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Abstract. Experiments offer incredible value to science, but results must always come with an uncertainty
quantification to be meaningful. This requires grappling with sources of uncertainty and how to reduce them. In
wind energy, field experiments are sometimes conducted with a control and treatment. In this scenario uncertainty
due to bias errors can often be neglected as they impact both control and treatment approximately equally.
However, uncertainty due to random errors propagates such that the uncertainty in the difference between the
control and treatment is always larger than the random uncertainty in the individual measurements if the sources
are uncorrelated. As random uncertainties are usually reduced with additional measurements, there is a need to
know the minimum duration of an experiment required to reach acceptable levels of uncertainty. We present a
general method to simulate a proposed experiment, calculate uncertainties, and determine both the measurement
duration and the experiment duration required to produce statistically significant and converged results. The
method is then demonstrated as a case study with a virtual experiment that uses real-world wind resource data
and several simulated tip extensions to parameterize results by the expected difference in power. With the method
demonstrated herein, experiments can be better planned by accounting for specific details such as controller
switching schedules, wind statistics, and postprocess binning procedures such that their impacts on uncertainty
can be predicted and the measurement duration needed to achieve statistically significant and converged results
can be determined before the experiment.
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1 Introduction

There is a long history of experiments in wind energy, and
their necessity is still evident today. There have been several
recent experiments to test wake steering for example (Flem-
ing et al., 2019; Simley et al., 2022; Howland et al., 2022).
The ongoing Rotor Aerodynamics, Aeroelastics, and Wake
(RAAW) campaign is exemplary of the need for experiments
and field measurements in wind energy as it seeks to pro-
vide a new and better validation data set (Kelley et al., 2023;
Letizia et al., 2023; Rybchuk et al., 2023). The data produced
by any experiment are most valuable when accompanied by
uncertainty quantification that allows interpretation of accu-
racy. Oftentimes, our best attempts at an experiment produce
results that, with properly calculated errorbars, are, at least
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in part, not statistically significant (Scholbrock et al., 2015;
Doekemeijer et al., 2021). Results like these indicate the need
to change measurement procedures, increase instrumentation
accuracy, or record data for a longer duration.

All experiments may suffer both bias and random errors.
When they can be entirely separated, the former is character-
ized by a non-zero mean and zero variance, while the latter
has a zero mean and a non-zero variance. Bias errors fre-
quently originate in instrumentation that drifts out of calibra-
tion or from the turbine itself in the case of a wind energy
field experiment (e.g., a yaw error). Reducing bias errors can
be a tedious process to understand their precise sources and
address the underlying causes. In wind energy field experi-
ments, as in many disciplines, the interest is often the differ-
ence between two scenarios, for example, a controller design
for wake or load mitigation (Fleming et al., 2019), a blade
design (Bak et al., 2016; Castaignet et al., 2010; Couchman
et al., 2014; Gomez Gonzalez et al., 2021), or the effects of
different atmospheric conditions (Lange et al., 2001; Belu,
2012; Simley et al., 2022). In these control and treatment ex-
periments, especially when carried out simultaneously, it is
often safe to assume that the bias errors are negligible to the
difference because the non-zero mean of the total bias error is
often equal in control and treatment and would be subtracted
when considering the difference. When control and treatment
cannot be carried out simultaneously, binning of data by at-
mospheric conditions also improves the validity of the as-
sumption that the bias errors are negligible to the difference.
While this assumption reduces one source of uncertainty, it
also introduces a new complication in that the random uncer-
tainty from two sources (the control and the treatment) must
now be propagated into the difference. For example, if

1P = P1−P2, (1)

where 1P is the difference between, say, power measure-
ments from the control, P1, and treatment, P2, each of those
measurements has some random uncertainty, δP1 and δP2. If
the experimental setups from which the two measurements
are taken are the same in every other way, say control and
treatment blades mounted on the same turbine, or two of the
same turbines in very similar (statistically the same) condi-
tions, it may be possible to assume that δP1 ≈ δP2. In that
scenario, and assuming these uncertainties are uncorrelated,
then these uncertainties are combined in quadrature as

δ(1P )=
√

(δP1)2
+ (δP2)2

=

√
2(δP1)2

≈ 1.4δP1, (2)

and the uncertainty in the difference, δ(1P ), is approxi-
mately 40 % larger than the individual uncertainties. If the
individual uncertainties are not uncorrelated, then the uncer-
tainty of the difference could be as large as double the indi-
vidual uncertainties if anticorrelated or it could be zero for
perfectly correlated individual uncertainties (IEC, 2017). If
the difference between control and treatment is significant,

zero will not be within the interval represented as errorbars
from the estimate.

The equation above can also be solved for a maximum
allowable random uncertainty to achieve a predicted differ-
ence within uncertainty. For example, if a difference of 2 %
in a quantity of interest (QoI) was expected between the con-
trol and treatment, it can be shown that this requires that the
random uncertainty of the individual measurements be only
about 1.4 % of the QoI (assuming they are uncorrelated).
Wind energy experiments are frequently hoping to measure
differences as small as 1 %–2 % (Maniaci et al., 2020), fur-
ther emphasizing the challenges to reduce uncertainties to
sufficiently low levels to produce statistically significant re-
sults. Unlike uncertainty due to bias errors, uncertainty due to
random errors can usually be reduced simply by measuring
over a longer duration. By measuring over a longer duration,
the distribution of random contributions to error is more com-
pletely measured and the mean random error driven toward
its theoretical value of zero.

Besides ensuring that results are significant, it is also im-
portant when considering ensemble statistics to ensure that
data have converged to a given standard. When possible,
for example in a controlled lab setting, long records can be
recorded during stationary inflow conditions and a suitable
convergence standard determined from this measurement. In
the field, however, stationarity is not guaranteed, and there
are usually too many combinations of possible inflow condi-
tions to consider. Nevertheless, it is critical to provide some
measure of the convergence of each data set after binning,
and this too can be converted into a required measurement
duration as it again amounts to knowing how many samples
are needed in a given bin. Convergence is ensured by increas-
ing the number of samples, but the rates at which conver-
gence and significance are achieved may be different.

A key distinction we intend to make is the difference be-
tween the measurement duration required to reach signifi-
cance and convergence and the experiment duration required.
If measurements are uninterrupted, then these are equal.
Occasionally, however, turbine operation must be attended,
which leaves large portions of time at which there are no
measurements, or instrumentation may have restrictions that
limit continuous measurements. These situations may require
longer experiment durations to capture measurements across
the full range of required conditions. The key questions this
paper aims to answer are as follows: what minimum mea-
surement duration is required to achieve a sufficiently small
uncertainty in the difference between control and treatment
to yield a statistically significant and converged result? Fur-
thermore, what experiment duration is required to achieve the
minimum measurement duration?

Using simulations to prepare for and predict the results of
experiments is regular practice. Doekemeijer et al. (2021),
Fleming et al. (2019), and Simley et al. (2022) used the
FLOw Redirection and Induction in Steady state (FLORIS)
model (NREL, 2020) to make predictions about their field
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experiments. It is rarer to use simulations to determine how
much measurement time will be required to produce sta-
tistically significant results from a wind energy field study.
Petrone et al. (2011) considered wind turbine performance
under the uncertainty of several parameters but not to aid in
a field experiment, and Cassamo (2022) demonstrated algo-
rithms for processing field data with constraints to produce
desired uncertainty levels. Toft et al. (2016) came closest to
the method proposed herein by evaluating the contributions
of different wind parameters to the probability of turbine fail-
ure through a suite of OpenFAST simulations with TurbSim
inflows.

Herein, we outline a method that can aid in the prediction
of minimum measurement durations necessary to produce
statistically significant and converged results in wind energy
field experiments specifically with the intent to reduce uncer-
tainties due to random errors, though it is also generalizable
to account for uncertainties due to bias errors. The method
is first outlined very generally to emphasize that it is highly
adaptable to many types of experiments and that it is software
agnostic within the guidelines provided. Then, the method is
demonstrated for an imagined field experiment informed by
real wind resource data such that several nuances can be bet-
ter illustrated and explained.

2 General methodology

The method described and demonstrated herein is highly
flexible and adaptable to the particular needs of the experi-
ment. At a very high level, it consists of performing a suite
of simulations to represent a proposed experiment with a bal-
ance between computational time and fidelity. The outputs of
the simulations are then used to perform a statistical analysis
to quantify uncertainty and convergence to standards deter-
mined by the user, and these data are finally converted into a
prediction of the minimum measurement and experiment du-
rations required to produce significant and converged results.
At this level, the proposed method could be used for a vari-
ety of experiments in many fields, though the focus here is
on wind energy and, in particular, field experiments as these
present a particular challenge with long measurement dura-
tions required to reduce uncertainty due to random errors.

It should also be acknowledged that there are IEC stan-
dards relevant to wind energy field experiments (IEC,
2017, 2021) that researchers may choose to follow. The
method laid out herein does not explicitly follow these stan-
dards, but it is entirely adaptable to comply with them. If, for
example, one wished to follow IEC 61400-12-1 to create a
power curve according to standards, then it would be neces-
sary to use the method of bins for uncertainty analysis with
the simulated data as detailed in Annex E of that standard.
As this is a virtual experiment, however, some assumptions
may need to be made regarding the many sources of uncer-
tainty that are tracked and included by the standard but that

are not explicitly represented in the virtual experiment. The
Category B uncertainties in IEC 61400-12-1 could help de-
fine an appropriate range of simulation input parameters, for
example on wind speed, shear, and air density. Uncertainties
that cannot be included in estimating input parameters can be
included in postprocessing of the data. In fact, by including
reasonable estimates of every source of uncertainty, it would
be possible to rank the importance of each source through an
uncertainty quantification and thereby determine which may
be most critical to reduce.

The simulation method, inflow representation, and uncer-
tainty analyses are discussed next in general terms and again,
with reference to a case study, after.

2.1 Simulation method

First, an appropriate simulation code is needed. Here, “ap-
propriate” has several requirements. First and foremost, it
must simulate the quantities of interest (QoI) to be measured
in the experiment with acceptable accuracy. This requires ex-
pert judgment to ensure the model fidelity does not neglect
effects critical to the measurement of interest. For example,
if the three-dimensional flow around the blades is considered
important to the QoI, then a blade element momentum ap-
proach may not suffice. Second, it must be fast enough with
available resources to run potentially thousands of simula-
tions that cover the wide range of operating conditions possi-
ble. This also assumes that validated models of any turbines
in the experiment are also available for use in the chosen
code. Finally, it requires that the inflow be represented with
enough fidelity to simulate the experiment and capture ef-
fects of any specific conditions that are expected to be im-
portant to the QoIs. High fidelity may not be needed as long
as the expected variance is statistically represented.

2.2 Inflow representation

As any wind energy experiment is essentially a response to
the inflow, the inflow conditions are the first required input.
For a field experiment, this requires knowledge of the wind
resource at the site and time of year when the experiment will
take place. In contrast, in a wind tunnel experiment or simu-
lation the inflow is typically prescribed or controlled. When
simulating a representative inflow for a field experiment, ide-
ally historical data from a meteorological (met) tower at the
site can be used to reduce uncertainties and required assump-
tions about the inflow conditions. If there are not met data,
probabilistic distributions of inflow parameters such as hub-
height wind speed, turbulence intensity, and shear exponent
(the specific parameters will depend on the simulation code
being used) could be used to construct representative inflows.
One difficulty with the latter approach is determining the po-
tential for correlation among parameters such that the joint
probabilities are accurately constructed to represent condi-
tions at the site. Temporal (i.e., time of year and day) distri-
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butions, as opposed to probabilistic, help with this construc-
tion. When using historical data, it is best to use data from
the time period of interest (e.g., certain months and/or hours)
over multiple years to have a more robust representation of
“typical” conditions as individual years may differ.

After selecting the simulation method and having acquired
representative inflow data, the inflow data are now processed
into the format required by the simulation code. Here, the
method uses 10 min bin intervals, which is standard for wind
energy field experiments, though it could be easily adapted
for other needs. This accepts that the effects of phenomena
happening on shorter timescales could be reduced due to long
averages and phenomena happening on longer timescales
may not be adequately captured, so this averaging time is
an important consideration depending on the goals of the ex-
periment. Indeed, numerical representations of inflows will
almost certainly underrepresent the true variability in the in-
flow. TurbSim, for example, will drive the velocity distribu-
tion toward a Gaussian, and longer simulation times gener-
ally create longer tails within the extremes that the model
can capture, which will capture a more complete representa-
tion of the inflow to a point. If the QoI is an extreme that the
model can capture, say, a maximum load, then bins longer
than 10 min may be necessary such that this QoI is recorded
relative to the mean conditions upon binning by condition
(binning by condition will be discussed below). If, however,
average quantities are of interest, then more 10 min bins will
generally help make up for missing the tails of the distribu-
tions of any inflow parameters in each bin.

While more simulations per bin and/or longer simulations
will help to replace some of the variability missed when com-
paring modeled inflows to measurements, it will not close
the gap entirely. As mentioned in Sect. 2.1, the proposed
method will only yield meaningful results if the modeling
tools can capture the QoI, which will require input from sub-
ject matter experts. If the QoI is believed to be sensitive to in-
flow fidelity, then comparisons could be made against higher-
fidelity methods, such as large-eddy simulation (LES), to
verify the adequacy and/or quantify the uncertainty of the
low-fidelity approach. These uncertainties can then be incor-
porated into the final analysis.

Some uncertainties, however, such as the difference be-
tween measurements at the met tower and conditions at the
rotor, are important to retain in the virtual experiment as they
can help replicate the real experiment. For example, the ve-
locity measured at the met tower may be biased from the
velocity at the rotor. In the control and treatment scenario
presented here, this bias is inherently subtracted out. When
there is not an available control, such biases in measurements
would be critical to capture in the simulations or to incorpo-
rate into the postprocessing and analyses of the data. Repre-
sentations of uncertainties in the inflow measurements them-
selves can and should be included in the uncertainty analysis
of the virtual experiment.

The simplest approach when using historical data is to cre-
ate 10 min bins, calculate the necessary statistics for each bin
(e.g., hub-height wind speed, turbulence intensity, and shear
exponent), and then use those as inputs to create inflows for
the simulations. It is likely necessary to apply some level of
quality control to the historical data before doing this. De-
pending on the robustness of the historical data set, it may
be necessary to use statistics on bins shorter than 10 min to
ensure that enough inputs can be created to represent the
time period of the experiment. If so, and especially if the bin
length is short, it is advisable to check the correlation time
of the historical data (assuming time series are available) to
ensure that the length of each bin is longer than the decorre-
lation time. This ensures that each input for the creation of
simulated inflows is unique.

Once the set of simulated inflows is complete, the sim-
ulations are run with outputs for the QoIs. Again, assum-
ing the field experiment standard of 10 min statistics, each
simulation is run to acquire 10 min of usable data (i.e., after
any start-up time) such that each simulation represents one
10 min bin of field data and statistics from each simulation
are calculated for further analysis.

2.3 Analysis and uncertainty quantification

The analysis stage may vary depending on the experiment
and QoI, but the goal of this method is to quantify the uncer-
tainty. Using the mean statistics of each simulation, the data
are binned on inflow statistics, most likely by wind speed,
though they could be binned on other parameters or even on
multiple parameters (binning on wind direction is very com-
mon, for example). In each resulting bin, a running bootstrap
analysis is performed (Efron and Tibshirani, 1986). Often,
2 standard deviations are reported as the uncertainty inter-
val; however this assumes that the underlying distribution is
Gaussian. The bootstrap analysis, on the other hand, makes
no assumption regarding the underlying distribution and so
offers a more accurate prediction. Specifically, the bootstrap
analysis is used to calculate a confidence interval on the run-
ning mean of each QoI such that it is updated for each se-
quential sample that is added to the bin. It is for the user to
decide what the appropriate confidence interval is, though
we will offer a few words of caution. The p value, or α,
which is 1 minus the confidence interval, that is chosen for
an experiment is in most ways arbitrary. In fact, the origi-
nator of the idea of a p value, Ronald Fisher, chose 0.05 as
only an example and never intended it to be a definitive test
(Nuzzo, 2014). The calculation of a confidence interval and
whether or not the QoI is significant is not sufficient on its
own to draw any conclusions (Wasserstein and Lazar, 2016).
It merely suggests whether or not the data are more or less
compatible with the hypothesis, and further support for a hy-
pothesis is then needed in the form of other statistical evi-
dence. In practice, whether or not a QoI is significant as an
outcome of this method could be used to indicate if the ac-
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tual experiment is even warranted. A word of caution is also
needed because bootstrap analyses are not robust with small
sample sizes (Jenkins and Quintana-Ascencio, 2020). While
there is no firm agreement in the literature, a minimum num-
ber of samples in the range of 8–25 is probably necessary
for a meaningful bootstrap analysis, with a higher minimum
needed when the data set is known to have higher variance
(Jenkins and Quintana-Ascencio, 2020). This helps prevent
narrowness bias that the bootstrap method can cause (Hes-
terberg, 2015). The running bootstrap analysis can start at the
selected minimum, or bins with fewer samples than the mini-
mum can simply be discarded at any stage. There are several
recommendations in the literature on the minimum number
of resamples necessary, i.e., the number of replicates created
by sampling the original data set with replacement. Hester-
berg (2015) makes a compelling argument to use a minimum
of 15 000, and we follow this. Note also that, with as few as
six samples, there are over 46 000 unique permutations when
sampling with replacement. The bootstrap-calculated confi-
dence interval now quantifies the uncertainty due to random
error, primarily associated with inflow conditions, of each
QoI for each bin for the control and treatment.

If the experiment is a control and treatment, then, for each
QoI and bin, the difference between the control and treat-
ment is found and the uncorrelated uncertainties combined
with the root sum square, both on a running basis. From
this, the significance and convergence criteria can be se-
lected and applied, and the sample number at which these
are both achieved in each bin for each QoI can be deter-
mined. Finally, the sample number is converted into a record
time using either timestamps of the original inflow data or
the probabilistic distribution. If the experiment is a control
and treatment and data are appropriately binned to remove
any bias, this is all that is required to quantify uncertainty
as previously discussed. If it is not, any uncertainty due to
bias errors should be calculated for each QoI in each bin as
needed and then combined with the uncertainty due to ran-
dom error before applying significance and convergence cri-
teria (JCGM100:2008, 2008). This is a straightforward pro-
cedure if these uncertainties are well known. In modeling the
turbine, however, it is possible that sources of bias are added
(e.g., a modeling error) or removed (e.g., an ideal represen-
tation of a strain gauge compared to a real one with an un-
certain offset), and these can only be estimated by validating
the model against experimental data, but such turbine data
are often unavailable to researchers. In this case, these uncer-
tainties will need to be estimated.

2.4 General discussion

As the goal of this method is to determine how long data must
be recorded to ensure statistically significant and converged
results, it is critical that the inflow conditions be represented
as accurately as possible and that the QoIs be simulated as ac-
curately as possible, though perhaps allowing for some trade-

offs in computation time. The results of this procedure really
determine a minimum amount of time required as it assumes
no additional quality control or filtering are required; i.e., ev-
ery simulation is assumed valid. Any real experiment will of
course have issues with sensors, unexpected delays, etc. that
are not accounted for in this procedure, which will increase
the required duration of the experiment.

The uncertainty can also be considerably affected by the
analysis and in particular the binning process. While more
iterative methods of binning can be used after data collec-
tion to ensure certain levels of uncertainty are achieved (Cas-
samo, 2022), this method allows one to test various methods
of binning and analysis beforehand and weigh their advan-
tages against the potential requirement for increased data col-
lection time. For example, different bin widths can be tested
to determine the effects on number of samples required for
convergence and certainty, and those results can be converted
into a duration of data collection. Similarly, binning on mul-
tiple parameters can be tested. If one turbine is being used
as the control and the treatment by, for example, switching
between two control methods, the data produced with this
method can be analyzed to determine an optimal switching
schedule to achieve the desired results.

3 Case study example of blade tip extensions

In this example of the method, we imagine an experi-
ment at the Scaled Wind Farm Technology (SWiFT) (see
Fig. 1) facility operated by Sandia National Labs in Lub-
bock, Texas (Berg et al., 2013). At the SWiFT site, there
are three modified V27 turbines with 27 m rotor diameters
(D) sited such that wind turbine generator a1 (WTGa1) and
WTGb1 are ideally situated for control and treatment experi-
ments relative to the dominant wind direction from the south.
Each also has a dedicated met tower (METa1 and METb1)
2.5 D upstream in the dominant wind direction with sonic
anemometers at 18, 31 (hub height), and 45 m.

For the experiment, we imagine operating WTGa1 as the
baseline, or control, in a control and treatment experiment.
For WTGb1, we will test five different tip extensions de-
signed only to produce a difference in power over the con-
trol. Using historic data from METa1 and METb1, we can
calculate the necessary statistics to represent testing over 3
months in a suite of OpenFAST simulations using TurbSim
inflows.

3.1 Tip extensions

In this virtual experiment, five tip extensions are created to
be the treatment rotor and to represent different levels of ex-
pected change between the control and treatment such that
the results can be parameterized by the expected change. The
design of the tip extensions is based purely on the expected
proportion between power and rotor-swept area:
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Figure 1. The Scaled Wind Farm Technology (SWiFT) facility in Lubbock, Texas, and a representative annual wind rose for the site. Image
taken from Herges et al. (2017). Note both images are oriented with north to the right.

Dtreat =

√(
Ptreat

Pctrl

)
D2

ctrl, (3)

where Dtreat is the diameter of a treatment rotor with tip ex-
tension; Ptreat and Pctrl are the desired power of the treatment
and control rotors, respectively; and Dctrl = 27 m is the di-
ameter of the control rotor. This assumes that all rotors have
the same coefficient of power, which is

CP =
P

1
2ρAU

3
∞

, (4)

where P is mechanical power, ρ is the air density, A is the
rotor-swept area, and U∞ is the freestream wind speed. Each
tip extension is created by linearly extrapolating the chord
and twist (the V27 blade has no curve or sweep) of the con-
trol rotor and using the same airfoil as the original tip in any
new blade stations. These changes are made in the blade def-
inition of OpenFAST’s AeroDyn module. Table 1 shows the
diameters of all rotors and the expected and actual power
changes. The lengths of the five tip extensions were selected
to span the range of performance improvements often ex-
pected in blade modification research. We were interested to
know if, for example, a 0.75 % increase would take years to
measure, while say a 3 % or 5 % increase might take only
months. The practical challenges of measuring differences in
field experiments also motivated us to look at four QoIs in
hopes that some differences would prove easier to measure
than others.

In addition to modifying the blade properties, each rotor
uses the Rotor Open-Source Controller (ROSCO) (NREL,
2021) tuning procedure to ensure that it is operated optimally
by finding the combination of blade pitch and tip speed ratio
that maximizes CP in region 2 of the power curve. Region 2
is defined as the range of wind speeds where the turbine pro-
duces power but wind speeds are too low for it to reach rated

power. The rated power is also fixed for all rotors to repre-
sent installing these rotors on the same generator. The goal
of these five tip extensions is exclusively to produce a pa-
rameterizable difference in operation from the control rotor,
and no additional design work was performed. It is sufficient
for this demonstration that the rotors create a difference to
measure.

It is notable that every tip extension exceeds the estimated
difference in power as shown in Table 1. This is because
the controller optimization leads to very small differences in
CP among the rotors, which can lead to the relatively larger
differences between the expected and actual power gains.
Note that the rotors with a CP closer to the baseline bet-
ter match the expected power gain. In a real experiment, we
would also expect to modify controller parameters to opti-
mize rotor performance within limitations such as blade and
tower loads. For the purposes of this demonstration, we ac-
cept these changes in CP and report all findings assuming
an optimized controller for each rotor. This demonstrates the
importance of measuring differences due to all modifications
of a rotor including physical and operational.

3.2 Inflow creation for the case study

As mentioned, the SWiFT site has two met towers, each up-
stream of the two turbines to be simulated, which allows us to
use historical data to accurately represent inflow conditions
at the test site. Additionally, a 200 m met tower operated by
Texas Tech University is adjacent to the SWiFT site and was
previously used to characterize the site (Kelley and Ennis,
2016).

For this experiment, we imagine testing over the months
of September, October, and November during the hours of
09:00 to 17:00 UTC−5 for 5 d a week (considering work-
ing hours for site operators). This filtering of times reflects
the current requirements for attended operation at the SWiFT
site, but, for experiments with unattended operation, then the
full 24 h d−1 met data set would be used. This also points to
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Table 1. Diameters, expected and actual increases in power, and CP for each rotor.

D [m] 27 27.1 27.2 27.4 27.7 28.3

Expected region 2 power gain [%] – 0.75 1.5 3 5 10

Actual region 2 power gain [%] – 1.98 2.67 3.95 5.63 11.12

Actual average region 2 C∗
P

[–] 0.3966 0.4003 0.4000 0.3991 0.3968 0.3999

∗ Average CP is calculated using average P and average U∞ in each wind speed bin as opposed to the average of all CP in a
bin.

the important distinction between the length of the measure-
ment time and the length of the experiment mentioned previ-
ously. In this virtual experiment, the experiment is imagined
to last 3 months (2184 h), but the measurement time when the
turbine is being operated (and the length of time represented
by the met data set) totals only 480 h spread over 3 months.
As will be seen in the results, this has significant implica-
tions for the total time required to meet convergence and sig-
nificance criteria as an experiment that is not operating the
turbines and recording data at all times is missing at least
some portion of the possible data collection. Finally, if this
experiment were real, then this data should have also been fil-
tered to remove times when either turbine would have been
in the wake of the other. Given the dominant wind direction
and to ensure there were enough data for this demonstration,
however, this additional step was not taken.

Data from each met tower were filtered for these months
and hours over multiple years and binned in 10 min inter-
vals. As inputs, TurbSim requires the mean hub-height wind
speed, turbulence intensity, and shear exponent, so these
were calculated for each bin (Jonkman and Buhl, 2006). Note
that other inflow parameters, e.g., density, do change over
time and can significantly effect the results for some QoIs
and may need to included. For simplicity, density was as-
sumed to be constant in this demonstration.

The turbulence intensity was calculated as

TI10 =
σ10

U∞,10
, (5)

where σ10 is the standard deviation of the hub-height
freestream wind speed in the 10 min bin and U∞,10 is the
average freestream wind speed in the 10 min bin. For these
simulations, the ScaleIEC parameter is turned on to ensure
that the desired turbulence level is achieved. Liew and Larsen
(2022), however, note that a similar scaling parameter in the
aeroelastic code, HAWC2, causes a non-physical increase in
energy at higher frequencies, so some caution may be neces-
sary when interpreting results.

The shear exponent, α, was calculated by fitting a power
law between the wind speeds at two heights of the met tower
such that

α = (ln (U45)− ln (U31))/ (ln (45)− ln (31)) , (6)

where each U is at a different height across the rotor plane.
The shear exponent was then averaged for each 10 min bin.
An alternative approach of using the 10 min averages to cal-
culate a single shear exponent would also be acceptable and
may be preferred when a few extremes could lead to a less
representative average.

Since only the 10 min statistics are needed as inputs to
TurbSim, we did not apply quality control to the time se-
ries. Instead, we used the site characterization data to set
minimum and maximum allowable values for each 10 min
statistic. Any bins with a parameter outside the allowable
bounds were discarded. In this way, even if the time series
data contain errors such as stuck sensors, only inflow condi-
tions within the ranges determined by the previous site char-
acterization are simulated.

To represent the intended experiment, we need 2520
10 min bins randomly selected over the duration of the ex-
periment. After filtering, 4228 acceptable 10 min samples re-
mained from METa1 and only 1443 remained from METb1.
To get to 2520 samples from each, samples from METa1
were randomly downsampled and samples from METb1
were randomly upsampled with replacement. Inflows with
the same inputs may still produce different results because
they will use a different seed in TurbSim. It should be noted
that upsampling with replacement means that not every sim-
ulation is unique in the mean, which could bias our results.
One way to assess this potential is to look at the distribu-
tion of good samples across months and hours to determine if
there is adequate representation of the full time period, which
is what is shown in Fig. 2. For each month and met tower, the
number of samples for each day and hour are shown with a
black line marking 100 % data availability over all 12 weeks.
The reason this is crossed in many plots is that data are taken
from multiple years, so a particular day, for example, can
have more than 48 samples in it (8 h× 6 10 min bins h−1),
and a particular hour can have more than 180 or 186 sam-
ples in it, depending on the month (30 or 31 d× 6 10 min
bins h−1 d−1). Most days and all hours are undersampled,
and there are significant gaps especially in the METb1 data.
While the hours are undersampled, they are at least fairly uni-
formly sampled, which should prevent any biases in hourly
representation. The days, however, are very unevenly sam-
pled for some months, which could introduce biases, though
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Figure 2. Histograms of the number of samples in each day and each working hour of each month for each met tower.

day-to-day variations are likely less important than seasonal
changes over weeks and months.

These gaps could be filled in by interpolation based on the
distributions of inflow parameters within the time period, but,
without looking deeper into what conditions are and are not
represented in the available data, it can be difficult to judge
the effects of this undersampling. To some extent this can be
seen in Fig. 3, which shows that the spread of turbulence and
shear appears to be well-represented in all wind speeds. As
this is just a demonstration of the method, we will proceed
with an acknowledgment that certain conditions may not be
present in these data. When there are no significant gaps and
the acceptable data provide a sufficient number of samples
across the entire time period, upsampling with replacement
should provide an accurate representation of the statistical
weight of each condition without biasing results. The end re-
sult of this procedure is a set of 10 min statistics from each
met tower that will each be used to generate one TurbSim
inflow for one OpenFAST simulation, which will then repre-
sent one 10 min sample of field data.

The resulting distributions of conditions from each met
tower can be seen in Fig. 3. Data from METb1 appear sparser
because many points are resampled, though it is clear that
general trends in conditions are adequately represented in
both data sets. Finally, a histogram showing the number of
samples by 0.5 m s−1 wind speed bins is shown in Fig. 4.

This is useful to see both where there are more data in gen-
eral and how the two data sets differ from each other in terms
of the number of samples available in each wind speed bin.

3.3 Case study simulations

All simulations are run using TurbSim-generated inflows in
OpenFAST. TurbSim uses the hub-height wind speed, turbu-
lence intensity, and shear exponent to numerically simulate
time series of three-component wind speed vectors at points
on a two-dimensional grid (Jonkman and Buhl, 2006). Open-
FAST is a wind turbine simulator and provides modules such
as InflowWind to accommodate TurbSim inflows, AeroDyn
to calculate aerodynamics using a blade element momentum
theory, ElastoDyn to calculate structural responses, and Ser-
voDyn to calculate drivetrain and actuator responses (NREL,
2023). ROSCO is incorporated into ServoDyn to control the
turbine relative to the unsteady, turbulent inflow. Using San-
dia National Labs’ high-performance computing resources,
each simulation is run on one node in approximately real
time. In all, the control rotor is run with 2520 different in-
flows from the METa1 data set to represent the control, and
each tip extension is run with 2520 inflows from the METb1
data set to represent five different treatments.
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Figure 3. Scatter plots of wind speed by turbulence intensity with color showing the shear exponent. Each point represents one set of input
parameters for a TurbSim inflow, though some points in the METb1 set are used more than once.

Figure 4. Histograms of each set of inflow conditions in 0.5 m s−1

bins.

3.4 Results from the case study

In the analysis that follows, we have made the assumption
that all sources of uncertainty are uncorrelated. This is un-
verified but suffices for the purpose of demonstration. Fur-
thermore, we have not endeavored to strictly follow any rele-
vant standards such as the IEC 61400-12 and 61400-13 (IEC,
2017, 2021), though we emphasize that this method does not
in anyway preclude following any standards that may be rel-
evant. The method is essentially a framework within which
many different analyses can be used.

Before proceeding to results from the simulations, some
observations can be made based on the inflow inputs. In
Fig. 3, it is evident that there is much more variability in
the inflow in terms of turbulence intensity and shear expo-
nent at low wind speeds. We should anticipate that results at
low wind speeds will converge more slowly and have greater

uncertainty due to random errors due to this. At high wind
speeds, we see that there are generally fewer samples, which
may make convergence impossible and may also not support
a robust bootstrap analysis. It is likely that this inflow data
set will be inconclusive for results at the turbine’s rated con-
dition. Finally, Fig. 4 shows a clear mismatch in the number
of available samples from each inflow data set at some wind
speeds, and this will have to be addressed carefully in the
analysis.

In the proceeding results, we will consider power, thrust,
flap root bending moment, and edge root bending moment.
All QoIs are averaged from the last 10 min of each 700 s sim-
ulation and binned in 0.5 m s−1 wind speed bins for the un-
certainty analyses. Again, IEC standards may require binning
on additional parameters, but we are restricting the demon-
stration to binning on wind speed for simplicity. Figure 5
shows the raw results from all simulations for our QoIs. Note
that results from the tip extensions are expected to and do
“stack” as they share an inflow data set, while results for the
control rotor stand out including some apparent outliers pre-
sumably as a result of its more complete inflow data set. Fig-
ure 6 shows the tip speed ratio (TSR) and the blade pitch
from every simulation to indicate when the control method
changes as a function of wind speed, which will be impor-
tant to consider in interpreting the data.

Figure 7 shows the standard deviation of each bin for each
QoI normalized by its average (i.e., the relative standard de-
viation or RSD) and reinforces the predictions made by look-
ing at the inflow parameters. We see that, in general, the RSD
is higher at lower wind speeds due to the higher variability
in inflows at low wind speeds. It is interesting to note that
this does not affect all QoIs equally though, as the RSDs
for power and edge root bending moment are approximately
double that of thrust and flap root bending moment. Further-
more, the spikes at high wind speeds are likely additional
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Figure 5. Raw output data from all simulations for each of the QoIs to be considered.

Figure 6. Raw output data from of the tip speed ratio (TSR) and blade pitch. Note the change in controls at 8 m s−1 and at about 11 m s−1.

indicators of inadequate numbers of sample points such that
the distributions are not well represented.

Figure 8 shows the percent relative random error (i.e., the
random error in the QoI as a percent of its ensemble mean)
using the bootstrap analysis (with no minimum sample num-
ber applied yet) for each QoI in each wind speed bin for all

rotors. The differences between the control and treatments
are primarily a result of the different numbers of samples in
each bin from their different inflow data sets. As predicted
based on the inflow data, the uncertainties at lower wind
speeds are the highest due to the higher variation in condi-
tions when only binning on wind speed. We also see how
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Figure 7. The standard deviation of each QoI in each wind speed bin normalized by the average of the same or relative standard deviation
(RSD).

the observations made regarding Fig. 7 propagated through
to higher uncertainties in power and edge root bending mo-
ment at low wind speeds than for thrust and flap root bend-
ing moment. Again, results in the highest five wind speed
bins should be interpreted cautiously as there are possibly
too few samples in these bins to make conclusions. Finally,
the increase at 8 m s−1 is due to the control actions as this
marks the beginning of region 2.5 for all rotors. As the raw
data in Fig. 5 are smooth across this transition, it is a result
of the binning that additional variance is highlighted due to
the change in controls. This is also evident to a lesser extent
in Fig. 7. This highlights another important consideration in
wind turbine field experiments, namely that conditions that
trigger a change in control may produce increased variability
in some QoIs and therefore require additional measurements
to converge and produce significant results after binning.

Recall that the real goal of this virtual experiment is to de-
termine the measurement and experiment durations required
for converged and significant differences, though care must
be taken here on several points. First, the METa1 and METb1
data sets do not have the same number of samples in each
wind speed bin. To calculate the running uncertainty in dif-
ferences between the control and treatments, the running
mean of the control QoI is subtracted from the running mean
of each treatment QoI for each wind speed bin as long as
samples remain in both data sets. When one reaches its last
sample (i.e., the ensemble mean for that bin), that value is
held and the subtraction proceeds until the other has used all

of its samples. In a similar manner, the individual uncertain-
ties associated with the control and treatments are added in
quadrature for a given pair to produce a running uncertainty
interval on the running difference. Having now defined the
running difference and uncertainty intervals for each com-
bination of the control and a treatment, the data are easily
filtered to find the sample at which a significant difference
is achieved (i.e., zero is no longer within the uncertainty in-
terval) and remains true. Herein, we have arbitrarily chosen
to use a 95 % confidence interval. The results of this step are
shown in Fig. 9 just for the differences in power.

Mathematically, the data in a bin may become and remain
significant with only one sample, which suggests an addi-
tional need for a convergence criterion, which is separately
implemented. Here, it is required that the running mean of
the difference in a QoI between the control and a treatment
be less than and remain less than 2 % of the ensemble mean
in each bin. Because all bins will, by definition, converge to
zero difference between the running and ensemble means,
this standard is further required for two consecutive samples
not including the last sample (when this difference is always
zero). This has the effect of putting a restriction on the rate
of convergence. The standard for convergence is somewhat
arbitrary. Here, 2 % was chosen as it is approximately the
average percent relative error (see Fig. 8), so further conver-
gence likely remains within uncertainty. An example of the
convergence of the difference in power is plotted in Fig. 10.
Having marked at which sample number (the samples remain
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Figure 8. The percent relative error (i.e., the error in the QoI as a percent of its ensemble mean) of each QoI calculated for each wind speed
bin using all available samples.

Figure 9. Error bars on the running difference in power for each treatment rotor from the control in each wind speed bin. The black line
marks zero to more clearly tell when differences are significant.
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in order of time throughout) the data converge and at which a
significant difference is achieved, the greater of those two is
taken as the minimum required number of samples in a wind
speed bin for a given QoI for a given treatment.

Next, the data are filtered to ensure that each bin has a
minimum number of samples for a robust bootstrap analysis
as discussed earlier. Given that this data set is somewhat bi-
modal both in its inputs (the variability in inflow as shown
in Fig. 3 is much higher below about 9 m s−1) and in its out-
puts (the turbine controller switches at 8 m s−1 to region 2.5
controls), we use the 9 m s−1 bin as a dividing line between
two minima. For all bins below 9 m s−1, we require at least
25 samples due to the high variance in inflow conditions. For
bins higher than and including 9 m s−1, we require only eight
samples as the variability is markedly reduced at high wind
speeds (Jenkins and Quintana-Ascencio, 2020).

The final step is to use the timestamps from the original
met tower data to convert samples marked as having met all
criteria into measurement and experiment durations required
relative to the start of the experiment. Here, one final check is
required to ensure accurate results. Because the inflow data
are taken from multiple years and are in 10 min bins, it is pos-
sible that some samples are coincident when ignoring years
(i.e., they have the same date and time). If not addressed, this
would lead to undercounting of the durations based on times-
tamps. To prevent this, a final correction is made such that, if
the time required to meet all criteria is less than the number
of samples to meet all criteria times 10 min per sample, then
the latter is taken as the time to meet all criteria.

Figures 11–14 show the final results of this virtual experi-
ment. In all plots, a scale of time shows the number of experi-
ment (not measurement) hours required for each treatment to
produce a significant and converged difference over the con-
trol, which are binned by wind speed. The durations plotted
in these figures are from the beginning of the experiment and
include all time (i.e., not just the time during which measure-
ments were being recorded) such that they provide the to-
tal duration required including time simply spent waiting for
the conditions necessary to fill out a particular bin. In other
words, in this virtual experiment, the turbines are only oper-
ated during weekday working hours, so approximately 80 %
of each week is not included in the measurements, which re-
quires more total days of operating to provide enough data
to meet the criteria for convergence and significance in each
bin. In this experiment, the maximum possible duration, in-
cluding times we filtered out (e.g., outside of working hours),
is about 2184 h. This highlights one of the main challenges
of field experiments: we do not control the wind! Much, if
not most, of the duration required to produce converged and
significant results is, in essence, time spent waiting for the
right conditions especially if you are not always operating
and measuring.

Some general trends are observable in all QoIs. First, we
see that it is more likely for a treatment to pass all criteria
in the middle wind speeds than at low wind speeds and es-

pecially at high wind speeds. At low wind speeds, though
there may be many samples, the high variance of the inflow
makes it more difficult for results to converge. At high wind
speeds, however, there are two possible reasons that few ro-
tors meet the criteria: there are simply not many samples in
these bins, and, in region 3, the differences in power are re-
duced, so significance becomes more challenging. In these
bins, this method is somewhat inconclusive as we cannot say
how many more samples would be required to pass all crite-
ria; we can only say that there were not enough for this analy-
sis. Second, for almost all QoIs, rotors, and wind speed bins,
it is convergence and not significance that dictates the min-
imum required time. In other words, the rate at which con-
vergence is achieved is slower than the rate at which signifi-
cance is achieved. In fact, it is almost exclusively the smallest
three rotors for which significance ever dictates the minimum
time. It is precisely because these rotors produce smaller dif-
ferences that they converge before they become significant.
Similarly, for most QoIs and bins, the largest rotor requires
less time to meet all criteria. As convergence is primarily a
function of inflow conditions, this can be attributed to the
larger rotor producing larger differences and thereby reach-
ing significant differences with fewer samples.

Across all QoIs, however, there are several wind speed
bins that do not follow the pattern we might expect that, gen-
erally speaking, the larger rotors would produce larger dif-
ferences from the baseline and so require shorter durations to
measure. Though the rotors were only designed based on an
expected difference in power, it follows that we would expect
proportional changes in thrust and flap and edge root bending
moments. The one pattern that does emerge is which wind
speed bins do not adhere to this expectation. Across these
four QoIs, the bins centered on 6.75, 8.25, and 10.25 m s−1

exhibit orders of decreasing time per rotor other than small-
est rotor to largest, though not necessarily the same order for
different QoIs. Similarly, the bins centered on 3.25, 4.25, and
8.75 m s−1 also do not adhere to this expectation for three of
the four QoIs. These six wind speeds correspond approxi-
mately to transitions in the turbine controls, specifically cut-
in, region 2.5, and region 3 (see Fig. 6), and also correspond
to apparent increases in variance as seen in Fig. 8. Similarly,
it is controller actions that cause only the two smallest rotors
to meet criteria in the bin centered on 13.75 m s−1. As shown
in Fig. 9, the trend in differences in region 3 is generally to-
ward zero, but in this bin, the two smallest rotors cross into
a negative difference that becomes significant. This result is
likely sensitive to the bin width.

A few specific results require further attention. First, in
Fig. 11, we see that, for most rotors and most wind speeds,
we can expect to need to run the experiment for over 1500 h
when only measuring during weekday working hours to
produce any significant and converged results and possibly
over 2000 h for the smaller rotors. The result for thrust in
Fig. 12 paints a similar picture, though the time required for
a smaller rotor is shorter than for power at most wind speeds
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Figure 10. The convergence of the difference in power of each treatment rotor from the control for each wind speed bin.

Figure 11. The minimum experiment duration required to produce a significant and converged difference in power between the control and
treatments. Whether the minimum time was dictated by convergence (C) or significance (S) is indicated above each bar. Missing bars indicate
that a significant and converged difference was not achieved within the simulated experiment time.
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Figure 12. The minimum experiment duration required to produce a significant and converged difference in thrust between the control and
treatments. Whether the minimum time was dictated by convergence (C) or significance (S) is indicated above each bar. Missing bars indicate
that a significant and converged difference was not achieved within the simulated experiment time.

Figure 13. The minimum experiment duration required to produce a significant and converged difference in flap root bending moment
between the control and treatments. Whether the minimum time was dictated by convergence (C) or significance (S) is indicated above each
bar. Missing bars indicate that a significant and converged difference was not achieved within the simulated experiment time.
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Figure 14. The minimum experiment duration required to produce a significant and converged difference in edge root bending moment
between the control and treatments. Whether the minimum time was dictated by convergence (C) or significance (S) is indicated above each
bar. Missing bars indicate that a significant and converged difference was not achieved within the simulated experiment time.

and more rotors in more bins meet both criteria. It also ap-
pears that, in the case of thrust, there may be a more uniform
minimum time across rotor sizes as we see smaller differ-
ences in the times required per rotor especially at higher wind
speeds.

In Fig. 13, it appears that flap root bending moment re-
quires similar measurement times as the other QoIs and also
appears to have minimum thresholds in the middle and higher
wind speeds such that larger rotors require the same amount
of time as smaller ones. Finally, in Fig. 14, it is clear that the
edge root bending moment is a challenging measurement as
many entire bins as well as the smaller rotors in many other
bins, in particular higher wind speeds, do not meet the crite-
ria within the total simulated experiment time. A particular
challenge of the edge root bending moment is the reversal in
trend by rotor size at around 12 m s−1 as seen in Fig. 5, which
will reduce differences in this and perhaps neighboring bins.
For both flap and edge moments, we would frequently be
interested in capturing the peak loading condition at around
11 m s−1 (see Fig. 5). Despite exhibiting the largest differ-
ences among rotors at this peak, this would be a challenging
measurement to capture in this experiment simply because
these wind speeds do not occur as often as lower ones.

To further emphasize the difference in the minimum ex-
periment duration and the minimum measurement duration,
Fig. 15 shows the minimum measurement time for each treat-
ment rotor to reach a significant and converged difference

in power from the control rotor by simply converting the
number of samples required into the equivalent amount of
time. Note the difference in scale from the experiment time.
All bins that achieve a significant and converged difference
from the control do so in fewer than 50 h of measurements.
This time, however, is spread across the entire experiment
duration in some cases. The general trend remains the same,
namely that the smaller rotors require more time (which is
equivalent to number of samples here). However, plotting
the measurement as opposed to the experiment duration re-
verses the trend relative to the distribution of wind speeds
(Fig. 4). For experiment duration, the more frequent wind
speeds typically increased the likelihood of reaching a con-
verged and significant result and thereby reduced the time
required, whereas, for measurement duration, we see the op-
posite. This comes from the interplay of the variance exhib-
ited in the inflow as a function of wind speed (Fig. 3) and
the frequency of, or number of samples in, a wind speed
bin (Fig. 4). The variance in a bin has the same effect on
both experiment and measurement duration such that higher
variance increases the challenge of achieving convergence
and significance. The frequency of, or number of samples
in, a wind speed bin requires a more subtle interpretation.
For both experiment and measurement duration, the number
of samples acts as a threshold to whether or not there are
sufficient data for convergence and significance. For the ex-
periment duration, however, it must also be thought of as a
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Figure 15. The minimum measurement duration required to produce a significant and converged difference in power between the control
and treatments.

frequency of occurrence such that more frequent conditions
are more likely to reach convergence and significance within
the experiment duration, whereas, for measurement duration,
when the samples are collected is irrelevant and it only mat-
ters that there are enough of them. Considering the variance
and the number of samples in a bin, we see that the lowest
wind speeds have much higher variance in TI and shear and
they also have relatively fewer samples. That is reflected in
Fig. 15 in that the smaller rotors do not have sufficient mea-
surement time to reach convergence and significance with
such high variance at the lowest wind speeds. Then, as wind
speed increases, variance decreases, and the number of sam-
ples increases, and additional rotors meet the criteria until the
measurement duration required peaks at around 5.5 m s−1.
As wind speed increases further, the variance in conditions
slowly decreases and so does the measurement duration re-
quired. At the highest wind speeds, there are too few samples
over the duration of the experiment for most rotors to meet
the criteria.

3.5 Discussion of the case study

As presented in this virtual experiment, this method would
allow the experimenter to plan an experiment with an ex-
pected difference in power from the control and to know the
minimum measurement and experiment durations required to
ensure significant and converged results within the standards
used, namely a 95 % confidence interval and convergence

within 2 % of the ensemble mean within each bin. For wind
speed bins that did not have enough data to meet these crite-
ria, additional time could be simulated to find the minimum.
It is worth noting, however, that another approach could eas-
ily be taken within the same method. As it is frequently the
case that time, funding, and/or equipment are restricted when
planning an experiment, an experimenter may be interested
to know what levels of significance and convergence could be
achieved within a fixed experiment duration. In this case, the
postprocessing steps could add confidence interval and con-
vergence level as parameters over which to view the results
within a fixed duration and thereby determine what could be
achieved in this duration as opposed to the duration required
to achieve given standards. An example of this can be seen
in Fig. 16, which shows how the minimum experiment du-
ration required changes as a function of confidence interval
and convergence level. Since many bins are near the total
experiment duration simulated with the most lenient stan-
dards, a stricter confidence interval can cause some of these
bins to no longer meet the criteria (e.g., the bin centered on
12.25 m s−1). A stricter convergence level, however, tends to
just require a little more time. Many of the changes across
confidence interval and/or convergence level are fairly small
and difficult to discern as they amount to the addition of just
a few samples. Figure 17 makes this clearer by showing just
one wind speed and rotor across a larger set of confidence
intervals and convergence levels.
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Figure 16. An array of plots showing how the experiment duration required to measure a significant and converged difference in power for
one particular treatment rotor changes as the confidence interval (CI) and convergence level (cl) change.

Figure 17. A heatmap showing the experiment duration required to
reach a significant difference in power for one particular treatment
rotor and one wind speed as a function of the confidence interval
and convergence level.

Finally, it should be emphasized that some of the trends
observed in this virtual experiment may not be found in
other experiments. The specific trends identified are possibly,
and even likely, specific to the experiment. One additional,
though unconfirmed, possibility of this method is, however,
the ability to simulate a surrogate for a more complex experi-
ment. For example, this methodology development was orig-

inally motivated by the Additively Manufactured, System-
Integrated Tip (AMSIT) project. In AMSIT, the tips of tradi-
tional blades will be replaced by additively manufactured tips
with a winglet and aerodynamic surface texturing (Maniaci
et al., 2023), but there were insufficient data available in the
literature to say with confidence if OpenFAST could simulate
the extreme curvature of the winglet or if we could represent
the effects of aerodynamic surface texturing through alter-
ations to the airfoil polars. In lieu of these changes, we opted
to simply increase the area of the existing rotor through tip
extensions to parameterize results by the expected change in
power. It remains to be seen if this yields a comparable result
to having simulated the proposed AMSIT rotor. Similarly,
blades or controls could be altered in other ways to influence
other QoIs or inflows prescribed to determine the effects of
specific conditions.

4 Conclusions

A method to aid in predicting and potentially reducing ex-
periment uncertainties, especially in the case of field experi-
ments, has been presented. The method requires inflow data
in the form of either historical data from the experiment site
or probabilistic distributions and a simulation method that
balances fidelity with computational time. By running many
simulations that represent the proposed experiment and per-
forming uncertainty analyses on the results, an experimenter
can better estimate the measurement duration required to pro-
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duce converged and significant results and the experiment
duration required to achieve this. Additionally, the simulated
data can be used to try different analysis methods such as
binning procedures or turbine control switching to further es-
timate their effects on uncertainty and required durations.

To demonstrate this method, an experiment was imagined
in which five tip extensions were compared to a control rotor
in measurements simulated over a 3-month period. Power,
thrust, and flap and edge root bending moments were com-
pared. Even before looking at the simulation outputs, general
trends were predicted based on the experiment setup and in-
flow conditions. Namely, as predicted, the larger rotors gen-
erally required less data, and so typically less time, to pro-
duce significant results because they produce larger differ-
ences that can tolerate larger uncertainties. From the inflow
conditions, it was correctly predicted that having more data
in a bin would allow for QoIs to converge and reach signifi-
cant differences in less time. Additionally, we correctly pre-
dicted that the high variance in conditions at low wind speeds
and the lower sample counts at high wind speeds would make
it more challenging to produce converged and significant re-
sults at those wind speeds.

In analyzing the final data produced from the simulations,
we found that all QoIs investigated generally required similar
experiment durations, though the edge root bending moment
was especially challenging to capture at high wind speeds.
The experiment duration required for the majority of re-
sults was dictated by convergence, not significance, except
in the case of the smallest rotors for which significance was
the more challenging criteria. It was observed that the wind
speeds at which the turbine controls change their operation
can be especially challenging as this can lead to increased
variance in the QoI after binning. It is possible that non-
uniform binning would improve results around these wind
speeds by widening some wind speed bins. Finally, the min-
imum required experiment duration was compared to the
minimum required measurement duration to emphasize that,
when measurements are not being continuously recorded, a
significant portion of the time required to achieve significant
and converged results is essentially time spent waiting for the
necessary conditions. Discontinuous measurements increase
the experiment time required to have enough samples in each
bin to ensure significance and convergence are achieved.

In closing, we emphasize again that this method is highly
adaptable. While we focused on the challenges of field ex-
periments, this could also be used for a suite of wind tunnel
measurements or simulations. It is, in fact, generalizable be-
yond wind energy as long as the experimenter has a good
understanding of how to simulate the experiment and the pa-
rameters that will have the greatest effects on the measure-
ments.
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