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Abstract. Accurate estimation of the wind speed profile is crucial for a range of activities such as wind energy
and aviation. The power law and the logarithmic-based profiles have been widely used as universal formulas to
extrapolate the wind speed profile. However, these traditional methods have limitations in capturing the com-
plexity of the wind flow, mainly over complex terrain. In recent years, the machine-learning techniques have
emerged as a promising tool for estimating the wind speed profiles. In this study, we used the long short-term
memory (LSTM) recurrent neural network and observational lidar datasets from three different sites over com-
plex terrain to estimate the wind profile up to 230 m. Our results showed that the LSTM outperformed the power
law as the distance from the surface increased. The coefficient of determination (R2) was greater than 90 % up
to 100 m for input variables up to a 40 m height only. However, the performance of the model improved when
the 60 m wind speed was added to the input dataset. Furthermore, we found that the LSTM model trained on
one site with 40 and 60 m observational data and when applied to other sites also outperformed the power law.
Our results show that the machine-learning techniques, particularly LSTM, are a promising tool for accurately
estimating the wind speed profiles over complex terrain, even for short observational campaigns.

1 Introduction

Machine-learning techniques are increasingly being adopted
as powerful tools in environmental sciences. We see many
examples of this method applied for different purposes to
forecast meteorological variables and their derivative prod-
ucts (Musyimi et al., 2022; Jiang et al., 2022; Mustakim
et al., 2022; Jesemann et al., 2022). However, the use of the
machine-learning techniques is not restricted to the local or
regional scales. Liu et al. (2022), for example, proposed a
multi-level circulation pattern classification to identify large-
scale weather or climate disaster events. The forecasting and
monitoring disasters were also the subject of Soria-Ruiz et al.
(2022). They got high performance by applying machine-
learning algorithms to remote sensing datasets to detect the
recurrent floods over the Gulf of Mexico coastline and the

central and southeastern part of Mexico. Among the methods
evaluated, Song and Wang (2020) concluded that the neural
networks are superior to produce monthly wildfire predic-
tions 1 year in advance, providing thus a valuable informa-
tion for long-range fire planning and management. Adding
the principal component analysis (PCA), Zhang et al. (2022)
improved the accuracy for the visibility prediction at Sichuan
(China). Among the six machine-learning algorithms eval-
uated, they found that the neural network performed best.
Cheng and Tsai (2022) proposed a hybrid methodology
based on variable selection and autoregressive distributed lag
to forecast the pollutant concentrations, which improved the
results when compared to the full and without-lag dataset.
The support vector regression (SVR), which is a supervised
algorithm, performed better than the other four algorithms
tested. Those are only a few examples of innovative works
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adopting the machine-learning techniques in the environ-
mental sciences.

Wind forecasts underpin wind power prediction, which is
essential to support wind energy production in the short term.
Although winds have been traditionally forecasted with nu-
merical weather prediction models, the use of machine learn-
ing has become more widespread not only to correct the bi-
ases derived from the highly variable nature of the winds,
but also as stand-alone prediction models. Wang et al. (2021)
showed that their multi-layer cooperative combined forecast-
ing system, which is based on a novel adaptive weighting
scheme, overcame the limitations of the current single and
combined forecasting methods and provided a more accu-
rate and stable forecast. In their review paper, Bali et al.
(2019) analyzed a few studies produced during this century
and concluded that the techniques for the wind speed forecast
have limitations, such as low efficiency and high computa-
tional cost. They proposed the use of long short-term mem-
ory (LSTM) to improve wind speed forecasting for power
prediction. Tukur et al. (2022) analyzed works produced be-
tween 2010 and 2020 and concluded that ensemble and hy-
brid methods achieve high accuracy because they present
more abilities to model complex functions than the linear
models. They agreed with Bali et al. (2019) that the LSTM
looks promising in forecasting the wind speed whilst recom-
mending further investigation on the capabilities of hybrid
model approaches. Dalton and Bekker (2022) showed the im-
provement when considering other meteorological variables
in the modeling. Their results pointed to the vertical wind
and divergence as important predictors to the wind speed.
In this way, He et al. (2022) included the 2 m temperature
and surface pressure to train their dual-attention mechanism
multi-channel convolutional LSTM model with the ERA5
dataset to forecast the 10 m wind speed. Zhou et al. (2023)
also used the ERA5 dataset to investigate the grid-to-site con-
version models, considering altitude, land use and seasonal-
ity effects. The deep learning models outperformed the lin-
ear interpolation and the regression models to estimate the
10 m wind speed. The aforementioned works briefly exem-
plify that efforts have been made with the wind speed fore-
cast theme; however, the methods to estimate its vertical pro-
file are still limited.

According to Pintor et al. (2022), extrapolating the wind
speed to higher heights is still a challenge, and of the
two most widely used methods (the power law and the
logarithmic-based profile) they found that the power law
is more accurate for a wide variety of landscapes. The
Met Office (United Kingdom) developed the Virtual Met
Mast (VMM) tool (Standen et al., 2016) to assess the
wind profile; however, this technique requires high-spatial-
resolution weather numerical prediction (Schwegmann et al.,
2023). Only recently have machine-learning techniques been
used to forecast the wind speed profile. Türkan et al. (2016)
evaluated seven different machine-learning methods to es-
timate the 30 m wind speed at Kütahya (Türkiye) and con-

cluded that the SVR produced the most realistic results com-
pared to the other six. Al-Shaikhi et al. (2022) proposed the
particle swarm optimization (PSO) with the LSTM method
and compared their results with other optimization algo-
rithms for an experiment carried out at Dhahran (Saudi Ara-
bia). Their model needs at least four different levels of ob-
servational data as input. Similarly, Nuha et al. (2022) pro-
posed the regularized extreme learning machine (RELM) to
extrapolate the wind speed to higher heights. With the same
dataset of Dhahran, Mohandes and Rehman (2018) used the
restricted Boltzmann machine (RBM) method and observa-
tions at four different heights as input. They showed that their
method improved the wind speed forecast. Bodini and Op-
tis (2020a) and Bodini and Optis (2020b) found that random
forests outperform standard wind extrapolation approaches,
using a round-robin validation method. They highlighted the
benefits of including observational data capturing the diur-
nal variability of the atmospheric boundary layer, namely the
Obukhov length, turbulence kinetic energy and time of the
day, all of them measured at a 4 m height. Vassallo et al.
(2020) also improved their results, including meteorological
variables in the input dataset of their artificial neural net-
work (ANN) model, advising to carefully select the input
data and emphasizing the importance of normalization. Even
the VMM data are improved with machine-learning meth-
ods (Schwegmann et al., 2023). Bodini and Optis (2020a)
and Bodini and Optis (2020b) conducted their experiments
over low-complexity terrain (Great Plains – US) and stressed
the need of performing the same kind of analysis in more
complex terrains. To the best of our knowledge, most stud-
ies on vertical wind speed extrapolation were conducted
for low-complexity orographies, except for Vassallo et al.
(2020), who analyzed different types of terrain complexity,
and Standen et al. (2016) and Schwegmann et al. (2023), who
conducted their studies through the VMM tool.

2 Data and methods

2.1 The LSTM recurrent neural network

Recurrent neural networks (RNNs) are a type of artificial
neural network where the output of one time step is used as
an input in the subsequent time step to then build a mem-
ory of time series events. The RNNs are specifically de-
signed to work, learn and predict sequential data (Medsker
and Jain, 1999). Long short-term memory (LSTM) is a type
of RNN that is considered a state-of-the-art tool for process-
ing sequential and temporal data nowadays. The main advan-
tage of the LSTM over the other RNNs is that the presence
of internal memory allows maintaining long-term dependen-
cies, avoiding the vanishing- or exploding-gradient problems
(Smagulova and James, 2019). This was done by introduc-
ing a forget gate into the standard recurrent sigma cell of the
RNNs. The forget gate can decide what information will be
discarded (Yu et al., 2019) and makes the LSTM system a
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Figure 1. LSTM schematical diagram (Yu et al., 2019).

robust model that compensates for the imperfections in the
input data (Sherstinsky, 2020). The LSTM cells are mathe-
matically expressed by

ft = σ
(
Wf hht−1+Wf xxt + bf

)
, (1)

it = σ (Wihht−1+Wixxt + bi) , (2)
c̃t = tanh(Wc̃hht−1+Wc̃xxt + bc̃) , (3)
ct = ft · ct−1+ it · c̃t , (4)
ot = σ (Wohht−1+Woxxt + bo) , (5)
ht = σt tanh(ct ) , (6)

where xt and ht are the inputs and the recurrent information
at time t ; ct is the cell state of the LSTM; ft , it and ot are the
forget, input and output gates; Wf , Wi , Wc̃ and Wo are the
weights; b is the bias; and the operator “·” is the pointwise
multiplication of two vectors. Figure 1 illustrates the LSTM
compounds and architecture.

We run the LSTM using the Keras library (version 2.9)
from Python (version 3.8.16) through Colab (the Google Re-
search platform). The missing data were interpolated using
the interpolate Pandas function through a linear method. Af-
terwards, the data were normalized through the Standard-
Scaler function from the Sklearn library (Pedregosa et al.,
2011). The StandardScaler function normalizes by removing
the mean and scaling to the standard deviation:

z= (x− u)/s, (7)

where x is observed data, u is the mean, s is the standard
deviation and z is the normalized data.

We identified the optimal hyperparameters by using the
KerasTuner (O’Malley et al., 2019) with the Hyperband al-
gorithm. Table A1 exhibits the tuned hyperparameters for
each experiment. We maintained the default configuration of
Keras for the other LSTM arguments (Keras, 2023). See Ta-
ble A2.

2.2 Doppler lidar

We employed the Windcube v2 Doppler lidar, from Leo-
sphere, during the field campaigns at three different sites. For

Table 1. Information of the field campaigns.

Site Altitude Coordinates Observational period
(m)

1 721 −23.6; −46.7 18 Sep 2015 to 10 Mar 2016
11 Oct to 31 Dec 2016

2 4 −23.9; −46.7 11 Mar to 25 Aug 2016

3 590 −23.4; −47.6 26 Jul 2017 to 6 Aug 2018

the Windcube v2 technical specifications, see Beu and Lan-
dulfo (2022). The information of the field campaigns is listed
in Table 1.

The lidar was set up for 12 levels, as follows: 40, 60, 80,
100, 120, 140, 160, 180, 200, 230, 260 and 290 m; it was
also set up to retrieve information every 10 min. The Wind-
cube v2 system automatically discards data when the carrier-
to-noise (CNR) ratio is under −23 dB, and we removed data
that presented availability less than 80 % over 10 min.

See in Table A3 that the data availability is over 99 % for
all the three sites up to a 160 m height. Above 160 m, the
availability decreases to 98 % at Site 2 and 94 % at Site 3 at
a 230 m height.

We considered the observed data at 40 m to estimate the
wind speed at higher heights (from 60 up to 230 m). Beyond
the 10 min mean wind speed (v40), we also considered the
wind direction (dir40), the hour, and the standard deviation of
the horizontal (σu+σv) and vertical (σw) wind speed to fore-
cast the wind speed at higher heights. With the wind speed
standard deviation, we estimated the turbulence kinetic en-
ergy (TKE), which is the sum of the wind speed variances
(Stull, 1988) and is expressed by

TKE=
1
2

(
σ 2
u + σ

2
v + σ

2
w

)
. (8)

As already discovered, including cyclical variables improves
the wind speed forecast (Bodini and Optis, 2020a, b; Baquero
et al., 2022). The diurnal cycle is a strong feature of the sites
under research, and we will discuss this further. Since sur-
face observations are not available, the 40 m TKE could in-
directly transmit information related to temperature and sta-
bility, improving the modeling with respect to diurnal vari-
ability. This step is referred to as Experiment 1. Afterwards,
we also added the 60 m wind speed as input to forecast the
heights above, and this step is referred to as Experiment 2.
Following the advice of Bodini and Optis (2020a) and Bod-
ini and Optis (2020b), we conducted two more experiments
(Experiment 3 and Experiment 4), which consisted in swap-
ping a trained model for another environment and evaluating
its performance. In this way, the trained model for Site 1 was
applied to Sites 2 and 3. In addition, the trained model for
Site 2 was applied to Sites 1 and 3, and the trained model for
Site 3 was used for Sites 1 and 2. In Table A4, we summarize
the input variables of each experiment.
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2.3 The power law

According to Pintor et al. (2022), the power law (PL) is the
simplest and generally the most effective way to extrapolate
the wind speed. The PL is given by

V = Vr

(
z

zr

)α
, (9)

where V and Vr are the wind speed at height z and at refer-
ence height zr, respectively. α is the wind shear coefficient.
The authors state that α < 0.1 corresponds to unstable con-
ditions, 0.1< α < 0.2 is typical of the neutral profile and
α > 0.2 describes a stable atmosphere.

2.4 Evaluation

For evaluating the model performances, we chose verifica-
tion metrics like those used in Zhou et al. (2022) and Baquero
et al. (2022), because those metrics have been largely applied
to wind forecast through machine-learning methods. For fur-
ther information on these metrics, see Zhou et al. (2022) and
Baquero et al. (2022).

– Coefficient of determination (R2): the R2 tells us how
much the model differs from the original data, and it is
related to the correlation coefficient.

R2
= 1−

6Ni=1(yi − ŷi)2

6Ni=1(yi − y)2 (10)

– Mean squared error (MSE):

MSE=
1
N
6Ni=1(yi − ŷi)2. (11)

– Root mean squared error (RMSE):

RMSE=

√
1
N
6Ni=1(yi − ŷi)2. (12)

– Mean absolute error (MAE):

MAE=
1
N
6Ni=1|yi − ŷi |. (13)

– Mean absolute percentage error (MAPE):

MAPE=
100 %
N

6Ni=1
yi − ŷi

max(ε, |yi |)
. (14)

Here yi , y and ŷi are the actual value, the mean of the ob-
served data and the predicted value. N is the total number of
data points, and ε is an arbitrarily small but strictly positive
number to avoid undefined results when yi is zero.

Lastly, we applied the bootstrapping technique (Efron and
Tibshirani, 1994) to estimate the error bars for R2. For this
purpose, we used the bootstrap function from the SciPy li-
brary (Virtanen et al., 2020), with a confidence level of 0.95
and number of resamples equal to 100 times the data points.

Figure 2. Sites of the observational campaigns. The distance (yel-
low line) is 47 km between Sites 1 and 2, 131 km between Sites 2
and 3, and 90 km between Sites 1 and 3. Distance estimated by the
Google Earth tool (© Google Earth 2023).

2.5 Observational campaigns

The observational campaigns took place over a 3-year period
(Table 1) on the southeastern portion of Brazil (Fig. 2). All
three observational sites are within 140 km from the coast
and clearly marked on the map. Despite the proximity be-
tween sites (see the description of Fig. 2), the types of ter-
rain are completely different, namely the height and surface
roughness (Table 1). Site 1 is inside the Metropolitan Region
of São Paulo, which is characterized by a densely mixed ur-
ban matrix.

Site 2 is a coastal municipality called Cubatão. Beyond the
industrial zone, Cubatão is surrounded by natural parks of the
Atlantic Rain Forest (Morellato and Haddad, 2000), residen-
tial areas and a high mountain range, called Serra do Mar, on
its north boundary. At this point, Serra do Mar rises sharply,
up to more than a 700 m height; is 5 km wide across; and acts
as an important barrier to the atmospheric circulation. Vieira
and Gramani (2015) provide a technical description of the
Cubatão and Serra do Mar features.

Site 3, the Iperó municipality, is more than 130 km away
from the coast, as shown in Fig. 2. It is inside a predomi-
nantly rural area and about 10 km away from the urban zone
of the Sorocaba municipality. Another important character-
istic of this site is the Araçoiaba hill to the southeast, rising
up to more than a 300 m height up to 900 m altitude. The
Araçoiaba hill is inside a Federal Conservation Unit called
Ipanema National Forest.

3 Results

The surface strongly affects the atmospheric circulation
within the planetary boundary layer (PBL). Thus, we plotted
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Figure 3. Observed wind at 40 m – Site 1 (normalized wind rose).
The wind speed is indicated by the legend (m s−1).

the wind rose for the first observational level (40 m) as an at-
tempt to identify similarities and differences among the three
sites. In this study, the wind rose shows the direction where
the wind blows from (as typically used in meteorology). The
circulation patterns are similar between Sites 1 and 3 (Figs. 3
and 5). Both of them present a diurnal cycle of winds turning
360°. We see this diurnal cycle in Fig. A1, which illustrates
a 30 d wind direction temporal series. Most of the time, the
wind turns throughout the day, except for short periods iden-
tified by the red circles, when the winds remain mainly from
south–southeast and are related with postfrontal events. The
sea breeze (southeast wind) is one of the main reasons for the
pattern of Fig. 3 at Site 1 (Ribeiro et al., 2018). According to
Ribeiro et al. (2018), there are two main conditions that in-
hibit the sea breeze reaching the São Paulo Metropolitan Re-
gion (SPMR): the prefrontal circulation and the cloudiness.
The cloudiness decreases the thermal contrast between the
sea and the land, and the prefrontal circulation is opposed
to the sea breeze. Thus, excluding those two conditions, the
sea breeze advances over the SPMR often throughout the
year and justifies the wind rose pattern (Fig. 3). Even at
40 m above the surface, the winds are weak and rarely reach
8 m s−1. However, the low-level jet (LLJ) is a typical feature
of the SPMR (Sánchez et al., 2022), and the power and loga-
rithmic law fail in extrapolating the wind speed profile in the
LLJ environment when compared to machine-learning meth-
ods (Bodini and Optis, 2020a, b).

At Site 2 (Fig. 4), for this observational period, north and
northeast winds were disproportionately more frequent than
the other directions. However, it is also possible to identify
a diurnal cycle, as observed in Fig. A2. Except for the post-
frontal events, identified by the red circles, the wind direction
is variable throughout the day. Klockow and Targa (1998) il-

Figure 4. Observed wind at 40 m – Site 2 (normalized wind rose).
The wind speed is indicated by the legend (m s−1).

lustrated a conceptual model (their Fig. 2) and explained in
a simplified way the local atmospheric circulation, where the
sea and the land breezes play an important role. This frequent
wind direction reversal, due to the sea–land contrast and the
orography reported by Klockow and Targa (1998), may prej-
udice the model performance. Compared to Site 1, the wind
speed is weaker. Vieira-Filho et al. (2015) also observed a
similar pattern of Fig. A2 (rotating 360° throughout the day)
for the surface winds and emphasized the influences of the
orography and the ocean on the local circulation. They de-
tected around 20 % of calms (wind speed< 1 m s−1), occur-
ring preferably at nighttime, and mean wind speed around
2.4 m s−1.

The diurnal cycle at Site 3 (Fig. A3) is mainly related to
the mountain–valley circulation since the valley (Tietê River
valley) becomes deeper towards northwest. Thus, the local
circulation generally turns 360° throughout the day, result-
ing in the wind rose shown in Fig. 5. See that the seasonal
pattern in Fig. A4 is comparable to that in Fig. 5. The cir-
culation is also influenced by the frontal passages, and the
postfrontal condition generates stronger south and southeast
winds than the prefrontal condition, which generates weaker
north and northwest winds. The LLJs are a recurrent fea-
ture observed at this site (de Oliveira et al., 1995) and can
form very near the surface (Beu and Landulfo, 2022). Winds
are slightly stronger than the other two sites but rarely reach
10 m s−1 (Fig. 5).

We carried out more than 60 experiments, testing differ-
ent machine-learning models with multiple configurations,
namely random forest trees (Breiman, 2001) applied by Bo-
dini and Optis (2020a) and Bodini and Optis (2020b); SVR
(Smola and Schölkopf, 2004); its two different implemen-
tations – nuSVR and LinearSVR (Pedregosa et al., 2011);
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Figure 5. Observed wind at 40 m – Site 3 (normalized wind rose).
The wind speed is indicated by the legend (m s−1).

multi-layer perceptron (Almeida, 1997); and complete en-
semble empirical mode decomposition with adaptive noise
– CEEMDAN (Torres et al., 2011). In their work, Türkan
et al. (2016) used the SVR, the multi-layer perceptron and the
random forest trees algorithms. CEEMDAN (Torres et al.,
2011) has already been applied for wind speed forecasts
(Wang et al., 2021). The LSTM RNN outperformed the SVR,
nuSVR, LinearSVR, random forest trees, multi-layer percep-
tron and CEEMDAN. Results also improved when 10 min
mean data were used as input instead of 30 min mean or 1 h
mean. Here we only present results for the best-performing
model LSTM RNN (Bali et al., 2019; Al-Shaikhi et al.,
2022).

3.1 Experiment 1

Data from Site 3 was first used to train the model, start-
ing with wind speeds at 40 m to predict speeds at higher
heights. The entire dataset contains more than 50 000 data
points for each variable. As we were working at Colab, for
each new test it was necessary to upload the dataset. Inputting
the whole dataset for training and testing the model con-
sumes much processing time. Considering we were working
at Google Colab, for each new test it was necessary to upload
the dataset again. Despite this, running machine learning on
Colab is advantageous, in the sense that many libraries are
easily accessible and do not require installation at the local
machine. The Google Colab also eases the team work, since
the code can be safely shared with the group members. Sur-
prisingly, we found that model improvement plateaued with-
out using all of the data points of record. During this phase
we conducted tests changing the dataset size and hyperpa-

rameters and evaluated the improvement through the metrics
(Eqs. 10 to 14).

For Site 3, we found that the ideal dataset size was 8 000
data points, taking 90 % for the training. As the time series
is comprised of 10 min temporal averages, that corresponds
to roughly 2 months of observational data. We proceeded to
test the inclusion of other variables, such as wind direction,
hour and TKE (Eq. 8), because those data give information
about the diurnal cycle and improve the model. Tables 2–4
and Figs. 6–8 present the results reached by the LSTM model
and the power law (PL), according to Eq. (9) and α = 0.25, as
we found that this value provides the best correlation for our
datasets. See Table A1 for the dataset sizes and hyperparam-
eters. For all three sites, the R2 is similar for estimates with
the PL and the LSTM at the first level (60 m); however, as
the distance from the surface increases, the LSTM estimates
outperform the PL. That behavior was also observed by Liu
et al. (2023). This happens because the PL has a universal
nature and cannot simulate features like the LLJ (Bodini and
Optis, 2020a).

For Site 1, we reached the best result with a temporal se-
ries with 10 000 data points. This is approximately a 70 d ob-
servational campaign. When only 40 m variables are used as
predictors, we obtain R2 > 90 % up to 120 m (Table 2). The
MSE and MAE also confirm the superiority of the LSTM
model over the PL. Even the MAPE is greater for the PL es-
timates than for the LSTM estimates.

Comparing Site 1 and Site 3, we see through Figs. 6 and 8
that the PL performance decreases faster at Site 3 than at
Site 1. At 160 m, the R2

= 62 % at Site 3 and R2
= 76 % at

Site 1. For Site 2, the PL performance also exhibits a rapid
decrease with the height (Fig. 7), similarly to Site 3. Summa-
rizing, we see from Figs. 6–8 that the PL works better close
to the surface. Looking at the scatter plot for Site 1, we see
that the PL performance compares to the LSTM (Fig. 9) at
60 m, but at 230 m we see stronger winds underestimated by
the PL (the red circle on Fig. 10).

Site 2, which has weaker winds (see Table 3, column 2),
presents better performance for the LSTM forecast from
140 m upwards than the other two sites. As shown by Fig. 7,
R2 remains almost constant above 140 m, while for the PL,
theR2 decreases faster than the Site 1 curve. The PL underes-
timates winds stronger than 8 m s−1 as illustrated by the scat-
ter plot (Fig. 11) and are associated with abrupt changes as
indicated by the temporal series (Fig. 12). The causes of that
strengthening of the wind profile are unknown and remain as
suggestion for a future investigation. The LSTM also under-
estimates the stronger winds (mainly the winds that exceed
12 m s−1), as we see from the scatter plot, but it captures the
pattern better than the PL (Fig. 12).

The metrics show a similar behavior between Site 1 and
Site 3. Despite the complex topography, perhaps the better
performance of the LSTM model for Site 2 for the levels
above 140 m is related to the absence of the LLJ. To the best
of our knowledge, LLJs so close to the surface have not been
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Table 2. Site 1 – assessment of the wind speed estimated by the PL and the LSTM model (Experiment 1) up to 230 m.

Height Observed Model R2 MSE RMSE MAE MAPE
(m) mean (m2 s−2) (m s−1) (m s−1) (%)

wind
speed

(m s−1)

60 3.61 PL 0.98 0.06 0.25 0.20 6.47
LSTM 0.98 0.05 0.22 0.17 6.63

80 3.85 PL 0.94 0.18 0.42 0.33 10.74
LSTM 0.95 0.13 0.36 0.28 10.20

100 4.01 PL 0.90 0.30 0.54 0.43 13.06
LSTM 0.93 0.21 0.46 0.35 11.43

120 4.17 PL 0.86 0.45 0.67 0.53 15.06
LSTM 0.91 0.31 0.56 0.43 13.15

140 4.29 PL 0.82 0.62 0.77 0.62 17.08
LSTM 0.88 0.41 0.64 0.50 14.64

160 4.41 PL 0.76 0.82 0.91 0.72 19.32
LSTM 0.84 0.53 0.73 0.57 16.23

180 4.52 PL 0.69 1.07 1.03 0.82 21.71
LSTM 0.81 0.66 0.81 0.63 18.17

200 4.64 PL 0.60 1.39 1.18 0.93 24.31
LSTM 0.76 0.83 0.91 0.70 19.80

230 4.75 PL 0.48 1.86 1.37 1.08 28.19
LSTM 0.70 1.05 1.02 0.78 22.96

Figure 6. LSTM and power law R2, RMSE, and MAE estimates: Site 1. In the legend, exp.1 and exp.2 stand for Experiment 1 and
Experiment 2, respectively.

reported there yet; on the contrary, they are a common fea-
ture of Sites 1 and 3 (Sánchez et al., 2022; de Oliveira et al.,
1995; Beu and Landulfo, 2022).

3.2 Experiment 2

Some studies (e.g., Vassallo et al., 2020; Mohandes and
Rehman, 2018) already showed that adding input variables
from different heights below the extrapolation height im-

proves the machine-learning performances. Thus, we added
the 60 m wind speed observations to the input dataset of Ex-
periment 1 to estimate the above heights. Adding the 60 m
wind speed observations to the input dataset improved the re-
sults, as we see in Figs. 6,–8 (green line). For Site 1 we see an
increasing along the entire R2 curve, reaching 99 % at 80 m,
while the MAE decreased by 50 %. At 200 m, the R2 in-
creased by 6 % and the MAE decreased by more than 8 %.
The improvement was more pronounced at the lower heights
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Table 3. Site 2 – assessment of the wind speed estimated by the PL and the LSTM model (Experiment 1) up to 230 m.

Height Observed Model R2 MSE RMSE MAE MAPE
(m) mean (m2 s−2) (m s−1) (m s−1) (%)

wind
speed

(m s−1)

60 2.30 PL 0.96 0.09 0.30 0.21 12.8
LSTM 0.97 0.08 0.28 0.20 12.6

80 2.50 PL 0.89 0.36 0.60 0.41 22.6
LSTM 0.93 0.22 0.47 0.35 20.7

100 2.69 PL 0.81 0.88 0.94 0.60 30.3
LSTM 0.91 0.43 0.66 0.46 26.1

120 2.91 PL 0.72 1.83 1.35 0.81 36.7
LSTM 0.88 0.77 0.88 0.59 28.5

140 3.15 PL 0.65 3.08 1.75 1.01 41.7
LSTM 0.89 0.97 0.98 0.66 29.4

160 3.35 PL 0.61 4.23 2.06 1.17 46.2
LSTM 0.88 1.27 1.13 0.74 31.7

180 3.52 PL 0.58 5.11 2.26 1.31 49.8
LSTM 0.89 1.39 1.18 0.79 33.8

200 3.70 PL 0.53 6.61 2.57 1.47 52.6
LSTM 0.86 2.02 1.42 0.88 36.4

230 3.86 PL 0.50 7.79 2.79 1.61 55.3
LSTM 0.80 3.04 1.74 1.05 38.1

Figure 7. LSTM and power law R2, RMSE, and MAE estimates: Site 2. In the legend, exp.1 and exp.2 stand for Experiment 1 and
Experiment 2, respectively.

for Site 2 (compare the blue and green lines in Fig. 7). The
R2 increased to 98 % against the 93 % from Experiment 1 at
80 m, and the MAPE was reduced by 70 %, but for the higher
levels, the improvement gradually decreases, as we see from
Fig. 7.

For Site 3, Experiment 2 also outperformed Experiment 1,
and the improvement is constant with the height, just slightly
better at 80 m as we see from the greater distance between
the green and blue lines (Fig. 8). The R2 increased 2.5 %

at 80 m and only 1.5 % at 200 m. Performing the bootstrap-
ping method (Figs. A5–A7), it is evident that the variability
is higher for the PL estimate for Sites 2 and 3, mainly. For
Site 1, despite the LSTM-exp.2 exhibiting similar error bars,
the R2 is higher.

We also found that the performance is kept if we change
the sample size for the tests. For the tests, we evaluated the
R2 for three different samples beyond those from Table A1.
Tests were done for 2000, 4000 and 7000 data points. For
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Table 4. Site 3 – assessment of the wind speed estimated by the PL and the LSTM model (Experiment 1) up to 230 m.

Height Observed Model R2 MSE RMSE MAE MAPE
(m) mean (m2 s−2) (m s−1) (m s−1) (%)

wind
speed

(m s−1)

60 4.59 PL 0.96 0.22 0.47 0.36 10.0
LSTM 0.98 0.09 0.30 0.22 7.1

80 5.03 PL 0.89 0.64 0.80 0.62 14.9
LSTM 0.96 0.21 0.46 0.34 10.0

100 5.37 PL 0.83 1.10 1.05 0.83 18.1
LSTM 0.95 0.34 0.58 0.44 11.8

120 5.68 PL 0.77 1.64 1.28 1.01 20.8
LSTM 0.92 0.60 0.77 0.58 13.6

140 5.93 PL 0.71 2.21 1.49 1.16 22.8
LSTM 0.89 0.81 0.90 0.67 14.5

160 6.16 PL 0.62 2.94 1.71 1.33 25.1
LSTM 0.86 1.11 1.05 0.78 15.4

180 6.36 PL 0.54 3.67 1.92 1.48 27.0
LSTM 0.83 1.39 1.18 0.90 17.5

200 6.52 PL 0.47 4.33 2.08 1.61 28.7
LSTM 0.80 1.66 1.29 0.97 18.5

230 6.75 PL 0.37 5.35 2.31 1.79 30.9
LSTM 0.78 1.83 1.35 1.04 19.3

Figure 8. LSTM and power law R2, RMSE, and MAE estimates: Site 3. In the legend, exp.1 and exp.2 stand for Experiment 1 and
Experiment 2, respectively.

the PL estimate, the α was computed taking the 40 and 60 m
wind speed. The results for the 80 and 180 m forecasts are
shown in Fig. A8. We see that the R2 values are compara-
ble for the LSTM and PL estimates and remain almost con-
stant for the 80 m forecast for the tests conducted with 2000,
4000 and 7000 data points at Site 1. For the 180 m forecast,
the LSTM performance slightly increases when the sample
dataset increases from 2000 to 7000. For the Site 3 case, the
80 m forecast presented only slight variation, and LSTM and

PL performances are also comparable. Site 2 forecasts ex-
hibited a slight improvement when the test dataset increased
from 2000 to 7000 data points at 80 m. In this case, the
PL performance was worse than the LSTM. The 180 m fore-
cast for Site 2 is not shown because the original dataset re-
ported an atypical pattern, with the 180 m wind speed weaker
than the 40 m wind speed. Because of that atypical pattern,
even the PL estimate failed. The PL estimates at 180 m for
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Figure 9. LSTM and PL forecasts (Site 3) for 60 m – results from
Experiment 1.

Figure 10. LSTM and PL forecasts (Site 3) for 230 m – results from
Experiment 1.

Sites 1 and 2 were also worse than the LSTM forecast and
are not shown because they are out of the figure scale.

3.3 Experiment 3

Bodini and Optis (2020b) advised about the importance of
applying the machine-learning models to different sites than
where they were trained. Following their advice, we applied
each trained model to the other two sites (Figs. 13–15).

For Site 1 (Fig. 13) we see that the Site 3 model (blue line)
performed better than the Site 2 model (green line), but its
performance was worse than the original model (S1, which
was trained and validated at Site 1). It is also clear from
this figure that the performance quickly decreases with the
height. The behavior is the same for Site 3 (Fig. 15), where
the model trained for Site 2 presented the worst result. The
tests of the models trained at Site 1 and Site 3 for Site 2

Figure 11. Site 2: 160 m wind speed forecast (Experiment 1).

Figure 12. Site 2: 160 m wind speed temporal series (Experi-
ment 1).

presented poor performance as indicated by the fast R2 re-
duction with the height (Fig. 14).

Figures 16–18 show the correlation between observed and
forecasted wind speed for 80, 100 and 140 m for the forecast
of Site 1 with the model trained at Site 3.

3.4 Experiment 4

For this step, we took the best result from the previous ex-
periment (Experiment 3) and added the 60 m wind speed to
the input dataset. That means, for the Site 1 case, we took the
model trained at Site 3.

The forecast for Site 1 highly improves when the 60 m
wind speed is included on the input dataset for training the
model at Site 3, as we see in Fig. 19, and it outperforms
the PL forecast. The R2 increased by 7 % if compared with
the LSTM forecast with only the 40 m observations (Exper-
iment 3) for the 80 m height. The R2 reached 90.6 % and
84.9 % at 120 and 140 m, respectively. This result is almost
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Figure 13. Comparison between Experiment 1 and Experiment 3,
where S1 is the result of Experiment 1, S1(S2) is the forecast for
Site 1 run with the model of Site 2, and S1(S3) is the forecast for
Site 1 run with the model of Site 3.

Figure 14. Comparison between Experiment 1 and Experiment 3,
where S2 is the result of Experiment 1, S2(S1) is the forecast for
Site 2 run with the model of Site 1, and S2(S3) is the forecast for
Site 2 run with the model of Site 3.

as good as Experiment 1. Figures 22–24 illustrate the im-
provement (compared to Figs. 16–18) when the 60 m wind
speed observation was added to the training phase.

We also observe a strong improvement for Site 3 (Fig. 21)
compared to the PL estimate. At 80 m, the R2 increased by
9 % compared to the PL estimate, while at 140 m, we ob-
served an increase of 16 %.

For Site 2 we used the model trained at Site 1, since that
one performed best, as indicated by Fig. 14. In this case, we
see improvement up to 120 m (Fig. 20), but it was less than
the other two cases. It is obvious that adding more observa-
tional levels to the input dataset would improve the results;
however, it is not clear if this method should be applied if

Figure 15. Comparison between Experiment 1 and Experiment 3,
where S3 is the result of Experiment 1, S3(S1) is the forecast for
Site 3 run with the model of Site 1, and S3(S2) is the forecast for
Site 3 run with the model of Site 1.

Figure 16. Correlation between forecasted and observed data for
Site 1 with the model trained at Site 3. Height: 80 m.

the surfaces are too different as Site 2 is in relation to Site 1
and Site 3. We recommend more tests for the complex terrain
scenarios.

4 Conclusions

Nowadays, the machine-learning techniques produce suc-
cessful results to forecast environmental processes. However,
forecasting the wind speed is still a challenge due its ran-
dom nature, and researchers are dedicating considerable time
and efforts to reach confident results. Comparative studies
showed the superiority of the LSTM to forecast the wind
speed against other machine-learning techniques. Adding
more meteorological variables has also improved the results.
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Figure 17. Correlation between forecasted and observed data for
Site 1 with the model trained at Site 3. Height: 100 m.

Figure 18. Correlation between forecasted and observed data for
Site 1 with the model trained at Site 3. Height: 140 m.

Ensemble and hybrid methods are strategies that also con-
tribute to the model performances.

Only recently have machine-learning techniques been ap-
plied to extrapolate the wind speed to higher heights. The
models generally require large datasets with some observa-
tional heights. After testing some commonly used algorithms
for the wind speed forecast (random forest trees, support
vector regression and multi-layer perceptron), we found the
LSTM outperformed all of them. The LSTM outperformed
even the decomposition methods.

We also evaluated different dataset sizes and found that
the model did not improve even if the dataset size increases
beyond that presented in Table A1; however, the model is
sensitive to the training data percentage. In this study, taking
90 % of the dataset for training produced the best result. The
tests also showed best results for 10 min mean as input data
compared to 30 min or 1 h mean.

Figure 19. Site 1: comparison for the PL, Experiment 3 and Exper-
iment 4 estimates.

Figure 20. Site 2: comparison for the PL, Experiment 3 and Exper-
iment 4 estimates.

Including the 40 m wind direction, TKE and the hour in the
input dataset improved the model, which outperformed the
power law as the distance from the surface increases. Adding
the 60 m wind speed observations to the dataset improved the
results, as expected from results of previous studies. How-
ever, the improvement was better for Sites 1 and 2 than for
Site 3. The causes should be investigated in future work.

Even over complex terrain and with a relatively short
dataset (an observational campaign shorter than 3 months),
the LSTM outperformed the power law. The power law can-
not reproduce features like the LLJs that are often observed,
at least over Sites 1 and 3. Site 2 is strongly influenced by
the sea and land breezes, and the LSTM model captured the
abrupt changes of the wind profile better than the power law.

The results found in this observational campaign, albeit
short, show the benefits of Doppler lidars in improving model
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Figure 21. Site 3: comparison for the PL, Experiment 3 and Exper-
iment 4 estimates.

Figure 22. As Fig. 16, except the 60 m wind speed was added to
the input dataset.

results to estimate winds at height. This is particularly rele-
vant to help support the energy transition and net zero targets.
Despite the costs associated with Doppler lidars, the authors
would encourage further strategic collaborations to drive ob-
servational data improvements leading to advances in model
prediction.

As future work, we intend to follow two different ap-
proaches. As we got better results with 10 min mean
than with 1 h mean observational data, we want to test
the LSTM recurrent neural network providing a higher-
temporal-resolution dataset, like 1 or 5 min means, instead
of 10 min means, as provided for this study. Even if this re-
quires a new observational campaign, we could evaluate the
benefits of increasing the temporal resolution of the dataset.
As a second approach we would like to evaluate the benefits
of adding other sources, like reanalysis data or more obser-
vational data, such as surface pressure, surface temperature,

Figure 23. As Fig. 17, except the 60 m wind speed was added to
the input dataset.

Figure 24. As Fig. 18, except the 60 m wind speed was added to
the input dataset.

and 2 and 10 m wind data. Concerning machine-learning
techniques, we suggest a deeper investigation through hybrid
and ensemble methods.
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Appendix A

Table A1. Dataset size and hyperparameters.

Experiment 1 Experiment 2

Site Data Training Units Epochs Batch Units Epochs Batch
points data size size

(%)

1 10 000 90 30 30 2 30 30 2
2 12 000 90 20 20 2 15 30 2
3 8000 90 50 150 2 20 70 2

Table A2. LSTM arguments.

Argument Value

activation “tanh”
recurrent_activation “sigmoid”
use_bias True
kernel_initializer “glorot_uniform”
recurrent_initializer “orthogonal”
bias_initializer “zeros”
unit_forget_bias True
kernel_regulatizer None
bias_regulatizer None
activity_regulatizer None
kernel_constraint None
recurrent_constraint None
bias_constraint None
dropout None
recurrent_dropout 0.0
seed 0.0
return_sequences None
return_state False
go_backwards False
statetul False
unroll False

Table A3. Data availability (%).

Height (m) Site 1 Site 2 Site 3

40 100 100 100
60 100 100 100
80 100 100 100
100 100 100 100
120 100 100 100
140 100 100 100
160 100 100 99
180 100 99 98
200 100 99 97
230 100 98 94
260 100 95 90
290 100 92 83
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Table A4. Input variables.

Experiment Variables

1 hour, 40 m wind speed, 40 m wind direction, 40 m TKE
2 hour, 40 m wind speed, 40 m wind direction, 40 m TKE, 60 m wind speed
3 hour, 40 m wind speed, 40 m wind direction, 40 m TKE
4 hour, 40 m wind speed, 40 m wind direction, 40 m TKE, 60 m wind speed

Figure A1. Site 1: wind direction temporal series.

Figure A2. Site 2: wind direction temporal series.

Figure A3. Site 3: wind direction temporal series.
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Figure A4. Site 3: observed wind at 40 m (normalized).

Figure A5. Site 1: R2 error bars.
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Figure A6. Site 2: R2 error bars.

Figure A7. Site 3: R2 error bars.

Figure A8. R2 versus sample size of the Experiment 2 tests. α estimated from observational 40 and 60 m wind speed.
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Code and data availability. For the LSTM model
design see https://github.com/cassiabeu/doi.org-10.
5194-wes-2023-104.git (last access: 20 June 2024)
(https://doi.org/10.5281/zenodo.12168778, Beu, 2024). Datasets
are available upon request. Please contact Cássia Maria Leme Beu
(cassia.beu@gmail.com).
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