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Abstract. Large-scale flow structures are vital in influencing the dynamic response of floating wind turbines
and wake meandering behind large offshore wind turbines. It is imperative that we develop an inflow wind
turbulence model capable of replicating the large-scale and low-frequency wind fluctuations occurring in the
marine atmosphere since the current turbulence models do not account well for this phenomenon. Here, we
present a method to simulate low-frequency wind fluctuations. This method employs the two-dimensional (2D)
spectral tensor for low-frequency, anisotropic wind fluctuations presented by Syed and Mann (2024) to generate
stochastic wind fields. The simulation method generates large-scale 2D spatial wind fields for the longitudinal u
and lateral v wind components, which can be converted into a frequency domain using Taylor’s frozen turbulence
hypothesis. The low-frequency wind turbulence is assumed to be independent of the high-frequency turbulence;
thus, a broad spectral representation can be obtained just by superposing the two turbulent wind fields. The
method is tested by comparing the simulated and theoretical spectra and co-coherences of the combined low-
and high-frequency fluctuations. Furthermore, the low-frequency wind fluctuations can also be subjected to
anisotropy. The resulting wind fields from this method can be used to analyze the impact of low-frequency wind
fluctuations on wind turbine loads and dynamic response and to study the wake meandering behind large offshore
wind farms.

1 Introduction

Several models are available for generating high-frequency
wind fluctuations within a three-dimensional (3D) space.
These models can generate realistic wind fields that can
be used for load estimation on structures such as bridges,
wind turbines, and buildings. For wind turbine design and
load calculations, the International Electrotechnical Com-
mission (IEC) standards (IEC, 2019) recommend two com-
monly used models: the Mann uniform shear model (Mann,
1994, 1998) and Kaimal spectral and coherence model
(Kaimal et al., 1972; Veers, 1988). A notable advantage of
these two models is simulating realistic small-scale turbu-
lence without exorbitant computational time and resources.
In contrast, large eddy simulation (LES) or other numerical
solutions of the Navier–Stokes equations have proven to be
computationally expensive and unfeasible for the wind tur-
bine design process.

While high-frequency fluctuations have more influence on
the stresses and fatigue loads experienced by the blades and

tower of a wind turbine, low-frequency fluctuations can sig-
nificantly affect the overall energy production and capac-
ity factor of a wind farm. In the context of floating off-
shore wind turbines, low-frequency wind fluctuations may
be of significant importance in terms of dynamic response
and loading since these structures can have very low natu-
ral frequencies (Nybø et al., 2022). Low-frequency fluctu-
ations are also crucial for meandering wakes behind wind
farms, affecting power fluctuations and dynamic loads. The
dynamic wake meandering model of Larsen et al. (2008) uses
the low-frequency turbulence to move the wake deficit, but it
uses a normal turbulence spectrum that does not take into
account the excess power spectral energy at low frequencies
often seen offshore (Sathe et al., 2013; de Maré and Mann,
2014; Cheynet et al., 2018). Thus, we need a fast method for
simulating realistic low-frequency wind fluctuations that can
be easily integrated with high-frequency wind fields to get a
comprehensive spectral range representation.
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Here, we present a method for simulating low-frequency
wind fluctuations based on the two-dimensional (2D) spec-
tral tensor introduced in Syed and Mann (2024). At low fre-
quencies, only the longitudinal (u) and lateral (v) wind com-
ponents have strong fluctuations since, at least close to the
ground, the presence of the land or sea blocks the vertical
large-scale movements. Thus, the vertical wind (w) fluctu-
ations at low frequencies attenuate or weaken considerably,
rendering the turbulence 2D. The 2D turbulence model only
describes the u and v fluctuations in the low-frequency range
and assumes that these fluctuations do not vary in the vertical
direction. The algorithm to generate stochastic wind fields
from the 2D turbulence model is similar to the one described
in Mann (1998). The 2D wind field is represented as a dis-
crete Fourier series, which takes the mean squared amplitude
of the Fourier coefficients from the 2D spectral model. These
coefficients are then multiplied by a random Gaussian field.
Subsequently, the resulting product’s inverse discrete Fourier
transform yields the stochastic wind field.

Section 2 of this paper describes the low-frequency, 2D
turbulence model, along with model validation details. Sec-
tion 3 outlines the process for simulating 2D wind fields con-
taining 2D turbulence. Section 4 describes combining 2D and
3D wind fluctuations to create turbulence boxes that repre-
sent a wide spectral range. Finally, a discussion regarding
the effect of anisotropy on the 2D turbulence and some basic
guidelines to generate 2D wind fields for the wind turbine
design load process is presented in Sect. 5.

2 Low-frequency turbulence model

The 2D, incompressible, and isotropic turbulence has the
spectral tensor form of (Batchelor, 1953)

φij (k1,k2)=
E(k)
πk

(
δij −

kikj

k2

)
, (1)

where E(k) is the energy spectrum, k is the magnitude of

the horizontal wave vector k = |k| =
√
k2

1 + k
2
2 , and δij is the

Kronecker delta. The assumption of incompressibility is an
approximation. Alcayaga et al. (2022) observe some diver-
gence in a horizontal plane at wind-turbine-relevant heights.
We assume that the energy spectrum is given by

E(k)=
ck3(

L−2
2D + k

2
)7/3 , (2)

where c is a constant and a scaling parameter, and L2D is
the corresponding length scale of low-frequency fluctuations.
This particular shape of Eq. (2) is inspired by the von Kár-
mán (1948) spectra. The variance of any horizontal velocity
component can be found by

σ 2
= σ 2

11 = σ
2
22 =

∞∫
0

E(k)=
9
8
cL

2/3
2D . (3)

Due to isotropy, the variance is the same for both wind com-
ponents. Now, let us introduce scale-independent anisotropy
in the energy spectrum. We replace the horizontal wave vec-

tor k = |k| =
√
k2

1 + k
2
2 with κ , where

κ2
= 2(k2

1cos2ψ + k2
2sin2ψ) , (4)

and 0<ψ < π/2 is the anisotropy parameter. Now, the en-
ergy spectrum with anisotropy parameter takes the form of

E(κ)=
cκ3(

L−2
2D + κ

2
)7/3 . (5)

When ψ = π/4, k = κ and Eq. (5) takes the form in Eq. (2).
By insertingE(κ) into Eq. (1) we can obtain two-point cross-
spectra χ2D

ij and one-point spectra F 2D
ij using

χ2D
ij (k1,1y)=

∞∫
−∞

φij (k1,k2)exp(−ik21y)dk2 , (6)

where F 2D
ij (k1)= χ2D

ij (k1,0) is the one-point cross- or auto-
spectrum depending on whether the component indices i and
j are different or equal. The anisotropy parameter ψ deter-
mines the spectral distortion in the wavenumber domain and
the spectrum magnitudes of longitudinal and transverse wind
components. When the 2D turbulence is isotropic (ψ = π/4),
F 2D

11 =
3
5F

2D
22 in the k−5/3

1 range. For the anisotropic cases,
the ratio can be found using

F 2D
11

F 2D
22
=

3
5

cot2ψ . (7)

The anisotropy parameter can be obtained from measured
spectra at frequencies below ∼ 10−3 Hz. As observed from
the analysis of real offshore measurements in Syed and Mann
(2024), the subrange below f < 10−3 Hz follows a S(f )∝
f−5/3 relation, where S(f ) is the velocity spectrum in terms
of frequency. Thus, ψ can be evaluated as

ψ = arctan

(√
3
5
Sv(f )
Su(f )

)
, (8)

for f < 10−3 Hz, corresponding to fluctuations with a pe-
riod longer than approximately 16 min. The energy spec-
trum must be attenuated at the wavenumbers corresponding
to small-scale 3D turbulence. This is necessary because we
assume low-frequency fluctuations are independent of high-
frequency fluctuations, and at very high wavenumbers, only
small-scale 3D turbulence is present. This high wavenum-
bers range is referred to as the inertial subrange. The turbu-
lence is isotropic in this range and follows a power law (Pope,
2000). For practical reasons, we attenuate the low-frequency
turbulence at wavenumbers higher than 1/zi , where zi is
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the boundary-layer height. This implies that any eddy with
a length scale smaller than the boundary-layer height would
be considered 3D turbulence. The attenuated E(κ) can be de-
fined as

E(κ)=
cκ3(

L−2
2D + κ

2
)7/3

1
1+ κ2z2

i

. (9)

Here, the attenuation factor 1/(1+κ2z2
i ) is an activation func-

tion that ensures the energy spectrum smoothly drops to zero
for wavenumbers greater than 1/zi . This drop is acceler-
ated due to an increased negative slope of the spectrum for
κ > 1/zi , i.e., E(κ)∝ κ−11/3. Sigmoid functions such as a
hyperbolic tangent or a logistic function can also be used as
an attenuation factor. From Eq. (6) we can obtain F 2D

ij as fol-
lows:
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where

a = 1+ 2k2
1L

2
2Dcos2(ψ) ,

b = 1+ 2k2
1z

2
i cos2(ψ) ,

p =
L2

2D b

z2
i a

,

0 is the Gamma function, and 2F1 is the hypergeomet-
ric function. The two-point cross-spectra χ2D

11 (k1,1y) and

Figure 1. Effect of attenuation at high wavenumbers on F11 spec-
trum. Here the model parameters areL2D = 20 km, zi = 500 m, and
ψ = 43°.

χ2D
22 (k1,1y) for the attenuated energy spectrum in Eq. (9)

to our knowledge do not have any analytical solution but can
be obtained through numerical integration techniques. An ex-
ample of F11 with and without attenuation at high wavenum-
bers is shown in Fig. 1.

It is important to note that although this model utilizes the
wavenumber information to generate a spatial field contain-
ing large-scale fluctuations, Taylor’s frozen turbulence hy-
pothesis can be used to sweep the spatial field into a fre-
quency domain. More intricate models, such as those pre-
sented by Wilczek et al. (2015) and de Maré and Mann
(2016), characterize spatiotemporal turbulence structures as
a function of both wavenumber and frequency. However, for
the sake of simplicity, the model presented here disregards
the temporal variation or distortion of eddies.

The 2D turbulence model (Syed and Mann, 2024) com-
bined with the Mann uniform shear model for 3D turbu-
lence was validated against measurements from two offshore
sites: 10 Hz ultrasonic measurements from the FINO1 re-
search platform in the North Sea and line-of-sight (LOS)
wind measurements from a forward-looking nacelle lidar in
the Hywind Scotland offshore wind farm. The correspond-
ing model parameters that fit the measurements at these two
sites can be found in Syed and Mann (2024). A good agree-
ment was recorded between observed and predicted auto-
spectra, cross-spectra, and co-coherences. The measured data
were classified into different atmospheric stability classes,
and it was found that for a 1 h time series, low-frequency
fluctuations existed in all stability classes. However, the
relative strength of 2D turbulence, compared to 3D turbu-
lence, was more dominant during stable stratification. For the
1 h time series, the mesoscale turbulence peak correspond-
ing to L2D was also not observed. At both sites, the low-
frequency turbulence was in the F (k)∝ k−5/3

1 range. For the
FINO1 site, the measured value of ψ was close to 45° in the
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Figure 2. Simulated and target F11 and F22 spectra for 2D rectangular grids having dimensions of (a) 40L2D× 5L2D and (b) L2D×
0.125L2D. Solid lines represent the target spectrum, dashed lines represent simulated spectra from Cij (k) obtained using Eq. (15), and dash–
dotted lines represent Cij (k) obtained using Eq. (16). The simulated spectra are obtained from the mean of 10 realizations. Other parameters
are σ 2

= 2 m2 s−2, zi = 500 m, and ψ = 45°.

Figure 3. Simulated low-frequency fluctuations in longitudinal u and transverse v wind components. Here the input parameters are L2D =
15 km, σ 2

= 0.6 m2 s−2, zi = 500 m, and ψ = 43°.
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Figure 4. Co-coherence of u and v fluctuations at different 1y separations for the 2D wind field shown in Fig. 3. The dashed curves show
theoretical values, and solid curves show simulated values.

low-frequency range, representing isotropic 2D turbulence.
At Hywind Scotland, we observed ψ < 40° reflecting the
anisotropy in the 2D turbulence.

In summary, the low-frequency turbulence model has four
input parameters:

1. σ 2
2D the variance exhibited by low-frequency fluctua-

tions (excluding the attenuation);

2. L2D the length scale corresponding to the peak of
mesoscale turbulence;

3. ψ the anisotropy parameter; and

4. zi the attenuation length, which is assumed to be the
boundary-layer height.

3 2D wind field simulation

Here, we follow the procedure of Mann (1998) to simu-
late low-frequency, anisotropic wind fields. The 2D turbu-
lence is assumed to be statistically homogeneous in horizon-
tal directions and constant in the vertical direction. Taylor’s
frozen turbulence hypothesis is also employed to convert the
wavenumber domain into the frequency domain. The wind
field will be simulated on a horizontal grid with N1 and N2
grid points in the longitudinal and transverse directions, re-
spectively. The length of the grid in two directions would be
L1 =N1 · dx and L2 =N2 · dy. Following Mann (1998), the
incompressible, homogeneous, 2D velocity field can be writ-
ten as a sum of discrete Fourier modes:

ui(x)=
∑
k

exp(ιk ·x)Cij (k)nj (k) , (12)

where
∑

k denotes the sum over all wave vectors k,
where ki =m2π/Li for m=−Ni/2, . . .,Ni/2. Cij (k) are

the Fourier coefficients, and nj (k) are independent Gaussian
stochastic variables. Here, the summation over repeated in-
dices is assumed. The solution to Eq. (12) is approximately

Cij (k)nj (k)=
1

L1L2

∫
A

ui(x)exp(−ιk ·x)dx , (13)

where
∫
A

dx is integration over the area L1×L2. The pro-
cess of obtaining Cij involves multiplying Eq. (13) with its
complex conjugate, which gives

C∗ij (k)Cij (k)=
∫
φij (k′)

2∏
(l=1)

sinc2
(

(kl − k′l)Ll
2

)
dk′ , (14)

where sincx ≡ (sinx)/x. In the case if Ll � L2D, where l =
1,2, Eq. (14) can be simplified to

C∗ij (k)Cij (k)=
(2π )2

L1L2
φij (k). (15)

The length scale L2D corresponding to the mesoscale tur-
bulence peak is quite large, usually on the order of 105 to
106 m. Simulating a high-resolution wind field containing
the wavenumbers corresponding to L2D would be costly in
terms of computation time. Usually, L2� L2D when simu-
lating wind fields for single wind turbine load calculations.
So, the simplified relation in Eq. (15) no longer holds true.
We have observed that if we simplify the sinc2 function for
L1 and replace it with 2π/L1 but integrate the sinc2 function
for L2, we would get simulated spectra much closer to the
target spectra.

C∗ij (k)Cij (k)=
2π
L1

∫
φij (k1,k

′

2) sinc2
(

(k2− k
′

2)L2

2

)
dk′2 (16)

To speed up the numerical integration, the limits of integra-
tion are k2− 2π/L2 to k2+ 2π/L2. A correction factor is
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Figure 5. Combined 2D+ 3D fluctuations in longitudinal u and transverse v wind components. The 2D turbulence parameters are the same
as in Fig. 3. The 3D turbulence parameters are αε

2/3
= 0.01 m4/3 s−2, L3D = 50 m, and 0 = 2.5.

Figure 6. Same as Fig. 5 but a vertical slice of combined 2D+ 3D fluctuations.

multiplied, compensating for the loss in variance due to the
limited integration interval. This problem with discretization
has been discussed in detail by Mann (1998). The Fourier
coefficients obtained from Eq. (15) or Eq. (16) after taking a
matrix square root are then multiplied by a random Gaussian
field. The resulting product’s inverse discrete Fourier trans-
form would yield the wind field.

Figure 2 illustrates the effect of discretization on the sim-
ulated spectra. In Fig. 2b when L2� L2D, Cij (k) obtained
via Eq. (15) underestimate F11(k1) and overestimate F22(k1)
at very low k1 values. In such cases,Cij (k) must be evaluated
using Eq. (16).

Figure 3 shows the simulated u and v low-frequency
fluctuations, where the input parameters are L2D = 15 km,
σ 2
= 0.6 m2 s−2, zi = 500 m, and ψ = 43°. These parame-

ters, with the exception of L2D, are representative of typi-

cal neutral conditions for 8<U <10 ms−1 at the FINO1 off-
shore site. Here, large-scale coherent structures can be iden-
tified along the longitudinal axis for the u component. We
can also observe the almost equal variance in the u and v
fluctuations due to ψ being close to the isotropic value of
45°. The one-dimensional (1D) spectra of this simulated 2D
wind field are illustrated in Fig. 7a. The spectra derived from
the simulated wind field are in excellent agreement with the
theoretical spectra mentioned in Eqs. (10) and (11). Normal-
ized cross-spectra (co-coherence, the real part of the cross-
spectrum divided by the auto-spectrum) for the simulated 2D
wind field components are also compared with the theoreti-
cal expression in Eq. (6). In Fig. 4, co-coherence of u and v is
plotted as a function of k1 for separations ranging from 750 to
7500 m. Once the lateral separation distance 1y approaches
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Figure 7. Spectra of 2D, 3D, and combined 2D+ 3D fluctuations in longitudinal u and transverse v wind components. Solid lines present
the simulated spectra, and dashed lines reflect the theoretical spectra. The w spectra for 3D turbulence are also shown.

Figure 8. The u and v co-coherences at different1y and1z values for combined 2D+ 3D fluctuations. The dashed curves show theoretical
values, and solid curves show simulated values.

L2D (in this case 15 km), the normalized cross-spectra de-
crease significantly.

4 Combining 2D and 3D fluctuations

Mann (1994) presented the uniform shear model for small-
scale turbulence in the neutral atmosphere. We combine the
two models, assuming that the large-scale and small-scale
fluctuations are independent. Combining the mesoscale and
microscale turbulence in the frequency or wavenumber do-
main requires an assumption of weak or no correlation be-
tween the two scales. Högström et al. (2002) provided a
qualitative framework for combining the spectra at large and

small scales in the atmosphere by a simple superposition
method. On a similar pattern, Kim and Adrian (1999) noted
that the 1D spectrum of streamwise velocity in a turbulent
pipe flow has a bimodal representation of high- and low-
wavenumber modes. These two modes are associated with
small- and large-scale turbulent motions, respectively. Super-
posing these two modes gives a good general representation
of the measured spectra over the whole wavenumber domain
since the two modes are uncorrelated.

Figure 5 displays a 2D+ 3D turbulence wind field of u and
v wind components for relatively smaller dimensions. The
3D wind field is generated by the Mann uniform shear turbu-
lence model, which has three input parameters: the dissipa-
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tion parameter αε2/3
= 0.01 m4/3 s−2, the turbulence length

scale L3D = 50 m, and the anisotropy parameter 0 = 2.5.
The values of the parameters selected here are typical of off-
shore wind conditions at the FINO1 site for neutral condi-
tions (Syed and Mann, 2024). The 3D turbulent wind field is
also generated by the procedure presented in Mann (1998).
Since the wind fields are assumed statistically independent,
they can be added to get the combined fluctuations. In this
case, the 2D wind field components are directly added to all
the vertical planes of the corresponding 3D turbulence box.
We can observe the increased variance in the combined 2D
and 3D wind fluctuations. The large-scale coherent structures
are still dominant, but we now also observe smaller struc-
tures. A smaller vertical slice of the same wind field is il-
lustrated in Fig. 6. Here, one can observe the large shear in
the v component compared to the u component. This implies
that the phase difference between v fluctuations at differ-
ent heights is higher (ϕv > ϕu), as observed in atmospheric
turbulence measurements at multiple sites (Chougule et al.,
2012; Syed and Mann, 2024). The 1D two-sided spectra of
the 3D turbulence wind field by itself and combined with the
low-frequency fluctuations are shown in Fig. 7b and c, re-
spectively. The resulting spectra add individual 2D and 3D
wind field spectra over the wavenumber domain.

The u and v co-coherences of simulated combined
2D+ 3D wind field at different lateral and vertical separa-
tions are illustrated in Fig. 8. The co-coherences are plot-
ted for lateral and vertical separations ranging from 150 to
450 m. At lower k values, the low-frequency fluctuations are
fully coherent for all vertical 1z separations, and we ob-
tain co-coherence values close to 1. This is because the low-
frequency fluctuations are assumed to be constant in the ver-
tical direction at any instant. The same can not be said about
the lateral 1y separations, as we have observed a decrease
in the u co-coherence of low-frequency fluctuations for in-
creasing lateral separations in Fig. 8a.

5 Discussion

5.1 The effect of anisotropy parameter on 2D turbulence

As mentioned earlier, ψ = 45° represents isotropic 2D wind
fields. Altering the ψ parameter by decreasing or increas-
ing it from 45° leads to the elongation of significant coher-
ent structures, extending them longitudinally and laterally,
respectively. The effect of changing the anisotropy parame-
ter ψ can be observed in Fig. 9. Here u and v fluctuations
are shown on a 15 km× 15 km grid for different values of ψ .
Figure 9a shows the u and v fluctuations forψ = 20°, and we
can observe the large-scale coherent structures in the longi-
tudinal direction. These structures exhibit significantly larger
values of fluctuations, i.e., σ 2

u > σ
2
v . Figure 9b illustrates the

isotropic case when both u and v fluctuations have similar
strength and σ 2

u = σ
2
v . By increasing the value of ψ to 70°

Figure 9. Effect of anisotropy parameter ψ on the wind field:
(a) ψ = 20°, (b) ψ = 45° (isotropic turbulence), and (c) ψ = 70°.
Here the other input parameters are L2D = 5 km, σ 2

= 1 m2 s−2,
and zi = 100 m.

(Fig. 9c), the large-scale coherent structures in the lateral di-
rection get stretched, and we also observe σ 2

u < σ
2
v .

The length scales of the two velocity components can
be determined by identifying the maximum of kiF 2D

ii (ki)
for i = 1,2. Let Li,ki ≡ 1/kmax,i , where kmax,i denotes
the wavenumber at the peak of kiF 2D

ii (ki). These length
scales can be computed numerically. At ψ = 45°, the ra-
tio Lu,k1/Lv,k2 equals 1, indicating that the length scales
of u and v are equivalent in the k1 and k2 directions, re-
spectively. When ψ < 45°, turbulence structures elongate in
the longitudinal direction, resulting in Lu,k1/Lv,k2 > 1. Con-
versely, for ψ > 45°, the inverse holds true. Moreover, the
ratios Lu,k1/Lv,k1 and Lv,k2/Lu,k2 are independent of the

Wind Energ. Sci., 9, 1381–1391, 2024 https://doi.org/10.5194/wes-9-1381-2024
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Figure 10. An example of theoretical spectra plotted over measured spectra obtained from FINO1 at z= 81 m and U = 10 ms−1. Equa-
tions (10) and (11) are plotted with L2D = 150 km and zi = 100 m.

Figure 11. An example of periodicity in 2D wind field simulations.

anisotropy parameter. It is noted that these length-scale ra-
tios are approximately equal to

√
3, or about 1.73.

5.2 Guidelines for simulating 2D wind fields

Usually σ 2
2D and ψ are obtainable at a specific site through

fitting Eqs. (10) and (11) to the measured spectra. For
zi , some advanced measurements like ground-based remote
sensing tools such as a ceilometer can be used or obtained
through reanalysis data sets or simply estimated. To obtain
L2D through measurements, we would need a time series
spanning from 10 d to 1 month (see Fig. 3 in Larsén et al.,
2016). This suggests L2D to be on the order of 105–106 m.
Such extremely low frequencies corresponding to L2D are
not interesting for the wind turbine design process. For fit-
ting Eqs. (10) and (11) to the measured spectra we can as-
sume L2D→∞. But for wind field simulation purposes, this
is not realistic since it would lead to σ 2

2D→∞. For load esti-
mation on wind turbine structures, a 1 h time series is usually
sufficient for estimating the impact of low-frequency fluctu-
ations. Hence, an arbitrarily high value of L2D can be used
to simulate low-frequency wind fluctuations. An example of
this is shown in Fig. 10 where a value of L2D = 150 km is

used to plot the theoretical spectra in Eqs. (10) and (11) over
the u and v spectra measured at the FINO1 test site.

An unwanted effect of the simulation method presented
here is the periodicity in wind fluctuations, which was also
discussed by Mann (1998). The periodicity implies that wind
fluctuations at grid points on either side of the box j and
N2− j + 1 for small j are coherent. This behavior is shown
in Fig. 11 where co-coherence of u fluctuations is plotted as
a function of lateral distance. It can be observed that both
the simulated and model co-coherence values decrease when
y approaches L2/2. Due to periodicity, the simulated co-
coherence increases for y > L2/2. The solution to this prob-
lem is choosing L2 to be at least twice the characteristic
length of the structure under analysis. In the case of wind
turbines, L2 should be at least greater than twice the rotor
diameter of the wind turbine. A good practice is to simulate
the low-frequency fluctuations on a much larger grid than
the high-frequency fluctuations. To combine the 2D and 3D
turbulence, a smaller section of the 2D wind field, equal in
length and grid points to the 3D turbulence plane, is added to
all the vertical levels of the 3D turbulence box.

6 Conclusions

A method to generate the low-frequency wind fluctuations
is introduced. This method utilizes the spectral tensor pre-
sented by Syed and Mann (2024) to generate 2D stochastic
wind fields for the longitudinal u and lateral v wind com-
ponents. The generated wind fields contain large-scale and
low-frequency wind fluctuations called 2D turbulence. The
model employs four input parameters: (i) the variance char-
acterizing low-frequency fluctuations σ 2

2D, (ii) a length scale
corresponding to large-scale flow structures L2D, (iii) an
anisotropy parameter ψ , and (iv) a cutoff or attenuation
length zi . The simulation method uses the wind field pre-
sented as a discrete Fourier series, where Fourier coefficients
are derived from the 2D spectral model. The coefficients are
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then multiplied by a random Gaussian field. Subsequently,
the product’s inverse discrete Fourier transform yields a 2D
wind field featuring low-frequency, anisotropic wind fluctua-
tions. Issues arising from the discretization, such as underes-
timation of the spectral density at very low wavenumbers and
periodicity, are also addressed in this study. Some guidelines
to simulate the wind fields containing 2D turbulence are also
provided in the context of wind energy applications.

The 2D turbulence wind field can be added to a 3D tur-
bulence field to get the spectral representation over a wide
frequency range. We combined the 2D turbulence wind field
with a 3D turbulence field generated using the Mann uni-
form shear turbulence model. The spectra and co-coherences
from the combined simulated 2D+ 3D turbulence wind are
compared with the theoretical expressions, and an excellent
agreement was observed. The 2D turbulence simulation pro-
gram is open-source and can be accessed via the link in the
“Code availability” section.
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https://doi.org/10.5281/zenodo.12202047 (absywind, 2024).
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