,8)+
lnN

2
d, (18)

where d is the number of independently adjusted parame-
ters. RSS/SSS and BIC measure the prediction errors, but

BIC also penalizes model complexity, i.e. the number of
model parameters. The required model complexity for cap-
turing the vibration modes of interest is identified using fre-
quency stabilization diagrams, as is commonly used for time
domain OMA methods (Brincker and Ventura, 2015; Peeters
and Roeck, 2001; Avendaño-Valencia et al., 2017). Typically,
the predictive performance converges at lower model orders
than the model orders required to capture the modes of in-
terest. This means the convergence of the predictive perfor-
mance is typically a necessary but insufficient condition.

A simple backward regression scheme is employed to
identify a suitable model structure, i.e. starting with high
model orders, n∗a and n∗c , and functional subspaces of high
dimensionalities, F∗AR and F∗MA, ensuring sufficient model
complexity to capture the nonstationary response. The com-
plexity of the initial model is then reduced in four stages:
first, models with lower AR orders are estimated, and the
most suitable AR order is identified. Then, the optimal
MA order (given the optimal AR order) is identified in a
similar fashion. The optimal basis orders for each AR and
MA basis function type are identified in a similar manner.
These stages are repeated for different combinations of AR
and MA basis function types. The procedure is summarized
in Table 1.

2.5 Estimating modal parameters and their uncertainties

In this section the necessary results for estimating “frozen”
modal parameters (excluding mode shapes) from an es-
timated GP-TARMA model and approximating the corre-
sponding uncertainties are summarized. The frozen proper-
ties of a time-varying system represent the LTI properties at
frozen time t ′; i.e. the time-varying system is represented by
an infinite sequence of LTI systems (Poulimenos and Fassois,
2006). See Ebbehøj et al. (2023) for more details and also
Poulimenos and Fassois (2006), Avendaño-Valencia and Fas-
sois (2014), Spiridonakos et al. (2010), Avendaño-Valencia
et al. (2017), and Yang and Lam (2019) on the computation
of frozen modal parameters and their uncertainty.

The frozen modal parameters can be computed from the
time-varying AR coefficients since an equivalent discrete-
time state-space model with system matrix Lt ′ can be for-
mulated from the AR coefficients {ai(ξ t ′ ) : i = 1, . . ., na} at
each time step t ′. The first step is to compute the discrete-
time eigenvalues of the eigenvalue problem:

Lt ′vi = ρivi, i = 1,2, . . ., na, (19)

where t ′ is the frozen-time index, and vi = vi,t ′ and ρi = ρi,t ′
are the ith right eigenvector and eigenvalue of Lt ′ :

Lt ′ =
0
.
.
. I(na−1)×(na−1)
0

−ana

(
ξ t ′
)
−ana−1

(
ξ t ′
)

· · · −a2
(
ξ t ′
)
−a1

(
ξ t ′
)

na×na

, (20)
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Table 1. Model structure identification procedure (adapted from Ebbehøj et al., 2023). High order or dimensionality is denoted by ∗.

1. Propose candidate functional subspaces F∗AR and F∗MA
2. For n∗c , F∗AR, and F∗MA: find optimal AR model order n̂a ∈ {1,2, . . ., n∗a }
3. For n̂a, F∗AR, and F∗MA: find optimal MA model order n̂c ∈ {1,2, . . ., n∗c }
4. For n̂a, n̂a, and F∗MA: find optimal basis order p̂ak for the kth AR basis function type. Repeat for all AR basis function types k = 1, . . ., ka to obtain F̂AR
5. For n̂a, n̂c, and F̂AR: find optimal basis order p̂ck for the kth MA basis function type. Repeat for all MA basis function types k = 1, . . ., kc to obtain F̂MA

Steps 1–5 may be repeated for other combinations of basis function types, i.e. testing other EOVs and/or family function types

where I is the identity matrix with dimensions as indicated
by the subscript.

The ith natural frequency fi,t ′ (in Hz) and damping ra-
tio ζi,t ′ for frozen-time index t ′ can be computed by (Yang
and Lam, 2019; Poulimenos and Fassois, 2006; Spiridonakos
et al., 2010; Avendaño-Valencia et al., 2017)

fi,t ′ =
|ηi,t ′ |

2π
and ζi,t ′ =−

Re
(
ηi,t ′

)
|ηi,t ′ |

, (21a)

where ηi,t ′ = fs ln
(
ρi,t ′

)
(21b)

is the equivalent ith continuous-time eigenvalue.
The uncertainty in the modal parameter estimates can

be approximated by propagating the estimated AR coeffi-
cient uncertainty (quantified by P̂θ ) through the steps re-
quired to compute modal parameters from AR coefficients.
These steps constitute obtaining discrete-time eigenvalues
in Eq. (19), transforming the discrete-time eigenvalues to
continuous-time eigenvalues in Eq. (21b), and computing the
modal parameters from the continuous-time eigenvalues in
Eq. (21a). The uncertainty propagation can be achieved by
either Monte Carlo simulation or analytically using the first-
order delta method. The former is straightforward to imple-
ment but is computationally costly, whereas the latter offers
a much smaller computational burden at the price of a more
elaborate implementation.

The analytic uncertainty propagation method is only valid
for Gaussian PDFs with small variances. The necessary re-
sults are stated below; see Ebbehøj et al. (2023) for a brief
introduction and Yang and Lam (2019) for derivations and
further details. The uncertainty in the ith set of natural fre-
quencies and damping ratios can be quantified by the follow-
ing variance:

6fi ,ζi =
∂F 3,i

∂ηi

∂F 2,i

∂ρi

∂F 1,i

∂vec(Lt ′ )
vec

(
PLt ′

)
(

∂F 1,i

∂vec(Lt ′ )

)T(
∂F 2,i

∂ρi

)T(
∂F 3,i

∂ηi

)T
, (22)

where 6fi ,ζi ∈ R2×2, vec(·) is the vectorization operator
transforming anM×N matrix A= [a1,a2, . . ., aN ] to a col-
umn vector vec(A)=

[
aT1 ,a

T
2 , . . ., a

T
N

]T
∈ RMN×1, and the

vectorized posterior variance matrix vec(PLt ′ ) corresponding
to Lt ′ is

vec
(
PLt ′

)
= diag

(
vec

(
PLt ′

))
, (23a)

where PLt ′ =[
0(na−1)×na

σ 2
ana

(
ξ t ′
)

σ 2
ana−1

(
ξ t ′
)

· · · σ 2
a2

(
ξ t ′
)

σ 2
a1

(
ξ t ′
) ]

na×na

, (23b)

where σ 2
ai

(ξ t ′ )=
pa∑
j=1

σ 2
ai,j
gj (ξ t ′ )

2, and 0 is a zero matrix with

dimensions as indicated by the subscript. Note that σ 2
ai

(ξ t ′ ) is
not necessarily Gaussian, as the individual terms of the sum
can be dependent. The outputs of the three functions are

ρ = F 1 (vec(Lt ′ )) , (24a)
η = F 2(ρ), (24b)
β = F 3(η), (24c)

where ρ = [ρ1,ρ2, . . ., ρna ]
T , η = [η1,η2, . . ., ηna ]

T , and
β = {[fi,t ′ ,ζi,t ′ ]

T
: i = 1, . . ., na}. The partial derivative of

F 1,i with respect to vec(Lt ′ ) is

∂F 1,i

∂vec(Lt ′ )
=

Re( ∂ρi
∂vec(Lt ′ )

)
Im

(
∂ρi

∂vec(Lt ′ )

) 
n2

a×1

,

where
∂ρi

∂vec(Lt ′ )
=
vTi ⊗w

>

i

w>i vi
, (25)

where a> denotes the complex conjugate transpose of a,
⊗ denotes Kronecker’s product, and wi is the ith left eigen-
vectors of Lt ′ satisfying

w>i Lt ′ = ρiw>i , (26)

where wi is a column vector. The partial derivatives of func-
tions F 2,i and F 3,i are

∂F 2,i

∂ρi
=

1
Ts|ρ̂i |2

[
Re
(
ρ̂i
)

Im
(
ρ̂i
)

−Im
(
ρ̂i
)

Re
(
ρ̂i
) ]

2×2
and

∂F 3,i

∂ηi
=

1
|η̂i |

 Re(η̂i)
2π

Im(η̂i)
2π

−
Im(η̂i)2

|η̂i |
2

Re(η̂i)Im(η̂i)
|η̂i |

2


2×2

, (27)

where hats denote estimated values.
The procedure for computing natural frequencies and

damping ratios and their uncertainties from AR coefficients
is summarized in Table 2.
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Table 2. Procedure for short-term modal parameter estimation using the GP-TARMA model (adapted from Ebbehøj et al., 2023).

Required data:
– Dynamic response yt and influencing EOVs ξ t for t = 1, . . ., N
– Definition of maximum number of EM iterations Niter
Model structure identification:
– Use procedure summarized in Table 1

Model estimation, initialization:

– Compute set of initial hyper-parameters P(0)
=

{
µ

(0)
θ ,6

(0)
θ ,6̂

(0)
e

}
using 2SLS estimates of corresponding

FS-TARMA model
Model estimation, EM iterations:
– For i = 1, . . ., Niter:

– expectation step: compute posterior model parameter mean θ̂ and covariance
P̂θ based on hyper-parameters P(i−1) using Eqs. (10a)–(10d)

– maximization step: compute updated hyper-parameters P(i)
=

{
µ

(i)
θ ,6

(i)
θ , 6̂

(i)
e

}
using Eqs. (13a)–(13d)

– check convergence: if either change in hyper-parameters or if marginal log-likelihood over iteration is

smaller than a specified tolerance, stop iterating, i.e. if |P(i)
−P(i−1)

|< εP or | lnL
(
P(i)
|y,8(i)

)
− lnL

(
P(i−1)

|y,8(i−1)
)
|< εL

Model validation:
– Use procedure outlined in Sect. 2.3 related to Eqs. (15) and (16), and proceed to downstream analysis only if residuals
are adequately white

Modal parameter estimation:
– For t ′ = 1+ na, . . ., N :

– compute frozen-time natural frequency fi,t ′ and damping ratio ζi,t ′ from AR coefficient ai (ξ t )
for i = 1, . . ., na using Eqs. (19)–(13d)
– compute modal parameter uncertainty {6fi ,ζi : i = 1, . . ., na} analytically using Eqs. (22)–(27) or by Monte
Carlo simulation.

2.6 Considerations for practical implementation

In this section some considerations that may be useful for the
practical application of the GP-TARMA approach are listed.
These are based on using the GP-TARMA model for vari-
ous applications, including the wind turbine blade response
of an operational wind turbine during an extreme coherent
wind gust (BHawC simulation; see Ebbehøj et al., 2023),
field measurements from Siemens Gamesa’s fleet, and the
applications in the present paper:

– Reduce bandwidth of response (output). Low-pass fil-
ter and subsequently down sample the response prior
to GP-TARMA modelling such that the reduced band-
width only contains the modes of interest; i.e. unimpor-
tant response components at higher frequencies are fil-
tered out. This reduces the computational cost of esti-
mating the model and may help reduce the risk of over-
fitting in cases with low amounts of training data.

– Filter out high-frequency content of EOV signals by
low-pass filtering. This may allow for a better fit, as
modal properties usually do not vary at high frequen-
cies (many times per second) and may prevent high-

frequency noise propagating from AR coefficients to
modal parameters.

– Use zero-phase filtering for low-pass filtering of re-
sponse and EOV signals. Consequently, the response
and EOV signals are not phase shifted by filtering.

– Add a small amount of artificial zero-mean NID noise
to the (low-pass-filtered) response signal prior to GP-
TARMA modelling. Adequate RMS noise levels rela-
tive to the signal are typically between 1 % and 5 %.
This is an example of jittering and data augmentation
in general. It can have a regularizing effect, i.e. reduce
the risk of over-fitting, and is commonly used in the
fields of e.g. image analysis and for machine learning
methods (Iwana and Uchida, 2021; Bishop, 1995; Ding
et al., 2015; Erenler and Serinagaoglu Dogrusoz, 2019).
According to Bishop (1995), adding noise to training
data is equivalent to Tikhonov regularization.

3 Laboratory test: shear frame structure with
time-varying damping

This section presents an experimental setup of a shear
frame (SF) structure with controlled time-varying damping
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and the experimental procedures used to generate response
measurements for testing and validating the GP-TARMA ap-
proach. In Ebbehøj et al. (2023), the method is verified us-
ing responses from two simulated cases: a simple two-mode
model response and an edgewise blade response during nor-
mal operation obtained with BHawC (Siemens Gamesa’s in-
house aeroelastic code). This section provides an experimen-
tal validation based on measurements of a simple structure
conducted in a controlled setting.

3.1 Experimental setup and procedures

An experimental test rig with a three-storey SF structure was
used to test modal parameter estimation methods for struc-
tures with time-varying damping. The structure has a pair of
voltage-controlled electromagnetic dampers (EMDs) at each
floor. Two types of tests were conducted: a base-excitation
test, where the SF structure was excited with a shaker ta-
ble, and a hammer test, where the structure was excited with
a (measured) hammer impact. Figure 1 illustrates the ex-
perimental setup and instrumentation, and Fig. 2 shows the
SF structure. The floors are quadratic (110× 110× 10 mm)
and are constructed from aluminium with 2 mm thick copper
plate inlays at the top and bottom to increase the effect of
eddy current damping through EMDs (A in Figs. 1 and 2).
The beams separating the floors are 150× 18× 0.5 mm and
are realized by four steel rulers (C), which are fixed to each
floor.

As can be seen in Fig. 1b, the shaker table (used for base-
excitation tests) is driven by an amplified, digital signal us-
ing a National Instruments (NI) relay module (NI 9481) and
LabView as an interface with the computer. The EMDs are
powered by a 24 V signal, which is controlled in an on–off
manner using the NI relay module, which is controlled us-
ing FlexLogger software. The displacement response at each
floor is measured by laser displacement sensors and sam-
pled by an NI data acquisition (DAQ) module (NI 9215) via
FlexLogger, along with relevant control signals, e.g. control
signals for the EMDs and amplifier.

The input signal for the shaker table used for the base-
excitation test is a stochastic normally distributed broadband
signal (i.e. low-pass-filtered white noise) to achieve stochas-
tic excitation of the first three modes of the SF structure. The
test is run for 60 min, all signals are collected using a sam-
pling frequency of 50 Hz, and all EMDs are turned on and off
during the test with periods of constant voltage ranging from
240 to 540 s.

For the base-excitation test, the displacement response at
the third floor is used and referred to as y(t) in Sect. 3, and
the measured voltage over the EMDs v(t) is used as the EOV
to predict changes in damping caused by the EMDs. Figure 3
shows the displacement response y(t) and the correspond-
ing spectrogram and spectrum, along with voltage over the
EMDs v(t), indicating when the EMDs are on (24 V) and off
(0 V). From the spectrum it can be seen that the first three

modes have frequencies of about 1.8, 5.3, and 7.8 Hz. The
measurements sampled at 50 Hz are low-pass filtered (stop
band frequency of 8.05 Hz) to prevent aliasing and are sub-
sequently downsampled to 16.67 Hz to facilitate faster esti-
mation of the GP-TARMA model, without losing relevant in-
formation about the first three modes. In addition, artificial
zero-mean NID noise with an RMS level of 1 % is added to
the downsampled signal.

To validate modal estimates obtained from the output-
only base-excitation tests, the modal parameters are also es-
timated by standard impact hammer tests (e.g. Ewins, 2000;
Halvorsen and Brown, 1977). The instrumentation for the
impact hammer tests consists of an accelerometer (E) placed
on the first floor, an impact hammer with a force transducer,
and a B&K 3160 front end for data acquisition. The test is
conducted by impacting each floor multiple times and mea-
suring the resulting acceleration response. The accelerom-
eter and force transducer signals are sampled by the B&K
front end and analysed using B&K Pulse and ME’scope soft-
ware to estimate modal properties via local frequency re-
sponse function (FRF) curve fitting. The accelerometer is
only mounted on the first floor during impact hammer tests
and is thus dismounted prior to base-excitation tests. Dur-
ing hammer tests, the shaker table is fixed. Hammer tests are
conducted with all EMDs on and all EMDs off, and each test
is conducted three times.

3.2 Model structure identification

A suitable model structure for modal analysis based on the
third-floor response y(t) is identified using the procedure
summarized in Table 1. In this controlled experimental set-
ting, the excitation can be considered stationary since the
shaker table is driven by a stationary NID signal. The func-
tional subspace FMA representing the effect of the excita-
tion therefore only consists of a constant-value bias vector,
and the innovation variance is assumed constant (correspond-
ing to K =N/2 in Eq. 14). To capture the step-like damp-
ing variations caused by the EMDs turning on and off, a
first-order Legendre polynomial in the voltage supplied to
magnetic dampers (i.e. the EOV) is included in the func-
tional subspace FAR, along with a constant-valued bias vec-
tor to account for the naturally occurring damping. If the volt-
age v(t) had changed gradually (i.e. not binary) from 0 to
24 V, FAR would likely need to include higher-order Legen-
dre polynomials to model the voltage–damping relation. The
functional subspaces for the AR and MA parts are populated
as

FAR =
{
A0,g2(v)

}
, (28a)

FMA = {C0} , (28b)

where A0 ∈ RN×1 and C0 ∈ RN×1 are constant-valued bias
vectors, v ∈ RN×1 contains measurements of the voltage
over the EMDs for times t = 1, . . ., N , and g2(v) is a first-
order Legendre polynomial in v. The voltage signal is filtered
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Figure 1. Experimental setup. (a) Diagram of SF structure where vibrations primarily occur in the y direction. Each floor has pairs of
EMDs (A) and displacement sensors (B). Floors are separated by steel rulers (C). The entire structure is mounted on a shaker table (D).
During impact hammer tests only, an accelerometer (E) is attached on the first floor. (b) Instrumentation showing the model name for each
component.

Figure 2. Laboratory shear frame test setup (cf. Fig. 1, with the same annotations).

with a centred moving average filter (better suited for step
signals than regular low-pass filters) with a window width
of 1 s to prevent measurement noise from propagating to the
modal parameters (see Sect. 2.1).

The AR and MA model orders na and nc are selected such
that the predictive capabilities of the model in terms of the
RSS/SSS and BIC (see Sect. 2.4) are converged, and the
model captures modes of interest. In Fig. 4 RSS/SSS and

BIC are seen to converge at about na = 7 and nc = 2, con-
stituting lower boundaries for the AR and MA model orders.
The next step is to assess the model orders required to capture
the modes of interest.

Inspecting the frequency stabilization diagram in Fig. 5,
the three stable poles corresponding to the three natural fre-
quencies of the SF can be seen to be stabilized at model or-
ders na = 11 and nc = 8, which are selected as the model or-
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Figure 3. Measured response comprising training data for t ∈ [0;2700] s and test data for t ∈]2700;3600] s. (a) Displacement of the third
floor y(t) (solid black line) used as the response for the analysis, overlaid by measured voltage over the electromagnetic dampers v(t) (solid
orange line) used as the EOV; (b) PSD; and (c) spectrogram of y(t).

Figure 4. Model order selection measures for the training and test set (circle and red crosses) for varying AR and MA model orders.
(a, c) Normalized residual sum of squares; (b, d) Bayesian information criteria. Selected model orders are marked by the blue downward-
pointing arrow.

ders used in downstream analysis. For the MA model order,
the poles arguably already converge at nc = 4, but the fre-
quency of the third mode changes slightly until fully stabiliz-
ing at nc = 8. This minor consideration can be taken because
the amount of training data is large relative to the model com-
plexity; i.e. the risk of over-fitting is small. In this case the
driving model selection criterion is the ability to capture the
modes of interest, as is typically the case (see Sect. 2.4).

3.3 Model validation

In this section the model structure identified in Sect. 3.2 is
validated using the procedure presented in Sect. 2.3, based on
the model residual et (t = 1+ nm, . . ., N ). The standardized
residual zt and the sample ACF can be seen in Fig. 6. Judg-
ing by the time series plot, the standardized residuals for both
the training and the test set appear to be stationary stochastic.
This observation is supported by the ACF, for which signifi-

cant correlations only exceed the 95 % confidence limits for
white noise at 3 % and 4 % of the time lags (i.e. less than
5 %) for the training and test data set. Furthermore, the sign
test shows that the number of sign changes in the residual
sequence is well within the 95 % confidence interval of sign
changes for a sequence of Gaussian white noise of the same
length.

The above whiteness tests, based on both standardized
residuals and sign changes, suggest that the present GP-
TARMA model is valid and well suited for downstream anal-
ysis.

3.4 Results: modal parameter estimates

This section presents modal parameter estimates computed
from the validated GP-TARMA model of the third-floor
displacement response y(t) and modal parameter estimates
based on hammer tests. The GP-TARMA model is estimated
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Figure 5. Frequency stabilization diagrams showing the time-averaged mean estimates of eigenfrequencies for increasing model orders,
overlaid by the PSD (solid orange line) of response y. (a, b) AR and MA orders na and nc. Selected model orders are indicated by the blue
arrow on the left.

Figure 6. Residual analysis from the training and test sets (solid black line and solid red line). (a) Standardized residual zt ; (b) ACF of zt ,
where the 95 % confidence interval of white noise (dashed blue line) is approximated by±2

√
1/N . ACF is by definition unity at lag zero but

is not visible in the plot.

using 2700 s of data, corresponding to 44 820 samples (at a
sampling frequency of 16.67 Hz), and about 4860, 14 310,
and 21 060 oscillations of the first to third mode. Figure 7
shows the predicted response against the measured response,
GP-TARMA estimates of natural frequencies and damping
ratios with 95 % confidence intervals, and SSI estimates for
comparison. The SSI algorithm used is correlation driven
(Peeters and De Roeck, 1999; Brincker and Ventura, 2015),
and the stable poles corresponding to the three modes are se-
lected manually from frequency stabilization diagrams. The
SSI estimates are also based on the displacement response
of the third floor y and are computed in windows of con-
stant voltage over the electromagnetic dampers (eight win-
dows seen in the plot). In addition, SSI estimates based on
measurements in 30 s windows are shown for the sixth and
seventh windows (2043 to 2523 s).

The predicted response in Fig. 7 is observed to model the
measured response very well. The voltage over the electro-
magnetic dampers v(t) is overlaid in the plot, and 0 volt
means no added damping from the electromagnetic dampers.
A slight difference in response levels can be seen by com-

paring sections of the response with and without the electro-
magnetic dampers activated.

Good agreement for natural frequency estimates between
GP-TARMA and SSI is observed. The modal parameter es-
timates are also summarized in Table 3. Furthermore, the
widest confidence intervals for the GP-TARMA natural fre-
quency estimates are ± 0.11, 0.03, and 0.02 Hz for the first,
second, and third modes and seem representative of the
spread of the SSI estimates, as seen in Table 3.

The figure and table show good agreement between SSI
and GP-TARMA damping estimates, where the best agree-
ment is observed for the second mode. The recommended
minimum measurement time (Brincker and Ventura, 2015)
is dictated by the third mode (with EMDs off) and is about
Tmin =

10
f3ζ3
= 214 s (based on the hammer test estimates in

Table 3); i.e. the eight constant-voltage windows of minimum
240 s should be sufficiently long for adequate SSI estimates.
The GP-TARMA damping ratio estimates in Fig. 7 illustrate
the idea of letting the AR coefficients, and consequently the
modal parameters, be represented by EOV-dependent basis
functions. In this case, the voltage over the EMDs dictates
the instantaneous changes in the damping estimates. In com-
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Figure 7. GP-TARMA estimates compared to SSI estimates. (a) Measured and predicted (solid black line and solid orange line) response y
overlaid by voltage v over EMDs (solid red line); (b–e) GP-TARMA modal parameter estimates for the first, second, and third modes (solid
blue line, solid orange line, and solid red line), where the mean estimates are shown by the solid lines, and the shaded areas indicate the
estimated 95 % confidence intervals. SSI estimates for constant-voltage windows (dotted black line) and 30 s estimates (solid magenta line).
(b) Natural frequency fi ; (c–e) damping ratio ζi of the first to third mode.

Table 3. Natural frequency fi and damping ratio ζi estimates of the first to third mode (i = 1,2,3) for conditions with electromagnetic
dampers turned off and on (0 and +) estimated with three different methods: GP-TARMA (showing mean estimates and 95 % confidence
intervals, italics), SSI estimates averaged for all eight windows (excluding the 30 s estimates), and three repetitions of the hammer test.

f1 (Hz) ζ1 (%) f2 (Hz) ζ2 (%) f3 (Hz) ζ3 (%)

Estimate 0 + 0 + 0 + 0 + 0 + 0 +

GP-TARMA, mean 1.81 1.82 5.9 10.6 5.29 5.29 1.0 2.7 7.76 7.79 0.6 2.1
GP-TARMA, 95 % CI 0.09 0.11 5.9 6.7 0.02 0.03 0.4 0.5 0.02 0.02 0.2 0.4
SSI (averaged values) 1.81 1.81 4.6 10.5 5.30 5.28 1.2 2.1 7.73 7.76 0.4 1.1
Hammer test 1 1.81 1.81 6.4 10.8 5.32 5.33 1.5 3.2 7.80 7.81 0.7 1.9
Hammer test 2 1.82 1.82 6.5 10.5 5.32 5.33 1.5 3.1 7.80 7.81 0.6 1.8
Hammer test 3 1.82 1.81 6.1 10.9 5.32 5.32 1.5 3.4 7.79 7.79 0.7 2.1

parison, the 30 s SSI estimates (2043 to 2523 s) are seen to be
inconsistent, and many deviate considerably from the other
estimates. This illustrates the need for dedicated methods for
short-term damping estimation, such as the GP-TARMA ap-
proach. Using the GP-TARMA approach comes with the cost
of specifying basis functions capable of representing (i.e.
correlating with) the underlying causes of nonstationarity in
the response, for which prior knowledge of the system is
helpful. That is not needed for standard OMA methods such

as SSI, although the validity of the LTI assumptions must be
examined.

The widest damping estimate confidence intervals for the
first to third mode are ± 6.7, 0.5, and 0.4 %; i.e. the damp-
ing estimate for the first mode is associated with the highest
uncertainty in the three modes, as for the natural frequen-
cies. This might reflect the fact that the training data contain
more oscillation periods of the higher modes. To help elu-
cidate this hypothesis, Fig. 8 shows the convergence of the
mean damping ratio estimates and corresponding confidence
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Figure 8. Convergence of damping estimates with respect to training data. (a) Mean estimates; (b) 95 % confidence interval. First, second,
and third modes indicated by colour (solid blue line, solid orange line, and solid red line); estimates for electromagnetic dampers off and on
(circle and triangle).

intervals for all three modes in terms of oscillation periods.
The results in Fig. 7 correspond to the estimates based on the
largest training data set in Fig. 8. The figure indicates that
only the third mode might have converged in terms of the
confidence intervals, and the first mode in particular would
seem to benefit from being estimated from more data. How-
ever, the mean estimates do not change much with the in-
crease in training data. This suggests that the mean estimates
might be representative despite the wide confidence intervals.

Table 3 shows that the GP-TARMA and SSI natural fre-
quency estimates agree well with the estimates from the three
hammer tests. As for the damping ratios, the three hammer
test estimates compare well to the GP-TARMA and SSI es-
timates in the sense that they are well within the same order
of magnitude. The hammer test estimates cannot be expected
to agree entirely with GP-TARMA or SSI estimates because
the estimates are based on data from two fundamentally dif-
ferent experimental tests in terms of e.g. excitation (impulse
vs. stochastic), the amount of energy input, and the temporal
and spatial distribution of the energy input.

The SF test results presented in this section experimen-
tally validate the efficacy of the GP-TARMA method in pro-
viding representative short-term damping estimates and illus-
trate its efficacy in the short-term case compared to a tradi-
tional OMA method.

4 Full-scale wind turbine test: instability experiment

In this section the GP-TARMA approach is applied to edge-
wise blade response measurements. Specifically, the method
is used to estimate short-term, linear equivalent modal damp-
ing of edgewise rotor modes, which are deliberately driven
to flutter-like instabilities corresponding to negative damping
values.

The experiments were conducted with an SWT-7.0-154
prototype wind turbine located at the DTU Wind Test Cen-
tre in Østerild, Denmark. The measurements collected in De-
cember 2018 were published by Volk et al. (2020), following

up an instability field validation study (Kallesøe and Kragh,
2016). The edgewise blade modes were driven to flutter-like
instabilities by momentarily allowing the rotor to run 10 %
above the expected stability limit by changing the wind tur-
bine controller parameters. As in Volk et al. (2020), the re-
sponse used for the analysis is an edgewise blade bending
response, obtained using a fibre Bragg optical strain sensor
positioned 72 m outboard on the blade (i.e. close to the blade
tip), measuring the bending response in the rotating frame of
reference, which is referred to as y(t) in Sect. 4. All frequen-
cies are normalized by the first edgewise blade frequency,
and rotor speeds are normalized by the critical rotor speed of
the first edgewise mode as in Volk et al. (2020).

Figure 9 shows the time series, spectrum, and spectrogram
of the measured edgewise blade response y(t) along with
normalized rotor speed. The figure shows a clear relation
between high rotor speeds and the occurrence of “unstable”
(high response levels) modes, which appear at normalized
frequencies of 1.0 and 2.5. Strong response of these modes is
especially prevalent at 150–230 s and 340–420 s.

The amount of available training data from this test is quite
small relative to the model complexity (i.e. the number of pa-
rameters to be estimated) needed for the GP-TARMA model
to represent the complex response and underlying system.
The bandwidth of y(t) has therefore been reduced compared
to the measurement data, and artificial zero-mean NID noise
with a 5 % RMS of y(t) is added to the response y(t). These
steps have been taken to use the limited measurements as ef-
ficiently as possible and to avoid over-fitting (see Sect. 2.6).

4.1 Model structure identification

The model structure is identified following the procedure in
Table 1. The functional subspace FAR used to represent the
AR coefficients consists of a first-order Legendre polynomial
in the rotor speed�(t) along with a constant-valued bias vec-
tor. This allows the model to capture the effect of the vary-
ing rotor speed on the modal damping and the presumably
time-invariant contribution from the structural damping. The
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Figure 9. Measured response comprising training data for t ∈ [0;665] s and test data for t ∈]665;884] s. (a) Edgewise bending response y
(solid black line), overlaid by normalized rotor speed� (solid orange line); (b) PSD; and (c) spectrogram of edgewise bending response y(t).

MA coefficients are represented by harmonic functions of the
azimuth angle ψ(t) to account for the nonstationary 1P effect
from the changing direction of gravity in the rotating frame.
Thus, the functional subspaces for the AR and MA parts are
defined as

FAR =
{
A0,g2(�)

}
, (29a)

FMA = {C0,h2(ψ),h3(ψ)} , (29b)

where A0 ∈ RN×1 and C0 ∈ RN×1 are real-valued bias vec-
tors, � ∈ RN×1 and ψ ∈ RN×1 contain rotor speed and az-
imuth angle measurements for t = 1, . . ., N , g2(�) is a
first-order Legendre polynomial in the rotor speed �, and
h2(ψ)= sin(ψ) and h3(ψ)= cos(ψ) are the harmonic func-
tions in the azimuth angle ψ . Thus, the EOVs used in the
model are the rotor speed and azimuth angle, ξ = [�,ψ] ∈
RN×2.

Both EOVs are zero-phase low-pass filtered with a cut-
off frequency of 0.3 Hz (see Sect. 2.6), and the innovation
variance is estimated using Eq. (14) with a window length
of 3.33 s; i.e. the GP-TARMA model can estimate damp-
ing (and natural frequency) variations down to 3.33 s. The
AR (MA) model order na (nc) is selected based on the pre-
dictive capability (minimizing BIC and RSS/SSS) and abil-
ity to capture the modes of interest (see Sect. 2.4), which in
this case have normalized frequencies of about 1 and 2.5. As
in Sect. 3.2, the model structure is dictated by the ability to
capture the modes of interest; i.e. the predictive capability
converges at a lower model complexity. Figure 10 shows sta-
bilization diagrams with respect to the AR and MA orders.
The selected model orders are na = 17 and nc = 5, as these
are the lowest model orders at which the poles can be consid-
ered stable. RSS/SSS and BIC converge at na = 5 and nc = 4
(plots not included).

4.2 Model validation

The model structure identified in Sect. 4.1 is validated in
this section, based on analysing the model residual et (t =
1+nm, . . ., N ) as presented in Sect. 2.3. Figure 11 shows the
time series, estimated ACF, and spectrum of the standard-
ized residual zt of the estimated GP-TARMA model with
the model structure identified in Sect. 4.1. The time series of
the standardized residuals for the training data does not ap-
pear as stationary white noise since the amplitude (i.e. vari-
ance) exhibits time-varying behaviour, especially at 200 and
400 s. This is because the estimated innovation variance σ̂ 2

e,t

is larger at those instances, which are the times of the mea-
sured instabilities. Comparing the standardized residuals for
the test data to those of the training data, the time-varying
behaviour is much less distinct for the test data. This can be
explained by all instabilities being contained by the training
set. The ACFs also indicate that the standardized residuals
do not resemble white noise, as the ACFs for both the train-
ing and the test data exceed the 95 % confidence level for
white noise at 13 % of the time lags. The spectrum shows a
distinct peak at a normalized frequency of 0.72, which coin-
cides with 3 times the (average) rotor speed, indicating that
the model does not adequately capture the 3P effect. How-
ever, the 3P frequency is well separated from the frequencies
of the modes of interest, so it is not likely to affect modal
parameter estimates. The spectra of the standardized resid-
uals for the training and test data sets can be seen to dif-
fer, as for the time series. Because the instabilities are only
present in the training data, the response characteristics of
the two sets are different, which limits the validity of cross-
validation. In unison with the other whiteness measures, the
number of sign changes in the residual sequences for the
training and test data sets is not within the 95 % confidence
intervals of the number of sign changes for the corresponding
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Figure 10. Frequency stabilization diagrams showing the time-averaged mean estimates of eigenfrequencies for increasing model orders,
overlaid by the PSD (solid orange line) of response y. (a, b) AR and MA orders na and nc. Selected model orders are marked by the blue
arrows pointing to the left.

ideal white noise sequences. This supports the interpretation
that the model residuals do not resemble white noise.

The residual analysis implies that the NID assumption of
the innovations is violated; i.e. the model does not com-
pletely represent the statistical structure of the response.
However, the frequencies at which the residuals have the
largest magnitudes do not coincide with the frequencies of
the two modes of interest. Thus, the modal parameters com-
puted from the GP-TARMA based on the present data set are
not expected to be entirely accurate but may still offer some
insight. More available measurement data (ideally including
more instability measurements) for model training could im-
prove the model accuracy by enabling more robust and accu-
rate model parameter estimates. In addition, a single-output
model (as the actual GP-TARMA model) cannot account for
the whirling effect since the frequencies of the forward- and
backward-whirling modes coincide in a response measured
in the rotating frame. Such model-form error might cause
correlated model residuals.

4.3 Results: modal parameter estimates

Figure 12 shows the predicted response of the GP-TARMA
model and the corresponding modal parameter estimates
with uncertainties. For direct comparison to Volk et al.
(2020), the damping estimates are reported in terms of the
logarithmic decrement (logdec) δ, which (for small damping)
is related to the damping ratio ζ by δ = 2πζ . The estimated
normalized frequencies correspond well with peaks in mag-
nitude seen in the spectrum and spectrogram of response y in
Fig. 9, and the average 95 % confidence intervals for the first
and second modes are± 0.01 and 0.02. Both edgewise modes
can be seen to become “unstable” (i.e. negatively damped)
and most noticeable between 128–187 s and 341–405 s. The
time instants of the mean damping estimates crossing zero
damping coincide well with the amplitude envelope changing
from exponentially increasing to decreasing or vice versa;

i.e. the mean damping estimates are qualitatively meaning-
ful. The average 95 % confidence intervals of the damping
estimates for the first and second modes are ± 5.2 and 4.8 %
logdec, corresponding to about ± 0.8 and 0.8 % in terms of
critical damping.

The uncertainty associated with damping estimates may
seem considerable, as the confidence intervals cover both
positive and negative damping values during the flutter-like
instabilities. The uncertainty might be reduced by address-
ing the two limiting factors alluded to in Sect. 4.2, namely
the sparse training data and the inability of the single-output
GP-TARMA model to represent the whirling effect.

Figure 13 shows the damping estimates in Fig. 12 as func-
tions of normalized rotor speed rather than time, which en-
ables assessment of stability limits for the identified modes.
The GP-TARMA estimates are plotted against two sets of
damping estimates from Volk et al. (2020), consisting of
experimental estimates (based on the same response data)
and predictions computed using HAWCStab2 (Hansen et al.,
2018) based on a numerical model of the tested wind tur-
bine. The experimental damping estimates are obtained us-
ing logarithmic decrement fits (i.e. exponential fits of the re-
sponse envelope) of bandpass-filtered (near each resonance
frequency) response signals. The exponential fits are per-
formed on four sections of the data, two sections with an
exponentially increasing (negative damping) amplitude and
two with an exponentially decreasing (positive damping) am-
plitude (see Volk et al., 2020, for details).

The figure shows that the GP-TARMA estimates agree
quite well with the exponential fit estimates, especially near
the critical rotor speeds, but the GP-TARMA damping es-
timates tend to be higher than the exponential fit estimates.
Table 4 shows the critical rotor speed estimated by each of
the three approaches. In terms of the critical rotor speed,
the HAWCStab2 predictions are slightly more conservative
than the two experimental results. However, comparing the
δi(�) curve slopes in Fig. 13, the HAWCStab2 results pre-
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Figure 11. Residual analysis from the training and test sets (solid black line and solid red line). (a) Standardized residual zt ; (b) ACF of zt ,
where the 95 % confidence interval of white noise (dashed blue line) is approximated by±2

√
1/N . ACF is by definition unity at lag zero but

is not visible in the plot; (c) spectrum of zt .

Figure 12. GP-TARMA model estimates as functions of time. (a) Measured and predicted (solid black line and solid orange line) edgewise
blade response y. (b, c) Modal parameter estimates for the first and second (solid blue line and solid orange line) backward-whirling modes;
the solid lines depict the mean estimates, and the shaded areas indicate 95 % confidence intervals. (b) Normalized natural frequency f i .
(c) Damping (logdec) δi .

dict less rotor speed sensitivity, i.e. are less conservative with
respect to how quickly the instabilities occur. But these dis-
crepancies are small relative to the GP-TARMA damping es-
timate uncertainties and the unquantified (but inevitable) un-
certainties in the exponential fit estimates.

5 Conclusions

A recently proposed approach based on a Gaussian pro-
cess time-dependent auto-regressive moving average (GP-
TARMA) model for short-term damping (and natural fre-
quency) estimation from output-only vibration response
measurements for vibrating structures influenced by envi-
ronmental and operational variability has been experimen-
tally tested and validated with two distinctly different ex-
perimental setups: a laboratory shear frame structure with
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Table 4. Comparison of stability limit estimates of the first and second edgewise backward-whirling modes in terms of normalized rotor
speed �.

Mode Experiment: Experiment: HAWCStab2
GP-TARMA exponential fits blade only

(Volk et al., 2020) (Volk et al., 2020)

First edgewise backward whirl 1.03 1.00 0.98
Second edgewise backward whirl 1.02 1.01 1.00

Figure 13. Modal damping of the first and second backward-
whirling modes in terms of logarithmic decrement δi as functions
of normalized rotor speed �. First and second backward-whirling
modes: GP-TARMA (experiment) (solid blue line and solid orange
line), HAWCStab2 blade only (Volk et al., 2020) (dashed blue line
and dashed orange line), exponential fits (experiment) (Volk et al.,
2020) (blue dot and orange cross).

time-varying damping properties achieved with electromag-
netic dampers and a full-scale 7 MW wind turbine prototype
which was deliberately driven to flutter-like instabilities. The
primary idea of the GP-TARMA approach is to condition the
model parameters on measured time series of environmen-
tal and operational variables, which may enable short-term
tracking of system parameters like time-varying damping and
natural frequencies.

An experimental setup consisting of a shear frame
structure equipped with electromagnetic dampers was pre-
sented and shown to effectively realize a system with
abruptly changing damping. Short-term natural frequencies
and damping ratios were estimated using the GP-TARMA
model and were shown to compare well to SSI and hammer
test estimates in cases where the system was time invariant.
Uncertainties were observed to be larger for the first mode
compared to the second and third modes, but this could be
explained by the first mode being trained on effectively less
training data. GP-TARMA damping estimates were com-
pared to short-term SSI estimates based on windows of 30 s
measurements. The short-term SSI estimates were observed
to be inconsistent and deviating from the remaining esti-

mates, which illustrated the effectiveness of the GP-TARMA
method for short-term damping estimation relative to tradi-
tional OMA methods. The laboratory test validated the ef-
ficacy of the GP-TARMA approach in short-term damping
(and natural frequency) estimation, given a sufficient amount
of training data and a representative model structure.

The GP-TARMA model was also tested using edgewise
blade deflection measurements from a full-scale 7 MW wind
turbine prototype during a flutter test. The first and second
edgewise backward-whirling modes were found to exhibit
flutter-like instabilities, in agreement with a previous study.
The mean damping estimates were considered qualitatively
meaningful, as the GP-TARMA model predicted negative
damping for two modes coinciding in time and frequency
with exponentially increasing vibration amplitude. The mean
damping estimates also compared quite well with estimates
from a previous study obtained from the same data. The esti-
mated stability limits, i.e. the rotor speeds at which the damp-
ing becomes zero, showed quite good agreement with a pre-
vious study. However, the model validation implied that the
model residuals did not resemble white noise, meaning that
the GP-TARMA model trained on the available data cannot
be expected to be entirely accurate. The correlated model
residuals and uncertainties of the damping estimates could
potentially be reduced by training the GP-TARMA model
on more data and extending the GP-TARMA model to a
multiple-output model to represent whirling modes better.

The GP-TARMA approach appears to be an effective
way of estimating short-term damping based on output-only
measurements, given enough training data and a represen-
tative model structure. The use of GP-TARMA models for
analysing transient instabilities has been showcased. SSI and
other standard OMA methods are easier to implement and
apply than the GP-TARMA approach since it does not re-
quire much prior knowledge of the system; i.e. these should
be used for applications where the LTI assumptions are valid
but may be inadequate for applications with considerable
short-term EOC variability.

Code and data availability. Laboratory measurements are avail-
able upon request. Wind turbine test data are confidential. Code
might be shared upon request.
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