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Abstract. The flexible-membrane kite employed by some airborne wind energy systems uses a suspended con-
trol unit, which experiences a characteristic swinging motion relative to the top of the kite during sharp turning
manoeuvres. This paper assesses the accuracy of a two-point kite model in resolving this swinging motion using
two different approaches: approximating the motion as a transition through steady-rotation states and solving
the motion dynamically. The kite is modelled with two rigidly linked point masses representing the control unit
and wing, which conveniently extend a discretised tether model. The tether-kite motion is solved by prescribing
the trajectory of the wing point mass to replicate a figure-eight manoeuvre from the flight data of an existing
prototype. The computed pitch and roll of the kite are compared against the attitude measurements of two sen-
sors mounted to the wing. The two approaches compute similar pitch and roll angles during the straight sections
of the figure-eight manoeuvre and match measurements within 3°. However, during the turns, the dynamically
solved pitch and roll angles show systematic differences compared to the steady-rotation solution. As a two-
point kite model resolves the roll, the lift force may tilt along with the kite, which is identified as the driving
mechanism for turning flexible kites. Moreover, the two-point kite model complements the aerodynamic model
as it allows for computing the angle of attack of the wing by resolving the pitch. These characteristics improve
the generalisation of the kite model compared to a single-point model with little additional computational effort.

1 Introduction

Pumping airborne wind energy (AWE) systems with flexible-
membrane kites are reaching a technology readiness level
suitable for first commercial applications. Two prominent ex-
amples are the leading developers SkySails Power GmbH us-
ing ram-air kites and Kitepower B.V. using leading-edge in-
flatable (LEI) kites (Vermillion et al., 2021; Fagiano et al.,
2022). Both systems employ a single tether and a suspended
kite control unit (KCU) to actuate the wing, as illustrated in
Fig. 1.

At the present stage of development, AWE systems are not
optimised yet in terms of power production. Instead, the pri-
ority is improving operational reliability and demonstrating
long-term operation, as well as learning how the systems per-
form in different wind environments (Salma et al., 2019).
This knowledge will be crucial for designing the next gen-
eration of systems with increased power output.

Figure 1. AWE system with (a) the 25 m2 V3.25B kite and (b) the
100 kW ground station in operation in 2018 (photos courtesy of
Kitepower B.V.).

Performance models estimate the energy generation of a
specific system in a varying wind environment representa-
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tive of the wind climate at a specific site. The models can
be classified according to how the flight trajectory and the
system configuration are represented. The modelled system
configuration includes at least the kite and the tether.

The most simple flight trajectory representations idealise
the flight with only one or a couple of steady-flight states cal-
culated with Loyd’s analytic theory of tethered flight (Loyd,
1980) or derivatives thereof. The more refined quasi-steady
models prescribe a parameterised flight path. Thereby, they
only account for the effect of turning but do not necessar-
ily describe the turning mechanism. Alternatively, dynamic
models solve the flight path, which requires incorporating a
turning mechanism. Dynamics models can be applied in an
optimal control problem (OCP) to find an optimal realistic
flight path.

Simpler system model configurations represent the kite
as a single point mass or rigid body and assume a straight
tether with its mass and drag lumped to the kite point mass.
More refined models also resolve tether sag induced by lat-
eral forces on the tether, such as gravity, centrifugal force,
and aerodynamic drag, often achieved through discretising
the tether. Typically, the discretised tether is represented with
lumped masses connected with rigid links or spring-damper
elements (Gohl and Luchsinger, 2013; Fechner et al., 2015;
Rapp et al., 2019; Williams et al., 2007; Zanon et al., 2013).
Alternatively, Sánchez-Arriaga et al. (2019) apply a multi-
body approach using rigid rods. Fechner et al. (2015) ex-
pand the discretisation approach to the kite. The kite is rep-
resented with five point masses; four point masses represent
the wing, and one additional point mass represents the sus-
pended KCU. A lumped-mass model with spring-damper el-
ements is considered too computationally costly for perfor-
mance calculation but very useful for control system design.

Williams (2017) employs separate solvers for computing
the motion of the kite and the tether. The “quasi-static” tether
deformation is solved as a subroutine to solving the flight
trajectory to efficiently account for tether elasticity. Conse-
quently, the tether deformation due to gravity, centrifugal
force, and aerodynamic drag is considered, while transient
motion and longitudinal vibration are neglected. The discre-
tised tether model assumes that the entire airborne system,
including tether and kite, jointly rotates around the tether at-
tachment point at the ground. This assumed kinematic rela-
tionship works well for near-straight flights but is not repre-
sentative during turning manoeuvres.

The choice of the kite model determines the level of ab-
straction required to introduce steering forces as demon-
strated in the work of Fechner et al. (2015). The work
presents both a single-point and a five-point kite model of
an LEI kite. By resolving the roll of the kite with respect
to the upper tether element, the five-point kite model allows
for realistically incorporating the centripetal force acting on
the relatively heavy control unit. Additionally, the outboard-
pointing lift forces produced by the wing tips contribute to
the centripetal force. Contrastingly, the single-point model

requires making large assumptions about the composition of
the aerodynamic forces due to the lack of information about
the attitude of the kite. The definition used for the lift force
generated by the top wing surface does not enable the lift
force to contribute to the centripetal force. To enable steer-
ing, the single-point model employs an artificial side force
proportional to the steering input, which necessitates a dis-
proportionately high side force coefficient.

In reality, the aerodynamics of the kite highly depend on
the fluid–structure interaction involving the membrane wing
and bridle. The LEI kite of Kitepower B.V. is steered by
pulling the rear bridle lines attached to one side of the wing
while loosening the lines on the other side. This asymmet-
ric actuation of the bridle line system makes the wing de-
form and initiate a turn. Video footage of experiments sheds
some light on the aero-structural deformation due to steer-
ing (Schmehl and Oehler, 2018). Previous research on the
topic has focused mainly on the interaction between the flow
and the deforming-membrane wing (Breukels et al., 2013;
Bosch et al., 2013; Geschiere, 2014; Duport, 2018; Oehler
et al., 2018; Thedens, 2022; Folkersma, 2022; Poland and
Schmehl, 2023; Cayon et al., 2023). The experimental data
also indicate a pronounced dynamic interaction between the
wing, the suspended KCU, and the tether during the turn-
ing manoeuvre. How much the swinging motion of the KCU
relative to the wing affects the turning behaviour and the
power generation of the kite has only recently been studied
by Roullier (2020). An improved understanding of this effect
would allow for enhancing performance models of flexible-
membrane kites, designing more precise control algorithms,
and ultimately improving the system performance.

The goal of this paper is twofold: to study the dynamics
that induce the observed characteristic pitch and roll swing-
ing motion of the kite during sharp turning manoeuvres and
discuss the implications for performance modelling. Pertain-
ing to the first goal, this paper introduces a two-point kite
model that is used together with a straight and discretised
tether. Firstly, the motion is approximated as a transition
through steady-rotation states with both tether representa-
tions. Subsequently, the motion is resolved dynamically with
the discretised tether to study the impact of transient effects.
Instead of resolving the translational motion of the wing,
we prescribe a cross-wind flight path from the flight data of
Kitepower B.V. This removes the dependency of the model
on the aerodynamics of the kite and, thereby, reduces uncer-
tainties. Pertaining to the second goal, this paper provides a
breakdown of the mechanisms that initiate and drive a turn
of a flexible kite system with a suspended control unit.

This paper is organised as follows. In Sect. 2, the exper-
imental data underlying this study are described. In Sect. 3,
the computational models are outlined. The results are pre-
sented in Sect. 4 and discussed in Sect. 5. Conclusions are
presented in Sect. 6.
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Figure 2. Fully instrumented V3.25B kite before launch (photo
courtesy of Kitepower B.V.). The overlaid red, green, and white cir-
cles mark Pixhawk® sensor 0, Pixhawk® sensor 1, and the flow
sensors, respectively.

2 Test flight data

The data used in the present study were acquired on 8 Octo-
ber 2019 using a 25 m2 V3.25B kite of Kitepower, depicted
in Figs. 1 and 2. This derivative of the TU Delft LEI V3 kite
has already been investigated by Oehler and Schmehl (2019)
and is illustrated in Fig. 3. We use the term kite for the entire
assembly of the wing, bridle line system, and suspended con-
trol unit. The V3.25B kite is substantially smaller and less
performant than the 60 m2 kite of Kitepower’s commercial
100 kW system that was being developed at the time of writ-
ing. Moreover, conservative operational settings were used
for this specific flight because its purpose was to test new
hardware and software components of the system and to ac-
quire data. Consequently, the power output during the test
was substantially lower than the nominal power output of the
commercial system.

The published data set (Schelbergen et al., 2024) covers
approximately 3 h of flight time, during which 87 automatic
pumping cycles were recorded. With this comprehensive col-
lection of data, statistical insights into the flight behaviour of
the kite can be gained. The apparent wind speed was mea-
sured with a pitot tube attached to the front bridle lines at
the connection to a power line. This flow sensor is visible in
the foreground of Fig. 2, also featuring a flow vane to mea-
sure the angle of attack. The sideslip angle was not measured
in this setup. The onboard electrical power was supplied by
a small ram-air turbine mounted to the KCU, as shown in
Peschel et al. (2017). A tether with a diameter of 10 mm was
used for the flight test. The tether force and the reel-out speed
were measured at the ground station.

For this flight test, two Pixhawk® sensor units were
mounted to the wing, one on each of the two struts adja-
cent to the symmetry plane of the kite (red and green cases in
Fig. 2). The units are each equipped with an IMU, a GPS sen-
sor, and a barometer for recording position and attitude. Fig-
ure 4a–d depict the conditioned position data of one figure-

eight cross-wind manoeuvre from the flight data made avail-
able by Kitepower. The position data are based on measure-
ments of sensor 0, which have been processed using the de-
fault Kalman filter implementation of Pixhawk®. The veloc-
ity measurements used in the present analysis come from the
same sensor. The tangential and radial components of these
measurements are depicted together with those measured by
sensor 1 in Fig. 4e–f (decomposition shown in Fig. 6). For
an unknown reason, sensor 0 did not measure acceleration.
Therefore, the acceleration measured with sensor 1 is used in
the analysis and is depicted in Fig. 4g–i.

Comparing the tether reel-out speed to the position of the
wing indicates anomalies in the recorded wing position that
manifest as unrealistically large jumps in radial position pre-
dominately occurring during left turns, as can be observed
in Fig. 4d. These anomalies are removed using a discrete-
time optimisation problem that minimises the error between
the modelled radial wing speed and recorded tether reel-
out speed while limiting the bias between the modelled and
recorded wing position. The flight trajectory reconstruction
might not be strictly valid. Nevertheless, it serves the higher
aim of this study by providing a consistent kinematic in-
put for the dynamic simulation. The identification of these
anomalies and the details of the optimisation are described
in Appendix A.

We illustrate our analysis using a figure-eight cross-wind
manoeuvre of the wing shown in Fig. 5. This specific ma-
noeuvre is part of the 65th pumping cycle of the test flight.
Because of the high repeatability of the automatic flight ma-
noeuvres, the other figure eights of the data set give similar
results. Characteristic reference positions along this manoeu-
vre are designated to highlight the analysis, listed in Table 1.
The kite flies along the trajectory in the direction of increas-
ing reference numbers, i.e. flying upwards on the straight-
path segments and downwards during the turns. The tether
is reeled out while the kite flies cross-wind manoeuvres, in-
creasing the radial position of the kite from 276 to 302 m at
a height of 150–185 m. The asymmetry of the trajectory may
be explained by various factors, such as the misalignment
with the wind velocity due to wind veer and imperfections
within the system.

For simplicity, the present study assumes that the wind ve-
locity is uniform and constant. The average wind speed mea-
sured at the ground for the reference pumping cycle is ap-
proximately 7 m s−1. Based on the estimated wind shear, the
wind speed at the kite is assumed to be 10 m s−1. The grey
lines in Fig. 5 show the heading of the kite at the reference
positions inferred from sensor 1. The dotted green lines show
the projection of the approximated apparent wind velocity
computed as

va = vw− vk, (1)

in which vw = [10 0 0]> is the wind velocity in the wind
reference frame, and vk is the measured kite velocity. The
sideslip angle is the angle between the heading of the kite
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Figure 3. Front view (a) and side view (b) of the CAD geometry of the V3.25B kite in depowered state. Also depicted are the top wing
surface (TWS) reference frame xtws,ytws,ztws, with its origin at the point K around which the wing pitches when changing the angle of
attack, and the bridle reference frame xb,yb,zb with its origin at the bridle point B. The positions of the two Pixhawk® sensors 0 and 1 are
assumed to be fixed with respect to the TWS reference frame, while the relative flow sensors are assumed to be fixed with respect to the
bridle reference frame. Adapted from Oehler and Schmehl (2019).

Table 1. Timestamps of the reference positions along the figure-eight path shown in Fig. 5, starting at 29.9 s and ending at 51.2 s in the 65th
pumping cycle.

Instance label 1 2 3 4 5 6 7 8 9

Time [s] 31.9 33.9 35.6 37.5 41.0 44.5 46.2 47.6 49.1

and the apparent wind velocity. The approximation of the ap-
parent wind velocity lacks the necessary precision to assess
the sideslip. Moreover, the sideslip angle was not measured
during the flight test, and assessing the sideslip is out of the
scope of this study.

3 Computational modelling

The flight behaviour along the figure eight described in the
previous section is analysed with two different methods for
solving the motion of the two-point kite model with a discre-

tised tether model. First, this section discusses the tether-kite
model configuration. Next, the two methods for solving the
motion are discussed. The first approximates the tether-kite
motion as a transition through steady-rotation states. The sec-
ond solves the motion dynamically.

3.1 Tether-kite model

The two-point kite model accounts for the two distinct mass
concentrations of the wing and the KCU. During cross-wind
flight, the bridle line system is tensioned by the aerodynamic
force acting on the wing. Accordingly, the two point masses
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Figure 4. Kinematics of the studied figure-eight manoeuvre measured with the two Pixhawk® sensor units and the kinematics obtained with
the flight trajectory reconstruction described in Appendix A. The intervals shaded blue and grey indicate left and right turns, respectively.
(a–c) Kite position coordinates of the wind reference frame (sensor data are Kalman filtered). (d) Radial position coordinate of the kite.
(e–f) Tangential and radial kite velocity. (g–i) Tangential, normal, and radial kite acceleration. The unit vectors defining the directions used
for the decomposition are depicted in Fig. 6.

Figure 5. The studied figure-eight cross-wind manoeuvre of the
wing depicted with respect to the wind reference frame, shown in
Fig. B1. The flight path is composed of straight (solid blue) and turn
(dashed blue) line segments. Reference positions 1 to 9 are desig-
nated along the path in the flight direction. For the two turns, the
changing position of the turn centre is tracked with the red lines.
The turn-centre markers pair with the numbered path markers of
the same colour. The dotted lines depict the modelled tangential ap-
parent wind velocity. Alongside the apparent wind velocity lines,
the solid lines depict the heading inferred from the attitude mea-
surements of sensor 1. Note that the turn at a positive azimuth is
observed as a left turn looking from the ground station to the kite,
while the turn at a negative azimuth is observed as a right turn.

stay at a constant distance, considering that the effect of wing
actuation, including deformation, is negligible. From a mod-

elling perspective, the two rigidly linked point masses re-
semble a rigid-body model, with rotational inertia in pitch
and roll but not in yaw. The yaw motion is irrelevant to the
present analysis due to the exclusion of the wing aerodynam-
ics. This would not be the case when solving the full, uncon-
strained kite motion.

The two-point kite model developed for the present anal-
ysis can be added in a straightforward way to a discretised
tether model as an additional final element. An example with
five tether elements of equal length lj and a kite element of
length lb is shown in Fig. 6.

To account for a varying length lt and mass mt of the de-
ployed tether, the element lengths and point masses are up-
dated every instance according to

lj =
lt

N
, (2)

mj =
mt

N
, (3)

whereN is the constant number of tether elements. The point
mass representing the KCU is determined as

m′kcu =mkcu+
mj

2
. (4)

The tether and kite elements are assumed to be rigid. More-
over, variations in the lengths of these elements due to elas-
ticity are neglected. The effect of tether elasticity on the
swinging motion of the kite is expected to be negligible as
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Figure 6. Two-point model of the kite expanding a tether discretised by N = 5 tether elements. The kite position rk and flight velocity vk
are defined at the point K where the sensor units are attached to the wing; see Fig. 3. Also shown are the tangential kite velocity component
vk,τ , the unit vectors et ,en,er used to decompose the measured kite velocity and acceleration, and the wind reference frame xw,yw,zw with
its origin at the tether attachment point O on the ground and the xw axis aligned with the wind velocity vector.

long as the modelled tether length agrees with the effective
real-world tether length.

Aerodynamic drag is one of the forces considered to act
on the point masses representing the tether. The drag is cal-
culated as

Dt,j =
1
2
ρ ‖ va⊥,j ‖ va⊥,j CD,t lj dt, with j = 1, . . .,N, (5)

where ρ is the air density, va⊥,j is the local apparent wind
velocity perpendicular to the tether element below the j th
point mass, CD,t is the tether drag coefficient, and dt is the
tether diameter.

Two aerodynamic forces act on the KCU point mass be-
low the wing: the drag of the KCU itself, Dkcu, and half the
drag of the upper tether element. Consequently, the total drag
acting on the KCU point mass is

D′kcu =Dkcu+Dt,kcu =
1
2
ρ ‖ va⊥,kcu ‖ va⊥,kcu

CD,kcuAkcu+
Dt,N

2
, (6)

in which va⊥,kcu is the perpendicular component of the ap-
parent wind velocity at the KCU. The frontal area of the
KCU is denoted as Akcu and the drag coefficient as CD,kcu.
The chosen value of 1.0 for the drag coefficient is within the
typical range for a blunt body. The drag from the bridle and
ram-air turbine is not incorporated explicitly, but its influence
is indirectly accounted for through the KCU and wing drag.
The values of physical parameters are listed in Table 2.

Equation (5) does not account for any variation in the ap-
parent wind velocity along the tether element and is only a
reasonable approximation when using many tether elements.
For single-element use, the alternative expression for the
tether drag contribution (last term in Eq. (6) better preserves
the moment of the tether drag around the ground station

Dt,kcu =
1
8
ρ ‖ va⊥,kcu ‖ va⊥,kcuCD,t lt dt. (7)

3.2 Steady-rotation state

The subroutine for solving the quasi-static tether shape pro-
posed by Williams (2017) is adopted in the present analy-
sis to assess the swinging motion of the kite. With an ini-
tial guess of the tether length and orientation of the lower
element, the corresponding tether shape is determined us-
ing a shooting method. The positions of the point masses
are determined one by one, starting with the lowest point
mass and moving up towards the last point mass located at
the tether end. From the pseudo-force balance on a particular
point mass (at the intersection of two tether elements), the
position of the next point mass is inferred. This balance con-
siders the tensile forces, drag, weight, and centrifugal force.
Given the tensile force acting on the tether element below the
point mass, only the tensile force acting on the tether element
above remains unknown and is solved. The direction of this
force dictates the axial direction of the corresponding tether
element. Together with the length of a tether element, the ax-
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Table 2. Physical parameters of the airborne system model.

vw mkcu mwing lb ρ dt CD,t Akcu CD,kcu

10 m s−1 25 kg 14.2 kg 11.5 m 1.225 kg m−3 10 mm 1.1 0.25 m2 1.0

ial direction yields the position of the next point mass. By
repeating this calculation for each point mass, the position
of the kite is obtained given the measured tether force at the
ground. A least squares optimisation is employed to find the
tether length and shape for which the upper tether end coin-
cides with the position of the wing. Consult Williams (2017)
for more details.

To facilitate the calculation of loads, the velocities and
accelerations of the point masses are approximated by as-
suming that they collectively rotate around the tether attach-
ment point at the ground with a constant angular velocity,
treating the point masses as particles embedded in a rigid
body. According to this kinematic assumption, the velocity
vj and centripetal acceleration aj of each point mass j de-
pend solely on the angular velocity ω and the position rj of
the particle, expressed by

vj = ω× rj , with j = 1, . . .,N, (8)
aj = ω× vj , with j = 1, . . .,N. (9)

This kinematic assumption is referred to as the steady-
rotation assumption throughout this paper.

Williams (2017) calculates the angular velocity of the
steady-rotation assumption by

ωgc =
rk× vk

‖ rk‖2
=

rk× vk,τ

‖ rk‖2
, (10)

where rk and vk are the position and velocity of the kite, re-
spectively, and vk,τ is the tangential kite velocity component,
depicted in Fig. 6. The subscript gc refers to the great-circle
path, which follows from rotating the wing point K around
the origin O with this angular velocity, as illustrated in Fig. 7.
This great-circle path is representative of the straight-path
segments of a figure-eight manoeuvre. The great-circle rota-
tional velocity is perpendicular to the kite position and tan-
gential velocity vectors and points in the normal direction,
defined in Fig. 6.

A shortcoming of this great-circle angular velocity ap-
proximation is that it does not yield an acceleration represen-
tative of a turning kite. Calculating the corresponding accel-
eration according to the steady-rotation assumption (Eq. 9)
will yield an acceleration that is aligned with the position
vector and, thus, no lateral acceleration. The lateral accel-
eration, however, is important to consider as it is the domi-
nant component during turns, as can be observed in Fig. 4h.
The kinematic assumption does allow a lateral acceleration;
however, this requires that the angular velocity has a radial
component.

Figure 7. The great-circle angular velocity ωgc and the generalised
angular velocity ω, which includes an additional radial component.
Their respective steady-rotation flight paths comprise a great cir-
cle (orange) and an instantaneous-turning circle (blue) that approx-
imately coincides with the turn of the figure-eight manoeuvre. Ap-
plied in the steady-rotation assumption (Eq. 8), both angular veloc-
ities produce the same tangential kite velocity vk,τ .

A more generally applicable angular velocity ω, which
better represents a turning kite, is obtained by the addition
of a radial component to the normal-oriented great-circle an-
gular velocity ωgc

ω = ωgc+
vk,τ × ak,n

‖ vk,τ‖2
. (11)

Similar to the derivation of the great-circle angular veloc-
ity from Eq. (8), the radial angular velocity is derived from
Eq. (9) and can be calculated with the normal component of
the acceleration ak,n. Applying the generalised angular ve-
locity in the steady-rotation assumption may produce a rota-
tion of the wing point K along a small circle, coinciding with
the turn of the figure-eight manoeuvre, as shown in Fig. 7.
Applied in Eq. (8), both ω and ωgc may produce the same
tangential kite velocity vk,τ . However, the generalised rota-
tional velocity provides a more realistic approximation of the
kite acceleration and, as a result, offers a more accurate rep-
resentation of the kite state during turning manoeuvres.

To assess the steady-rotation assumption along the stud-
ied figure eight, the generalised rotational velocity ω is cal-
culated using the wing kinematics resulting from the flight
path reconstruction. Figure 8a shows that the normal compo-
nent of the rotational velocity is much smaller than the radial
component. Figure 8b–c show the kinematics back calcu-
lated with the steady-rotation assumption in Eqs. (8) and (9).
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Figure 8. Assessing the steady-rotation assumption with the gen-
eralised rotational velocity ω along the studied figure-eight cross-
wind manoeuvre. (a) Normal and radial components and magni-
tude of the rotational velocity inferred from the reconstructed wing
kinematics using Eq. (11). (b) Wing speed from the flight trajec-
tory reconstruction (vk) and the wing speed back calculated using
Eq. (8). (c) Wing acceleration from the flight trajectory reconstruc-
tion (ak), the wing acceleration back calculated using Eq. (9), and
their normal components. The shaded intervals indicate the turns.

The back-calculated wing velocity is solely produced by the
normal component of the rotational velocity and only has
a tangential component. Although the original wing veloc-
ity does have a radial component (smaller than 1.6 m s−1)
and the back-calculated speed does not, their magnitudes are
virtually the same. The back-calculated wing acceleration is
solely produced by the large radial component of the rota-
tional velocity. The back-calculated wing acceleration also
shows a very good match with the original wing accelera-
tion despite the fact that it does not have a tangential com-
ponent. In conclusion, these results show that the steady-
rotation assumption with the newly proposed rotational ve-
locity approximation yields a good approximation of the kite
kinematics.

To conclude, we incorporate the following model modifi-
cations with respect to the model of Williams (2017):

– We apply a more generally applicable angular velocity
in the steady-rotation assumption by the addition of a
radial angular velocity component to account for turn-
ing manoeuvres of the kite.

– The elasticity of the tether elements is not considered.

– A different lumping approach is used for the uppermost
tether point mass than for the other tether point masses;
i.e. the mass and drag of half a tether element are allo-
cated to the former instead of the mass and drag of a full
element.

– We add an extra element (rigid link) to represent the kite
as described in Sect. 3.1.

3.3 Dynamic equations of motion

The proposed dynamic model is a derivative of the generic
model for multiple kite system architectures with fixed tether
lengths introduced by Zanon et al. (2013). This model uses
Cartesian coordinates to reduce the non-linearity of the
model formulation. Although the model allows for complex
systems, we only consider a simple single-tether, single-kite
configuration. The system of equations used for generating
results is based on a two-point kite model and a 30-element
tether model. For brevity, here we only write out the system
of equations of a model with two tether elements. The first
tether element connects the ground station to the only des-
ignated tether point mass m1, and the second tether element
connects m1 to the point mass of the control unit m′kcu, in a
similar arrangement as the configuration depicted in Fig. 6.

The model is described by a differential-algebraic system
of equations (DAEs), with constraints originating from the
use of non-minimal coordinates. The differential states x, al-
gebraic states z, and control inputs u of the two-point model
are

x = [r1, rkcu, rk, v1, vkcu, vk, lt, l̇t],z

= [a1, akcu, λ1, λ2, λb],and u= [ak, l̈t], (12)

in which subscript kcu refers to the kite control unit, k refers
to the top wing surface of the kite, t denotes tether, b denotes
bridle, and the numbers refer to the tether point masses and
elements. The state variables are the positions r and veloci-
ties v of the point masses and the tether length lt and reel-out
speed l̇t. The algebraic variables include the acceleration of
the control unit point mass a and Lagrange multipliers λ. The
Lagrange multipliers enforce the constraints and have a close
relationship with the forces acting in the tether and kite ele-
ments. The control variables are the wing acceleration ak and
the reel-out acceleration of the tether l̈t.

Without imposing the translational motion of the wing, the
dynamics of the two-point kite model with two tether ele-
ments read as
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m1 I3 03×3 03×3

03×3 m′kcu I3 03×3
03×3 03×3 mk I3

 G>X

GX 03×3




a1
akcu
ak
λ1
λ2
λb



=



Dt,1−m1 g ez
D′kcu−m

′

kcu g ez
F a−mk g ez

−v>1 v1+
1
N2

(
l̇t

2
+ lt l̈t

)
−(vkcu− v1)> (vkcu− v1)+ 1

N2

(
l̇t

2
+ lt l̈t

)
−(vk− vkcu)> (vk− vkcu)


, (13)

in which

GX = r1 01×3 01×3
(r1− rkcu)> (rkcu− r1)> 01×3

01×3 (rkcu− rk)> (rk− rkcu)>

 , (14)

where I3 is the identity matrix, F a is the aerodynamic force
acting on the wing, g is the gravitational constant, and ez =

[0 0 1]>. The equations of motion for the point masses are
described in the upper three rows. The constraint equations
described in the lower three rows represent the rigid links
between the point masses.

The constraint equations in the lower three rows of
Eq. (13) are inferred from the constraints on the distances
between linked point masses. The distance between the con-
trol unit and the top wing surface point masses is constrained
by the constant bridle length lb

cb =
1
2

(
(rk− rkcu)> (rk− rkcu)− l2b

)
= 0 . (15)

The relative distances between the remaining linked point
masses are constrained by the instantaneous tether length lt

c1 =
1
2

(
r>1 r1−

(
lt

N

)2
)
= 0 (16)

and

c2 =
1
2

(
(rkcu− r1)> (rkcu− r1)−

(
lt

N

)2
)
= 0 . (17)

These constraints are differentiated twice to yield an index-1
DAE, enabling more efficient integration. As a consequence
of the index reduction, the tether length acceleration and the
accelerations of the point masses appear in the constraint
equations. Moreover, the initial states must be chosen such
that they ensure consistent kinematics of the tether and point

masses in the simulation. As such, the initial states must sat-
isfy two consistency conditions for each constraint. The orig-
inal expressions for the constraints provide the first condi-
tion. The time derivatives of these expressions provide the
second condition

ċb = (rk− rkcu)> (vk− vkcu)= 0 , (18)

ċ1 = r>1 v1−
lt l̇t

N2 = 0 (19)

and

ċ2 = (rkcu− r1)> (vkcu− v1)−
lt l̇t

N2 = 0 . (20)

To prevent inaccuracies of an aerodynamic model of the
wing from interfering with the simulation, we do not resolve
the dynamics of the point mass of the wing. Instead, the ac-
celeration of the wing is prescribed and used as input. The
wing acceleration is inferred from a cross-wind flight path
from the flight data, as described in Appendix A. Conse-
quently, the equation of motion of the wing in the third row of
Eq. (13) becomes redundant and is dropped for this analysis:

[m1 I3 03×3
03×3 m′kcu I3

]
G′>

X

G′
X 03×3




a1
akcu
λ1
λ2
λb



=


Dt,1−m1 g ez

D′kcu−m
′

kcu g ez

−v>1 v1+
1
N2

(
l̇t

2
+ lt l̈t

)
−(vkcu− v1)> (vkcu− v1)+ 1

N2

(
l̇t

2
+ lt l̈t

)
−(vk− vkcu)> (vk− vkcu)− (rk− rkcu)> ak

 , (21)

in which G′
X is Eq. (14) with the third column removed.

Moreover, the term with the wing acceleration in the alge-
braic equation of the kite element is moved to the right-hand
side.

Incorporating the accelerations of the point masses, except
for the wing point mass, as algebraic states allows the DAE
of the full model to be expressed in a semi-explicit form. The
time derivatives of the differential states are

ẋ = [v1, vkcu, vk, a1, akcu, ak, l̇t, l̈t], (22)

and Eq. (21) provides the algebraic equations. The DAE is
solved with the IDAS integrator in CasADi (Andersson et al.,
2019). IDAS employs the backward differentiation formula
(variable order, variable coefficient) for implicit integration
to solve the system. The motion is resolved at a fixed time
step of 0.1 s. The solver produces a consistent simulation
with insignificant drift in the consistency conditions; i.e. the
distance between the wing and the KCU drifts with 0.0001 m
in 24.2 s.
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In contrast to the steady-rotation-state calculation in
Sect. 3.2, drag is calculated directly with the local appar-
ent wind velocity va,j instead of its normal component va⊥,j
(Eqs. 5, 6, and 7) to limit the non-linearity of the model. To
sum up, we incorporate the following model modifications
with respect to the work of Zanon et al. (2013):

– The tether length time derivatives are added to the dy-
namic equations to enable modelling pumping AWE
systems.

– Drag is computed directly at the point masses instead of
being computed at the centres of the tether elements and
then lumped to the adjacent point masses.

– The acceleration of the wing point mass is not solved.
Instead, the wing acceleration inferred from measure-
ments is directly imposed.

– We add an extra element (rigid link) to represent the kite
as described in Sect. 3.1.

4 Results

Firstly, the steady-rotation-state approximation is used to
study the motion of the tether and kite along the figure-eight
manoeuvre. A discretisation by 30 tether elements is com-
pared with a minimal discretisation using only a single-tether
element. Secondly, the motion is simulated with the dynamic
model using 30 tether elements. Subsequently, the resulting
roll and pitch along the figure eights from the different mod-
els are compared with measurements. Finally, the motion of
the tether and kite along a full pumping cycle is studied.

4.1 Tether-kite lines computed with steady-rotation
states

The steady-rotation-state approximation uses the measured
tether force, wing position, and optimised angular velocity
to determine the instantaneous positions of the point masses.
The line formed by the elements between these point masses
is referred to as the tether-kite line. Figure 9 shows the result-
ing tether-kite lines with 30 tether elements at the reference
instances.

Variations in the deformation of the tether-kite line are
hard to identify with the naked eye in the previous plots.
Therefore, the cross-axial displacement is plotted against the
radial position for the first five reference instances with the
solid lines in Fig. 10. The displacement is expressed with
respect to the tangential apparent wind velocity of the kite.
The largest displacements are found in the down-apparent
wind direction, which can be attributed to the tether drag.
The direction in which gravity contributes to the displace-
ment varies depending on the position along the figure-eight
manoeuvre. Table 3 specifies in which direction gravity acts
for the first five reference instances. For all instances except

Table 3. The negated vertical unit vector −ez and the negated
centripetal unit vector −ecentripetal decomposed in the up-apparent
wind and cross-apparent wind directions experienced by the wing.
The centripetal unit vector is determined by the approximated cen-
tripetal acceleration at the kite ecentripetal =

ω×(ω×rk)
‖ω×(ω×rk)‖ . The listed

fractions help to explain the contributions of gravity and turn inertia
to the cross-axial displacement of the tether-kite lines in Fig. 10.

−ez −ecentripetal

Instance label Up Cross Up Cross

1 −0.56 −0.55 0.09 0.41
2 −0.44 −0.62 0.28 0.95
3 0.72 −0.32 0.25 0.97
4 −0.03 0.84 −0.23 0.96
5 −0.46 0.68 −0.27 0.84

for the third, gravity acts in the down-apparent wind direc-
tion. The cross-apparent wind displacement contribution of
gravity changes sign after the third instance. Finally, the re-
sistance to turn or the inertia mostly contributes to the dis-
placement in the positive cross-apparent wind direction, as
can be inferred from the high positive values in the last col-
umn of Table 3.

The discontinuities in the tether-kite lines at the KCU in-
dicate that it has a substantial effect on the attitude of the
kite element. The high mass and drag lumped to the KCU
point relative to the mass and drag lumped to the tether points
cause these discontinuities.

To investigate the imposed kite attitude more precisely, it
is quantified using the pitch and roll of the kite element with
respect to the t , n plane, depicted in Fig. 6 (perpendicular to
the position vector of the kite). The corresponding transfor-
mation is described in more detail in Appendix B. Figure 11a
shows that the pitch is roughly constant during the straight-
flight path sections and drops below zero during the turns
(blue line). The negative pitch is confirmed by the tether-kite
line plot of the third instance in Fig. 10a, where the upper kite
element is tilted backwards. Note that this observation is spe-
cific to the instantaneous direction of the apparent wind ve-
locity. It may seem that the KCU is leading the wing during
the downwards-flying turn; however, it is actually positioned
higher above the ground.

Figure 11b shows a distinct pattern for the roll of the kite
along the figure eight (blue line). The roll is nearly constant
and slightly negative at the first straight section flying to the
left, whereas it is slightly positive at the subsequent straight
section flying to the right. In between, during the left turn, the
roll peaks in the middle of the turn at 36.2 s. The right turn
shows an opposite pattern. The rolling motion of the kite dur-
ing the turns can be predominantly attributed to the resistance
to turn or inertia of the KCU. The inertia of the tether has a
much smaller effect on the roll. This stresses the need for in-
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Figure 9. Tether-kite lines for the nine reference instances resulting from the steady-rotation-state approximation with the tether discretised
by 30 elements in 3D (a) and top view (b).

Figure 10. Tether-kite lines with cross-axial displacement decom-
posed with respect to the tangential apparent wind velocity of the
wing (see Fig. 5). Steady-rotation states with 30 tether elements
(solid lines in a, b, c, and d), with a single-tether element (dashed
lines in a and b), and the dynamic solution with 30 tether elements
(dash-dotted lines in c and d) for the first five reference instances.
Note that the x and y axes have different scales and that the x axes
are flipped in the second column.

cluding a separate point mass for the KCU when assessing
the kite attitude.

The analysis is repeated using a single-tether element. Fig-
ure 10a and b show the resulting tether-kite lines with the
dashed lines. As expected, this minimal model is not able to
give a good estimation of the maximum displacements. Nev-
ertheless, the computed pitch and roll of the kite element are
similar for both discretisations, as can be observed in Fig. 11.

4.2 Cross-check with dynamic results

The dynamic simulation requires the wing acceleration, im-
posing the flight path, and the tether reel-out acceleration
as input. The flight trajectory is reconstructed as described
in Appendix A to enable a running simulation and ensure
that the inputs are consistent with the studied figure-eight
manoeuvre. The intensive reconstruction yields a slightly
adapted tether reel-out speed with respect to the measured
speed and imposes a nearly constant difference between the
tether length and radial kite position in the simulation. In this
paper, we refer to this difference as the tether slack. The ini-
tial tether length of the simulation is chosen such that the
tether slack is 0.28 m, which is the mean value observed in
the steady-rotation-state results.

Figure 12 shows the tether force evolution that results from
the dynamic simulation. The agreement with measurements
during the straight sections confirms that the choice for the
constant tether slack is reasonable. During the turns, the cal-
culated tether force does not agree well with the measure-
ments. The simulated force shows distinct peaks, whereas
the measured force shows a more gradual increase. These
differences are not specific to the dynamic model and are ex-
pected to be artefacts of the wing and tether acceleration con-
trol inputs. The wing control input, being a source of error,
is affirmed by coinciding, unexpected tether length results
computed with the steady-rotation states. Consequently, the
tether acceleration control input will also be a source of er-
ror since it is derived from these results. Errors introduced
by model deficiencies, such as neglecting kite deformation
and elasticity and damping of the tether, are expected to be
overshadowed by relatively high errors due to the input.

The resulting tether-kite lines are plotted in Fig. 10c and
d. Most shapes of the reference instances show reasonable
agreement with the steady-rotation-state results. An apparent
outlier is the third reference instance, which occurs at the
outside of the turn. This discrepancy can also be observed
in Fig. 11a, in which the pitch resulting from the dynamic
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Figure 11. The pitch and roll of the kite derived from the attitude of the kite element (with respect to the t , n plane) along the figure eight.
The results of the steady-rotation-state and dynamic analyses are depicted alongside the pitch and roll inferred from attitude measurements
of the two sensors mounted to the wing, which include local effects of wing deformation. The shaded intervals indicate the turns.

Figure 12. Tether force evolution along the figure eight resulting
from the dynamic simulation and from the flight data. The shaded
intervals indicate the turns.

simulation follows the steady-rotation-state results during the
straight flight sections but not during the turns.

The transient effects on the tether-kite line that arise from
the highly dynamic flight behaviour during turns are ac-
counted for by the dynamic model but not by the steady-
rotation states. This explains why in Fig. 10d, the lower end
of the tether of the third reference instance has a negative
cross-apparent wind displacement like its predecessor, while
the corresponding steady-rotation-state result is positive over
the full length.

Despite including transient effects, the dynamic model
does not necessarily enhance accuracy as it requires signifi-
cant assumptions, e.g. for acquiring the tether reel-out accel-
eration input. Moreover, the dynamic simulation is expected
to be more sensitive to neglecting tether elasticity and damp-
ing. One aspect that demonstrates this sensitivity is the rela-

tively large oscillations observed in the pitch and roll of the
kite computed with the dynamic model.

4.3 Kite attitude validation

The wing attitude measurements enable estimating the pitch-
ing and rolling motion of the kite assembly and, thereby, can
be used to validate the computed results. Validating the rota-
tional motion of the kite is particularly important for perfor-
mance model development, as accurate descriptions of this
motion are essential for incorporating the aerodynamics and
the turning mechanism. The tether motion cannot be vali-
dated as no measurements are taken directly from the tether.

Figure 11 compares the computed pitch and roll angles in-
ferred from the kite element orientation with measurements
from the two different sensors mounted to the inboard struts
of the wing. The same pitch and roll definitions are used
to express the wing attitude measurements, provided in Ap-
pendix B. The kite attitude is inferred from these measure-
ments by assuming that the kite is rigid and that the ori-
entation of the wing relative to the bridle is defined by the
depower angle αd shown in Fig. 3. Moreover, the measure-
ments are corrected for misalignments with the wing refer-
ence frame. A total of 7° is added to the measured pitch of
both sensors to correct for the sensor misalignment. Simi-
larly, 8.5° is subtracted from the roll of both sensors to cor-
rect for sensor misalignment.

Both sensors measure a similar roll along the whole figure
eight, as shown in Fig. 11. However, the pitch measured with
the two sensors differs substantially during the turns. This
difference can be attributed to the steering input. A steering

Wind Energ. Sci., 9, 1323–1344, 2024 https://doi.org/10.5194/wes-9-1323-2024



M. Schelbergen and R. Schmehl: Swinging motion of a kite 1335

input causes the steering tape to pull in on one side and give
slack on the other. As a result, the wing tip section at the
inside of the turn will locally pitch nose-up, while the wing
tip section at the outside of the turn will pitch nose-down.
This behaviour can be observed in Fig. 14. The left wing tip
of the wing turning left (Fig. 14b) slightly pitches nose-up
with respect to the wing without steering (Fig. 14a). Simi-
larly, the right wing tip of the wing turning right (Fig. 14c)
slightly pitches nose-up with respect to the wing without
steering. Investigating the relationship between the pitch dif-
ferential of the two inboard ribs and the steering input shows
a high correlation. Figure 13c illustrates this relationship for
the 65th pumping cycle, which exhibits a Pearson corre-
lation coefficient of −0.96. This relationship indicates that
steering-induced wing twisting is being measured: a steering
input makes the wing twist around the leading edge along the
whole span, with a zero twist at the centre. The high corre-
lation strength suggests that the twist between the struts on
which the sensors are mounted is measured with high preci-
sion. The pitch at the centre of the wing is assumed to be the
average of the two measurements.

Figure 11 shows that the differences in pitch and roll re-
sulting from the models and the measurements are small
during the straight sections where no steering-induced wing
twisting occurs. The computed pitch and roll angles match
the measurements within 3°. Although the dynamic result
lies closer to the average measured pitch during the turns,
it does not exhibit a similar peak. This discrepancy is ex-
pected to be caused by multiple sources of error. First, the
actual wing motion that causes the peak in pitch during the
turns might not be accurately reconstructed in the flight tra-
jectory reconstruction. This is affirmed by the large imposed
modifications due to the relatively high uncertainty in the
position measurement during the turns. Second, the pitch of
the kite assembly calculated with the rigidly linked two-point
kite model is inadequate to describe the desired pitching be-
haviour of the kite during this highly dynamic manoeuvre.
Consequently, a higher-fidelity model might be needed to ob-
tain a suitable, higher-resolution pitching motion description.
And third, the available measurements could be insufficient
to estimate the pitch of the kite assembly due to the measure-
ment of local wing deformation. This would lead to discrep-
ancies even if the kite model is adequate.

The possible inaccuracy of the kite model structure in
highly dynamic states pertains to the assumption that the kite
assembly (consisting of the wing, bridle, and KCU) is rigid.
In reality, the kite deviates substantially from the CAD geom-
etry in Fig. 3, even in steady states. For example, the canopy
will billow towards the trailing edge, as shown in Fig. 1.
Figure 14 shows video stills obtained with a KCU-mounted
camera which records how the kite assembly deforms during
the turns. If the kite was rigid, the wing would have a fixed
position in the field of view of the camera. However, dur-
ing the turns, the wing shifts sideways towards the turning
centre. This shift is caused by the changing bridle and wing

geometry due to steering actuation, asymmetric aerodynamic
loading, and inertial effects. The shift increases substantially
along the turning manoeuvre and reaches a maximum at the
outside of the turns, where the kite speed is high, and the
turning radius is the smallest. Further research is needed to
investigate if patterns observed in the measured pitch and roll
along the figure-eight manoeuvre can be attributed to these
kite deformations.

In general, the steady-rotation states perform reasonably
well in estimating the kite attitude, both with a single-tether
element and 30 tether elements. This suggests that the coarse
discretisation is equally effective in capturing the inertial ef-
fect of the KCU during turns. Despite including transient ef-
fects, the dynamic model does not necessarily show better
agreement with measurements than the steady-rotation-state
model. This suggests that improving the method for solving
the motion may not be effective unless the configuration of
the kite model itself is refined to compute pitching motion
more accurately. However, a definite conclusion cannot be
drawn because the uncertainty in the measurements might
distort the view of the model validity.

4.4 Pitching motion along a full pumping cycle

To study the pitching motion of the kite outside the reel-out
phase, we zoom out and evaluate multiple pumping cycles,
including the 65th cycle, which contains the previously in-
vestigated figure-eight manoeuvre. During the reel-in phase,
the kite only requires small steering adjustments. Conse-
quently, the kite does not show significant rolling. In contrast,
the pitching of the kite increases due to the increased tether
sag. The increased sag results from a decrease in tether ten-
sion, which makes the weight and drag of the tether more
dominant.

Figure 15 shows the kite pitch inferred from the wing
measurements and the kite pitch resulting from the steady-
rotation-state analysis with 30 tether elements. The results of
10 consecutive pumping cycles are depicted, starting with the
65th pumping cycle. Each cycle starts with the transition into
the reel-out phase, followed by approximately four figures of
eight. Subsequently, the kite is pointed towards the zenith,
depowered, and reeled back in (after the last shaded inter-
val). The cycle ends after powering up again in preparation
for a new cycle.

Each cycle shows an increase in pitch after the last turn in
the reel-out phase as the kite transitions into the reel-in phase.
The model overestimates the pitch at the start of the reel-in
and underestimates it towards the end but gives good overall
agreement. There are many factors that may cause this dis-
crepancy. One plausible explanation is that the reduced load
during the reel-in phase leads to the deformation of the kite
struts on which the sensors are mounted. The deformation is
measured but not accounted for in the model and, thus, not
incorporated in the computed results. Note that during the
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Figure 13. Relations between (a) the steering input and (b, c) the difference in pitch of the two sensors, (d, e) roll of the kite, and (f, g) yaw
rate of the kite in the 65th pumping cycle. The dashed orange lines in the left column depict the steering input scaled with the slope found in
the linear fit shown with the dashed orange lines in the right column.

reel-in, the steering input is non-zero, as shown in Fig. 13a.
This causes a pitch offset between the two sensors.

5 Discussion

In this section, we discuss the turning mechanism and the
implications of the observed swinging motion for the per-
formance modelling of a kite system. Different mechanisms
initiate and drive a turn of a flexible kite system with a sus-
pended control unit.

The initiation mechanism relies on twisting the wing tips,
as discussed in Sect. 4.3. A steering input induces twisting
of the wing, leading to changes in the pitch of different wing
sections along the span. This increases the angle of attack
at the wing tip at the inside of the turn and decreases it at
the outside wing tip. This creates an aerodynamic side force
component perpendicular to the kite symmetry plane and
pointing towards the turn centre. The introduction of a side
component effectively rolls the resultant aerodynamic force
acting on the whole kite without rolling the kite itself. In con-
trast to flexible kites with a suspended control unit, multi-line
flexible kites that are actuated from the ground employ this
mechanism to drive the whole turn; the side force is dominant
in providing the centripetal force.

The driving mechanism for turning flexible kites with a
suspended control unit is the rolling of the kite. As soon as
the turn is initiated, the kite will roll into the turn to exert
a centripetal force on the relatively heavy KCU, pulling it
along. Together with the kite, the lift force generated by the
top wing surface rolls into the turn and contributes to the cen-
tripetal force. The higher the mass of the KCU, the more roll
is required to execute the same turn. Consequently, a smaller
fraction of the lift is available to carry the weight of the air-
borne components and pull the tether. While the aerodynamic
side force is still necessary to maintain turning, it is the roll
of the kite that accommodates the largest contribution to the
centripetal force and is thus considered to drive the turn.

To incorporate this turning mechanism, a single-point kite
model would need the roll of the kite as an input, relying
on the user to provide realistic roll angles. Another option
is modelling the roll, e.g. using an empirical relationship be-
tween the roll and the steering input, as shown in Fig. 13e.
However, with little extra computational cost, the roll can be
resolved by modelling the kite with at least two point masses:
one for the wing and one for the KCU. Thereby, it no longer
needs to rely on system-specific empirical relationships to in-
clude the steering mechanism. Instead, the aerodynamic side
force needed to initiate and maintain the turn can be calcu-
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Figure 14. Video stills obtained from a recording from a test flight
on 30 March 2017 with a kite largely identical to the V3.25B kite
and a GoPro® camera mounted to the KCU (video stills extracted
from video recordings provided by Kitepower B.V.). (a) Kite flying
on a straight path just after launch. (b) Kite performing a left turn
and located between reference positions 3 and 4. (c) Kite perform-
ing a right turn and located between reference positions 7 and 8.
Reference positions refer to Fig. 5. All stills were cropped in ex-
actly the same way from the original recording and rotated by −9°
to correct for the misaligned mounting on the KCU. The overlaid
red circles indicate the positions of the steering tape endpoints, vi-
sualising the steering-induced asymmetry of the bridle line system.

lated based on the deformation of the kite tips and associated
aerodynamics.

Although the kite pitch does not change substantially dur-
ing the reel-out phase, the tether-kite motion changes the
pitch substantially outside this phase. The sag-induced pitch
concerns performance modelling as it affects the angle of at-
tack experienced by the wing, which in turn affects the gen-
erated aerodynamic forces. Resolving the pitch also requires
modelling the kite with at least two point masses and enables
incorporating an aerodynamic model for the wing with a de-
pendency on the angle of attack.

Given the coarse discretisation of a two-point representa-
tion of the kite, it is reasonable to adopt a rigid-kite assump-
tion when employing this kite model. The adequacy of using
a two-point kite model for performance modelling pertains
to the validity of the rigid-kite assumption. Despite the fact
that the kite assembly is subject to a changing geometry, the
errors arising from the rigid-kite assumption are expected to

be limited. Therefore, this assumption can be justified by the
necessity to limit computational complexity as required for
some types of analysis for which the performance model can
be useful.

Employing the developed models for performance mod-
elling requires that the model is complemented with an aero-
dynamic model of the wing. This enables the dynamic model
to resolve the flight path and a quasi-steady model to com-
pute the kite speed along a partially prescribed flight path.
Note that incorporating the wing aerodynamics makes the
models much more sensitive to the wind input.

6 Conclusions

The inertia of the suspended control unit has a large effect on
the roll of a flexible kite during turns in the reel-out phase.
During the reel-in phase, the pitch of the kite changes due to
the weight and drag of the control unit and increased tether
sag. These effects are not resolved when the kite is modelled
with a single point mass. With two point masses, one at the
wing and one at the control unit, the steady-rotation-state
model performs reasonably well in capturing the pitch and
roll with little extra computational effort. A two-point model
of the kite can thus be a powerful tool for the performance
modelling of flexible kite systems.

The swinging motion of a kite with a suspended control
unit is assessed with two approaches: approximated as a tran-
sition through steady-rotation states and solved dynamically.
In contrast to the dynamic model, the steady-rotation-state
model neglects transient effects. Both approaches employ a
two-point kite model extending a discretised tether model us-
ing an additional rigid element for the kite. By prescribing
the cross-wind flight path of the wing, no aerodynamic model
of the kite is required.

An alternative expression for the angular velocity under-
lying the steady-rotation assumption is derived that accounts
for the turning of the kite. This angular velocity expression
accommodates lateral accelerations on the point masses and,
thereby, allows for studying the lateral swinging motion of
the kite. The angular velocity for turns is approximated with
flight data and shows good agreement with the kite kinemat-
ics. Unlike the original angular velocity expression, the pro-
posed expression yields a good approximation of not only the
wing velocity but also the wing acceleration.

The tether-kite lines resulting from the steady-rotation
states show discontinuities at the junction between the tether
and the kite. These indicate that the control unit has a sub-
stantial effect on the attitude of the kite and stress the need
for including a separate point mass for the control unit in
performance models for flexible kite systems. The steady-
rotation states perform reasonably well in estimating the roll
of the kite, both with a single-tether and 30-tether element.
The computed pitch and roll angles match the measured an-
gles within 3° during the straight sections of the figure-eight
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Figure 15. The pitch of the kite element with respect to the t , n plane along 10 pumping cycles resulting from the steady-rotation-state
analysis using 30 tether elements (steady rotation N = 30), together with the kite pitch inferred from the wing attitude measured with two
sensors. The shaded intervals indicate the turns during the reel-out phase. After the turns, the system transitions into the reel-in phase.

manoeuvre. During the turns, the peaks in the roll are overes-
timated, and the instantaneous differences in roll may exceed
5°, whereas the pitch exhibits more systematic differences.
These systematic differences could partially be explained by
the fact that the model did not account for transient effects.
However, drawing a definite conclusion is challenging, as
the measurements include steering-induced pitch, making the
wing measurements a poor reference.

Although the dynamic model considers transient effects, it
does not prove to be more accurate in capturing the roll and
pitch behaviour during turns than the steady-rotation states.
This is expected to be primarily caused by inaccuracies in
the wing acceleration and tether reel-out acceleration inputs.
Due to anomalies in the flight trajectory measurements, a
reconstruction was necessary to generate consistent inputs,
enabling a running simulation. The reconstruction assumes
that the tether slack length, defined as the difference between
the tether length and radial position of the kite, remains con-
stant. The large modifications imposed by the reconstruction
add further uncertainty to the results. Moreover, since the de-
veloped model aims for simplicity to increase computational
efficiency, it does not incorporate all relevant mechanical ef-
fects, such as tether elasticity and damping. In addition to

solving the motion dynamically, it could be necessary to re-
fine the configuration of the kite model in order to increase
the accuracy of solving the pitching motion and explain the
observed differences between the measured and computed
pitch.

Two separate mechanisms have been identified that initi-
ate and drive a turn of a flexible kite system with a suspended
control unit. A steering input causes an aerodynamic side
force that initiates the turn. As soon as the turn is initiated,
the kite starts to roll as it needs to pull the relatively heavy
control unit into the turn. The rolled lift force provided by the
top wing surface of the kite provides the largest contribution
to the centripetal force and is said to drive the turn. Since a
two-point kite model resolves the roll, the lift force may tilt
along with the kite to drive turns. Hence, it avoids making
large assumptions to model the centripetal force, as seen in a
single-point kite model. Furthermore, by resolving the pitch,
the kite model allows for computing the angle of attack of
the wing, which is crucial for obtaining an accurate aero-
dynamic model. This becomes particularly important when
solving the wing motion instead of prescribing a flight path,
as done in the current study. Further study is needed to as-
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sess how refined the pitching motion needs to be solved to
accurately calculate the angle of attack of the wing.

The results of this study could be significantly improved
with better-quality flight data, more raw data, and informa-
tion about how measurements are conditioned and calibrated.
Currently, the sensor units are mounted to the flexible wing.
As a result, wing deformation and actuation of the depower
angle of the wing are also measured. This could be prevented
by mounting the sensor units to the kite control unit. To find
a better match between the measured and simulated tether
forces, it would be interesting to incorporate variable tether
slack and account for stretching in the dynamic simulation.
A stepping stone could be to wrap the simulation in an op-
timisation problem to find the tether acceleration input that
produces the measured tether force and cross-check the re-
sults with the tether lengths resulting from the steady-rotation
states. More accurate tether length information in the experi-
mental data would greatly help such analysis. Moreover, the
flight trajectory reconstruction could be enhanced with this
information, as well as with more advanced state estimation
techniques. Finally, both the steady-rotation state and the dy-
namic model could still benefit from refining the wind mod-
elling and fine-tuning the model parameters.

Appendix A: Flight trajectory reconstruction

The kinematics of the wing recorded in the flight data show
inconsistencies in the measured tether reel-out speed and are
reconstructed in a preprocessing step to remove anomalies.
The dynamic simulation relies on the recorded wing kine-
matics and tether reel-out speed for its input. Directly using
these recorded quantities as input leads to faulty simulations,
and a workaround is needed to obtain coherent input. The
reconstruction is carried out for the full 65th pumping cycle.

A preliminary evaluation of the wing kinematics in the
flight data shows that the vertical speed does not fully agree
with the derivative of the vertical position of the wing, even
though it does for the horizontal components. The largest
mismatch occurs during the turns, where the recorded ver-
tical speed is more negative than the derivative of the verti-
cal position. The recorded vertical position is GPS data en-
hanced with barometer measurements. However, we expect
that the vertical speed was not updated accordingly.

The inconsistent vertical speed leads to a discrepancy be-
tween the time derivative of the measured radial position ˆ̇rk
and the measured radial component of the wing velocity v̂k,r,
while in theory, they should be the same. These quantities are
depicted with the blue and red lines, respectively, in Fig. A1c.
The radial component of the wing velocity is calculated with

vk,r =
rk · vk

‖ rk ‖
, (A1)

in which rk and vk are the position and velocity of the wing,
respectively. An objective of the intended flight trajectory re-
construction is to ensure that the updated radial component

of the wing velocity and the derivative of the radial position
agree.

As an additional check, the time derivative of the mea-
sured radial position of the wing ˆ̇rk is compared to the mea-
sured tether reel-out speed ˆ̇lt (dotted black line in Fig. A1c).
The derivative of the radial position shows large fluctuations
around the tether reel-out speed in the reel-out phase. The
magnitude of the fluctuations conflicts with our expectation
that the changes in tether slack (difference between the tether
length and radial position of the kite) and stretch are small in
this phase. Towards the end of the left turns (at the end of
the blue intervals), the derivative of the radial position even
tends to become shortly negative.

Figure A1a shows how the integrated measured reel-out
speed (dotted black line) evolves with respect to the mea-
sured radial position of the wing r̂k (blue line). During the left
turns, the inferred tether length increases approximately lin-
early, while the radial position exhibits subtle local maxima.
These local maxima coincide with the large discrepancies be-
tween the derivative of the radial position and the tether reel-
out speed observed in Fig. A1c. Note that the tether length
lines depict the relative lengths with respect to the start of
the pumping cycle. The lines need to be shifted up with their
initial values to obtain their respective absolute values. Un-
fortunately, we do not know the absolute tether length as it is
not measured directly.

The residual between the inferred tether length and mea-
sured radial position 1l̂t is shown in Fig. A1b. During the
left turns, the residual changes roughly 2 m (depth of the val-
ley) within a couple of seconds. The corresponding relatively
large increase in radial position can partly be attributed to
decreased tether slack and increased tether stretch. However,
the magnitude of the change is deemed to be too large to
be attributed only to changes in these quantities. Note that
here the line may also shift vertically depending on the ini-
tial values. As such, we cannot draw conclusions based on
the magnitude of the residual but merely on how it changes
with time. The given residual length has an unknown offset
with respect to the tether slack. Note that the tether slack can-
not be negative.

The maxima in the recorded radial position do not need to
be purely physical. Another possible cause is GPS inaccu-
racy during manoeuvres, which has previously been reported
in the literature. Borobia et al. (2018) reported measured ra-
dial position exceeding more than 3 m while none was ex-
pected. Considering the imprecision of the recorded position,
we opt to adapt the wing kinematics by letting the radial wing
speed follow the measured reel-out speed as closely as pos-
sible.

The flight trajectory reconstruction is obtained using a
discrete-time optimisation problem that minimises the error
between the modelled radial wing speed and recorded tether
reel-out speed while limiting the bias between the modelled
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Figure A1. (a) Evolution of unstrained tether length
∫
ˆ̇lt and the measured and reconstructed radial distances of the wing, r̂k and rk, all with

their initial values subtracted. (b) Difference between the tether length and the measured radial distance of the wing 1l̂t and its equivalent
after the reconstruction 1lt. (c) Time derivative of the measured radial position of the wing, ˆ̇rk; measured and reconstructed radial speeds of
the wing, v̂k,r and vk,r; and measured tether reel-out speed, ˆ̇lt. (d) Residual between the tether reel-out speed and reconstructed radial speed.
The intervals shaded grey and blue indicate right and left turns, respectively.

and recorded wing position:

min
rk(·), vk(·), ak(·)

N∑
i=0

[
w
(
vk,r−

ˆ̇lt

)2

+
(
rk− r̂k

)> (
rk− r̂k

)]
t= i

10

s.t. ak = v̇k = r̈k. (A2)

Quantities marked with a hat indicate measured quantities,
whereas the absence of a hat indicates modelled quantities.
A discrete function is used for the acceleration of the wing,
and continuous trajectories are used for the velocity and po-
sition of the wing. The decision variables consist of the wing
accelerations during the control intervals ak(·) and the veloc-
ities vk(·) and positions rk(·) at the control interval bound-
aries. N is the number of time steps, and the weighing factor
w = 25 is chosen as it leads to a good balance between the
two objectives. Note that having matching reel-out and radial
wing speeds does not necessarily mean that the tether length
is also the same as the radial position. However, it does mean
that the tether slack stays constant.

In line with the dynamic simulation, the fitting problem
uses discrete control input trajectories. It assumes a constant
acceleration within each simulation time step of 0.1 s. Be-
tween the corresponding control intervals, the values may
vary. Due to the step function form of the acceleration,
the velocity and position are linear and quadratic functions,
respectively, within the control intervals. These low-order
forms allow for sufficient detail due to the small time step.
The fitting problem is solved in CasADi using a multiple-
shooting approach. This approach is not hindered by integra-
tion drift causing an accumulating error with time.

The flight trajectory reconstruction results are shown with
the orange lines in Fig. A1. The reconstruction shaves off the
local maxima in the recorded radial position, as can be ob-
served in Fig. A1a. Figure A1c shows that the reconstructed
radial wing speed follows the measured reel-out speed more
closely. The residual speed, which is penalised by the first
term of the objective function, is illustrated in Fig. A1d. The
optimiser reduces the position bias, which is penalised by
the second term of the objective function, by allowing small
changes to the radial wing speed with respect to the measured
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reel-out speed. As a consequence, the reconstruction does not
lower the residual length substantially but keeps it close to
the original residual length, as can be seen in Fig. A1b.

We use the reconstructed radial wing acceleration ak,r as
tether reel-out acceleration input l̈t for the simulation. Thus,
we not only reconstruct the flight trajectory but also modify
the tether reel-out speed with respect to the measurements.
As a result, the tether slack remains constant in the simula-
tion and is set by the choice for the initial tether length. In
reality, changes in slack length will occur, especially during
the transition phases. Therefore, this approach might be sub-
optimal for simulating the entire pumping cycle. Nonethe-
less, it is suitable for simulating intervals where only small
tether slack and stretch changes are expected, such as the
reel-out phase.

We acknowledge that the flight trajectory reconstruction
might not be strictly valid. However, it serves the main objec-
tive of this study by enabling the simulation of a short inter-
val that encompasses a figure-eight manoeuvre during reel-
out. A more educated reconstruction would require a lot more
resources and probably more testing and is recommended as
a possible future improvement.

Appendix B: Pitch and roll angle definitions

Expressing the attitude of the kite using pitch and roll an-
gles with respect to the wind reference frame gives large
variations in these angles along the flight trajectory. Conse-
quently, the kite attitude is difficult to interpret from these
angles. Variations are smaller when the pitch and roll angles
are expressed with respect to the tangential plane (t , n plane),
which is perpendicular to the position vector of the kite and
shown with the black rectangle in Fig. B1. The variations
are smaller since the up-direction (positive z axis) of the kite
and the direction of the position vector in the wind reference
frame are not far apart, especially during the reel-out phase,
where the tether is relatively straight due to the high pulling
force of the kite.

B1 Measured attitude of the kite

The rotation matrix for the transformation from the earth to
the tangential reference frame is calculated by

Tτe =sin β̂ 0 −cos β̂
0 1 0

cos β̂ 0 sin β̂

 cos
(
ϕ̂+ ϕ̂we

)
sin
(
ϕ̂+ ϕ̂we

)
0

−sin
(
ϕ̂+ ϕ̂we

)
cos

(
ϕ̂+ ϕ̂we

)
0

0 0 1

 , (B1)

in which subscripts τ , w, and e refer to the tangential, wind,
and earth reference frames, respectively; the hat denotes a
measured quantity; β is the elevation angle; and ϕ is the az-
imuth angle.

The measured pitch, roll, and yaw of the wing of the kite
are expressed using 3–2–1 Euler angles. The corresponding
rotation matrix for the transformation from the earth to the

top wing surface reference frame is calculated by

Ttws-e =1 0 0
0 cos φ̂ sin φ̂
0 −sin φ̂ cos φ̂

cos θ̂ 0 −sin θ̂
0 1 0

sin θ̂ 0 cos θ̂

 cos ψ̂ sin ψ̂ 0
−sin ψ̂ cos ψ̂ 0

0 0 1

 , (B2)

in which subscripts tws and e refer to the top wing surface
and earth reference frames, respectively; φ is the roll angle;
θ is the pitch angle; and ψ is the yaw angle.

The attitude of the kite is not affected by the depower sig-
nal and can be approximated by pitching the wing reference
frame with the negative of the depower angle αd depicted in
Fig. 3:

Tb-tws =

 cosαd 0 sinαd
0 1 0

−sinαd 0 cosαd

 , (B3)

in which subscript b denotes the bridle reference frame.
The depower angle is calculated using a geometrical model
from the power setting (Schelbergen and Schmehl, 2020) and
yields a nose-down pitch angle of roughly 6.6° during the
reel-in phase.

The rotation matrix for the transformation from the tan-
gential to the bridle reference frame is derived from the pre-
viously presented matrices:

Tbτ = Tb-twsTtws-e T>τe. (B4)

A rotation matrix can be represented with a set of 3–2–1
Euler angles. The yaw, pitch, and roll corresponding to these
three angles can be calculated using the lower expressions:

ψ = arctan2(T12,T11) , (B5)

θ =−arctan2
(
T13,

√
T2

23+T2
33

)
, (B6)

φ = arctan2(T23,T33) , (B7)

in which Tij denotes the transformation matrix element at
the ith row and j th column. The Euler angles corresponding
to Tbτ are denoted without a subscript. The definitions of
the pitch and roll angles are illustrated in Fig. B2, taking the
yawed tangential plane as the point of departure.
3 in Fig. B1 describes the orientation of the tangential pro-

jection of the modelled apparent wind velocity, also shown in
Fig. 5. In the case of no sideslip,3 equals the heading angle.
The heading angle inferred from measurements and 3 has a
small periodic misalignment (not plotted), which may indi-
cate a sideslip. However, the constant wind assumption and
measurement errors introduce too much uncertainty to con-
firm this. Also, the sideslip angle was not measured in the
studied test flight and thus cannot be validated. Nevertheless,
some sideslip can be expected, as previously shown in the
experiments by Oehler and Schmehl (2019).
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Figure B1. Earth reference frame xe,ye,ze and wind reference frame xw,yw,zw together with the yawed tangential plane τ lying on the
projection of a figure-eight flight path. This plane is yawed such that it heads into the apparent wind velocity and serves as a departure point
for expressing the kite attitude, illustrated in Fig. B2. The corresponding yaw angle3 is equal to the kite heading in the case of zero sideslip.

Figure B2. Last two rotations in the 3–2–1 sequence (Euler angles)
to get from the tangential to the bridle reference frame: (a) a positive
pitch rotation and (b) a negative roll rotation. The black rectangle
illustrates the yawed tangential plane, introduced in Fig. B1.

B2 Modelled attitude of the kite

Expressing the Euler angles of the kite element of the model
requires assigning a local reference frame to the element. The
model does not specify a full reference frame but only spec-
ifies the axial direction of the element. This axial direction
is used as the z axis for the local reference frame. To differ-
entiate between the roll and pitch, the x axis and y axis also
need to be specified. The x axis is chosen such that it lies
in the plane spanned by the position vector and the vertical
direction ze. The y axis then follows from the other two axes
and is oriented horizontally.

Other than for securing the alignment between the roll and
pitch definitions of the measured and modelled kite attitude,
the yaw of the tether is not of interest to this study. It does
not affect the kite attitude itself, and, therefore, the resulting
yaw angles are left out of Fig. 11. The modelled yaw of the
kite is similar to that inferred from the wing attitude mea-

surements and, thereby, facilitates comparing the measured
and modelled roll and pitch.

Code and data availability. The complete test flight data, in-
cluding 87 pumping cycles spanning a total flight time of
265 min, are available in open access from Schelbergen et al.
(2024) (https://doi.org/10.4121/19376174). The specific pump-
ing cycle underlying this study and the Python code for the
data analysis are available in open source from Schelbergen
(2024) (https://github.com/awegroup/swinging-kite, last access:
27 May 2024, https://doi.org/10.4121/e08cd09a-bad8-48c5-b6cb-
66f90ac467c3, Schelbergen, 2024.).
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