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Abstract. This work presents a robust methodology for calibrating analytical wake models, as demonstrated on
the velocity deficit parameters of the Gauss—curl hybrid model using 4 years of time series supervisory control
and data acquisition (SCADA) data from an offshore wind farm, with a tree-structured Parzen estimator em-
ployed as a sampler. Initially, a sensitivity analysis of wake parameters and their linear correlation is conducted.
The wake model is used with a turbulence intensity of 0.06, and no blockage model is considered. Results show
that the tuning parameters that are multiplied by the turbine-specific turbulence intensity pose higher sensitivity
than tuning parameters not giving weight to the turbulence intensity. It is also observed that the optimization
converges with a higher residual error when inflow wind conditions are affected by neighbouring wind farms.
The significance of this effect becomes apparent when the energy yield of turbines situated in close proximity
to nearby wind farms is compared. Sensitive parameters show strong convergence, while parameters with low
sensitivity show significant variance after optimization. Additionally, coastal influences are observed to affect
the calibrated results, with wind from land leading to faster wake recovery than wind from the sea. Given the
assumption of constant turbulence intensity in this work, recalibration is required when more representative site-
specific turbulence intensity measurements are used as input to the model. Caution is advised when using these
results without considering underlying model assumptions and site-specific characteristics, as these findings may

not be generalizable to other locations without further recalibration.

1 Introduction

The wind energy sector is experiencing significant growth
driven by the demand for renewable energy for the world’s
energy needs. According to the International Energy Agency
(IEA, 2022), the amount of electricity generation from wind
increased by 17 % in 2021, which is an increase in growth
of 55 % compared to 2020. The pursuit of growth has led to
a significant increase in the size of wind turbines and wind
farms, capitalizing on economies of scale, particularly in op-
eration and maintenance. This increase in wind turbine and
wind farm size poses new challenges, among others, related
to flow physics, as highlighted in studies by Veers et al.
(2019, 2023), Porté-Agel et al. (2019), and Meyers et al.

(2022). Wind turbine wakes are typically characterized by
a velocity deficit and increased turbulence behind the wind
turbine (Lissaman, 1979). The velocity deficit can result in
considerable power losses in downwind turbines, while the
added turbulence leads to increased fatigue loads (Thomsen
and Sgrensen, 1999; Verstraeten et al., 2019; van Binsber-
gen et al., 2020; Nejad et al., 2022). Although it is widely
acknowledged that clustered wind turbines lead to reduced
power production for downwind turbines, the exact degree
of these losses remains uncertain, especially in the context of
growing wind turbine and wind farm size.

Methods that optimize the power production of the wind
farm, such as layout optimization (Baker et al., 2019; Sickler
et al., 2023), axial induction control (Annoni et al., 2015;
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Dilip and Porté-Agel, 2017; Kheirabadi and Nagamune,
2019; Bossanyi and Ruisi, 2021), wake steering (Fleming
et al., 2019; Quick et al., 2020; Kheirabadi and Nagamune,
2019; Doekemeijer et al., 2021), and power set-point opti-
mization (Verstraeten et al., 2021), have the potential to re-
duce the levelized cost of energy. However, given the con-
siderable complexity of wakes and the stochastic nature of
wind, a significant degree of uncertainty remains within the
field of layout optimization and farm control. As a result of
this, wind power plant flow physics has been recognized as a
significant challenge for the future, as outlined by Veers et al.
(2019, 2023).

Wind turbine wakes are analysed and modelled on dif-
ferent levels of fidelity for different purposes. Engineering
tools such as the FLOw Redirection and Induction in Steady
State (FLORIS) framework by NREL (2023) and the Py-
Wake simulation tool by DTU (2023) are used to study the in-
teraction between turbines within a wind farm and the conse-
quences for power production in a low-fidelity but computa-
tionally inexpensive way. Both FLORIS and PyWake consist
of various wake models, aiming to accurately simulate the in-
teraction between multiple turbines within a wind farm, and
can be used for wind farm design, control, and optimization.
This study employs the Gauss—curl hybrid (GCH) model, as
described in King et al. (2021), within the FLORIS frame-
work. However, the methodology is not restricted to specific
models and frameworks. As understanding the historical evo-
lution of wake models is essential to understanding the foun-
dations of the chosen model, it is discussed in the next sec-
tion.

1.1  Wake model evolution

Analytical wake models within engineering frameworks are
generally subdivided into four submodels: the wake veloc-
ity deficit model, the wake deflection model, the wake-added
turbulence model, and the wake combination model. In re-
cent years significant progress has been made, both in scien-
tific comprehension of the physics that are in play and in the
modelling of these physical phenomena. The propagation of
the wake velocity deficit is the reason power losses occur for
clustered wind farms. The wake propagation can be subdi-
vided into a near-wake and a far-wake region. For the near-
wake region, the wake mixing is mainly dominated by the
wake-added turbulence of the wind turbine, and the tip vor-
tices are still present within the flow, while for the far-wake
region wake mixing is mainly dominated by mixing due to at-
mospheric turbulence (Sanderse, 2009). As previously men-
tioned, the wake recovery due to mixing is heavily depen-
dent on atmospheric conditions. Over the years, a range of
wake models have been developed, such as the Jensen model
(Jensen, 1983; Kati¢ et al., 1987), Gaussian-shaped models
(Bastankhah and Porté-Agel, 2014, 2016; Niayifar and Porté-
Agel, 2015; Blondel and Cathelain, 2020; Zong and Porté-
Agel, 2020), and the cumulative-curl (Blondel and Cathelain,
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2020; Bastankhah et al., 2021; Bay et al., 2023) and Tur-
bOPark (Nygaard et al., 2020; Pedersen et al., 2022; Nygaard
et al., 2022) models motivated by @rsted (2019). Each model
describes the velocity deficit in a unique way, and many of
these models have found integration within frameworks such
as FLORIS and PyWake.

The Jensen model is a long-standing reliable analytical
wake model based on the conservation of mass, correlating
the wind speed behind the rotor with the thrust coefficient.
The Jensen model is a top-hat model, meaning that the Jensen
model assumes a constant velocity across a wake cross-
section. Furthermore, the model assumes linear wake growth
and wake decay proportional to the inverse of the downwind
distance. The top-hat model results in unrealistically sensi-
tive power predictions downwind and overestimates the ve-
locity deficit at the edge of the wake, while underestimating
it in the centre. This resulted in the development of a new
model by Bastankhah and Porté-Agel (2014, 2016) and Ni-
ayifar and Porté-Agel (2015), which follows a self-similar
Gaussian distribution. This model, recognized as the Gauss
model, consists of four tuning parameters: the ones related
to wake expansion (k, and k) and the ones which define the
transition point from the near-wake region to the far-wake re-
gion (o and B). In research conducted by King et al. (2021),
analytical modifications were made to the Gaussian model
by adding the effect of curled wakes, as depicted in the curl
model by Martinez-Tossas et al. (2019), and implementing
secondary-steering effects, observed by Fleming et al. (2018)
and Wang et al. (2018). This model is known as the GCH
model.

Over the years, it has become clear that traditional
wake models often underestimate wake losses in the far-
wake region, thereby overestimating the expected yield, as
per @rsted (2019). This triggered the development of the
cumulative-curl model by Blondel and Cathelain (2020),
Bastankhah et al. (2021), and Bay et al. (2023) and the Tur-
bOPark model by Nygaard et al. (2020) and Pedersen et al.
(2022). While the cumulative-curl model builds upon the ad-
vancements from the Gaussian wake model, the TurbOPark
model developed by Nygaard et al. (2020) originates from
the Jensen and Park model. The advancements made by Ped-
ersen et al. (2022) incorporate the Gaussian deficit profile.

1.2 Calibration of analytical wake models

Within the development of analytical wake models, cali-
bration of parameters is necessary. Not calibrating scaling
parameters can potentially result in over- or underestima-
tion of the energy yield and suboptimal wind turbine sit-
ing within a wind farm if used for the design of a wind
farm. This calibration can initially be carried out by com-
paring the analytical wake models with high-fidelity com-
putational fluid dynamics (CFD) models, large-eddy simu-
lation (LES) models (Gebraad et al., 2014; Fleming et al.,
2017; Doekemeijer et al., 2019; Zhang and Zhao, 2020;
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Doekemeijer et al., 2020; Bay et al., 2023), or wind tun-
nel experiments (Sanderse et al., 2022; Campagnolo et al.,
2022). This comparison provides a general idea of the pa-
rameter value. However, given the differences in site-specific
factors (like the topography, wind resource, surface rough-
ness, atmospheric stability, turbulence intensity, and general
gradients), wind-farm-specific attributes (such as size and
spacing), and wind-turbine-specific properties (like power-
thrust curves), wind-farm-specific calibration is required to
improve accuracy of the acquired results. The recent study by
Gogmen et al. (2022) further highlights the importance of an
appropriate calibration procedure for control-oriented mod-
els. Alternatives for calibration, such as field measurements
(Fuertes et al., 2018; Canadillas et al., 2022), are available
but require the installation of additional equipment.

Calibrating wake models on supervisory control and data
acquisition (SCADA) data has the advantage that the site-
specific, farm-specific, and turbine-specific uncertainties can
be minimized through optimization and is currently be-
ing used for farm-based control. For example, work done
by Gogmen and Giebel (2018), Teng and Markfort (2020),
Schreiber et al. (2020), van Beek et al. (2021), and Gogmen
et al. (2022) uses SCADA data to calibrate parameters that
dictate the wake model performance.

In van Beek et al. (2021) a sensitivity study is performed
on the parameters of the Gauss—curl hybrid model, de-
scribed in King et al. (2021), and concludes that the model
is overparameterized. This can result in ill-posed and non-
uniqueness problems, as demonstrated by Doekemeijer et al.
(2022), where the so-called “waterbed effect” occurs be-
tween the freestream turbulence and the wind direction vari-
ability within the FLORIS framework, making it impossible
to identify the right value for a set of parameters. To counter-
act this, Schreiber et al. (2020) applied a singular value de-
composition to remove correlation and overparameterization
by mapping the original parameters onto a new set of uncor-
related parameters. However, in Go¢men et al. (2022) blind
tests were carried out, where for a similar framework, dif-
ferent resultant parameter sets were obtained. Furthermore,
Gog¢men et al. (2022) stated that the turbine performance
in yaw is highly uncertain. This can further result in non-
uniqueness issues. In light of these findings, an approach
is developed that provides a consistent optimization frame-
work, emphasizing robust filtering, optimization, and valida-
tion. By integrating wind speed and wind direction into the
optimization, potential biases in determining free-flow con-
ditions are effectively mitigated. The use of time series data
in calibration ensures that atmospheric inflow biases are not
irreversibly categorized, preserving the potential for subse-
quent post-processing and ad hoc analysis. Each optimiza-
tion of individual timestamps within the SCADA data oper-
ates independently, ensuring a smooth parameter distribution
across varied wind speeds and wind directions while limiting
the effect of sporadic outliers. By incorporating a sensitivity
study and energy ratio comparisons, thorough validation of

https://doi.org/10.5194/wes-9-1507-2024

1509

determined hyperparameters is ensured. Assessing the Pear-
son correlation ensures minimized correlation among tuning
parameters, thereby mitigating the occurrence of overparam-
eterization.

1.3 Challenges in calibration of analytical wake models
with SCADA data

While the correlation between wake parameters is one source
of uncertainty within the framework of calibrating wake pa-
rameters of analytical wake models, additional sources of un-
certainty influence the effectiveness of the calibration frame-
work.

The first additional source of uncertainty arises from the
estimation of the free-flow wind speed, wind direction, and
nacelle direction. Estimating the free-flow wind speed and
wind direction of a wind farm can be difficult due to stochas-
tic and sensor uncertainty. Stochastic uncertainty covers all
variations or random fluctuations in wind characteristics,
ranging from turbulence, evolving weather patterns, or di-
urnal cycles. Specifically, turbulence can introduce uncer-
tainty within averaged intervals, while shifts in weather and
daily patterns might cause the mean value of the parameter
to drift. Barthelmie et al. (2009) point out the complexities
concerning the estimation of the free-flow wind speed and
wind direction. Since wind speed serves as the most sensi-
tive parameter for the active power of wind turbines below
rated, achieving precise estimates is essential when compar-
ing wake models with measurements. The free-flow wind
speed can be calculated using the wind speed of the free-
flow wind turbines or using a wind mast. Estimating wind
speed from active power for calibration could yield more ac-
curate results compared to using the nacelle anemometer, pri-
marily due to the large sensitivity to rapid changes in wind
speed of the nacelle anemometer. These rapid changes in
wind speed do not agree with the assumption of steady-state
inflow within the analytical wake model frameworks. Fur-
thermore, wind direction measurements can display a bias of
up to 5°, even in the case of well-maintained wind vanes,
as per Barthelmie et al. (2009). Moreover, individual wind
turbines can have distinct biases in wind direction measure-
ments. Determining the wind direction can be fundamentally
more complex due to the nonlinear relation between the wind
direction and the active power of wind turbines within a wind
farm. An example of direction calibration towards true north
based on energy ratios can be found in Doekemeijer et al.
(2022).

Secondly, wind speed and turbulence gradients due to ex-
ternal wakes and terrain effects pose a challenge. Barthelmie
et al. (2007) investigated the effect of coastal wind speed
gradients and concluded that these gradients must be con-
sidered when optimizing wake models for wind farms lo-
cated in coastal regions. Doekemeijer et al. (2022) mentioned
that the effect of higher turbulence from the coast, com-
pared to the sea, can induce more wake recovery. To ad-
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dress the heterogeneous inflow, Go¢men et al. (2022) cre-
ated a non-homogeneous flow field for wind speed and tur-
bulence intensity by using anemometer data for calibration,
while Schreiber et al. (2020) applied spatial correction fac-
tors to the wind speed. With an increase in the number of
wind farms being built, farm-to-farm effects are becoming
significantly more frequent. Pettas et al. (2021) showed that
the external wake effects result in increased turbulence inten-
sity and structural loading, with a reduced wind speed for the
considered wind farm.

In addition, time averaging of SCADA data is often neces-
sary to remove short-term fluctuations and noise in the data,
which is especially present for anemometer measurements.
The disadvantage of averaging SCADA data is the loss of in-
formation. The averaged timestamp can be subject to changes
in wind speed or wind direction, which can make the result-
ing timestamp not representative of the analytical wake mod-
els. Therefore it is important to consider not only the average
of the timestamp, but also higher-order statistical moments,
like variance.

Furthermore, spatial and temporal variability across the
wind farm introduces complexity. Many wake models as-
sume steady and horizontally homogeneous wind inflow.
This assumption will always introduce additional uncer-
tainty. Therefore it is of significant importance to carefully
filter the data used for calibration. Especially with the in-
creasing size of wind farms, the assumption that each wind
turbine within the wind farm experiences the same wind con-
dition at one point in time is no longer valid. Specialized
frameworks, like FLORIDyn by Becker et al. (2022), have
been developed specifically to address the temporal and spa-
tial variability across a wind farm. For steady-state models,
manipulation of the SCADA data should be considered, in-
corporating a time lag for specific wind conditions, in line
with the methodology carried out in Avila et al. (2023).

Additionally, uncertainty originating from natural fluctua-
tions, like diurnal and annual cycles, should be considered
since these affect atmospheric stability. Measuring atmo-
spheric stability itself is prone to uncertainty, often arising
from sensor-related inaccuracies and stochastic variations.
In work done by Hansen et al. (2011), they revealed that
stable atmospheric conditions, characterized by low turbu-
lence, correlated with larger power deficits than unstable at-
mospheric conditions due to limited flow mixing. Wang et al.
(2022) showed the effect of atmospheric stability due to di-
urnal cycles on the internal wake patterns. They concluded,
similarly, that a stable atmosphere during the night resulted
in larger wake losses than an unstable atmosphere during the
day. This implies that there should be a clear distinction be-
tween stable and unstable atmospheric conditions when cali-
brating wind turbine wake models.

Lastly, recent advances in the understanding of flow
physics in wind farms have highlighted the issue of wind
farm blockage (Porté-Agel et al., 2019; Meyers et al., 2022),
where Bleeg et al. (2018) observed that the blockage ef-
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fect results in less energy generation than initially expected
for front-row wind turbines. The deceleration caused by the
blockage will subsequently result in a deflection upwards and
sideways due to mass conservation (Porté-Agel et al., 2019).
Furthermore, studies by Wu and Porté-Agel (2017), Allaerts
and Meyers (2017), and Schneemann et al. (2021) showed
that the global blockage effect is strongly influenced by at-
mospheric stability. Recent advancements in modelling the
effects of wind farm blockage effects (Branlard and Forsting,
2020; Branlard et al., 2020; Nygaard et al., 2020) have facil-
itated the reduction in uncertainty in wind farm construction
planning, as implemented by Munters et al. (2022) and Ny-
gaard et al. (2022).

1.4 Objectives

The main objective of this study is to perform a model cal-
ibration using SCADA data on the wake velocity deficit pa-
rameters of the GCH wake model while maintaining homo-
geneous free-flow conditions within the FLORIS framework.
This optimization is performed on bottom-fixed wind tur-
bines within a large offshore wind farm. The intention of
this study is to set a constructive foundation for the calibra-
tion of wake parameters, creating an opportunity for possi-
ble advancements in the future. The optimization operates
under the assumption that all wind turbines are perfectly
aligned with the direction of the free-flow wind. No wind
speed or turbulence gradients are introduced to the flow field.
SCADA data are averaged into 10 min averages, and no al-
ternations are made to account for temporal variability across
the wind farm. A constant turbulence intensity is used within
this optimization framework, as variable turbulence inten-
sity introduces additional sensor and model uncertainties. It
is furthermore observed by Doekemeijer et al. (2020) that
the turbulence intensity within the FLORIS framework does
not fully represent the physical turbulence intensity. While
atmospheric stability significantly influences the results ob-
tained, it is not analysed in this study. Additionally, the model
does not account for wind farm blockage effects, as it does
not include neighbouring wind farms. This assumption is
considered acceptable, given the limited indications of spa-
tially varying wind directions attributable to blockage at this
wind farm. Since it is assumed that all wind turbines are
perfectly aligned, optimization of wake deflection parame-
ters is not considered. This is in line with van Beek et al.
(2021) and Gog¢men et al. (2022). Initial analysis revealed
that combining the optimization of wake turbulence parame-
ters with wake velocity parameters can result in the absence
of a unique solution. This is in line with results found by
Schreiber et al. (2020) and Doekemeijer et al. (2022). There-
fore the wake turbulence parameters are not optimized.

To achieve these goals, a novel optimization framework
is developed, where the data are analysed as a time series.
Therefore, no prior binning is done based on environmental
parameters, such as wind speed and wind direction. Binned
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Figure 1. An illustrative overview of the applied framework. The SCADA data required, highlighted in red, and the filtering procedure, high-
lighted in blue, are described in Sect. 2. The sensitivity analysis, highlighted in yellow, is described and performed in Sect. 3. Subsequently,
the hyperparameter optimization, highlighted in green; the validation, highlighted in purple; and the results, highlighted in orange, are all

addressed in Sect. 4.

analysis assumes balance and is valid when the magnitude
and frequency of overestimations are in balance with the
magnitude and frequency of underestimations. Otherwise, re-
sults can become skewed. Additionally, the volume of usable
data becomes limited in binned observations, since even the
downtime of a single turbine can introduce significant bias.
Furthermore, the free-flow wind speed and wind direction,
in addition to the wake parameters, are determined. This is
crucial since calibrating with inaccurate wind conditions can
lead to results that misrepresent the true value of the wake
model tuning parameters, adversely affecting the calibration
results. While free-flow wind speed and direction are not
the primary calibration targets, accurately determining these
wind conditions ensures that results reflect the optimal value
of the wake model tuning parameters.

To this end, a visual overview of the applied framework is
provided in Fig. 1. The framework is divided into six dis-
tinct segments which are described throughout the paper.
First, Sect. 2 gives a description of the case study wind farm
and the input SCADA data. Different filtering procedures
are described to ensure that no time windows which are not
representative of normal operation are considered. Then, in
Sect. 3, a description of the wake model is given, and a sen-
sitivity study is performed on the velocity deficit parameters
of the considered wake model. The optimization framework
is described in Sect. 4, followed by a validation of the ac-
quired results based on energy ratio plots. Results are pre-
sented based on wind speed, wind direction, and their joint
dependence. Furthermore, the Pearson correlation is anal-
ysed for the optimized parameters.
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2 Case study wind farm and the filtering and
processing of SCADA data

In the following section, the case study wind farm, together
with the surrounding topography, is discussed. Then, the in-
put data are described. This is followed by a description of
the processing and filtering procedure applied to remove ab-
normal data. Finally, the effect of inter-farm interaction is
identified and conditionally filtered out.

2.1 Available wind farm data for model calibration

The calibration in this paper is performed on one irregularly
spaced offshore wind farm comprising large bottom-fixed
wind turbines, each with a rated capacity of over 8.0 MW.
The farm can produce over 300 MW of active power at
full capacity. Figure 2 shows the surrounding topography
to which the offshore wind farm is subjected. The perfor-
mance of the offshore wind farm is affected by the wakes of
neighbouring wind farms between west-southwest and north-
east. The wind farm experiences coastal effects between east-
northeast and east-southeast due to its location along an ir-
regular coastline with scarce low-rise structures. The coast-
line stretching from east-southeast to south-southwest is uni-
form but features a combination of both low-rise and high-
rise structures. The wind farm experiences wind from the
sea from south-southwest to west-southwest and from north-
east to east-northeast. In practice, there is a transition zone
present between the above-mentioned zones, where the wind
farm may be subject to a combination of inflow conditions
from neighbouring wind farms, coastal effects, or wind from
the sea.

Wind Energ. Sci., 9, 1507-1526, 2024
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Figure 2. Illustration showing the surrounding topography impact-
ing the offshore wind farm. The case study wind farm is visualized
in the centre of the figure with a blue rectangle, while the neigh-
bouring wind farms are depicted in yellow. The low-rise coastline
is illustrated in green, and the high-rise coastline is outlined in red.

2.2 Input data and filtering of non-representative data
windows

SCADA data over a 4-year period are used to perform the
presented analyses. Both the mean value and the variance of
variables are calculated for the 10 min intervals. Measure-
ment channels include the active power, wind speed, wind
direction, and nacelle position of wind turbines. It is essential
to properly filter this SCADA data to not skew the calibration
of the wake parameters due to windows of abnormal oper-
ation. This section explains the different steps that are ap-
plied within the paper to filter out these operating windows.
These different conditions consist of underperformance, tur-
bine downtime, and alarm conditions, as acquired by the tur-
bine control system.

Considered unrealistic sensor values are wind vane sensor
or anemometer stuck faults. When the variance of the wind
speed or wind direction for a 10 min timestamp is effectively
zero, it is assumed that the wind vane or anemometer is stuck,
respectively. Similarly, a sensor stuck fault is assumed if con-
secutive 10 min averages of the wind speed and wind direc-
tion acquired from the wind vane or anemometer are exactly
equal.

Underperformance is subdivided into grid curtailment and
turbine derating. The former refers to the state when the
power set point of a wind farm is purposefully reduced below
the maximum possible power output for a given environmen-
tal condition. Specifically, grid curtailment is usually a con-
tractually defined condition or requirement, used to mitigate
overloading of the grid. Derating refers to the intentional de-
creasing of the rated power output of a wind turbine, with the
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Figure 3. Comparison between 10min SCADA data before and
after power-curve filtering.

aim to improve machine lifetime by reducing the mechanical
loads on wind turbine components. Both types of underper-
formance are considered abnormal behaviour and are there-
fore filtered out. Daems et al. (2021, 2023) can be consulted
for a further breakdown of the identification of these an-
notations. Additionally, power-curve filtering, similar to the
methods outlined by Doekemeijer et al. (2022), is performed
but with stricter acceptance criteria around rated conditions,
specifically adjusted to exclude grid curtailment near rated
capacity.

During operating windows accompanied by low active
power, the turbine is annotated as inactive. Low active power
corresponds with low thrust loads and therefore has a limited
effect on the internal wind farm flow field. The annotation
is later used to remove the inactive turbines from the opti-
mization for the given timestamp. When more than half of
the wind farm is annotated as inactive, the data will not be
considered for optimization.

Alarm annotations are acquired from status logs. The data
are filtered out when the turbine status log occurs with high
active power production. Results from the filtering procedure
can be seen in Fig. 3. The rejected SCADA data are shown
in red, while the accepted SCADA data are shown in green.
Turbine inactivity is visualized by the blue colour.

2.3 Filtering of inter-farm effects

The effect of neighbouring farms on the optimized results is
removed by filtering data based on wind direction. The effect
of neighbouring farms is quantified by calculating the nor-
malized absolute and relative power losses per wind speed
and wind direction, as described by Eqgs. (1) and (2), respec-
tively. Here, Pin represents the power production of the wind
farm for a given wind speed and wind direction, as if only the
wind farm itself is constructed in the concession zone. On the
other hand, Pey; represents the obtained power production for
a given wind speed and wind direction considering the entire
wind farm concession.
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maxwd Pint(Ws, wd)

Figures 4 and 5 display the normalized absolute and rela-
tive power losses per wind speed and wind direction, calcu-
lated using the TurbOPark wake model. A significant loss is
observed between 250 and 50°. Despite representing a large
portion of the data, maintaining the uniformity of the free-
flow inflow is critical for the accurate estimation of wake pa-
rameters. Measurements further reveal an increase in turbu-
lence for the wind coming from neighbouring wind farms,
as shown by the 10min turbulence intensity TI, variance
in wind speed o2, and variance in wind direction ovzvd in
Figs. 6-8, respectively. Both heterogeneous inflow and in-
creased turbulence affect the optimization process. This be-
comes evident when analysing the resultant accumulated ab-
solute and relative errors between the results acquired from
FLORIS and the SCADA data, as shown in Figs. 9 and 10.
The error metrics, denoted as €, for the accumulated ab-
solute error and € for the accumulated relative error, are
defined by Eqgs. (3) and (4), respectively. Nt represents the
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Figure 6. Free-flow turbulence intensity as a function of wind speed
and wind direction.

number of active turbines, while P; and 13,' are active power
from SCADA data and calculated power from the wake
model for turbine i, respectively. A noticeable increase in the
error can be observed where the external wake losses are the
highest. Therefore, in order to obtain results that accurately
reflect unaffected free-flow conditions, it is necessary to filter
out the inter-farm effects from the data.

Nt . .
€abs = Y _|Pi — P 3)
i=1
Nt __
Z|Pi_P1|
6re]=l_T “4)

As such, data between 250 and 50° are excluded from
the wind-speed-dependent results. This further underlines
the importance of simulating the entire wind farm cluster
for obtaining precise wake parameters, especially when the
wind direction overlaps with neighbouring wind farms. This
presents its own set of complications, such as fitting thrust
and power curves and having limited knowledge of the op-
erational status of the neighbouring turbines, among others.
Moreover, an increase in the relative power error between the
SCADA data and the analytical wake model results can be
observed for wind originating from the irregular coastline.
This suggests a potential high inflow heterogeneity, which
the homogeneous inflow assumption fails to account for.

3 Wake model and input parameter sensitivity

In the following section, the considered wake model used for
the optimization framework is described. To identify the im-
portance of the tuning parameters of the wake model, a sen-
sitivity study is performed on the wake model.
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Figure 7. Free-flow wind direction variance as a function of wind
speed and wind direction.
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Figure 8. Free-flow wind speed variance as a function of wind
speed and wind direction.
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3.1 Wake model description

The Gauss—curl hybrid model, commonly referred to as the
GCH model, is the wake model used in this work and is
briefly mentioned in Sect. 1.1. The decision to calibrate the
GCH model is influenced by its widespread use in relevant
literature (Bastankhah and Porté-Agel, 2016; Archer et al.,
2018; Fleming et al., 2019, 2020, 2021; Hamilton et al.,
2020; Doekemeijer et al., 2021; Simley et al., 2021; van Beek
et al., 2021; Doekemeijer et al., 2022; Go¢cmen et al., 2022),
which provides a strong foundation for comparative analy-
sis. The wake velocity model of the GCH wake model can be
subdivided into two areas: the near-wake region and the far-
wake region. Within the near-wake region, the wake model
is modelled as a linearly converging cone. Assuming no mis-
alignment, the width of the cone is equal to the rotor diameter
at the turbine hub and becomes zero when the near-wake re-
gion ends. The start of the far-wake region, denoted as x,
is characterized by a two-dimensional Gaussian distribution.
The transition from the near wake to the far wake is gov-
erned by Eq. (5). Here, Dy represents the rotor diameter of
the wind turbine, C is the thrust coefficient of the turbine,
ILrotor stands for the turbine-specific turbulence intensity, and

Wind Energ. Sci., 9, 1507-1526, 2024

D. van Binsbergen et al.: Hyperparameter tuning framework for calibrating analytical wake models

Eabs [']

Figure 9. Normalized power error per wind speed and wind direc-
tion bin for the GCH model.
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Figure 10. Normalized relative power error per wind speed and
wind direction bin for the GCH model.

« and B are the tuning parameters referenced earlier.

 Dun(14VTC)
" V2 (Baloor +28(1— VT—Cr))

Without yaw misalignment, the far-wake profile can be de-
scribed using Eq. (6). Here, Uy, represents the upstream
wind speed, while U is the wind speed within the three-
dimensional Euclidean space (x, y, z), with its origin at the
turbine hub. The x coordinate aligns with the wind direction,
whereas y and z stand perpendicular to the wind direction.
The z coordinate is defined as positive in the upward direc-
tion. Additionally, oy and o, represent the standard deviation
of the Gaussian distribution in the y and z directions, respec-
tively.

U 9 s
M=1_<1_ L
Ux

o)

Gy 002.0
.00z,
_cT)

2 2
wo(~(25+52))

The progression of the standard deviation of the Gaussian
distribution can be described by Egs. (7) and (8). Here,
Eq. (9) defines the standard deviation of the Gaussian at x.
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The wake expansion coefficients ky and k, are described as
a function of the specific turbulence intensity and the tuning
parameters k, and kp, according to Eq. (10).

oy =0y0+(x— xO)ky (7N

o, =070+ (x —x0)k; (8)
Dirotor

Oy 0 =0,0= —— O

v,0 z,0 2\/5 )

ky = k; = kalrotor + kp (10

In this work, the set of tuning parameters within the velocity
deficit model of the GCH wake model, & = {k,, kp, o, 8}, is
considered for optimization. Model specifications, including
the velocity, deflection, turbulence, and combination model,
can be found in Table 1. In addition, Table 1 also provides
information on the atmospheric parameters.

The reference values for the parameters are the reference
values that are used within the FLORIS framework, while
the minimum and maximum values, defined in Table 2, are
acquired from Doekemeijer et al. (2020) and van Beek et al.
(2021).

3.2 Sensitivity analysis

To assess the sensitivity of the tuning parameters, the total-
order Sobol indices are computed by performing the Sobol
method for sensitivity analysis with Saltelli’s extension. The
Sobol method, as described in Sobol (2001), is a variance-
based global sensitivity analysis tool that quantifies the de-
gree of contribution of each individual input parameter to the
output variance. The method involves variance decomposi-
tion of the model output to input variations, which defines the
magnitude of the Sobol indices, meaning that the magnitude
of the Sobol index is directly proportional to the sensitiv-
ity of the input parameter on the model output. The method
is capable of generating both first-order indices, which ig-
nore interactions between input variables, and total-order in-
dices, which consider both the contribution of input varia-
tions to the output variance and input interactions. To en-
sure that the full parameter space is covered, an evenly dis-
tributed quasi-random and low-discrepancy sequence is re-
quired. This sequence is created by performing Saltelli’s ex-
tension by Saltelli (2002) and Saltelli et al. (2010) on the
Sobol sequence (Sobol, 2001). Then, the Sobol method is
performed on wind speeds varying from 5 to 12ms~! in
0.5ms~! increments and all wind directions at 12° intervals.

The total-order Sobol indices, St, for the parameters k,,
kp, o, and B are depicted in Figs. 11-14, respectively. The
results reveal that the sensitivity of the GCH model is pri-
marily governed by the parameter k. It is also observed that
the sensitivity of the parameter « increases with higher wind
speeds from two anti-parallel directions. Generally, a high
degree of symmetry can be observed.
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4 Optimization using SCADA data

This section discusses the optimization framework per-
formed on the GCH model and validates these results using
energy ratio plots. Then, the optimized parameters are pre-
sented as a function of wind speed and wind direction.

4.1 Optimization framework

A hyperparameter optimization framework, named Optuna
(Akiba et al., 2019), is used to optimize the parameters of
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Table 1. Overview of considered submodels and atmospheric parameters.

GCH References

Wake velocity model Gauss

Wake deflection model Gauss

Wake turbulence model Crespo Hernandez
Wake combination model ~ SOSFS

Air density 1.225

Turbulence intensity 0.06

Wind shear 0.12

Wind veer 0.0

Bastankhah and Porté-Agel (2014), Niayifar and Porté-Agel (2015)
Bastankhah and Porté-Agel (2014), King et al. (2021)

Crespo and Hernandez (1996)

Katic et al. (1987)

Gebraad et al. (2016)
Gebraad et al. (2016)

Table 2. Parameter space, €2, considered for the sensitivity study and the optimization of the Gauss—curl hybrid wake model.

Parameter  Physical representation Min: Max:  Reference

Qmin - gmax  yayye; Qref
kg wake expansion 0.05 1.5 0.38
kp wake expansion 0.0 0.02 0.004
o near-wake to far-wake transition  0.125 25 0.58
B near-wake to far-wake transition  0.015 0.3 0.077

Stel]
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Figure 14. Total Sobol indices for §.

the velocity deficit model. Optuna serves as a specialized
framework for hyperparameter optimization, aimed at find-
ing the ideal set of parameters for machine learning, such as
the learning rates and number of hidden layers in a neural
network or the depth in a decision tree.

In order to reduce the optimization time and number of lo-
cal minima, the optimization process is subdivided into three
stages:

— Stage 1. The first stage involves the optimization of the
wind speed.

— Stage 2. The second stage optimizes both the wind
speed and the wind direction.

— Stage 3. In the final stage, wind speed, wind direction,
and wake parameters are optimized together.

Wind Energ. Sci., 9, 1507-1526, 2024

In the first and second stages, the quasi-Monte
Carlo (QMC) sampler by Bergstra and Bengio (2012)
is used to explore the entire tuning parameter search space.
QMC sequences, known for their lower discrepancies
compared to standard random sequences, are effective in
initially exploring the search space more efficiently than the
tree-structured Parzen estimator (TPE) algorithm (Bergstra
et al., 2012). At these stages, obtaining a precise estimate
is less critical, and instead, a general approximation is pre-
ferred. For the final stage, the multivariate TPE algorithm is
used as sampling algorithm and is combined with 50 random
start-up trials. The TPE algorithm fits a Gaussian mixture
model (GMM) to a set of parameter values linked to the best
objective values. Concurrently, it creates a separate GMM
pertaining to the rest of the parameter values. The TPE
algorithm then chooses the parameter set that maximizes the
ratio between the GMM associated with the best objective
values and the set of remaining parameters. For further
information on the framework and the algorithm, see Akiba
et al. (2019).

The cost function used in these stages consists of two com-
ponents, f and g:

AL 2
1009 =53 (= AW.0.2) (a
Nt . Nt R 2
8(U,¢,2) = (ZPi—ZPi<U,¢,sz)) : (12)

i=1 i=1

where Fl is the active power from the SCADA data of tur-
bine i, P; is the power of turbine i derived from FLORIS,
U is the free-flow wind speed, ¢ is the free-flow wind di-

https://doi.org/10.5194/wes-9-1507-2024



D. van Binsbergen et al.: Hyperparameter tuning framework for calibrating analytical wake models

rection, and €2 is the set of wake velocity deficit parameters.
Function f is divided by the number of active turbines, N,
for normalization purposes. Intuitively, f is a cost function
that penalizes large errors on the turbine level, while g is a
cost function that penalizes large errors on the farm level.

The weight between the two components, f and g, is de-
fined by the normalized constants a and b. A preliminary
optimization of @ and b is conducted to find the combination
that results in the fastest convergence rate and smallest nor-
malized squared error per wind turbine. The criteria are that
a+b=1,and a > 0, b > 0. The identified combination that
has been determined is then used for the optimization of the
wind speed, wind direction, and wake velocity parameters.
Given the importance of penalizing large errors on the tur-
bine level, a final ratio 7 of 4.0 is considered, emphasizing
the importance of function f over g.

For the first optimization step, the free-flow wind speed U
is optimized given a constant value for the initial free-flow
wind direction ¢, and wake parameters "' This is done
by minimizing the cost function shown in Eq. (13). The ini-
tial free-flow wind speed U , is determined as the mean wind
speed of the first turbine row of the wind farm at the upstream
edge. The initial free-flow wind direction is determined from
the median of all wind turbines within the wind farm. The al-
gorithm is allowed to shift the wind speed by up to 40 %, as
relatively large inconsistencies are observed between the ini-
tially determined free-flow wind speed and the active power
of the wind farm. Furthermore, it is also constrained so that
the optimized free-flow wind speed is larger than 4.0ms~".
The aim of this first optimization stage is to match the free-
flow wind speed better with the FLORIS simulation, given
the power curve and the individual turbine powers are known.

minimize a - f (u1 o szfef) Yb-g (ul . sz‘ef) (13)
subject to 0.6U oo <U) < 1.4U » (14)

In the second optimization stage, both the free-flow wind
speed U> and wind direction ®; are optimized. The optimiza-
tion of the latter is important in order to minimize the biases
of the directional wind vanes. To this end, a search space
of 15° from the initial guess ¢, is considered. It is opted
to allow a smaller optimization range for the free-flow wind
speed, as it is assumed that this variable has already been op-
timized to the value /] in the previous step. The initial value
imposed on the optimization problem U4; is equal to the pre-
vious estimate {{. This variable is allowed to be adjusted by
up to 5 %. This can be seen in Eq. (15).

minimize @ - f (uz, D, szfef) tb-g (Z/lz, D, szfef) (15)

subject to 0.95U; < U, < 1.05U} (16)
and ¢, — 15 < Py < p, + 15 (17)

In the final step, the three design parameters are opti-
mized simultaneously. These consist of the free-flow wind
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Figure 15. Accumulated relative error between SCADA data and
the GCH wake model on the turbine level for time series data and
wind directions ranging from 50 to 250°. The reference model is
shown in blue, while the calibrated model is shown in red.
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Figure 16. Overview of the groups of wind turbines used for energy
ratio analysis. Group one represents a group of wind turbines far
from neighbouring wind farms, while group two represents a group
of wind turbines close to neighbouring wind farms.

speed U3, the free-flow wind direction @3, and the wake pa-
rameter set & = {k,, kp, o, B}. The initial values of U3 and
®3 are imposed as the average of the values obtained af-
ter the two previous optimization steps, ] and ¢/, and Do
and @3, respectively. In addition, the wake parameters are
varied. The minimum, initial, and maximum values of the
parameter set £ can be found in Table 2, defining the param-
eter space Q.

minimize a - f (U3, D3, R)+b - g(U3, D3, R) (18)
subject to 0.95U; < U3 < 1.05U5 (19)
and 5 — 15 < P3 < P54+ 15 (20)
and Q € 21)

4.2 Validation of results

Results are validated by comparing the accumulated relative
wake model error between the calibrated model and the ref-
erence model for wind directions between 50 and 250°. The
error metric used is comparable to the one described in Ny-
gaard et al. (2022). However, the described error metric fo-
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Figure 17. Validation of the optimized results for group one using the energy ratio for the GCH wake model for wind speeds between 9 and
10ms~!. These turbines are located far from neighbouring wind farms.

energy ratio between turbine 2 and turbine 1

90 180
% Energy ratio between turbine 3 and turbine 1
5 2
P 1
o 0.5
h 90 180 270
Energy ratio between turbine 4 and turbine 1
2
1.5
1
. 0.5
- 90 180 270
®
£
o
Q
£ 400
[
S 200
2 0
2 90 180
[S
>
z

1.5
1~f
0.5

[ IS TN)

oo

@® SCADA
@® model

270

Energy ratio between turbine 3 and turbine 2

SO WY

90 180 270

Energy ratio between turbine 4 and turbine 3

90 180 270
270

Freeflow wind direction [°]

Figure 18. Validation of the optimized results for group two using the energy ratio for the GCH wake model for wind speeds between 9 and
10ms~!. These turbines are located in close proximity to neighbouring wind farms.

cuses on the accumulated error between SCADA data and
the wake model for each wind turbine, described by Eq. (4).

Figure 15 shows the accumulated relative error without
calibration of the tuning parameters in blue and after calibra-
tion of the tuning parameters in red. Here, it is evident from
the figure that the optimization effectively reduces the accu-
mulated error. Before calibration, the median error is 15.7 %,
with interquartile errors from 12.4 % to 20.5 %. After calibra-

Wind Energ. Sci., 9, 1507-1526, 2024

tion, the median error decreases to 14.2 %, with interquartile
errors from 11.4 % to 18.4 %. This represents an improve-
ment of 9.3 % for the median value and relative improve-
ments of 8.4 % and 10.2 % for the interquartile range.
Additionally, a comparison of the energy ratios is per-
formed for clustered wind turbines within the wind farm,
similar to the energy ratio defined by Doekemeijer et al.
(2022). The energy ratios are computed for two groups of
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wind turbines, as shown in Fig. 16. Here, group one repre-
sents the turbines from Fig. 17, and group two represents the
turbines from Fig. 18. Figure 17 shows the energy ratios for
a group of clustered wind turbines far from the neighbour-
ing wind farms, while Fig. 18 shows the energy ratios for a
group of clustered wind turbines close to neighbouring wind
farms. Here, SCADA data are compared to the simulation
results acquired from the FLORIS framework. For a given
bin width, the energy ratios are presented, specifically for
this case at 9 and 10ms~!. The line represents the median
for a bin width of 3°, while the opaque region signifies the
area between the 25th and 75th percentile marks. The bot-
tom plot displays the number of data points used to deter-
mine the median and percentile indicators. When the energy
ratios obtained from FLORIS align with the energy ratios de-
rived from SCADA data, it can be concluded that the filtering
procedure is effective in removing transient data. Moreover,
this signifies that the optimization process has reached con-
vergence.

Both Fig. 17 and Fig. 18 show good agreement between
the energy ratios obtained using FLORIS and the energy ra-
tios derived from SCADA data when the inflow wind is not
affected by neighbouring wind farms. Similarly, both figures
show an increase in the mean error for wind coming from
neighbouring wind farms. The magnitude of the observed er-
ror differs significantly between Figs. 17 and 18. This can be
attributed to the proximity of the wind turbines from Fig. 18
to neighbouring wind farms, which is closer compared to the
wind turbines from Fig. 17. The neighbouring wind farms
create both heterogeneous inflow and a wake where homoge-
neous unaffected inflow is assumed by the model. The error
will be most present close to the neighbouring wind farms
since the heterogeneous effect of wake propagation recedes
due to wake recovery further from the neighbouring wind
farms. The wind turbines from Fig. 17 will therefore expe-
rience less heterogeneous inflow from neighbouring wind
farms than the wind turbines from Fig. 18. The increase in
the error agrees with the findings from Figs. 9 and 10, where
a larger final optimization bias is observed for wind coming
from neighbouring wind farms.

4.3 Optimization results

The set of optimized parameters of the GCH velocity deficit,
Q* = {kg, kp, a, B}, are optimized based on the cost function,
as discussed in Sect. 4.1. The Pearson correlation matrix for
the set of parameters can be seen in Fig. 19. All variables
exhibit weak correlations with each other, as indicated by all
correlation coefficients being below 0.2. This suggests that
none of the variables share a strong linear relationship.

The expected value as a function of wind speed and wind
direction can be seen in Figs. 20 and 21, respectively. The
line indicates the median value per wind speed or wind direc-
tion bin, while the opaque area indicates the area between the
25th and 75th percentile marks. The dotted black line repre-

https://doi.org/10.5194/wes-9-1507-2024

-0.20

-0.15

-0.10
0.05
0.00
-0.05
-0.10
-0.15

-0.20

ka kb a B

Figure 19. Pearson correlation matrix for the velocity deficit pa-
rameters of the GCH wake model.

sents the reference value within the FLORIS framework. The
bottom plot displays the amount of data that is used to deter-
mine the median and percentile indicators. Figure 20 shows
the expected wind speed based on wind directions between
50 and 250°. This filtering is performed to remove the effect
of external wakes on the parameter estimation, as discussed
in Sect. 2.3.

Parameter k,, recognized as the most sensitive parameter
in the GCH model from the sensitivity study, converges to a
value below its reference value, whereas the remaining pa-
rameters converge to above their respective reference value.
Given the direct effect of k, on wake recovery, as described
by Egs. (6)—(10), this implies that the GCH wake model un-
derestimates the impact of internal wakes when baseline pa-
rameters are used in combination with a reference turbulence
intensity of 0.06. This is further confirmed by calculating
wake losses for the wind conditions specific to the local site
using the optimized tuning parameters and comparing these
to the losses obtained with the reference parameters. This
comparison shows a relative increase in wake losses of 14 %
compared to the losses obtained with the reference parame-
ters. The trend observed for « agrees with the findings from
the sensitivity analysis. As the importance of « increases,
its value shows a consistent convergence and decrease in
variance. The same is observed for the parameter k,, where
its variance increases as its importance decreases. The wide
spread observed for parameters k; and § is in line with the
expectations derived from the sensitivity analysis. A large
variance is expected when non-sensitive parameters are op-
timized since it should theoretically yield a uniform distri-
bution in a Bayesian optimization scenario. The results do
not perfectly align with a uniform distribution, implying the
parameters are not fully non-sensitive.

The expected results for different wind directions are de-
picted in Fig. 21, similarly to how Fig. 20 represents the
parameters for different wind speeds. It is noticeable that
k, shows nonlinearity with respect to the wind direction. A
number of factors can contribute to this, including the layout
of the wind farm, terrain features, data scarcity, or the differ-
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Figure 20. Expected value of the set of parameters, Q* = {kq, kp, o, B}, as a function of wind speed.
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Figure 21. Expected value of the set of parameters, Q* = {k4, kp, o, 8}, as a function of wind direction.

ent distributions (e.g. Weibull scaling parameters) per wind
direction. To get a more comprehensive understanding of the
joint relationship between wind speed and wind direction, the
joint relationship between wind speed and wind direction for
each parameter is analysed.

The joint distribution of the wake velocity deficit param-
eters (kq, kp, @, B) of the GCH wake model is illustrated
in Figs. 22-25, respectively. An increase in the values for &,
and kj, is visible between 250 and 50°, which can be linked to
neighbouring wind farms. Similarly, as identified in Fig. 21,
values for k, and k;, are visibly higher from east to south,

Wind Energ. Sci., 9, 1507-1526, 2024

which is the direction closest to the coast. The increase can
be attributed to an increase in turbulence from land or a wind
speed gradient due to different topographic properties be-
tween land and sea.

As for parameters o and B8, no distinct directional trends
influenced by the layout or the placement of the wake are
visible. However, a noticeable decrease in & and 8 can be
observed as wind speeds approach rated wind speed. It is im-
portant to note that this study does not include wind speeds
exceeding the rated value. Therefore any conclusions about
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Figure 22. Joint distribution of the expected value for k, after cal-
ibration on SCADA data.
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Figure 23. Joint distribution of the expected value for &, after cal-
ibration on SCADA data.

the behaviour of these parameters beyond this point cannot
be made.

The difference between the identified tuning parameters
and those presented in Niayifar and Porté-Agel (2016) and
Trabucchi et al. (2017) can be partially explained by the con-
stant turbulence intensity assumption, set to 0.06 for this
study, since accurately determining the turbulence intensity
based on SCADA data is not trivial. In reality, the turbu-
lence intensity exhibits a strong dependency on wind speed
and may also vary with wind direction. This explains the ob-
served downward trend for the parameter k,. Consequently,
changing the ambient turbulence intensity requires additional
calibration. Additionally, the metrics used in the optimized
cost function consider the collective power production of the
wind farm, in contrast with the results from Niayifar and
Porté-Agel (2016) and Trabucchi et al. (2017), which are
based on the wake of a single wind turbine, specifically fo-
cusing on a set number of rotor diameters behind the wind
turbine. Optimization at the scale of an entire wind farm re-
quires the tuning parameters to account for flow physics that
are inherently different from those encountered in a single-
wake case.
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Figure 24. Joint distribution of the expected value for « after cali-
bration on SCADA data.
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Figure 25. Joint distribution of the expected value for g after cali-
bration on SCADA data.

5 Conclusions

A reliable method for calibrating analytical wake models for
both yield assessment and control purposes has been estab-
lished in this study. Rather than utilizing binned data, this op-
timization process employs time series data. The calibration
process is executed in three stages utilizing a tree-structured
Parzen estimator for optimization. The first two stages deter-
mine the free-flow wind speed and wind direction. These are
based on a cost function that minimizes the error between the
active power from the supervisory control and data acquisi-
tion (SCADA) system and the power output estimated by the
FLOw Redirection and Induction in Steady State (FLORIS)
framework. This work focuses on optimizing the wake veloc-
ity deficit parameters of the Gauss—curl hybrid wake model.
However, the set of parameters, referred to as €2, can easily
be adjusted for different submodels or wake models.

A sensitivity analysis on the considered set of parame-
ters reveals that parameter k, is highly sensitive, while pa-
rameters k, and 8 display minimal sensitivity. It is further
observed that the sensitivity of parameter o increases with
wind speed, which jointly determines the near-wake region
transition point with 8, as wind speeds increase. This con-
clusion is reinforced by a decrease in the variance and ex-
pected value for o approaching rated wind speed. The sub-
stantial importance of one parameter over the others suggests
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that the model is subject to overparameterization. The ef-
fect of overparameterization can be further observed when
analysing the expected results for the set of parameters. The
parameters with high sensitivity converge strongly, whereas
parameters with low sensitivity retain considerable variance
within the defined optimization boundaries. Comparing the
optimized parameters to the baseline reveals that the base-
line parameters underestimate the wake effects, which sub-
sequently leads to an overestimation of the expected yield.

A significant increase in the resultant cost-function error
is observed for wind coming from neighbouring wind farms
due to the heterogeneous inflow and wake-added turbulence
coming from these wind farms. This increase is also clear
when analysing the energy ratios between turbines near the
neighbouring wind farms. Moreover, the resultant param-
eter set shows considerable variation between wind direc-
tions free from external wake effects and those impacted by
neighbouring wind farms. The impact of the irregular coast-
line with low-rise buildings is also noticeable in the resul-
tant cost-function error. Additionally, the entire coastline,
consisting of both low-rise and high-rise buildings, impacts
the expected values for the wake expansion parameters, k,
and k.

Caution is advised when using these results with a tur-
bulence intensity different from the reference value within
the model. Additionally, it is important to acknowledge that
these findings are site specific and may not be directly trans-
ferable to other locations without careful consideration of the
site-specific characteristics and recalibration. Future studies
will involve a comparison of other calibrated analytical wake
models with the Gauss—curl hybrid model. The substantial
error in the cost function observed for wind coming from
neighbouring wind farms suggests the necessity of including
these wind farms during the optimization of wake parame-
ters. Additionally, accounting for the wake blockage effect,
particularly relevant in large wind turbine clusters, should
then be considered. Future analysis will incorporate the tur-
bine yaw misalignment, taking into account its uncertainties
and impact on the resultant cost-function error. Furthermore,
together with a varying turbulence intensity, results will be
analysed under different atmospheric stabilities, and analysis
of both diurnal and annual cycles will be conducted. Lastly,
in this study, the cost function is based solely on the error
associated with active power. For future research, it would
be valuable to conduct a comparative analysis between the
cost function based on active power and one that incorporates
the wind speed acquired from SCADA. Exploring the differ-
ences between using active power and wind speed in the cost
function could provide insights into their relative accuracy
and substantiate the choice of one metric over the other.

Code and data availability. The code used in this study is avail-
able from the FLORIS repository (https://github.com/NREL/floris,
NREL, 2023, https://doi.org/10.5281/zenodo.7942258, Mudafort et
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