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Abstract. Control co-design is a promising approach for wind turbine design due to the importance of the
controller in power production, stability, load alleviation, and the resulting coupled effects on the sizing of the
turbine components. However, the high computational effort required to solve optimization problems with added
control design variables is a major obstacle to quantifying the benefit of this approach. In this work, we propose
a methodology to identify if a design problem can benefit from control co-design. The estimation method, based
on post-optimum sensitivity analysis, quantifies how the optimal objective value varies with a change in control
tuning.

The performance of the method is evaluated on a tower design optimization problem, where fatigue load
constraints are a major driver, and using a linear quadratic regulator targeting fatigue load alleviation. We use
the gradient-based multi-disciplinary optimization framework Cp-max. Fatigue damage is evaluated with time-
domain simulations corresponding to the certification standards. The estimation method applied to the optimal
tower mass and optimal cost of energy show good agreement with the results of the control co-design optimiza-
tion while using only a fraction of the computational effort.

Our results additionally show that there may be little benefit to using control co-design in the presence of an
active frequency constraint. However, for a soft–soft tower configuration where the resonance can be avoided
with active control, using control co-design results in a taller tower with reduced mass.

1 Introduction

Control co-design (CCD) is a sub-field of dynamic system
design where the controller is designed simultaneously with
the structure. Wind turbine design is a promising field of
study within CCD because these structures are driven by load
constraints, while at the same time control is important for
optimal energy production and for reducing loads (Garcia-
Sanz, 2019; Veers et al., 2023).

Though CCD is not yet widely used in the field of wind en-
ergy, several research groups have shown the potential of the
method. Chen et al. (2017) include an automatic controller

synthesis for the design of a wind turbine blade with indi-
vidual pitch control and trailing edge flaps, leading to a de-
crease in the levellized cost of energy (LCOE). Deshmukh
and Allison (2016) achieve an 8 % improvement in annual
energy production (AEP) with a CCD approach compared to
a sequential approach, considering torque control only and
using a simple set of structural constraints and a linearized
model for the turbine dynamics. Pao et al. (2021) report how
including control tuning in the design process leads to a cost-
effective extreme-scale 13 MW downwind turbine rotor. This
result was achieved with an iterative design process instead
of a fully coupled approach.
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Most wind turbine optimization frameworks rely heavily
on steady-state analysis (Zahle et al., 2016) or a nested/de-
coupled frozen-load approach (Bottasso et al., 2016) to re-
duce the computation effort of the optimization. Yet, CCD
requires expensive time domain simulations to be executed
within the optimization loop to assess the effect of changing
the control. Such changes to an optimization framework are
expensive, both in the code development phase and during
execution. This high computational cost makes it difficult to
identify designs relevant to CCD, since the design process
often requires a trial-and-error approach. Therefore, a tool is
needed to estimate which problems can benefit from CCD
without an excessive computational burden.

From a mathematical point of view, the difference between
a CCD and a standard physical design optimization problem
can be seen as the addition of the design variables describing
the controller action. A promising problem for CCD applica-
tions is one that is likely sensitive to control tuning. Indeed,
an integrated design approach is recommended when the
physical system and control system are strongly coupled (Al-
lison and Herber, 2014). Therefore, we propose a method to
estimate how the optimal objective value of a given problem
changes when the control changes, in the context of gradient-
based optimization. The estimator is formulated using post-
optimum sensitivity analysis (POSA) (Castillo et al., 2008)
on a standard structural optimization problem with fixed con-
trol and can be used to estimate the results of the more com-
plicated CCD optimization. While POSA is not widely used
in the field of wind energy, a recent study by McWilliam et al.
(2022) uses this approach to identify the design drivers for
swept blades.

The proposed estimation method is applied to the design
of a wind turbine tower driven by fatigue damage constraints.
Several authors have developed control strategies to reduce
fatigue damage (Johnson et al., 2012; Camblong et al., 2012),
reducing tower side–side loads by 8 % (Kim et al., 2020) and
fore–aft fatigue loads by 14 % (Nam et al., 2013). Since fa-
tigue damage can be a driving constraint for wind turbine
towers (Canet et al., 2021; Dykes et al., 2018), CCD has
the potential to improve the design of this component. In the
context of CCD however, fatigue reduction is more challeng-
ing due to the many long-running time-domain simulations
that are needed for accurate fatigue calculations. Therefore,
an estimation method is particularly relevant for this type of
problem before applying CCD directly.

Another important constraint in the design of wind tur-
bine towers is the frequency constraint, which prevents res-
onance with the rotor rotational frequency. Recent develop-
ments in control design have allowed researchers to design
towers without this constraint, called soft–soft towers, where
resonance avoidance is managed by active control. Soft–soft
towers generally have a lower mass than standard ones (also
called soft–stiff configuration), and their designs can also be
driven by fatigue damage (Dykes et al., 2018). In this work,
both the standard and the soft–soft configurations are studied

in order to assess the performance of the presented estima-
tion method on two different design problems with different
sets of constraints.

The paper is organized as follows. Section 2 describes two
estimation methods: a first-order estimator taking into ac-
count a linear dependency of the problem with control tun-
ing and a high-order estimator that includes non-linear ef-
fects but is also subject to additional assumptions. Section 3
describes the tower design problem and control architecture
in detail, and Sect. 4 shows how to apply the estimator for-
mula in practice. Section 5 compares the estimator to the so-
lution of the corresponding control co-design optimization
problem. Finally, the limitations of this study and potential
applications are discussed in Sect. 6. A nomenclature is pro-
vided in Appendix A.

2 Methodology

We consider the control co-design problem (Eq. 1) below,
where c and x represent the control and structural design
variables, respectively:

minimize
x,c

f (x,c)

subject to gi(x,c)≤ 0 i = 1, . . ., n. (1)

In the general case, the objective function f and the con-
straints gi , i = 1, . . . , n depend on both x and c. Most exist-
ing wind turbine optimization frameworks do not allow for
the direct solution of Eq. (1). Several frameworks are im-
plemented in such a way that the controller design is fixed
during the design process. In this context, adding the control
design variable c to the existing optimization requires signif-
icant development effort. In addition, having the control de-
sign variable in the optimization problem requires updating
the time-dependent loads on the structure at each iteration of
the optimization. As a consequence, the computational effort
required for the optimization becomes large, and the direct
solution of the problem is generally impractical.

Instead, it is possible to solve an optimization problem
with frozen control, represented by Eq. (2), where the con-
trol variable is fixed to its reference value cr:

minimize
x

z= f (x,cr)

subject to gi (x,cr)≤ 0 i = 1, . . ., n. (2)

The aim of this work is to understand if the design problem
benefits from a CCD approach. In other words, are there suf-
ficient potential improvements to justify the additional effort
to solve Eq. (1)? If Eq. (2) can benefit from a CCD reformu-
lation, the optimal objective value is likely to be sensitive to
a change in the control parameter cr. This means that solving
the problem at cr or cr+ dc will give a significant change in
the optimal objective value dz∗(dc)= z∗(cr+dc)−z∗(cr). We
use post-optimum design sensitivity (Castillo et al., 2008) to
estimate dz∗(dc) from the solution of Eq. (2).
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The change in optimal objective value due to a change in
the control parameter dc can be written as a first-order ap-
proximation using the gradients of f :

dz∗(dc)= f
(
x∗+ dx∗,cr+ dc

)
− f

(
x∗,cr

)
'∇xf

(
x∗,cr

)T dx∗+∇cf
(
x∗,cr

)T dc. (3)

In this equation, the change in optimal solution dx∗ is not
directly known but can be characterized with the first-order
optimality conditions: the constraints are satisfied, and the
stationarity condition, described in the following paragraphs,
holds.

First, the satisfaction of the constraints means that gi(x∗+
dx∗,cr+ dc)= gi(x∗,cr)= 0, i ∈ I, where I is the set of
active constraints. We assume that the active set does not
change with dc. This equation can be expanded by using a
first-order approximation around point (x∗, cr) on the left-
hand term, resulting in

∇xgi
(
x∗,cr

)T dx∗ =−∇cgi
(
x∗,cr

)T dc, i ∈ I. (4)

Then, we can relate the gradient of the constraints to the gra-
dient of the objective function ∇xf (x∗,cr) in Eq. (3) using
the stationarity condition. For unconstrained optimization,
the optimum is a stationarity point of the objective function;
i.e. ∇xf (x∗,cr)= 0. This condition gives practical methods
to find the optimum, e.g. with root-finding algorithms. How-
ever, for constrained optimization, ∇xf (x∗,cr) 6= 0 in gen-
eral, in the presence of active constraints. In this case, we can
characterize the optimum by considering stationarity points
of the Lagrangian function L instead, also called augmented
cost function:

L (x,cr,λ)= f (x,cr)+λT g (x,cr) , (5)

where λ values are the Lagrange multipliers. Here, we sim-
plify the problem by considering only the active constraints.
For values of x satisfying the constraints, the value of the
Lagrangian function matches the value of the objective func-
tion, L(x,cr,λ)= f (x,cr). Then, it is possible to find a set of
Lagrange multipliers (noted λ∗) so that the optimum x∗ cor-
responds to a stationarity point of L; i.e.∇xL(x∗,cr,λ

∗)= 0.
Hence, the stationarity condition is obtained:

∇xf
(
x∗,cr

)
+

∑
i∈I
λ∗i ∇xgi

(
x∗,cr

)
= 0. (6)

The Lagrange multiplier can be interpreted as the rate of
change in the objective function relative to a change in the
constraint function. For formal proof of the stationarity con-
dition, the reader is referred to the Karush–Kuhn–Tucker op-
timality conditions and textbooks on convex and non-linear
optimization (Boyd and Vandenberghe, 2004).

The stationarity condition is reformulated by post-
multiplying it by dx∗. Using Eq. (4), the Jacobian of the con-
straints with respect to x can be replaced by the Jacobian
with respect to c:

∇xf
(
x∗,cr

)T dx∗ =
∑
i∈I
λ∗i ∇cgi

(
x∗,cr

)T dc. (7)

The expression for ∇xf (x∗,cr)T dx∗ in Eq. (3) can be re-
placed by Eq. (7), obtaining the following first-order estima-
tor:

dz∗est(dc)=∇cf
(
x∗,cr

)T dc+
∑
i∈I
λ∗i ∇cgi

(
x∗,cr

)T dc, (8)

which is valid under the assumption that the feasible set does
not change with dc. The first term of the estimator represents
how the objective function changes with dc, assuming the
optimal design x∗ does not change. The second term gives
the change in the optimal objective value due to a variation
in the constraints, which results in a change in the optimal
design x∗. This formulation is based on a first-order differ-
entiation. Figure 1 illustrates the roles of the two terms of the
estimator.

A purely linear estimator only takes into account the lin-
ear variation in the problem with dc and cannot capture non-
linear effects such as diminishing returns. Thus we propose
an extension of the estimator that captures the non-linear be-
haviour of the constraints, called the high-order estimator.
By using a higher-order expansion instead of a first-order
one, the following formula is obtained:

dz∗est(dc)=1f (dc)+
∑
i∈I
λ∗i1gi(dc), (9)

where 1gi(dc)= gi(x∗,cr+ dc)− gi(x∗,cr), i ∈ I, and
1f (dc)= f (x∗,cr+dc)−f (x∗,cr). The high-order estima-
tor is valid under the following assumptions:

– the objective function and constraints are linear in x

– there are no couplings between x and c in the objec-
tive function and constraints; i.e. ∇2

x,cf and ∇2
x,cg are

negligible

– the active set does not change with a small variation dc.

The derivation and explanation of these assumptions can be
found in Appendix B. In the case that the assumptions are
violated, the precision of the estimator is likely to decrease,
but the method can still capture the underlying trend effects
of varying the control parameter. Appendix C illustrates this
aspect on a simple quadratic programme. In addition, Fig. 1
illustrates how the violation of the coupling assumption im-
pacts the precision of the estimator. The estimated optimum
(white circle) is close to the real optimum (black triangle) in
the weak coupling case but less precise when the coupling is
strong.

3 Case study

In this section, we present the tower design case study used
to evaluate the estimator. We first describe the optimization
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Figure 1. Illustration of the estimator on a quadratic problem, with one scalar design variable x and one constraint g, for weak (a) and
strong (b) couplings.

problem on which the estimator is applied. The second part
of this section focuses on the adopted linear quadratic regula-
tor (LQR) control law and its parametrization. A description
of the analysis and fatigue damage models concludes the sec-
tion.

3.1 Optimization problem

We consider a wind turbine tower optimization problem with
the objective of reducing the cost of energy (CoE). Two con-
figurations of the tower design are considered: a standard
configuration, where the natural frequencies of the struc-
ture are required not to interact with the rotor rotational fre-
quency, and a soft–soft configuration, where the natural fre-
quencies can be lower than the passing frequency, and reso-
nance is avoided through active control. The tower design is
parameterized with the tower height h, the diameter d, and
the wall thickness t of each tower segment. The total tower
mass is denoted by m. Geometrical constraints are set on ta-
per, continuity of wall thickness, and maximum tower diam-
eter. The load constraints, gD,j , j = 1, . . . , ns, ensure that the
fatigue damage does not exceed the value of 1 along the full
length of the tower. Finally, for the standard configuration, a
frequency constraint is set so that the first and second natu-
ral frequencies f1 and f2 are sufficiently far from the rotor
1P frequency f1P, with a threshold δf . In this work, the con-
troller design of the soft–soft configuration is kept simple in
order to focus on the objective function sensitivity. We as-
sume that the controller is designed in such a way as to op-
erate immediately below and above the resonant frequency,
using a classical frequency skipping approach (Bossanyi,
2000). However, for simplicity, we did not implement this
feature in the controller, and we simply avoided running sim-
ulations in proximity of the resonant condition.

The optimization is represented by Eq. (10), where c = cr
represents the scalar control tuning set at its reference value:

minimize
h

z= CoE
(
m∗ (h,cr) ,h,cr,d

∗ (h,cr) , t∗ (h,cr)
)

with m∗ (h,cr)=minimize
d,t

{m(t,d,h), (t,d) ∈ S (h,cr)}[
d∗ (h,cr) , t∗ (h,cr)

]
= argmin

d,t

{m(t,d,h),

(t,d) ∈ S (h,cr)} . (10)

The following two sets of constraints, S1 and S2, are con-
sidered, corresponding to the standard and soft–soft configu-
rations, respectively:

(t,d) ∈ S1(h,c)↔
gDj (d, t,h,c)≤ 0, j = 1, . . ., ns

fk(d, t,h)≥ f1P
1−δf, k = 1, 2

Geometrical constraints
, (11)

(t,d) ∈ S2(h,c)↔{
gDj (d, t,h,c)≤ 0, j = 1, . . ., ns
Geometrical constraints

. (12)

Equation (10) is formulated using a nested formulation,
where the tower mass is the objective function of the inner
optimization problem and acts as an intermediate variable to
calculate the CoE. Solving the equivalent monolithic prob-
lem would require excessive computational resources. This
is because a large number of aeroelastic simulations are re-
quired to accurately estimate the loads. An additional con-
tribution to the computational cost comes form the fact that
we use finite difference to estimate the gradient of the objec-
tive function and of the constraints. To limit cost, a frozen-
load approach is used (Bottasso et al., 2016), where the loads
are not updated within the inner optimization problem. If the
change between the initial and current designs is greater than
a given threshold, the aeroelastic simulations are evaluated
using the current design to update the loads, and the process
is iterated. This method is valid under the assumption that the
load envelope varies slowly with changes in the inner tower
design variables (d , t). While this approach can potentially
lead to non-optimal design, it is widely used in wind energy
and provides satisfying results.
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3.2 Control parametrization

We use a wind-scheduled multi-input multi-output (MIMO)
LQR controller with integral action (Bottasso et al., 2012b).
The controller states are the tower top displacement and ve-
locity, the rotational speed, the pitch angle, the pitch rate,
and the electrical torque. The integral of the rotational speed
is added to eliminate the steady-state error of the controller.
The controller inputs are the pitch angle and the electrical
torque. At each wind speed considered, the controller gains
are computed by applying LQR theory to the linearized sys-
tem of the turbine dynamics; see Hendricks et al. (2008) for
more details.

The tuning of an LQR controller is done through the
choice of the entries of the weight matrices associated with
the states and inputs, noted Q and R. In this work, the con-
troller is tuned by changing the diagonal term of Q associated
with the tower top velocity, labelled c. The following expres-
sion reports the parametrization of the weight matrices:

Q(c)=



0
c

0
1

β2
max

0
0

q

 , R=
[
r 0
0 0.1

]
,

with
{
q =min(0.1,0.015 · (V − 3)+ 0.01)
r =min(1.0,max(0.1,1− 0.18 · (V − 9))), (13)

where βmax is the maximum pitch angle of the turbine power
regulation strategy. The parameters r and q are used for gain
scheduling and are varied according to the wind speed V .
The reference value for the control tuning is cr = 0.

Figure 2 shows that, by varying the only free parame-
ter c, the average fatigue damage can be reduced by up to
6.8 %. However, the fatigue damage reduction varies depend-
ing on where the fatigue damage constraint is calculated on
the tower.

3.3 Analysis model

The numerical experiments presented in this work are con-
ducted using the multi-disciplinary wind turbine design op-
timization framework Cp-max. The details of the frame-
work can be found in the available literature (Bottasso et al.,
2012a, 2014, 2016). We highlight the aspects that are impor-
tant for the tower design optimization and fatigue calcula-
tions in this section.

The tower is modelled as a steel tubular structure, divided
into ne elements. Each tower element is characterized by
its radius at the top and bottom and its wall thickness. The
tower is then modelled as a non-linear geometrically exact
shear- and torsion-deformable beam. This is used in turn in
the multi-body model of the wind turbine for the aeroelastic
simulations, using the solver Cp-Lambda. The aerodynam-
ics of the wind turbine are modelled using the blade element
momentum method.

Figure 2. Impact of the control tuning on the mean fatigue damage
and at three locations along the tower.

The fatigue load analysis is performed according to cer-
tification standards (International Electrotechnical Commis-
sion, 2005). Simulations are run from the cut-in to the cut-out
wind speed with increments of 2 m s−1. At each considered
wind speed, a turbulent wind field is generated with TurbSim
(Jonkman, 2009). Simulations are run for 600 s for six dif-
ferent turbulent seeds, excluding an initial transient period of
30 s. Once the aeroelastic simulations are run, loads are ex-
tracted at ns stations along the tower to compute the stress
loading on the structure. A rain-flow counting algorithm is
then used on the stress time history to identify the number
of loading cycles and their amplitude. Miner’s rule and the
material S–N curve are used to estimate the lifetime fatigue
damage at each station (Sutherland, 1999).

The cost of energy is calculated following the NREL cost
model (Fingersh et al., 2006):

CoE(m,h,c,d, t)=
FCR · ICC(m)

AEPnet(h,c,d, t)
+AOE, (14)

where the fixed charged rate (FCR) and the annual oper-
ating expenses (AOEs) are assumed to be independent of
the design variables. The initial capital cost (ICC) varies
only with the tower mass m (which, in turn, depends on the
tower height h, controller tuning c, and inner tower design
variables d and t), since the rest of the wind turbine de-
sign is assumed fixed. Finally, the net annual energy produc-
tion (AEPnet) is calculated from aeroelastic simulations.

4 Application of the estimation method to the case
study

This section describes how the first-order and high-order es-
timation formulas derived in Sect. 2 are applied to the tower
design optimization problem to estimate the benefits of a
control co-design approach. In principle, Eq. (10) could be
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promising for a CCD approach since the control tuning c has
a direct impact on the dynamic response of the wind turbine,
which in turn influences fatigue loads. As a result, it is rea-
sonable to expect that the integrated design of control and
tower could improve the design through reductions in the fa-
tigue damage constraints.

The estimation formulas presented in Sect. 4 are derived
from a monolithic optimization problem, not a nested one.
Therefore, it is not possible to apply it directly to Eq. (10).
Instead, we apply Eqs. (8) and (9) to the nested optimiza-
tion problem, which is monolithic. Regarding the validity as-
sumptions of the high-order estimator, a preliminary study
on the impact of the control tuning on the fatigue damage
constraint ensured the robustness of the active set with the
chosen range of control tuning variation. In addition, the ob-
jective and constraints can be assumed to be linear in x pro-
vided the change in design is small. However, the validity
assumption related to the coupling is more difficult to prove
due to the complexity of the problem considered. Therefore,
the high-order estimator may be unprecise.

The objective function for the considered problem is
m(t,d,h) and does not depend on the control parame-
ter. Therefore the first term in the estimator equations is
0: ∇cf =∇cm= 0 and 1f (dc)=1m(dc)= 0. Among the
constraints of the problem, the fatigue damage constraint is
the only one impacted by the tuning of the controller. There-
fore, the second term of the estimation formulas only de-
pends on gD,j , j = 1, . . . , ns. This leads to the following es-
timate functions for the change in optimal tower mass:

dm∗est(dc)=


ns∑
j=1

λD,j∇cgD,jdc first order

ns∑
j=1

λD,j1gD,j (dc) high order,
(15)

where λD,j represents the Lagrange multipliers of the inner
problem associated with the fatigue damage constraint gD,j .
The Lagrange multipliers are obtained by solving the nested
optimization at the reference value of the control parameter
cr . The terms ∇cgD,j and 1gD,j (dc) are calculated by run-
ning aeroelastic simulations and evaluating the fatigue dam-
age for different values of dc and using the optimal tower de-
sign (d∗, t∗) obtained with the reference control tuning. The
terms ∇cgD,j are evaluated using forward finite differences
with a step of 0.03.

While the estimator formula cannot be applied directly to
the outer optimization problem, it can inform on the sensitiv-
ity of CoE with regard to control changes. In Eq. (14), CoE
depends on the controller tuning for the calculation of the
AEP and the ICC through the optimal tower mass m∗. How-
ever, the net annual energy production is mostly driven by
the tower height, whereas the impact of the controller tun-
ing and the inner tower design is marginal in comparison:
AEPnet(h,c,d, t)' ÃEP

net
est (h). The following CoE estimate

is written as a function of tower height and control tuning
only:

CoEest(h,dc)=
FCR · ICC

(
m∗est (h,cr+ dc)+ dmest|h(dc)

)
ÃEP

net
est (h)

+AOE. (16)

The term dmest is varied with the tower height. The Lagrange
multipliers are updated with h. However, the change in fa-
tigue damage constraints is calculated for the reference tower
height h0 only, assuming that the term is relatively insensitive
to height changes.

This function can be used to gauge the optimal CoE that
would have been obtained by solving the minimization prob-
lem including control tuning as a design variable, i.e. using
CCD. This is done by minimizing the CoE estimate with re-
spect to h and dc:

CoE∗est =minimize
h,dc

CoEest(h,dc). (17)

5 Results

In this section, the estimation method presented in Sect. 4 is
applied to redesign the tower of the IEA 3.4 MW reference
onshore wind turbine (Bortolotti et al., 2019). We compare
the high-order estimator of the optimal tower mass and CoE
to optimization results. The computational effort of the esti-
mation method is reported at the end of the section.

All optimization problems are solved using the active-set
optimization algorithm implemented in the fmincon rou-
tine of MATLAB (The MathWorks Inc., 2019). The outer
optimization is solved with a tolerance on the expected objec-
tive function change εobj = 10−5. The inner optimization is
solved with εobj = 10−4 and with a tolerance on constraint vi-
olation εcon = 10−2. The objective functions for the outer and
inner problems are both scaled by the corresponding value of
the initial design. The number of tower elements is ne = 10,
and the number of fatigue damage constraints is ns = 19. The
threshold for the frozen-load method is set to 1 %.

5.1 Estimator performance on the optimal tower mass

In this section, the change in optimal tower mass due to
a control tuning variation is estimated. Then, this estimate
is compared to the solution of the tower mass optimization
problem run for different variations in the control parameter
at the reference tower height.

We first look at the importance of the different constraints
on the design by solving the inner tower optimization prob-
lem with fixed control tuning c = 0 and fixed tower height
hr = 110 m. Figure 3 reports the optimal design and the La-
grange multipliers for the two considered configurations. For
both configurations, the designs are similar. However, the
presence of the frequency constraints in the standard con-
figuration drives the wall thickness up in the bottom half of
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Figure 3. Characteristics of the optimal standard and soft–soft tower designs for the reference height hr = 110 m and control tuning c = 0:
optimal tower design (a) optimal Lagrange multipliers associated with the geometric (b) and fatigue damage constraints (c).

the tower. Analysis of the Lagrange multiplier shows that for
the soft–soft configuration, geometric constraints are the pri-
mary drivers. However, these constraints are also insensitive
to control tuning. The next most important constraint is fa-
tigue, which can be mitigated by control, indicating potential
benefits from CCD. In the standard configuration, the largest
Lagrange multiplier is associated with the added frequency
constraint, with λf = 2.44. The Lagrange multipliers associ-
ated with fatigue are 1 order of magnitude smaller, showing a
lower relative importance of these constraints and a reduced
potential for CCD compared to the soft–soft case.

Using the value of the Lagrange multipliers, the first-
order and high-order estimators are calculated and reported
in Fig. 4. The results of the optimization for dc = 0.1, 0.2,
and 0.3 are also reported. The high-order estimator accu-
rately predicts the change in optimal mass for the standard
configuration, whereas it under-predicts the results for the
soft–soft configuration. Both estimators are able to show that
the soft–soft configuration benefits significantly more from
a change in control tuning than the standard one, in accor-
dance with the constraint analysis. However, the high-order
estimator more precisely quantifies this benefit, whereas the
first-order estimator fails to capture the effect of diminishing
returns on controller tuning.

5.2 Estimator performance on the CoE

In this section, we want to understand if the CoE can be re-
duced by the combined action of control load alleviation and
changed tower height through CCD and if the proposed esti-
mation method can predict the CCD results.

Figure 4. Comparison between the optimum mass change dm∗ and
the estimated mass change dm∗est calculated with the first-order and
high-order estimator, for different values of the control parameter
and for the two configurations. The tower height is fixed to the ref-
erence height.

Figure 5 reports the contour plot of the CoE estimate func-
tion for the standard and soft–soft configurations, calculated
as described in Sect. 4 for different tower heights (0.9hr,
hr, 1.1 hr, 1.2 hr) and for dc = 0, 0.03, 0.1, 0.2, 0.3. Both
the first-order and the high-order estimate functions are rep-
resented. As expected, there is little coupling between the
tower height and the control parameter in the standard con-
figuration, with the CoE showing only marginal variations
with control tuning. For the soft–soft configuration instead,
the CoE can be reduced by simultaneously changing the con-
trol parameter and the tower height. The estimated change in
optimal CoE is calculated as the minimum of the estimate
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Figure 5. Relative change in CoE as a function of the tower height change and control tuning parameter calculated using the first-order and
high-order estimators, for the standard and soft–soft configuration. The reference CoE is the optimal value for the non-CCD problem with
c = 0.

Table 1. Percentage improvement in the optimal CoE using a CCD
approach, calculated with optimization results and the estimation
method.

Optimization First-order High-order
estimator estimator

Standard configuration −0.01 % −0.14 % −0.02 %
Soft–soft configuration −0.53 % −2.12 % −0.45 %

function and marked in Fig. 5 as a cross and a white circle
for the first-order and high-order methods, respectively.

In order to assess the accuracy of the CoE estimator, we
solve the tower optimization problem with a non-CCD for-
mulation (corresponding to Eq. 10 with c = 0) and with a
CCD formulation where the control tuning is bounded be-
tween 0 and 0.3. Table 1 reports the change in optimal CoE
brought by the use of CCD calculated directly with the opti-
mization results and with the estimation method (first order
and high order). The two estimation methods correctly pre-
dict that the soft–soft configuration benefits much more from
CCD than the standard configuration. In addition, the esti-
mated improvement is accurate in the high-order case com-
pared to the optimization results. Instead, the first-order esti-
mator significantly over-predicts the benefits of CCD, which
is in agreement with the limitations of the approach. We note
that the estimated change in optimal design is far from the
actual one in Fig. 5. This is in agreement with the goal of the
presented method to quantify the sensitivity of the optimal
objective value and not of the optimum.

Table 2 documents the optimization results used to com-
pute the data in Table 1. The data show that the optimal CCD
soft–soft tower is 2.8 % lighter and 1.5 % higher than the ver-
sion calculated without CCD, which implies a gain in power
capture in sheared inflow. This reduction in tower mass and
increase in power capture explain why the CoE is more im-

pacted for the soft–soft configuration than for the standard
configuration.

5.3 Computational effort

In terms of computational costs, calculating the high-order
estimator requires evaluating (i) the Lagrange multipliers by
solving the optimization problem at the reference control and
(ii) the constraints for different values of the control param-
eter. In this section, we compare this computational effort to
the one needed to solve the CCD optimization problem, ap-
plied to the CoE.

Table 3 reports different metrics to compare the compu-
tational cost between the high-order estimator and the CCD
optimization. The number of evaluations of the full set of
aeroelastic simulations, noted neval, is used as the main com-
parison metric, since it is the most computationally expensive
step of the design process. The fatigue damage constraints
are evaluated for four different values of the control tun-
ing and require one full-set evaluation each. The Lagrange
multipliers are evaluated for four different tower heights and
require between one and two full-set evaluations each, de-
pending on the number of iterations in the frozen-load loop.
As a result, the estimator is calculated using a total of 11 or
12 full-set evaluations depending on the configuration. In-
stead, the CCD optimization requires 20 and 50 full-set eval-
uations for the standard and soft–soft configurations, respec-
tively. In terms of wall time, the estimation method is com-
puted in around half and a sixth of the time required to solve
the CCD problem for the two configurations. Therefore, the
presented estimation method is computationally efficient. We
note that the number of iterations for the outer optimization
for the two CCD cases is low. For more complex problems
or when using a tighter optimization tolerance, the number
of iterations is likely to increase significantly, and the com-
putational effort of the CCD process will also increase.
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Table 2. Characteristics of the optimal design for the non-CCD and CCD problems and for the standard and soft–soft configuration. The
percentage change between the CCD and the non-CCD cases is reported in parentheses.

Standard non-CCD Standard CCD Soft–soft non-CCD Soft–soft CCD

Tower height h [m] 110 110.6 (+0.5 %) 110 111.6 (+1.5 %)
Control tuning c [–] 0 0.019 0 0.203
Tower mass m∗ [t] 331.07 334.08 (+0.9 %) 311.33 302.47 (−2.8 %)
AEP [GW h] 14.955 14.977 (+0.1 %) 14.955 15.014 (+0.4 %)
CoE [USD per MW h] 41.481 41.477 (−0.01 %) 41.235 41.016 (−0.5 %)

Table 3. Computational effort for the CoE estimator and for the
CCD optimization: number of iterations for the outer optimiza-
tion niter, number of evaluations of the full set of aeroelastic simu-
lations neval, and wall time relative to the CCD case.

niter neval Wall time
relative
to CCD

Standard configuration
High-order estimator – 11 0.54
CCD 4 20 1.0

Soft–soft configuration
High-order estimator – 12 0.16
CCD 6 50 1.0

6 Discussion

A CCD approach can incur major computational costs when
compared to the simpler non-CCD optimization. At the same
time, our results show that CCD is not always guaranteed
to provide benefits to the final design compared to a more
straightforward non-CCD approach. Without knowing a pri-
ori the potential benefit, there is a significant risk, in terms of
engineering time, code development, and computational re-
sources, in attempting a CCD optimization. This work sug-
gests that results from the simplified optimization problem
can be used in conjunction with the high-order estimator
to determine whether a given problem can benefit from a
CCD approach. The first-order estimator shows similar re-
sults, with a reduced precision. Furthermore, the analysis of
the Lagrange multipliers and constraint sensitivity in the pro-
posed method gives a justification for why a CCD approach
would fail. This information is generally not readily avail-
able when running a CCD optimization directly because op-
timization algorithms can fail for technical reasons (inade-
quate parameters, scaling, or problem formulation).

The method is applicable to similar problems where the
optimum design is driven by a load constraint, when loads
can be alleviated by control action (for example, the design
of wind turbine support structures or blades). The computa-
tional cost reduction should be similar in problems where the
fatigue damage constraints are driving the design. In cases
where the driving constraints are easier to evaluate, there
should be a greater reduction in computational effort, since
the estimator would be less expensive to compute. In addi-

tion, while the estimation method was developed to target
CCD applications, the mathematical derivations and associ-
ated assumptions are developed in the general case, where
c can be any parameter. Therefore, it can be applied to any
optimization problem to disentangle the effects of one pa-
rameter from the rest of the solution.

The precision of the high-order estimator depends on sev-
eral assumptions on the objective functions and constraints.
When the assumptions are violated, the estimator can under-
predict the benefits of CCD, as shown in our results. In ad-
dition, the estimator uses local sensitivity information of the
non-CCD optimum, and therefore it will be inaccurate when
a CCD approach significantly changes the design. Conse-
quently, there may still be a benefit of using a CCD approach,
even if the estimator fails to show it.

In this study, we perform CCD using one tuning param-
eter of the LQR controller. However, the proposed method
is general and does not depend on the control architecture.
The applicability of the method to parametrizations with a
large number of design variables is left for future work on
the topic.

Finally, this work shows how CCD can be used for the de-
sign of wind turbine towers. In the presence of an active fre-
quency constraint, CCD may not give significant improve-
ments. Instead, the use of active load alleviation enables a
taller and lighter-mass tower compared to the non-CCD de-
sign. Our results are specific to one particular wind turbine
and may not be generally applicable. Notwithstanding these
limitations, the results reported here highlight the importance
of performing a thorough analysis of the driving constraints
through the use of Lagrange multipliers before attempting a
complex and computationally expensive optimization.

7 Conclusion

This study shows how design sensitivity analysis can be used
to estimate the change in optimal objective value caused by
a change in control. Using the solution of an optimization
problem with fixed control, we can characterize the results of
the more complex control co-design problem without the as-
sociated computational effort. Two estimators are presented,
based on first-order and high-order approximations, where
the latter captures non-linear effects.
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The proposed estimation method is applied to the redesign
of a wind turbine tower driven by fatigue loads, using an
LQR controller targeting fatigue load alleviation. High com-
putational resources are required to calculate fatigue dam-
age accurately, which makes this problem an ideal applica-
tion for the estimator. Two design configurations are con-
sidered: a standard configuration, where a frequency con-
straint is enforced to avoid resonance with the rotational fre-
quency of the rotor, and a soft–soft configuration, where res-
onance is avoided using active control. The proposed first-
order and high-order estimators are applied to the optimal
tower mass and optimal CoE problems. We have shown that
the high-order estimator accurately predicts how the tower
mass changes with control tuning compared to optimization
results. The first-order estimator is inaccurate for large val-
ues of control tuning but captures the difference between the
standard and soft–soft configurations. Combined with a sim-
ple CoE model, the high-order estimator predicts a 0.45 %
reduction in optimal CoE for the soft–soft tower, while run-
ning the CCD optimization gives an improvement of 0.53 %.
The proposed estimation method is accurate and uses only a
fraction of the computational resources of the CCD optimiza-
tion. Our results additionally show that the standard tower
configuration does not benefit from a CCD approach due to
the presence of an active frequency constraint. Changing the
control is beneficial for the soft–soft tower because the fa-
tigue damage constraint is the primary design driver and can
be alleviated by control action. In this case, the use of CCD
yields a taller tower with lower mass, which impacts the CoE
significantly.

As shown in this work, design sensitivity analysis allows
one to identify relevant design problems for CCD from the
results of a simplified non-CCD solution. In a context where
computational effort is an obstacle to the wide use of CCD,
the proposed method can help identify and quantify the ben-
efits of this approach for wind energy applications.

Appendix A: Nomenclature

Symbols used for generic optimization problems
λ Lagrange multipliers
c or c Variables or parameters describing the

controller
cr or cr Reference value for the control variables
f Objective function
gi , i = 1, . . . , n Constraints
x Design variable of the optimization

problem, except control
z Objective function value
I Set of active constraints
∇x� Jacobian or gradient of � with regards

to x
�∗ Value at the optimum
d� Small variation

d�est Estimated value of the variation
in �

Symbols used for the tower design optimization problem
λD,j , j = 1, . . . , ns Lagrange multipliers associated

with the fatigue damage constraint
λf Lagrange multipliers associated

with the first frequency constraint
d Diameter of the tower elements
f1, f2, f1P First and second natural

frequencies of the turbine and
rotor 1P passing frequency

gD,j , j = 1, . . . , ns Fatigue damage constraints
h Tower height
m Mass of the tower
ne, ns Number of tower elements and

fatigue damage constraints
r , q Gain-schedule parameters for the

LQR control gains
t Thickness of the tower elements
Abbreviations
AEP Annual energy production
AOEs Annual operating expenses
CCD Control co-design
CoE Cost of energy
FCR Fixed charge rate
ICC Investment capital cost
LQR Linear quadratic regulator

Appendix B: High-order estimator

In this appendix, we derive the high-order estimator ex-
pressed by Eq. (9) and explain the validity assumptions,
listed below:

– A1. The objective function and constraints are linear
in x.

– A2. There are no couplings between x and c in
the objective function and constraints; i.e. ∇2

x,cf and
∇

2
x,cg are negligible.

– A3. The active set does not change with a small varia-
tion dc.

We consider the following non-linear optimization prob-
lem:

minimize
x

z= f (x,cr)

subject to gi (x,cr)≤ 0 i = 1, . . . ,n. (B1)

The change in optimal objective value due to a change in
the control parameter dc is defined as

dz∗(dc)= f
(
x∗+ dx∗,cr+ dc

)
− f

(
x∗,cr

)
. (B2)

We assume that the objective function f is linear in x (A1)
and does not have a coupling between the variables x and
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c (A2). Using these assumptions on a second-order Taylor
expansion of Eq. (B2) gives

dz∗(dc)= f
(
x∗+ dx∗,cr+ dc

)
− f

(
x∗,cr

)
=∇xf

(
x∗,cr

)T dx∗+∇cf
(
x∗,cr

)T dc

+
1
2

dx∗
T

∇
2
xf
(
x∗,cr

)
dx∗

+
1
2

dcT∇2
c f
(
x∗,cr

)
dc

+ dx∗
T

∇
2
xcf

(
x∗,cr

)
dc+ o

(
||dc||2

)
. (B3)

We use the notation ∇2
x� for the Hessian of a function with

respect to x. Due to the assumptions A1 and A2 on f , the
second-order terms dependent on dx∗ are negligible. The
remaining terms dependent on dc can be identified with
the second-order Taylor expansion of the function c 7−→

f (x∗,c) around the point c = cr. Therefore, the expression
can be rewritten as

dz∗(dc)=∇xf
(
x∗,cr

)T dx∗+1f (dc)+ o
(
||dc||2

)
, (B4)

where1f (dc)= f (x∗,cr+dc)−f (x∗,cr). Assumptions A1
and A2 on the constraints lead to the following expression:

gi
(
x∗+ dx∗,cr+ dc

)
− gi

(
x∗,cr

)
=∇xgi

(
x∗,cr

)T dx∗

+1gi(dc)+ o
(
||dc||2

)
, i = 1, . . ., n, (B5)

where1gi(dc)= gi(x∗,cr+dc)−gi(x∗,cr), i = 1, . . . , n. We
consider the set I of active constraints. Assuming that the
active set does not change with dc (A3), one has gi(x∗+dx∗,
cr+ dc)= gi(x∗, cr)= 0, i ∈ I, and therefore

∇xgi
(
x∗,cr

)T dx∗ =−1gi(dc)+ o
(
||dc||2

)
, i ∈ I. (B6)

We can relate the gradient of the objective function to the gra-
dient of the constraints using the optimality conditions. We
assume that f and gi , i = 1, . . . , n are differentiable and that
strong duality holds for Eq. (B1). Then, if x∗ is optimal, there
is a set of Lagrange multipliers λ∗ satisfying the Karush–
Kuhn—Tucker conditions (Boyd and Vandenberghe, 2004).
Among these, the stationarity condition states

∇xf
(
x∗,cr

)
+
(
λ∗
)T
∇xg

(
x∗,cr

)
= 0. (B7)

The stationarity condition is reformulated by post-
multiplying it by dx∗ and by separating active and
inactive constraints:

∇xf
(
x∗,cr

)T dx∗ =−
∑
i 6∈I
λ∗i ∇xgi

(
x∗,cr

)T dx∗

−

∑
i∈I
λ∗i ∇xgi

(
x∗,cr

)T dx∗. (B8)

The terms corresponding to inactive constraints are 0 since
λi = 0. The terms corresponding to active constraints can be

reformulated using Eq. (B6). Following these considerations,
Eq. (B8) becomes

∇xf
(
x∗,cr

)T dx∗ =
∑
i∈I
λ∗i1gi(dc)+ o

(
||dc||2

)
. (B9)

The expression for ∇xf (x∗,cr)T dx∗ in Eq. (B4) can be
replaced by Eq. (B9), which gives the equation for the high-
order estimator:

dz∗(dc)=
∑
i∈I
λ∗i1gi(dc)+1f (dc)+ o

(
||dc||2

)
. (B10)

The first term of the formula can be expanded to all con-
straints instead of the set I since λ∗i = 0 for inactive con-
straints. Furthermore, the high-order estimator formula is de-
rived here using a second-order Taylor expansion. However,
we can repeat the reasoning with an arbitrary high-order k of
the Taylor expansion, resulting in an expression in o(||dc||k)
instead of o(||dc||2).

Appendix C: Application to a quadratic programme

In this section, we illustrate how the assumptions associated
with the high-order estimator impact its validity. For this pur-
pose, we study the simple quadratic programme below, with
x = [x1,x2]

T :

minimize
x

z= yT Py+ qT y+ z0, where y = [x,c]T

subject to Gx ≤ g2c
2
+ g1c+ g0

Hx ≤ h0. (C1)

The values of P, q, G, gi , i = 0, . . . ,2, H, and h0 can be
adjusted to create problems that satisfy or violate the validity
assumption for the estimator. The parameter z0 is set so that
the optimal objective value of the reference problem is z∗ =
0. For each type of problem, we study how the optimum and
the estimator dz∗est change with the value of dc. The reference
problem is always taken for c = 0, and dc varies between 0
and 1.

A1: the objective function is linear in x

In order to represent problems with objective functions linear
or non-linear in x, the diagonal terms of the matrix P are
varied with a parameter b. We use the following:

P=

b 0 0
0 b 0
0 0 0

 , q =
−10

1
0

 , G=
[
1 0

]
,

g2 =−4,g1 = 3,g0 = 1,H= 0,h0 = 0. (C2)

When b = 0, the objective function is strictly linear in x.
With increasing values of b, the non-linear terms in the ob-
jective function dominate the linear term more and more. We
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study how the estimator performs for b = 20, 5, and 0.1. For
this problem, the objective function is not dependent on c.

Figure C1 shows the value of the objective as a function
of x1 and x2. The constraint Gx ≤ g2c

2
+ g1c+ g0 is rep-

resented for different values of c as a yellow line, and the
optimum is marked as an asterisk. The figure shows that the
optimal design changes in a similar way for the different val-
ues of b. Figure C2 reports the value of the optimum change
dz∗ and of the first-order and high-order estimator dz∗est for
the different values of b. For low values of b when the objec-
tive function is mostly linear in x, the high-order estimator
follows the optimal value more closely. In addition, we ob-
serve that the first-order estimator follows the slope of the
optimal value at c = 0. This indicates which problems see
the most change in optimal value when c is varied.

A2: there is no coupling between x and c in the objective
function

In order to represent the coupling between x and c in the
objective function, the non-diagonal terms of the matrix P
corresponding to x2 and c are set to −b. We use the follow-
ing:

P=

[
0.1 0 0
0 0.1 −b
0 −b 0

]
, q =

[
−10

0
0

]
, G=

[
1 0

]
,

g2 =−5, g1 = 6, g0 = 1, H= 0, h0 = 0. (C3)

The problem is solved for b = 10.0, 5.0, and 0.1. The higher
the value of b, the stronger the coupling between x2 and c.
Figure C3 shows the objective value as a function of x1
and x2 as well as the constraint value for c = 0.1 and c = 0.2.
The higher the coupling, the larger the changes in the objec-
tive function. Figure C4 shows that the estimator performs
well only in the case of b = 0.1, where the coupling terms are
small. Note that in this case, the first-order and high-order es-
timators do not change with parameter b, since they assume
that the coupling term is negligible; i.e. b = 0.

A3: the active set does not change with changes in c

To study how a change in the active set impacts the validity
of the estimator, a constraint is added so that it is not active
for c = 0 and becomes active as c increases. We use the fol-
lowing:

P=

0.1 0 0
0 0.1 0
0 0 0

 , q =
−5

5
0

 , G=
[
1 0

]
,

g2 =−5, g1 = 6, g0 = 1, H= [1,0], h0 = 0. (C4)

Figure C5a reports the objective function with the con-
straint Gx ≤ g2c

2
+ g1c+ g0 in yellow and the constraint

Hx ≤ h0 in blue. For c = 0 and c = 0.1, the yellow constraint
is active. However, for c = 0.7, the yellow constraint is no
longer active, and the blue constraint becomes active. There-
fore, the optimum is set where the blue constraint is and not
where the yellow constraint is. When the active set changes
(c > 0.2), the high-order estimator does not follow the opti-
mal value anymore.
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Figure C1. Contour plot of the objective function with the optimal value marked with an asterisk (∗), for objective functions with varying
degrees of non-linearity in x. The higher the value of b, the more dominant the non-linear terms compared to the linear terms in the objective
function. The constraint is represented as a yellow line and varies with c.

Figure C2. Comparison of the optimal objective value with the first-order estimator and the high-order estimator for objective functions with
varying degrees of non-linearity in x. The higher the value of b, the more dominant the non-linear terms compared to the linear terms in the
objective function.

Figure C3. Contour plot of the objective function with the optimal value marked with an asterisk (∗), for problems with varying degrees of
coupling between x and c in the objective function. The higher the value of b, the more dominant the coupling terms compared to the linear
terms in the objective function. Results are represented with a solid line for c = 0.1 and with a dashed line for c = 0.2 in order to highlight
the magnitude of the coupling between x and c.
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Figure C4. Comparison of the optimal objective value with the first-order estimator and the high-order estimator, for problems with varying
degrees of coupling between x and c in the objective function. The higher the value of b, the more dominant the coupling terms compared to
the linear terms in the objective function. The high-order estimator assumes b = 0.

Figure C5. Contour plot of the objective function with the optimal value marked with an asterisk (∗), where the blue line represents the
constraint non-dependent on c (a). Comparison between the first-order estimator, the high-order estimator, and the optimal objective value
for variations in c (b).
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