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Abstract. This paper demonstrates the observation of wind shear and veer directly from the operational re-
sponse of a wind turbine equipped with blade load sensors. Two independent neural-based observers, one for
shear and one for veer, are first trained using a machine-learning approach and then used to produce estimates
of these two wind characteristics from measured blade load harmonics. The study is based on a dataset collected
at an experimental test site featuring a highly instrumented 8 MW wind turbine, an IEC-compliant (International
Electrotechnical Commission) met mast, and a vertical profiling lidar reaching above the rotor top.

The present study reports the first demonstration of the measurement of wind veer with this technology and the
first validation of shear and veer with respect to lidar measurements spanning the whole rotor height. Results are
presented in terms of correlations, exemplary time histories, and aggregated statistical metrics. Measurements of
shear and veer produced by the observers are very similar to the ones obtained with the widely adopted profiling
lidar while avoiding its complexity and associated costs.

1 Introduction

The goal of this paper is to demonstrate the observation of
wind shear and veer directly from the operational response of
a wind turbine. This is achieved by the concept of the rotor
as a sensor, where the blades scanning the flow field are used
to measure relevant characteristics of the inflow. A key ad-
vantage of this approach, called wind sensing, is that it does
not require extra hardware but simply relies on the standard
operational data available in the supervisory control and data
acquisition (SCADA) system in addition to blade load mea-
surements. Although the latter are not always available on
all production turbines, they are becoming more and more
widespread as they are used for other functions such as load
mitigation and condition monitoring.

A novelty of this paper is that it is the first ever demonstra-
tion – to the authors’ knowledge – of the observation of veer

using this technology. This is made possible by the formu-
lation recently proposed by Kim et al. (2023), where feed-
forward neural networks are trained to estimate various wind
characteristics from blade load harmonics. This machine-
learning approach improves on various previous formula-
tions based on the use of load harmonics, starting with the
study of Bottasso and Riboldi (2014) and then further devel-
oped over the years, as more completely described in Bertelè
et al. (2021) and references therein. In addition to vertical
shear and veer, load harmonics can be used to estimate hor-
izontal shear and directions (lateral misalignment and up-
flow). However, load harmonics are not the only way to esti-
mate wind inflow characteristics. For example, Bottasso et al.
(2018) used the rotor blades as local scanning wind sensors,
which produce estimates of the vertical and horizontal shear,
the latter serving also as a wake detector (Schreiber et al.,
2020).
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A second novelty of the paper is the demonstration of the
observation of shear (and veer) over the entire rotor disk. Al-
though the field validation of shear has been reported be-
fore, previous studies were based on measurements from
met masts reaching only up to hub height (Bertelè et al.,
2021; Schreiber et al., 2020) and not to the top of the ro-
tor. The present work is based on the Bremerhaven (BHV)
test site (Meyer and Gottschall, 2022), which features a large
8 MW AD8-180 wind turbine. In the framework of unrelated
projects, the turbine was equipped with various sensors that
include optical strain gauges along the blades (Wegner et al.,
2022). The site is complemented by an IEC-compliant (In-
ternational Electrotechnical Commission) met mast and by a
vertical-profiling pulsed scanning lidar capable of reaching
well above the rotor top.

Results reported in this paper indicate that both shear and
veer can be measured by wind sensing, in general exhibit-
ing a very good match with the corresponding measure-
ments provided by the vertical profiling (VP) lidar, an IEC-
approved and widely adopted device for resource assessment
and power performance testing (IEC, 2022). This is remark-
able because when load sensors are already installed on a
turbine, the measurement of these inflow quantities comes at
no additional hardware purchase or maintenance cost, as the
technology simply amounts to an onboard software upgrade.

Most turbines today operate based only on a very limited
knowledge of the ambient conditions as provided by the on-
board anemometry system. Although this is the current stan-
dard, it is reasonable to expect that a more complete knowl-
edge of the inflow might improve the way future turbines will
be operated. As an example, the control of wakes might ben-
efit from improved knowledge of the inflow (Meyers et al.,
2022). In fact, various studies have investigated and clari-
fied the effects of shear (Fleming et al., 2014; Vollmer et al.,
2016; Gebraad et al., 2016; Bromm et al., 2017) and veer
(Vollmer et al., 2016) on wake path and recovery. When the
effects of shear and veer on wakes are of a similar order of
magnitude as the ones caused by the control action (e.g., an
intentional yaw misalignment), neglecting their presence will
lead to a loss of performance. The shear and veer observers
demonstrated here could inform a park controller of the in-
flow conditions at the rotor disk of each turbine in a farm (in
contrast to a met mast, which will never be exactly co-located
with a turbine and will only rarely be exactly in front of it) at
essentially no cost and with no extra hardware (in contrast to
lidar-based solutions).

The paper is organized in two main parts. First, Sect. 2
presents the methods. Section 2.1 reviews the formulation
of the shear and veer observers following the approach de-
veloped by Kim et al. (2023). Next, Sect. 2.2 describes the
BHV test site and its instrumentation. Finally, Sect. 2.3 de-
scribes the calculation of shear and veer from the lidar and
mast measurements. This first methodological section is fol-
lowed by Sect. 3, which presents the results. First, Sect. 3.1
discusses the training of the neural-based observers on a por-

tion of the dataset. Next, Sect. 3.2 provides an analysis of
their performance on an independent validation dataset, con-
sidering correlations between estimates and lidar-provided
references, an exemplary time history, and aggregated sta-
tistical quality metrics. Finally, Sect. 4 concludes this work
discussing the main findings.

2 Methods

2.1 Formulation of the shear and veer observers

Following Kim et al. (2023), the wind observer is formulated
as

yE = NN(p,xM), (1)

where y represents a scalar wind characteristic; NN(·, ·) is
a single-output neural network (Bishop, 2006) with free pa-
rameters p; x is the vector of Nx network inputs; and (·)E
and (·)M indicate estimated and measured quantities, respec-
tively. In this work, two separate networks are considered:
one for vertical linear wind shear κv and one for vertical lin-
ear wind veer 1θ1.

Considering a single-hidden-layer feed-forward neural
network with M hidden neurons, function NN(·, ·) is written
as

NN(p,x)= wT σ (VT x+ a)+ b, (2)

where σ (·) is a vector of sigmoid activation functions, Vij
and ai are the synaptic weights and biases connecting the
input layer with the hidden layer, while wi and b connect
the hidden layer with the output scalar y, with i = [1,M]
and j = [1,Nx]. These free model parameters are stored in
vector p = {. . .,wj , . . .,Vij , . . .,ai, . . .,b}T .

The free network parameters p are trained by backpropa-
gation to minimize the error cost function

E(p)=
1
N

N∑
l=1

(
yEl (p,xMl

)− yMl

)2
+W

1
Np

Np∑
m=1

p2
m, (3)

where Np =M(Nx + 2)+ 1. The first term of the objec-
tive function drives the estimates yEl produced by the net-
work towards the N available measurements yMl

. The sec-
ond term of the objective is a Bayesian regularization, which
reduces the chances of being trapped in local minima (Bur-
den and Winkler, 2009). The tunable coefficient W sets the

1As shown in Kim et al. (2023), a similar formulation can be
used to estimate the horizontal shear as well as the yaw misalign-
ment angle, although these quantities are not considered further in
the present work. In fact, horizontal shear is presumably very mod-
est at the test turbine of this study since it is never waked by other
machines. Additionally, only modest variations in yaw misalign-
ment were observed during the present field trials, and therefore the
dataset does not contain significant-enough information to allow for
the identification of a misalignment observer.
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relative weight of the Bayesian and error terms. The un-
known network weights are iteratively corrected as 1p =
−η∂E(p)/∂p, where η is the learning rate. The implemen-
tation of the neural network and its training is based on the
MATLAB Deep Learning Toolbox (Matlab, 2023).

The network input vector is defined as

x = {mT ,V ,ρ}T , (4)

where m is a vector of blade load harmonics, V is wind
speed, and ρ is air density. The presence of wind speed V
among the inputs accounts for the different behavior, con-
trol, and deformation of the wind turbine in different operat-
ing conditions. This scheduling wind speed is computed as
a 30 s moving average of the estimated rotor-effective wind
speed (Soltani et al., 2013). The dependency on air density
ρ accounts for the aerodynamic origin of the loads; further
details are available in Kim et al. (2023).

Harmonics are computed for the out- and in-plane load
components denoted (·)OP and (·)IP, respectively, from
the corresponding strain gauge signals via the Coleman–
Feingold transformation (Coleman and Feingold, 1958) and
then filtered to remove any remaining spurious noise. Follow-
ing the analysis developed in Kim et al. (2023), only once-
per-revolution (1P) harmonics are used for the vertical linear
shear case, and vector m is defined as

m=
{
mOP

1c , m
OP
1s , m

IP
1c, m

IP
1s

}T
. (5)

On the other hand, the estimation of linear veer requires a
richer input also including the twice-per-revolution (2P) har-
monics, leading to the following definition of vector m:

m=
{
mOP

1c , m
OP
1s , m

IP
1c, m

IP
1s,m

OP
2c , m

OP
2s , m

IP
2c, m

IP
2s

}T
. (6)

In the previous expressions, subscripts (·)ks and (·)kc indicate
kP sine and cosine harmonic amplitudes, respectively. A sim-
ple explanation of the harmonic content of the shear and veer
observers is offered in Appendix A. Kim et al. (2023) offer
a more detailed analysis of the relationship between inflow
characteristics and harmonic content of the loads. The anal-
ysis developed there can be used to estimate the number of
harmonics that is theoretically necessary in order to resolve
a desired polynomial order in the shear and veer.

Both the simple analysis in Appendix A and the more re-
fined one in Kim et al. (2023) indicate that veer can be es-
timated based only on 2P harmonics. However, it was veri-
fied that an implementation based on both the 1P and 2P har-
monics provides slightly more precise estimates; the results
shown later are therefore based on the 1P–2P implementa-
tion. The reason for this apparent discrepancy might be due
to the approximate nature of the theoretical analysis, which
is based on a number of simplifying assumptions.

Limiting the observer to the 1P and 2P harmonics has
potential advantages over more complex implementations.

First, higher harmonics are associated with higher-order vari-
ations in the inflow characteristics, which may be affected by
the fast and small eddies in the flow caused by turbulence.
Conversely, more slowly varying inflow characteristics are
mostly driven by changes in the stability of the atmosphere,
which in turn drives wake path and recovery. If the goal of
the observer is to inform a wind farm controller, these latter,
slower effects are of interest, whereas the former fast distur-
bances should be rejected (Meyers et al., 2022). Addition-
ally, it is reasonable to assume that the lower harmonics be-
tween two turbines of the same type implementing the same
controller will be similar, whereas higher harmonics might
exhibit some increased turbine-to-turbine variability. There-
fore, limiting the use to solely 1P and 2P harmonics might
make it possible to train the observers on a machine and then
use it on another (of the exact same type), although there is
not yet any direct proof of this assertion.

A graphical depiction of the neural observers for shear and
veer is reported in Fig. 1a and b, respectively.

2.2 Test site

The shear and veer observers were identified and validated
using wind field and turbine load measurements from the
BHV test site (Meyer and Gottschall, 2022), a former air-
port located in close proximity to Bremerhaven in the north-
west of Germany next to the Weser river. The test site is built
around the 8 MW research wind turbine AD8-180. Flat and
homogeneous terrain conditions are present in the westerly
direction, whereas urban terrain prevails in the easterly direc-
tion. Various wind- and turbine-related measurements have
already been carried out at this site, as reported in previously
published studies (Giyanani et al., 2022; Huhn and Gómez-
Mejía, 2022; Meyer and Gottschall, 2022; Hung et al., 2022;
Wegner et al., 2022). The test site is shown in Fig. 2, with a
view looking east.

The AD8-180, an 8 MW machine with a 180 m rotor di-
ameter (D) and a 115 m hub height, is equipped with sev-
eral sensors including strain gauges placed at various span-
wise positions along the blades. Operational data from the
SCADA system, together with the strain gauge measure-
ments, are available at a 25 Hz frequency. Flapwise and edge-
wise measurements from the strain gauges placed at blade
root were converted into out- and in-plane components based
on blade pitch angle. Next, using the azimuthal rotor posi-
tion, the load signals were converted into 1P and 2P harmon-
ics to be used as network inputs (see Eq. 4).

An IEC-compliant met mast is installed at a distance of
399.3 m (≈ 2.2 D) from the turbine in the 189° direction. The
mast is equipped with cup anemometers at five heights up
to 114.7 m, as well as wind vanes at three heights reaching
up to 110 m, i.e., just below the hub. Data from the mast are
available at a sampling rate of 1 Hz. Additionally, a barome-
ter, thermometer, and hygrometer are available to derive air
density.
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Figure 1. Graphical representation of the neural observers of vertical wind shear (a) and vertical wind veer (b), with their respective inputs.

Figure 2. View of the BHV test site from west to east, with the
AD8-180 wind turbine on the left and the met mast and VP lidar on
the right.

A VP lidar of the type WindCube V2 is installed next to
the met mast, measuring wind speed and direction at heights
from 40 m up to 290 m. Various studies have shown good
agreement between cup anemometers and VP lidars for the
measurement of wind speed and direction (Gottschall et al.,
2012; Clifton et al., 2018). Furthermore, the VP lidar is an
established measurement device for power performance test-
ing and wind resource assessment according to IEC 61400-
50-2:2022 (IEC, 2022). The lidar sequentially measures line-
of-sight velocities for a fixed scan pattern of four beams
along a cone with a half-opening angle of 28° combined with
one vertically scanning beam. Wind speed and direction are
then reconstructed at each measured height from the line-
of-sight velocities with every updated line-of-sight measure-
ment, i.e., every 0.8 s. As the met mast provides wind speed
and direction measurements only for the lower half of the ro-
tor, the VP lidar is used to measure these quantities from a
height of 40 m to the top of the rotor.

A sketch of the relevant heights and distances of turbine,
met mast, and lidar are shown in Fig. 3. This study is based
on a dataset of synchronized turbine, mast, and lidar mea-
surements collected for 115 d within the period from 30 July
to 12 December 2021. The dataset contains significant vari-
ability in ambient conditions and frequent occurrence of
southerly winds, where the met mast is directly upwind of
the turbine.

2.3 Field measurements of shear and veer

The wind observer networks are trained based on measure-
ments of the wind shear and veer together with their corre-
sponding network inputs, as expressed in the first term of the
objective function given by Eq. (3).

In this paper, wind shear and veer measurements were pro-
vided by the VP lidar. In fact, this instrument measures at 12
heights from 40 to 290 m above ground, thus including most
of the rotor-swept area, which ranges from the lower blade
tip (LBT) point zLBT = 25 m to the higher blade tip (HBT)
point zHBT = 205 m.

For both shear and veer, a linear best fit was first com-
puted using the nine VP lidar measurements of wind speed V
and direction 0 included within the rotor-swept area, i.e., be-
tween 40 and 195 m above ground (see Fig. 3). Next, shear
and veer were computed as

κv =
V (zHBT)−V (zLBT)

zHBT− zLBT
, (7a)

1θ =
0(zHBT)−0(zLBT)
zHBT− zLBT

, (7b)

where the terms at the numerators of these two expressions
are computed via the linear fit evaluated at the lower and
higher blade tip points, respectively.

Before using these lidar-based rotor-effective wind charac-
teristics for training, their accuracy was verified against the
IEC-compliant met mast present at the site. Vertical shear
and veer were derived from the mast measurements follow-
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Figure 3. Sketch (to scale) of the test site with the relevant dimensions rounded to the next integer. Heights are given relative to ground level
at the turbine location. Blue labels – met mast measurement heights; red labels – lidar measurement heights.

ing the same linear-fitting procedure previously described for
the lidar, i.e., using

κv Low =
V (zHUB)−V (zLBT)

zHUB− zLBT
, (8a)

1θLow =
0(zHUB)−0(zLBT)
zHUB− zLBT

. (8b)

Note that since the mast reaches only up to hub height zHUB,
the resulting shear and veer are defined only over the lower
half of the rotor disk.

To perform a valid comparison, the shear and veer de-
rived from the lidar were also computed over the lower part
of the rotor, which was obtained by considering only mea-
surements in the range from 40 to 115 m. Figure 4 shows
the results of this comparison in the form of 10 min aver-
ages, reporting the met mast measurements on the x axis
and the corresponding lidar quantities on the y axis. Wind
speeds at hub height, shown in Fig. 4a, have a high Pearson
coefficient R of 0.99 and a mean absolute error (MAE) of
about 0.122 m s−1. There is a high correlation also for wind
shear and veer, which have Pearson coefficients of 0.97 and
0.95, respectively, as shown in Fig. 4b and c. In addition to
the different measurement technologies, differences might be
caused by the fact that the mast reaches down to 25 m above
the terrain, whereas the lowest measurement point for the li-
dar is at 40 m. Figure 4c suggests the existence of a slight
slope difference for veer. This might be caused by the met
mast because vertical veer is obtained from only two heights
above ground and possibly because of some minor misalign-
ment of its wind direction sensors. Given its uncertain origin,
lidar measurements were not recalibrated to eliminate this ef-
fect.

3 Results

The wind observers for shear and veer formulated in Sect. 2.1
were tested on a dataset collected at the site described in
Sect. 2.2. First, in Sect. 3.1 we explain the identification
of the observers from a subset of the data. Next, Sect. 3.2
presents the results obtained using the observers on an inde-
pendent validation subset.

3.1 Observer identification

The dataset was cleaned to retain only data points when
the turbine was operational and all necessary measurements
(SCADA, strain gauges, and lidar) were available. This re-
sulted in about 18 full days of valid data points spread
between August and December. The training subset was
obtained by picking a random 67 % of the data points
(i.e., about 290 h) within the whole set to exclude effects due
to seasonal variability. The remaining set (i.e., about 138 h)
was used for validation. Although in principle the observer
could be trained directly on high-frequency data, following
the example of Kim et al. (2023) 10 min averages were pre-
ferred in order to mitigate the effects of possible outliers. The
ranges and number of occurrences of values of wind speed V ,
air density ρ, vertical shear κv, and veer 1θ in the two data
sets are shown in Fig. 5.

Air density ρ and wind speed V appearing in the network
inputs (see Eq. 4) were measured as follows. Air density was
derived from the available measurements of pressure, tem-
perature, and humidity, using the ideal gas laws. Wind speed
was obtained by means of an observer based on the stan-
dard SCADA signals of power, rotor speed, and blade pitch
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Figure 4. Correlation of 10 min averages of measured quantities from the met mast (x axis) and VP lidar (y axis). Hub-height wind speed (a);
lower-half-rotor vertical shear (b); and lower-half-rotor veer, in both absolute terms (°; i.e., between zLBT and zHUB) and relative (° m−1)
terms (c). Solid black line – ideal match; R – Pearson’s correlation coefficient; N – number of data points; MAE – mean absolute error; and
RMSE – root mean square error.

Figure 5. Range and number of occurrences of 10 min averages of wind speed (a), density (b), vertical shear (c), and wind veer (d). Blue –
training data set; orange – validation data set.

(Soltani et al., 2013). The use of an observer that is based
only on standard operational data renders the shear and veer
observers usable on common production machines, where
a lidar or a neighboring met mast might not be available.
A MoWiT model (Fricke et al., 2021) of the AD8 turbine
was used to generate a lookup table (LUT) offline, storing
the dependency of produced power on ambient wind speed,

pitch angle, and rotor speed, considering mechanical losses
in the drivetrain and the efficiency of the generator. Next,
the LUT was inverted by a Newton iteration using the aero-
dynamic torque obtained from the dynamic torque-balance
equation, and on measured power, pitch and rotor speed from
the SCADA data stream; rotor acceleration was obtained by
deriving the measured rotor speed with respect to time. Fig-
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Figure 6. Correlation of 10 min averages between the rotor-average
wind speed measured by the lidar (x axis) and the rotor-effective
wind speed measured by the observer (y axis). Solid black line –
ideal match.

ure 6 shows the correlation between 10 min averages of the
rotor-effective wind speed (REWS) from the observer, re-
ported on the y axis, and the wind speed obtained by averag-
ing the available lidar measurements along the rotor height,
reported on the x axis. The match between these two quan-
tities is characterized by a Pearson coefficient of 0.98 and a
MAE of about 0.35 ms−1.

For both the shear and veer observers, the best-performing
network configuration was found by trial and error to com-
prise one single hidden layer and 10 neurons. Both networks
took on the order of a few seconds for training on a standard
desktop computer.

3.2 Shear and veer observer performance

After training, the two observers of shear and veer were
tested on the 10 Hz, 138 h validation data set.

Figure 7 reports the results in terms of 10 min averages.
Quantities estimated by the observers are reported on the
y axis, while the lidar-measured references are on the x axis.
Figure 7a indicates an excellent match for shear, with a Pear-
son coefficient R = 0.947 and an RMSE of about 4.015×
10−3 s−1. Figure 7b indicates a slightly lower quality of the
results for veer, with R = 0.879 and a larger scatter, as quan-
tified by an RMSE of about 5.78°. MAEs are 3× 10−3 s−1

and 4° for shear and veer, respectively.
Exemplary time histories of observed and reference quan-

tities are given in Fig. 8. Figure 8a and b show the estimated
(red) and reference (blue) wind shear and veer, respectively.
Additionally, Fig. 8c reports the wind direction at the site,
where a horizontal solid black line indicates the 189° direc-
tion at which lidar and turbine are aligned. The observation of
shear and veer was performed at 1 Hz, and results were then
averaged with a 1 min moving window. The figures indicate

that the observed quantities follow their respective references
quite well, in terms of both trends and mean values. There is
a particularly good match between 05:00 AM and 07:00 AM,
when lidar and turbine are aligned, although some of the
worst matches are between 04:00 AM and 05:00 AM, when
the two are also almost aligned. However, the two observers
are clearly capable of detecting the diurnal cycle, character-
ized by higher shear and veer during the night, and also rapid
events such as the spike observed around 09:30 AM.

Finally, to provide more statistically relevant results,
Fig. 9a and b show the MAEs of the observed shear and veer
as functions of wind speed for different turbulence intensity
(TI) values. Figure 9c reports the number of available data
hours for each specific speed and TI bin. MAEs were com-
puted after averaging 1 Hz observations over 10 min and then
by comparing them with their respective lidar-measured ref-
erences. It is difficult to draw strong conclusions as not all
wind speed bins are equally populated. In the intermediate
wind speed region – where more data points are available – it
appears that, as expected, errors are slightly larger for higher
TI values. However, in the 7 to 11 ms−1 range, there are more
than twice the data points for low (0 %–5 %) TI than for in-
termediate (5 %–10 %) TI values. It also appears that errors
might increase around the lowest and highest wind speeds.
This could be due to the smaller loading on the wind turbine
in these conditions because of the small dynamic pressure at
low wind speeds and because of the large blade pitch at the
higher ones. However, these findings should be confirmed by
larger and better populated datasets.

4 Conclusions

This paper has demonstrated that it is possible to observe
vertical wind veer from the operational response of a large
wind turbine. The paper also performed the first validation
of the observation of shear and veer over the full rotor height
with respect to reference measurements obtained using a VP
lidar. The study was conducted at the BHV test site using
the highly instrumented 8 MW AD8-180 wind turbine. Ad-
ditionally, the presence of an IEC-compliant met mast on site
allowed for a comparison – although limited to only the lower
half of the rotor – of the lidar-measured wind speed, shear,
and veer, enhancing the confidence in the results.

Based on the results reported herein, the following conclu-
sions can be drawn.

– Correlation between 10 min averages of the observed
and lidar-measured shear and veer results in Pearson
coefficients of R = 0.947 and R = 0.879, respectively.
The quality of shear is presumably better because its
observation relies on only 1P harmonics, whereas veer
requires also the 2P components, which are probably
more affected by turbulence.

– For the same reason, veer has a higher scatter than shear,
as seen in Fig. 7.
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Figure 7. Correlation of 10 min averages between estimated wind characteristics (y axis) and their reference lidar-measured quantities
(x axis). Vertical shear κv (a); wind veer 1θ (b). Solid black line – ideal match.

Figure 8. Time histories of vertical shear (a), wind veer (b), and wind direction measured at the mast (c). Blue – observed quantities; red –
lidar-measured reference.

– Both the shear and veer observers seem capable of
tracking both slow and relatively fast changes in ambi-
ent conditions. In particular, the exemplary time history
reported in Fig. 8 indicates the ability to follow changes
in duration of tens of minutes with good accuracy. The
examination of other similar time histories, not reported
here for brevity, supports and confirms this finding.

– Definitive conclusions on the effects of TI and speed
on the quality of the estimates are not possible because

of the uneven population of the bins. However, results
aggregated over the whole validation data set indicate
typical MAEs of approximately 4° for veer and around
3× 10−3 s−1 for shear.

In general, these results seem to indicate the ability of the
harmonic-based observers to estimate shear and veer from
the operational response of a wind turbine, with a close
match to the widely adopted vertical profiling lidar. In evalu-
ating these results, however, two remarks are in order.
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Figure 9. MAE of vertical shear κv (a), wind veer 1θ (b), and hours of available data (c) vs. binned rotor-effective wind speed V , for
different TI levels.

– The lidar measurements cannot be assumed to be an ab-
solute ground truth. In fact, as is the case with all mea-
surements, they are affected by various sources of error,
and they represent spatial and temporal averages that
differ from the ones performed by the observer and by
the anemometry installed on the mast. Additionally, the
lidar is not exactly co-located with the turbine; it is not
always exactly in front of it, and it does not even span
exactly the same height as it starts measuring a small
distance above the LBT. Therefore, an exact match be-
tween observers and lidars cannot and should not, in
general, be expected. One source of discrepancy could
be removed by the use of a forward-staring lidar, which
would at least always provide wind measurements di-
rectly upwind of the turbine.

– Some of the speed and TI bins are not well populated,
which might have some effect on the significance of the
performance statistics. This source of uncertainty could
be removed by the use of longer data sets that, however,
were not available for this study.

Appendix A: Harmonic content of the observers

Following Eggleston and Stoddard (1987), an elementary
model of blade dynamics can be obtained by considering a
rigid flapping blade connected to the rigid hub by a hinge, as
shown in Fig. A1.

The flow speed components normal (named un) and tan-
gential (named ut) to a generic cross section of the flapping
blade can be written as

un = V (1− a)−V κs
r

R
cosψ −V0β sinψ, (A1a)

ut =�r, (A1b)

where a is the axial induction, β is the (small) blade flap an-
gle, ψ is the azimuthal blade position (where ψ = 0 when
the blade is vertical pointing downwards), r is the spanwise
position of the cross section, R is the rotor radius, V0 is the
cross-flow (i.e., a lateral wind speed component parallel to
the rotor disk plane), and � is the rotor speed. When the in-
flow presents a veer, 1θ , the cross-flow can be written as
V0 =1θ (r/R)cosψ . The flapwise bending moment on the
blade is obtained by integrating the lift L along the blade
span, to yield

L=
1
2
ρu2cCLαα ≈

1
2
ρcCLα (unut− γ u

2
t ), (A2)

where u≈ ut is the flow speed at the blade section, c is the
chord, CLα is the lift slope, α ≈ un/ut− γ is the angle of
attack (considering small angles), and finally γ is the pitch
angle.

Inserting the expressions for un and ut given by Eq. (A1)
into Eq. (A2), it follows that lift, and hence bending
moments, depends on terms proportional to κs cosψ and
1θ sinψ cosψ = 21θ sin(2ψ). Thus, shear leaves a mark on
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Figure A1. Elementary model of a flapping blade. Panel (a) is the side view, with the rigid flapping segment hinged at the rigid hub at point
H . Panel (b) is the view perpendicular to the plane of the cross section showing the section-relative flow components un and ut.

the 1P harmonic of blade loads and veer on their 2P harmon-
ics.

Data availability. Data from the field measurements can be re-
quested from Julia Gottschall. All figures and the data used to gen-
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